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Abstract: Using the methodology of evolutionary game theory (EGT), I study a
class of Darwinian matrix models which are derived from a class of nonlinear matrix
models for structured populations that are known to possess stable (normalized) dis-
tributions. Utilizing the limiting equations that result from this ergodic property, I
prove extinction and stability results for the limiting equations of the EGT versions
of these kinds of structured population models. This is done in a bifurcation theory
context. The results provide conditions sufficient for a branch of non-extinction equi-
libria to bifurcate from the branch of extinction equilibria. When this bifurcation is
supercritical (explicit criteria are given), these equilibria are stable and represent sta-
ble non-extinction equilibria (which are also candidate ESS equilibria). These kinds
of matrix models are motivated by applications to size structured populations, and
I give an application of this type. Besides illustrating the formal theory, this ap-
plication shows the importance of trade-offs among life history parameters that are
necessary for the existence of an evolutionarily stable equilibrium.
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1 Introduction

Nonlinear matrix models are widely used to describe and study the discrete time dynamics
of structured populations. These models take the form

x(t + 1) = P (x(t))x(t), (1)
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where P (x) is an m×m non-negative projection matrix that is assumed primitive (irre-
ducible and possessing a strictly positive dominant eigenvalue) for each (column vector)
x ∈ Ω, where Ω is an open set in Rm containing the origin. Here x(t) is a demographic
distribution vector at time t ∈ Z+ = {0, 1, 2, · · · } that is based on a classification scheme
for individuals in the population (chronological age, weight, size, etc.). For more on
matrix models in population dynamics see [1, 9, 10].

In general the projection matrix has the form

P (x) = F (x) + T (x),
F (x) = [fij(x)], T (x) = [sij(x)],

(2)

where fij ≥ 0 is the amount (number, density, etc.) of surviving i-class offspring per
j-class individual in a unit of time and where sij , 0 ≤ sij ≤ 1, is the fraction of j-class
individuals that survive and move to the i-class over one unit of time [9, 10]. In one
type of model that arises in population dynamics and theoretical ecology, the projection
matrix also has the form

P (x) = a(x)I + b(x)L, (3)

where I is the m×m identity matrix, L is an m×m constant matrix, and a, b are scalar
valued functions of x. For examples see [2, 7, 6, 9, 15], Chapter 17 in [3], Chapter 3 in
[5], and Section 3.

For models of the form (3) there exists an asymptotically stable (normalized) distri-
bution vector. This is a consequence of the following theorem.

Theorem 1.1 [2, 7, 9] Consider the equation x(t + 1) = (α(t)I + β(t)L)x(t) where
(a) α, β are real valued functions for which there exist constants α0, β0 such that 0 ≤
α(t) ≤ α0, 0 < β0 ≤ β(t) for all t ∈ Z+; (b) the m×m constant matrix L has a strictly
dominant, simple eigenvalue θ > 0 with a positive eigenvector v ∈ int

(

Rm
+

)

. Suppose
x(t) is a solution satisfying 0 6= x(t) ≥ 0 for all t ∈ Z+ and p(t) is a weighted total
population size:

p(t)
.
= ω · x(t), 0 6= ω ∈ Rm

+ .

Then

lim
t→+∞

x(t)

p(t)
=

v

ω · v . (4)

We can apply Theorem 1.1 to solutions of the nonlinear matrix equation (1)-(3) with
α(t) = a(x(t)) and β(t) = b(x(t)). We then use (4) to replace x(t) and x(t+1) in (1) by
their asymptotic equivalents p(t)v/ω · v and p(t+1)v/ω · v and obtain the scalar limiting
equation

p(t+ 1) =
[

a
( v

ω · v p(t)
)

+ b
( v

ω · v p(t)
)

θ
]

p(t)

for the total population size p(t). Thus, for these kinds of matrix models, the high
dimensional dynamics of the original model are replaced by those of the scalar limiting
equation for total population size (which depend on the dominant eigenvalue θ of L),
and the asymptotic distribution (4) (calculated from the eigenvector v associated with
θ). For applications see Section 3 and [9] (and papers cited therein).

Under the assumption that P (x) is nonnegative and primitive for x ∈ Ω, it has a
strictly dominant eigenvalue r = r(x) > 0. It is easy to see that under the assumption
(b) in Theorem 1.1

r(x) = a(x) + b(x)θ
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and as a result the limiting equation can be written as

p(t+ 1) = r
( v

ω · v p(t)
)

p(t). (5)

As a special case, if P = P (p) and hence a = a(p) and b = b(p) are functions of a weighted
total population size p (as they frequently are in applications), the limiting equation is
p(t+ 1) = [a (p(t)) + b (p(t)) θ] p(t) or

p(t+ 1) = r (p(t)) p(t).

