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Abstract: This paper deals with the absolute stability analysis of uncertain systems
formulated in linear differential inclusion. It presents an approach based on the
representation of a polyhedral positively invariant set by its vertices, allowing to
construct the associated Lyapunov function. Efficiency of the method is discussed
through a numerical example, where the absolute stability of a third order system has
been analyzed via the construction of a Polyhedral Lyapunov Function (PLF). The
flexibility of the proposed mesh and the check procedure of Molchanov–Pyatintskii
conditions give a larger parameterized absolute stability domain than the one obtained
by others existing in the literature.
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1 Introduction

Complex systems have always been difficult in their modeling and stability analysis since
they may present nonlinearities and/or uncertainties. The problem has to do with non-
linear systems formulated in differential inclusions, where it is worth to decide about
their largest parameterized domain of variation of the non-constant gain without loss of
their stability [19]. Several criteria have been developed as a solution of this problem
such as the circle criterion [1], Popov criterion [2] and Borne and Gentina criterion [3].
However all these criteria give sufficient but not necessary conditions of stability.
The Second Lyapunov method is a powerful tool of the stability analysis for nonlinear or
uncertain system. However, its implementation is dependent on the choice and the way
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of construction of the Lyapunov function. The well-known class of quadratic functions is
the most common one [4]. However this kind of functions doesn’t lead usually to the best
solution, since the existence of a quadratic Lyapunov function is not a necessary condi-
tion of stability. Recently, a generalization of quadratic functions have been introduced
in the context of constrained control and they are called composite quadratic Lyapunov
functions [5]. Some classes of non-quadratic Lyapunov functions are introduced such as
polynomial homogenous functions [6]. The class of piecewise linear functions [7] which
is a universal class, since their construction represents necessary and sufficient condi-
tion of stability, was introduced for stability analysis and control [8]. A sub-class is the
one of polyhedral Lyapunov functions, a set-induced functions, have positively invariant
polyhedral sub-level sets [20]. Therefore, their construction is based on an operation of
scaling of the set boundary.

Several approaches have been established for the construction of polyhedral Lyapunov
functions, the plane representation of the sub-level set have been considered to determine
the absolute stability boundary of a second order system [9, 18]. The symmetric repre-
sentation of the set by its vertices is used to construct a polyhedral Lyapunov function
for third order uncertain system [10]. The technique of Ray-gridding is another issue for
scaling [11, 12] based on uniform partitions of the state space in terms of ray directions
allowing stability analysis of linear switched systems.

This paper is devoted to the stability analysis of third order uncertain systems by
constructing a polyhedral Lyapunov function. We propose to represent the positively
invariant set by its vertices obtained by a surface sphere triangulation [16]. This kind
of representation with an associated algorithm enables to enhance the set of parameters
variations, the obtained boundaries of the uncertainty are larger than those obtained
by existent approaches in the literature. The paper is organized as follows: First, we
remind some properties of the polyhedral sets and of their associated Lyapunov functions.
Then the procedure used for the computation of the Polyhedral Lyapunov Function is
presented, the efficiency of the approach is illustrated by an example. Conclusions are
summarized in the end.

2 Polyhedral Lyapunov Function

Our interest in this study is the construction of polyhedral Lyapunov functions, which are
induced by polyhedral positively invariant sets. These sets present several theoretical and
practical advantages over the ellipsoids, but they suffer from the problem of complexity
of their representation.

We remind here that a polyhedral set can be represented by:

P(F ) = {x : Fx ≤ 1̄} (2.1)

or by its dual form:
V(X) = { x = Xz, 1̄Tz ≤ 1, z ≥ 0}, (2.2)

where 1̄ = [1, 1, ..., 1]T , F and X are N × n-matrices.
The polyhedral set can be also represented by its rays, we denote by RN (λ), 0 < λ ≤ 1

the ray-polytope which is a scaled version of

RN (1̄) = conv
{

cos(
2πk

N
), sin(

2πk

N
), 0 ≤ k ≤ N

}

,

where conv{V } denotes the convex hull of a set of vertices V .
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Given a C-set S ⊂ R
n (a convex and compact subset of Rn including the origin as

interior point), it is always possible to define a function, named Minkowski function,
which is essentially the function whose sub-level sets are achieved by linearly scaling the
set S.