Theorems relating the (equilibrium and cycle) dynamics of the limiting equation to the
dynamics of the original matrix model appear in [7].

In their book Vincent and Brown [17] provide a methodology for extending matrix
models for structured populations to an evolutionary setting. Their methodology in-
volves a dynamically evolving phenotypic trait, which affects demographic parameters
in the entries of the projection matrix and whose dynamics are in turn affected by the
population dynamics. Vincent and Brown refer to this coupling of the evolutionary and
population dynamics as Darwinian dynamics. Our goal here is to study Darwinian ma-
trix models with projection matrices of the particular form (3) by making use of the
ergodic Theorem 1.1 and the resulting limiting equation (5). In Section 2 we study,
in the context of bifurcation theory, the existence and stability of both extinction and
non-extinction equilibria. Section 3 contains an application to a Darwinian model based
on a class of structured models studied in the literature which has historical roots in a
seminal paper of Leslie on matrix models in population dynamics [15].

2 Darwinian Matrix Models

Let u denote the mean of a phenotypic trait (with a heritable component) that is subject
to natural selection. The Darwinian dynamics associated with a matrix equation are

x(t+ 1) = P (x(t), u(t))x(t), (6)

u(t+ 1) = u(t) + σ2 ∂ ln r (x(t), u(t))

∂u
,

where P = P (x, u) is now assumed a function of u as well as x and r = r(x, u) is its
dominant eigenvalue. Here the constant σ2 is the variance of the phenotypic trait each
point in time; it is a measure of the speed of evolution. Let Υ ⊆ R1 be an open interval.
We make the following assumptions:

A :







































The nonnegative, primitive matrix P (x, u) has the form (3)
with an m×m constant matrix L and real valued functions
a, b ∈ C2

(

Ω×Υ → R1
+

)

that satisfy the following:
(a) there exist constants a0, b0 such that 0 ≤ a(x, u) ≤ a0,

and 0 < b0 ≤ b(x, u) for (x, u) ∈ Ω×Υ;
(b) L has a simple, strictly dominant eigenvalue θ > 0 with a

positive eigenvector v.

Under assumption A, Theorem 1.1 applies to (6) with α(t) = a(x(t), u(t)) and β(t) =
b(x(t), u(t)) and implies that solutions have a stable normalized distribution (4). From
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(6) we derive the two scalar equations

p(t+ 1) = ω · P (x(t), u(t)) x(t), (7a)

u(t+ 1) = u(t) + σ2 ∂ ln r (x(t), u(t))

∂u
, (7b)

for the dynamics of the total population size p(t) = ω · x(t) and the mean trait u(t).
Replacing x(t) by vp(t)/ω · v, we obtain the limiting equations [7, 14]

p(t+ 1) = r

(

p(t)

ω · v v, u(t), θ
)

p(t), (8a)

u(t+ 1) = u(t) + σ2 ∂ ln r (x, u, θ)

∂u

∣

∣

∣

∣

(x,u)=( p(t)
ω·v

v,u(t))
, (8b)

for p(t) and u(t), where for convenience we have added θ to the argument list in the
dominant eigenvalue

r(x, u, θ) $ a(x, u) + b(x, u)θ (9)

of P (x, u) = a(x, u)I + b(x, u)L. This system of limiting equations is two dimensional
and therefore more analytically tractable than the original m + 1 dimensional matrix
model (6). We now turn our attention to an analysis of the equilibrium states of this
limiting system. We will relate these dynamics to those of the original matrix model in
Section 2.3.

2.1 The limiting system: existence of equilibria

The equilibrium equations for (8) are

p = r
( p

ω · v v, u, θ
)

p,

0 = ru

( p

ω · v v, u, θ
)

,

where the subscript u denotes partial differentiation ∂/∂u. We are interested in the
existence of two types of equilibria. An extinction equilibrium (p, u) of (8) is one in
which p = 0 and a non-extinction equilibrium is one in which p > 0.

We are also interested in the stability of these equilibria, when they exist. We refer
to a (locally asymptotically) stable equilibrium as an evolutionarily stable equilibrium.
(In the language of [17] the associated equilibrium trait has convergent stability.) We
say that a population whose orbit tends to a stable extinction equilibrium evolves to
extinction, while one whose orbits tend to a non-extinction equilibrium evolutionarily
persists and equilibrates.

Definition 2.1 A pair u, θ (with θ > 0) is an extinction pair if

ru (0, u, θ) = au (0, u) + bu (0, u) θ = 0. (10)

An extinction pair u∗, θ∗ is a critical extinction pair if in addition it satisfies
r (0, u∗, θ∗) = 1. That is to say, a critical extinction pair u∗, θ∗ satisfies

r (0, u∗, θ∗) = a (0, u∗) + b (0, u∗) θ∗ = 1,
ru (0, u, θ) = au (0, u

∗) + bu (0, u
∗) θ∗ = 0.

(11)
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Clearly (p, u) = (0, u) is an extinction equilibrium of (8)-(9) (with parameter value
θ) if and only if u, θ is an extinction pair. As we will see, critical extinction pairs serve
as bifurcation points for the creation of non-extinction equilibria.

The non-extinction equilibrium equations are

1 = r
( p

ω · v v, u, θ
)

,

0 = ru

( p

ω · v v, u, θ
)

.

If u∗, θ∗ is a critical extinction pair, the implicit function theorem implies that these equi-
librium equations have a solution (p, u) = (π(θ), υ(θ)) for θ near θ∗, where π(θ), υ(θ) are
twice continuously differentiable functions that satisfy (π(θ∗), υ(θ∗)) = (0, u∗), provided
the Jacobian with respect to p and u

(

∇xr (0, u
∗, θ∗) · v

ω·v
0

∇xru (0, u
∗, θ∗) · v

ω·v
ruu (0, u

∗, θ∗)

)

is non-singular at (p, u) = (0, u∗), θ = θ∗, i.e. provided

δ $ ∇xr (0, u
∗, θ∗) · v 6= 0 and ruu (0, u

∗, θ∗) 6= 0.

This branch of equilibria (p, u) = (π(θ), υ(θ)) consists of non-extinction equilibria p =
π(θ) > 0 for θ > θ∗ if π′(θ) > 0 or for θ < θ∗ if π′(θ∗) < 0. An implicit differentiation of
1 = r (π(θ)v/ω · v, υ(θ), θ) shows (recall (11))

π′(θ∗) = −ω · v
δ

rθ (0, u
∗, θ∗) .

Since rθ (0, u
∗, θ∗) = b (0, u∗, θ∗) > 0, the sign of π′(θ∗) is the opposite of the sign of δ.

Theorem 2.1 Assume A and that u∗, θ∗ > 0 is a critical extinction pair (i.e., a pair
that satisfies (11)) for which

δ $ [∇xa (0, u
∗) +∇xb (0, u

∗) θ∗] · v 6= 0,
auu (0, u

∗) + buu (0, u
∗) θ∗ 6= 0.

(12)

Then there exists a (twice continuously differentiable) branch of non-extinction equilibria
(p, u) = (π(θ), υ(θ)) for

θ ' θ∗ if δ < 0,

θ / θ∗ if δ > 0,

such that (π(θ∗), υ(θ∗)) = (0, u∗).

In many applications, the dependency of the projection matrix, and hence a and b,
on x is through a dependency on a weighted population size p, i.e., a(p, u) and b(p, u).
In that case, δ = rp (0, u

∗, θ∗)ω · v and the condition δ 6= 0 is equivalent to

ap (0, u
∗) + bp(0, u

∗)θ∗ 6= 0,

where ap and bp are the partial derivatives of a and b with respect to p.
We can view the existence result in Theorem 2.1 as a bifurcation phenomenon by

using θ as a bifurcation parameter. To clarify this, we distinguish two types of extinction
pairs.
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Definition 2.2 A type 1 extinction pair u, θ is one for which

bu (0, u) = au (0, u) = 0 and θ ∈ Υ is arbitrary.

A type 2 extinction pair u, θ is one for which

bu (0, u) 6= 0 and θ = −au (0, u)

bu (0, u)
.