Definition 2.1 [8] Given a C-set S, its Minkowski function is defined by :

ψS(x) = inf{λ ≥ 0 : x ∈ λS}. (2.3)

The Minkowski function ψS satisfies the following properties [13]:

• It is positive definite : 0 ≤ ψS(x) ≤ ∞ and ψS(x) > 0 for all x 6= 0.

• It is positively homogeneous of order 1: ψS(λx) = λψS(x) for λ ≥ 0.

• It is sub-additive: ψS(x1 + x2) ≤ ψS(x1) + ψS(x2).

• It is continuous.

• Its unit ball is S = {x : ψS(x) ≤ 1}.

• It is convex.

If a polyhedral C-set is considered, the Minkowski functions deriving from the repre-
sentations (2.1) and (2.2) are:

ψP(F )(x) = max{Fx} = max
i

{Fix} (2.4)

and
ψV(X)(x) = min{1̄µ, x = Xµ, µ ≥ 0}. (2.5)

Consider a system (possibly resulting from a feedback connection) of the form:

ẋ(t) = f(x(t)). (2.6)

For a convex (possibly non-differentiable) Lyapunov function ψ(x), its Lyapunov deriva-
tive is defined by [14]:

D+ψ(x) = max
i∈I(x)

Fif(x), (2.7)

where I = {i : Fi(x) = ψP(F )(x)} andD
+ denotes the upper-right Dini derivative defined

by:

D+ψ(x) = lim sup
h→0+

ψ(x+ hf(x))− ψ(x)

h
.

3 Absolute Stability Theorem

We consider the following Linear Differential Inclusion (LDI) given by:

ẋ ∈
{

Ax,A =
K
∑

i=1

αiAi, αi ≥ 0,
K
∑

i=1

αi = 1
}

. (3.1)

The matrices A1, A2, ...AK ∈ R
n×n are vertices of the matrix polytope.
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Theorem 3.1 [15] The function ψS(x) (2.3) induced by S represented as in (2.2) is a
Lyapunov function for the system (3.1) which guarantees its absolute stability (respectively
the polytope S is a positively invariant set) if and only if there exists K matrices Hi ∈
R

N×N , i = 1, 2, ...,K, each of them verifies:

h
(i)
kk +ΣN

j=1j 6=k
h
(i)
kj < 0 (3.2)

for all 1 ≤ k ≤ N , h
(i)
kj denotes the elements of the matrix Hi,

AiX = XHi (3.3)

where X = [x1, x2, ..., xN ] ∈ R
n×N is the matrix containing the vertices of S.

4 Polyhedral Lyapunov Function Construction for Third Order System

First, the computation of Polyhedral Lyapunov Function needs the definition of an arbi-
trary set. The scaling of its vertices allows to get a positively invariant set which defines
a sub-level set of the Lyapunov function.

4.1 Representation of the polyhedral set

The plane representation of the set for a third order system needs a tedious computation
complexity. We propose to represent the set by its vertices, which are obtained by a
surface triangulation of the unit sphere [16]. This triangulation is obtained by a Matlab
function which uses recursive subdivision. The first approximation is a platonic solid, an
octahedron (Figure 4.1).

Figure 4.1: Octahedron.

This shape is defined by the vertices [1, 0, 0], [−1, 0, 0], [0, 1, 0], [0,−1, 0], [0, 0, 1] and
[0, 0,−1]. Each level of refinement subdivides each triangle face by a factor of 4 (Figure
4.2).

At each level of refinement, the vertices are projected to the sphere surface. Thus we
define the arbitrary set SA (Figure 4.3).

4.2 Generation of the Lyapunov function

After the definition of the arbitrary polytope SA, the determination of the positively
invariant set (level set of the associated Lyapunov function) is based on checking the
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Figure 4.2: The octahedron obtained after two levels of refinement.