Type 1 extinction pairs produce a branch of extinction equilibria (p, u) = (0, u∗) of
the limiting system (8) for all values of θ ∈ Υ where u∗ satisfies bu (0, u

∗) = au (0, u
∗) =

0. The branch of non-extinction equilibria in Theorem 2.1 intersects this branch of
extinction equilibria in a transcritical bifurcation at the critical extinction pair u, θ =
u∗, θ∗ where

θ∗ =
1− a (0, u∗)

b (0, u∗)
. (13)

See Figure 1(a,b).
Type 2 extinction pairs produce a branch of extinction equilibria (p, u) = (0, u) for

θ = −au (0, u) /bu (0, u) and those values of u for which bu(0, u) 6= 0. The branch of
non-extinction equilibria in Theorem 2.1 intersects this branch of extinction equilibria in
a transcritical bifurcation at the critical extinction pair u∗, θ∗ value where u∗ satisfies

− au (0, u
∗)

bu (0, u∗)
=

1− a (0, u∗)

b (0, u∗)
. (14)

and θ∗ is given by (13). See Figure 1(c,d).
We say that the bifurcation is supercritical (or to the right) if δ < 0 and subcritical

(or to the left) if δ > 0.

Figure 1. All graphs show intersecting branches of extinction and non-extinction pairs

u, θ (which correspond to extinction and non-extinction equilibria of the limiting equations (8)

respectively). The dashed lines are pairs that correspond to equilibria with p < 0 and therefore

are not biologically relevant. The intersection occurs at a critical pair u∗, θ∗ with θ∗ defined by

(13). In graphs (a) and (b) the extinction pairs are of Type 1 and plot as a horizontal straight

line where u∗ satisfies bu (0, u∗) = au (0, u∗) = 0. In graphs (c) and (d) the extinction pairs are

of Type 2 and u∗ satisfies (14).
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2.2 The limiting system: stability of equilibria

The eigenvalues µ1, µ2 of the Jacobian of the limiting system (8), which when evaluated
at either an extinction or a non-extinction equilibrium has a triangular form (because
ru

(

p
ω·v

v, u
)

p vanishes at either type of equilibrium), are

µ1
.
= r

( p

ω · v v, u, θ
)

+ p
∇xr

(

p

ω·v
v, u, θ

)

· v
ω · v , µ2

.
= 1 + σ2ruu

( p

ω · v v, u, θ
)

.

For an extinction equilibrium (p, u) = (0, u) these eigenvalues are

µ1 = r(0, u, θ), µ2 = 1 + σ2ruu(0, u, θ).

The linearization principle implies the equilibrium is unstable if r(0, u, θ) > 1 or if
ruu(0, u, θ) > 0 and is (locally asymptotically) stable if r(0, u, θ) < 1, ruu(0, u, θ) < 0 and
σ2 < −2/ruu(0, u, θ). Note it is necessary for the stability of an extinction equilibrium
(p, u) = (0, u) that r(0, ·, θ) have a local maximum at u.

Lemma 2.1 Assume A and that u, θ is an extinction pair.
(a) The extinction equilibrium (0, u) of the limiting system (8) is unstable if

a(0, u) + b(0, u)θ > 1 or auu (0, u) + buu (0, u) θ > 0.

(b) Assume auu (0, u) + buu (0, u) θ < 0. Then (0, u) is (locally asymptotically) stable if

a(0, u) + b(0, u)θ < 1 and σ2 < −2 (auu (0, u) + buu (0, u) θ)
−1

.

Let u∗, θ∗ be a critical extinction pair for which the conditions (12) hold. This point is
a bifurcation point for non-extinction equilibria (as in Figure 1) whose stability properties
we now consider. If

auu (0, u
∗) + buu (0, u

∗) θ∗ > 0,

then, because µ2 > 1, the extinction equilibria for θ ≈ θ∗ are unstable (Lemma 2.1).
By continuity, an eigenvalue of the Jacobian evaluated at the bifurcating non-extinction
equilibria is also greater than one for θ ≈ θ∗. Thus, in this case equilibria of both types
are unstable near the bifurcation point.

If, on the other hand,

auu (0, u
∗) + buu (0, u

∗) , θ∗ < 0,

then by Lemma 2.1 the extinction equilibrium loses stability as the bifurcation parameter
θ increases through the critical value θ (assuming θcr > 0). It follows by the exchange of
stability principle for transcritical bifurcations [13] that a supercritical (right) bifurcation
results in the stability of the non-extinction equilibria and a subcritical (left) bifurcation
results in the instability of the non-extinction equilibria.

We have arrived at our main result concerning the limiting system (8) for the Dar-
winian matrix model (6).

Theorem 2.2 Assume A and that u∗, θ∗ > 0 is a critical extinction pair for which
(12) and a(0, u∗) < 1 hold. Then for the limiting system (8) there exist branches of
extinction and non-extinction equilibria, parameterized by θ, that transcritically bifurcate
(intersect) at θ = θ∗ given by (13). (a) Assume auu (0, u

∗) + buu (0, u
∗) θ∗ < 0. Then
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the extinction equilibria lose stability as θ increases through θ∗. Moreover, near the
bifurcation point ( i.e. for θ ≈ θ∗ ), and for σ2 sufficiently small, i.e., for

σ2 < −2 (auu (0, u
∗) + buu (0, u

∗) θ∗)
−1

,

the bifurcating non-extinction equilibria are (evolutionarily) stable if the bifurcation is
supercritical ( δ < 0 ) and are unstable if the bifurcation is subcritical ( δ > 0 ). (b) If
auu (0, u

∗) + buu (0, u
∗) θ∗ > 0, then both the extinction equilibria and the non-extinction

equilibria are unstable near the bifurcation point, i.e. for ( θ ≈ θ∗).

2.3 The Darwinian matrix model

In Sections 2.1 and 2.2, we obtained existence and stability results for the limiting equa-
tions (8) of the dynamic equations (7) for p(t) and u(t) associated with the Darwinian
matrix equation (6). Under certain hypotheses the asymptotic dynamics of these two
systems are related [7, 14]. (The theorems and the proofs given in [7] are for scalar maps,
but remain valid virtually verbatim for systems of scalar maps.) Roughly speaking, if
the dynamics of the limiting equations are not too complicated, then no orbit of (7) will
approach an unstable equilibrium (or cycle) of the limiting system and if (p(0), u(0)) is
sufficiently close to a (locally asymptotically) stable equilibrium (or cycle) (pe, ue) of the
limiting equations and if the initial normalized distribution x(0)/p(0) is sufficiently close
to the limiting distribution v/ω · v, then

lim
t→+∞

x(t)

p(t)
=

v

ω · v and lim
t→+∞

(p(t), u(t)) = (pe, ue).

The hypotheses required are that the limiting equations have at most a finite number of
equilibria (or cycles) in any compact subset of R2

+, all of which are hyperbolic, and the
ω-limit sets of bounded orbits are equilibria (or cycles).

We conclude with some remarks concerning the results in Sections 2.1 and 2.2.

Remark 2.1. The inequality ruu(0, u
∗, θ∗) = auu (0, u

∗)+ buu (0, u
∗) θ∗ > 0 in Theo-

rem 2.2(b) implies that the inherent growth rate r(0, u, θ∗) has a local minimum (of 1) as
a function of the trait u at u = u∗ (assuming the eigenvalue θ ≈ θ∗ remains fixed). Since
in this case all equilibria on both bifurcating branches (extinction and non-extinction)
are unstable, it follows that no population will evolve to have trait u ≈ u∗, whether the
population goes extinct or not.

Remark 2.2. Evolutionarily stable equilibria occur in the transcritical bifurcation
when ruu(0, u

∗, θ∗) < 0 and hence r(0, u, θ∗) has a local maximum (of 1) as a function
of the trait u. In this case, the extinction equilibria are unstable if the demographic
parameters in the matrix L are such that θ / θ∗ and populations evolve to extinction.
On the other hand, for θ ' θ∗ the extinction equilibria are unstable and the population
will not evolve to extinction. In this case the non-extinction equilibria are stable if δ < 0
and populations evolve to an evolutionarily stable non-extinction equilibrium (pe, ue),
pe > 0, with a trait u = ue at which r(pe, u, θe) has a local maximum. This is because
the equilibrium equation is ru(pe, u, θe) = 1 and, by continuity, ruu(pe, ue, θe) < 0 for
θe ' θ∗. If r(pe, u, θe) in fact has a global maximum on the trait interval Υ at u = ue,
then the evolutionary stability of the equilibrium plus ruu(pe, ue, θe) < 0 implies the
equilibrium is an ESS (see the ESS Maximum Principle in [17]). That is to say, the
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population evolves to a non-extinction equilibrium state that is resistant to invasion by
other mutant species.

Remark 2.3. The condition δ $ ∇xr (0, u
∗, θ∗) · v < 0, required for a supercritical

bifurcation of evolutionarily stable non-extinction equilibria, is a negative feedback con-
dition. This is because it requires sufficiently large negative derivatives of the inherent
population growth rate r with respect to the components in the distribution vector x.
This condition is met under the usual assumptions of so-called density effects in ecology.
In order to fail, i.e., in order for δ > 0, positive feedback terms (Allee effects) would
have to out weigh the negative density effects. As we have seen, this would lead to a
subcritical bifurcation of unstable non-extinction equilibria.