Figure 4.3: The polytope S
A obtained by a Surface Triangulation of the unit sphere.

two conditions (3.2) and (3.3) of theorem 3.1. Thus, the following linear program is
formulated:

• For each vertex xk, for all k = 1, 2, ..., N we denote by V (k) the matrix obtained
by the neighbored vertices

V (k) = [−xk, xk, x1(k), x2(k), ..., xL(k)] (4.1)

for all k = 1, 2..., N , where xl(k), for all l(k) = 1, 2, ..., L(k) are the neighbored
vertices of xk.

• We resolve the following linear program:

max FAixk
FV (k) ≤ J T (4.2)

for all k = 1, 2, ..., N , where J = [−1, 1, 1...., 1]T is a R
L(k)+2 vector. The dual of

the linear program (4.2) can be written:

min J Tλ(k),
V (k)λ(k) = Aixk

(4.3)
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where λ(k) ∈ R
L(k)+2 is a vector containing the Lagrange multipliers relative to

the linear program (4.3). We construct each column of the matrix Hi, for all
i = 1, 2, ...,K from the elements of the vectors λ(k), k = 1, 2, ..., N :

h
(i)
kk = −λ1(k), h

(i)
l(k)k = λl(k)+2(k). (4.4)

All the other components of Hi are equal to zero. With such a construction of Hi,
i = 1, 2, ...,K, the condition (3.3) is well satisfied.

The computation of the matrices Hi, for all i = 1, 2, ...,K followed by an operation
of scaling the vertices of SA leads to the construction of the modified polytope SD

with vertices contained in XD. This operation consists in replacing the matrix X by
XD = XD−1 where D = diag(d1, d2, ..., dN ) is a diagonal matrix. The vector d =
[d1, d2, d3, ..., dN ]T is obtained by solving the following linear program:

min z,










|H1|
T

|H2|
T

...
|HK |T











d− 1z ≤ 0, d ≥ 0, z ≥ −100
(4.5)

where |Hi| is the matrix obtained from Hi by replacing only the off-diagonal elements by
their absolute values. 1 denotes the vector of appropriate dimension, of which all entries
are equal to one.

5 Numerical Example

We consider the following system with nonlinear feedback gain defined by Figure 5.1. If
we consider an output linear gain, we can prove that the stability condition is a positive
unlimited gain. But where the gain is non-constant, we have to determine the largest

domain [kmin, kmax] in which the nonlinear gain σ(y,t)
y

may vary without loss of the system
stability:

kmin ≤
σ(y, t)

y
≤ kmax, y 6= 0. (5.1)

The absolute stability of the considered system is equivalent to that of the Linear Dif-
ferential Inclusion defined by the two vertices of the matrix polytopes:

A1 =





−10 −10kmin −10kmin

1 0 0
0 1 0



 , A2 =





−10 −10kmax −10kmax

1 0 0
0 1 0



 . (5.2)

Let us set kmin = 0.2. The problem is to determine kmax such that the system is
absolutely stable. As long as the linear program (4.5) is feasible, we get an optimal
solution zopt = −100, which gives the associate scaling vector d > 0. Then the associated
Lyapunov function is ψSD (x) = inf{µ ≥ 0 : x ∈ µSD}.

With N = 66 vertices, the obtained upper boundary is kmax = 2.24 which is upper
than the values obtained by other developed criteria and approaches. Indeed the Circle
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Figure 5.1: The studied system.

criterion leads to kmax = 0.5467. The representation of the polytope with 6402 vertices
[10], gives kmax = 1 and the application of the ray-gridding technique [12] provides
kmax = 1.5. This comparison study shows the importance of the proposed procedure of
PLF construction from the point of view of the width of the absolute stability domain
and the reduction of the number of vertices which simplifies the computation complexity.

6 Conclusion

In this paper, we have dealt with the problem of the construction of a polyhedral lyapunov
function for the absolute stability analysis of uncertain systems formulated on linear
differential inclusion. It has been proved that the choice of a flexible representation
of the polytope and the application of a suitable technique of scaling adjust its shape
to some demands. The representation of the polytope by its vertices obtained by the
proposed surface triangulation of the unit sphere associated with a suitable technique
of scaling allows a convenient application of the Molchanov–Pyatintskii theorem. The
comparison of the proposed procedure with other criteria and approaches has shown its
availability and its efficiency.
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