Remark 2.4. Since r(x, u) = a(x, u) + b(x, u)θ, we have the relationship r(0, u∗) =
a(0, u∗) + b(0, u∗)θ between the dominant eigenvalue r(0, u∗) (the inherent population
growth rate at the critical trait u∗) and θ. The bifurcation described in Theorems 2.1
and 2.2 in terms of θ can therefore be restated in terms of the magnitude of r(0, u∗).
Thus, the bifurcation phenomenon in these theorems (and hence the possibility of a
bifurcation from an evolutionary state of extinction state to an evolutionary state of
non-extinction) occurs when the magnitude of r(0, u∗) increases through 1. See [11]. As
is shown in [12], this phenomenon can also be equivalently stated in terms of the inherent
net reproductive number R0(0, u

∗) at the critical trait. See [12]. The quantity R0(0, u
∗),

which is generally more analytically tractable than r(0, u∗), is the dominant eigenvalue
of F (0, u∗)(I − T (0, u∗))−1 [8, 9, 10].

Remark 2.5. The definition of a type 2 extinction pair u∗, θ∗clearly requires that
a(0, u) and b(0, u) have opposite monotonicities at u = u∗. In specific applications the
biological implication of this fact is usually that some kind of trade-off between two
demographic parameters occurs as the the trait u is changed. We will see an example of
this in Section 3.

3 An Application

Consider a projection matrix (2) in which the matrix of class transitions are

sjj = πj (1− γj) , sij = πiτijγj .

Here γj is the fraction that leaves the jth size class per unit time, τij is the fraction of
those who leave that moves to class i, and πj is the survival rates per unit time. We
can put this general model into the form (3) under the following two assumptions: the
fraction of j-class individuals leaving the j-class, γj , and the class specific fertility rates,
fij , are proportional to a function of a resource consumption rate u ≥ 0 and the survival
rates πj are class independent. Specifically

γj = τjφ(u), fij = πi(u)ϕijφ(u), πi = π(u),

where 0 ≤ φ(u) ≤ 1 for u ∈ Υ = [0, umax), umax ≤ +∞. For a reproductively obligate
resource, we have φ(0) = 0. For this model, the fertility and transition matrices are

F = π(u)φ(u) [ϕij ] , T = π(u)











1− τ1φ(u) τ12τ2φ(u) · · · τ1mτmφ(u)
τ21τ1φ(u) 1− τ2φ(u) · · · τ2mτmφ(u)

...
...

...
τm1τ1φ(u) τm2τ2φ(u) · · · 1− τmφ(u)











.
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Let τk = max{τi} and re-write T as

T = π (1− τkφ(u)) I + πφ(u)











τk − τ1 τ12τ2 · · · τ1mτm
τ21τ1 τk − τ2 · · · τ2mτm
...

...
...

τm1τ1 τm2τ2 · · · τk − τm











.

Then we can write the projection matrix as

P = π(u) (1− τkφ(u)) I + π(u)φ(u)L, (15)

where

L =











τk − τ1 + ϕ11 τ12τ2 + ϕ12 · · · τ1mτm + ϕ1m

τ21τ1 + ϕ21 τk − τ2 + ϕ22 · · · τ2mτm + ϕ2m

...
...

...
τm1τ1 + ϕm1 τm2τ2 + ϕm2 · · · τk − τm + ϕmm











(16)

is a non-negative matrix. This matrix model is motivated by applications in which the
classes are based on physiological size of individuals; see [9] and the references cited
therein for examples. It has the form (3) with a = π(u) (1− τkφ(u)) and b = πφ(u).
We assume L has a positive dominant eigenvalue θ which has an associated positive
eigenvector.

For density dependence in the fertility and survivorship rates π = π(x, u), φ = φ(x, u),
then

a (x, u) = π(x, u) [1− τkφ(x, u)] , b(x, u) = π(x, u)φ(x, u).

In this application we assume density dependence is through a dependency on a weighted
total population size p. Then

γj = τjφ(p, u), fij = ϕijφ(p, u), πi = π(p, u) (17)

in the fertility and transition matrices F and T . Theorems 1.1, 2.1 and 2.2 apply to this
population model with

a(p, u) = π(p, u) (1− τkφ(p, u)) , b(p, u) = π(p, u)φ(p, u) (18)

in the projection matrix (3). Thus, there is a stable normalized distribution and the
asymptotic population dynamics are described by the limiting equations (8). We illus-
trate the application of Theorems 2.1 and 2.2 with a specific example.

Important in the evolution and adaptation of biological species are trade-offs among
life history characteristics and strategies [16]. In the model above, we assume a trade-off
between fertility and survivorship as a function of the resource consumption rate u. Thus,
an increase in u results in an increase in fertility but also a decrease in survivorship. A
decrease in survivorship can be the result of many causes: the stress and metabolic costs
associated with finding and consuming prey, a resulting exposure to predators, etc.

We take

φ(p, u) =
1

1 + cp
f(u), π(p, u) =

1

1 + cp
π0 (1− f(u)) , c > 0, 0 < π0 < 1, (19)
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where f(u) is a twice continuously differentiable, real value function of u on an interval
0 ≤ u ≤ um ≤ +∞ that satisfies

f(0) = 0, f ′(u) > 0, lim
u→um

f(u) = 1.

Specific examples include f(u) = 1− e−αu on 0 ≤ u < +∞ and f(u) = up on 0 ≤ u ≤ 1.
Here we have taken the dependence of fertility and survivorship on weighted population
size p to have the discrete time, logistic form 1/(1 + cp) as first consider by Leslie [15].
Note that fertility is 0 at consumption rate u = 0 and that survivorship π(p, u) is 0 as the
consumption rate u approaches um. Neither of these two extremes is therefore favorable
for the persistence of the population.

Straightforward calculations solving equations (11) show that there exists a (unique)
critical extinction pair given by the formulas

u∗ = f −1

(− (1− π0) +
√
1− π0

π0

)

, θ∗ = τk +
π0

2− π0 − 2
√
1− π0

. (20)

Note that 0 < u∗ < um. Moreover, further calculations show

δ = −c
(

1 +
√
1− π0

)

ω · v < 0,

auu (0, u
∗) + buu (0, u

∗) θ∗ = −2
(

2− π0 + 2
√
1− π0

)

(f ′(u∗))
2
< 0,

and, as a result, there is a supercritical bifurcation of evolutionarily stable, non-extinction
equilibria as θ increases through θ∗ (Theorems 2.1 and 2.2). Since

bu(0, u) =
(

2− π0 − 2
√
1− π0

)

f ′(u∗) > 0,

the critical extinction pair is of Type 2 and the bifurcation has the form in Figure 1(c).
As a consequence of these results, the Darwinian model (6) with (15) and (17)-(19)

predicts evolution to extinction for θ < θ∗ and evolution to a non-extinction equilibrium
for θ ' θ∗. Note that the bifurcating, evolutionarily stable non-extinction equilibria have
traits near u∗ and therefore lie between the two unfavorable traits of 0 and um.

This bifurcation result is stated in terms of the dominant eigenvalue θ of L the
matrix given by (16). Often of interest is how the bifurcation to evolutionarily stable
states depends on the class-specific parameters appearing as entries in L. In general, of
course, there is no formula that explicitly relates θ to the entries in L (when the number
of classes m is large). However, as pointed out in Remark 4, this bifurcation result
can be equivalently re-stated in terms of r(0, u∗) = a(0, u∗) + b(0, u∗)θ, namely, that
the bifurcation occurs as r(0, u∗) increases through 1 or equivalently as the inherent net
reproductive number R0(0, u

∗) (at the critical trait u∗) increases through 1. The quantity

R0(0, u
∗) is the dominant eigenvalue of F (0, u∗) (I − T (0, u∗))

−1
and explicit formulas

for it in terms of the entries in the projection matrix are often available [8, 9, 10]. This
is particularly true, for example, when there is only one newborn class, i.e., when only
the first row in F is nonzero.

As an example, suppose the population model is based on an Usher matrix or, as it is
called in [1], the standard size-structured model. In this model, individuals either remain
in a size class or advance (grow into) the next size class in a unit of time. This means
that the transition matrix T is bidiagonal with nonzero entries along the main diagonal
and its subdiagonal only. All newborns are assumed to lie in the smallest size class and
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hence only the first row of the fertility matrix F is nonzero. This Usher model takes the
form

F = π(p, u)φ(p, u)











ϕ11 ϕ12 · · · ϕ1m

0 0 · · · 0
...

...
...

0 0 · · · 0











+ π(p, u)



















1− τ1φ(p, u) 0 · · · 0 0
τ1φ(p, u) 1− τ2φ(p, u) · · · 0 0

0 τ2φ(p, u) · · · 0 0
...

...
...

...
0 0 · · · 1− τm−1φ(p, u) 0
0 0 · · · τm−1φ(p, u) 1



















.

The formula for the inherent net reproductive number of an Usher matrix gives (see
[8, 9, 10])

R0(p, u) = π(p, u)φ(p, u)

m
∑

i=1

ϕ1i

i
∏

j=1

π(p, u)φ(p, u)τj−1

1− π(p, u) (1− τjφ(p, u))
,

where for notational convenience τ0 = 1 and τm = 0. Thus, from (19) and (20) we obtain

R0(0, u
∗) = π0 (1− f(u∗)) f(u∗)

m
∑

i=1

ϕ1i

i
∏

j=1

π0 (1− f(u∗)) f(u∗)τj−1

1− π0 (1− f(u∗)) (1− τjf(u∗))
,

where

f(u∗) =
− (1− π0) +

√
1− π0

π0
.

The bifurcation to evolutionary non-extinction equilibria occurs for R0(0, u
∗) ' 1 [12].

In this interpretation, the bifurcation phenomenon can now be determined in terms of
the any of the size-specific fertilities ϕ1i or the growth rates τi or the survivorship π0.

For example, if all size classes but the largest consist of juveniles, so that all ϕ1i = 0
except ϕ1m > 0, then we have the formula

R0(0, u
∗) = [π0 (1− f(u∗)) f(u∗)]

m+1
ϕ1m

m
∏

j=1

τj−1

1− π0 (1− f(u∗)) (1− τjf(u∗))

and the bifurcation requirement that R0(0, u
∗) ' 1 can now be re-stated as a threshold

for adult fertility ϕ1m ' ϕ∗

1m.

4 Concluding Remarks

Theorems 2.1 and 2.2 describe a fundamental bifurcation phenomenon for a class of non-
linear matrix models that describe the evolutionary dynamics of a structured population.
The type of matrix models considered in these theorems (which are motivated by cer-
tain size-structured models that arise in applications found in the literature) possess a
strong ergodic property: solutions, whatever their dynamics, have a stable (normalized)
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class distribution. This property, when applied to the Darwinian matrix models obtained
from these population dynamic models by the methods of evolutionary game theory [17],
leads to limiting equations for the evolving phenotypic trait and the total (weighted)
population size.

The bifurcation phenomenon in Theorems 2.1 and 2.2 is fundamental in the sense
that it concerns the fundamental biological question of extinction versus non-extinction,
or in the context of the Darwinian models (6) considered here, evolution to extinction
versus evolution to a non-extinction equilibrium state. These theorems show that this
transition occurs at (and only at) a critical value θ∗ of the bifurcation parameter θ and
what we have defined to be a critical extinction trait value u = u∗. The bifurcation does
not always lead to stable non-extinction equilibria, however, and Theorem 2.2 describes
when the bifurcation is stable and when it is not.

The requirements for a stable bifurcation turn out to imply (among other things) that
the inherent growth rate r of the population dynamics must attain a (local) maximum
at the critical value of the trait (a fact that also implies the evolutionarily stable non-
extinction equilibria are candidates for an ESS [17]). Although we do not pursue the issue
here, the biological interpretation of these requirements is that some kind of a trade-off
must occur among vital life history traits as a function of the phenotypic trait u. This
is illustrated by the example in Section 3.

There remain several interesting open problems. Theorem 2.1 provides the existence
of a local bifurcating branch of non-extinction equilibria. Similar theorems for popu-
lation dynamic models without evolution assert the global existence of this branch. A
global bifurcation theorem for the Darwinian model is lacking. The instability results
in 2.2(b), in which the equilibria on both the extinction equilibrium and non-extinction
equilibrium branches are unstable, leave open the question of the asymptotic dynamics
in this case. The same question arises in 2.2(a) when the bifurcation is subcritical. Also,
the methodology of evolutionary game theory is applicable when more than one pheno-
typic trait evolves. The ergodic Theorem 1.1 would still apply to the Darwinian matrix
models for multiple traits and hence permit an analysis by means of lower dimensional
limiting equations. Bifurcation theorems for these multi-trait Darwinian models would
be of interest.

In this paper the focus is on the special class of Darwinian matrix models with
projection matrices of the form (3). A bifurcation theorem for matrix models with more
general projection matrices is given in [11].
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