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Abstract: For minimizing a scalar-valued function subject to equality constraints,
we develop and investigate a family of gradient transformation differential equation al-
gorithms. This family includes, as special cases: Min-Max Ascent, Hestenes’ Method
of Multipliers, Newton’s method, and a Gradient Enhanced Min-Max (GEMM) al-
gorithm that we extend to handle equality constraints. We apply these methods to
Rosenbrock’s function with a parabolic constraint. We show that Min-Max Ascent
is locally and (experimentally) globally asymptotically stable but extremely stiff and
has extremely slow convergence. Hestenes’ Method of Multipliers is also locally and
(experimentally) globally asymptotically stable and has faster convergence, but is still
very stiff. Newton’s method is not stiff, but does not yield global asymptotic stability.
However, GEMM is both globally asymptotically stable and not stiff. We study the
stiffness of the gradient transformation family in terms of Lyapunov exponent time
histories. Starting from points where all the methods in this paper do work, we show
that Min-Max Ascent and Hestenes’ Method of Multipliers are very stiff and slow to
converge, but with the Method of Multipliers being approximately 2 times as fast as
Min-Max Ascent. Newton’s method is not stiff and is approximately 900 times as fast
as Min-Max Ascent and 400 times as fast as the Method of Multipliers. In contrast,
the Gradient Enhanced Min-Max method is globally convergent, is not stiff, and is
approximately 100 times faster than Newton’s method, 40,000 times faster than the
Method of Multipliers, and 90,000 times faster than Min-Max Ascent.
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1 Minimization with Equality Constraints

We consider the nonlinear programming problem of finding a point x∗ ∈ Rn to

minφ(x) subject to ψ(x) = 0, (1)

where the functions φ(·) : Rn →R1 and ψ(·) : Rn →Rm are C2. We develop differential
equation algorithms of the form

ẋ = g(x),

where (·) denotes d()/dt and t is time. We choose the function g(·) with the objec-
tive of having solutions x(t) → x∗ as t → ∞. Such “trajectory following” algorithms
have received considerable attention in recent years. In [1] Steepest Descent differential
equations are used to design controllers for nonlinear systems. In [2] optimal control dif-
ferential equations are used to design new discrete minimization algorithms. In [3] and
[4] differential equation algorithms are investigated for min-max optimization problems.
In [5] and [6] differential equations for Newton’s method are used to find all of the sta-
tionary points of a function. In [7] a Gradient Enhanced Newton algorithm is developed
for finding a stationary proper minimum point. In [8] a Gradient Enhanced Min-Max
method is developed for finding a proper stationary min-max saddle point.

In this paper, we extend the stationarymin andmin-max results of [7] and [8] to include
equality constraints. As in these previous papers, we are concerned with differential
equation-based algorithms, and with the stiffness and domain of stability of a family
of gradient-based numerical update algorithms. These algorithms include, as special
cases, Steepest Descent, Min-Max Ascent, Newton’s Method, augmented Lagrangians
and Hestenes’ Method of Multipliers, and the Gradient Enhanced Min-Max algorithm
that we extend here for minimization subject to equality constraints. We use Lyapunov
exponents to measure the stiffness (e.g., widely separated time scales and eigenvalues) of
the various algorithms when applied to an equality constrained version of Rosenbrock’s
“banana” function.

2 Necessary Conditions at a Minimum Point

The necessary conditions for x∗ ∈ Rn to yield a regular [9, p. 35] local minimum can be
expressed in terms of the Lagrangian

L(x,λ)
4

= φ(x) − λᵀ
ψ(x), (2)

where λ ∈ Rm is a vector of Lagrange multipliers and ψ(·) : Rn → Rm represents a
system of m < n equality constraints that must be satisfied at x∗.

The first-order Karush–Kuhn–Tucker necessary conditions [9, p.57] are that:

0ᵀ =
∂L

∂x
=
∂φ

∂x
− λᵀ

∂ψ

∂x
, 0ᵀ =

∂L

∂λ
= −ψᵀ(x), (3)

where ∂L/∂x
4

= [∂L/∂x1, . . . , ∂L/∂xn]. Since ∂L/∂λ = −ψᵀ the necessary conditions
can be written in terms of yᵀ = [xᵀ,λᵀ] ∈ Rp, p = n+m, as

∇yL(y)
4

=

[

∂L

∂y

]ᵀ

= 0, (4)
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that is,

∇xL =

[

∂φ

∂x

]ᵀ

−
[

∂ψ

∂x

]ᵀ

λ = 0, ∇λL =

[

∂L

∂λ

]ᵀ

= −ψ = 0.

The necessary conditions (4) are stationarity conditions, yielding candidates that may
be local minima, maxima, or saddle points. Suppose that the constraint qualification
conditions [9, p. 55] hold: that at x∗ there exists a nonzero vector η ∈ Rn tangent to
the constraints ψ(x∗) = 0. Then the second-order necessary condition [9, p. 56] for a
regular local minimum point is that

ηᵀH(x∗,λ∗)η ≥ 0 for all nonzero η such that
∂ψ(x∗)

∂x
η = 0, (5)

where H(x,λ) = ∂2L(x,λ)/∂x2. A second-order sufficient condition is that ∇yL(y) =
[∂L (y∗) /∂y]

ᵀ
= 0 and

ηᵀH(x∗,λ∗)η > 0 for all nonzero η such that
∂ψ(x∗)

∂x
η = 0, (6)

which would be satisfied, for example, by the stronger condition that H(x∗,λ∗) be pos-
itive definite.

3 Numerical Minimization Methods

Numerical minimization methods [10] generally seek a search direction s and a step size
α for a move x ← x + αs. Here, we focus on the instantaneous search direction, us-
ing a differential step size with continuous updating of the search direction. Thus we
develop “trajectory following” algorithms of the form dx/dt = g(x). Such differential
equations-based algorithms have been very useful in developing new discrete optimiza-
tion algorithms [2] based on long-term optimal control algorithms. In addition, using a
differential step size avoids difficulties such as “chatter” that can occur with discrete step
size algorithms such as Steepest Descent applied, for example, to Rosenbrock’s function
[7].

3.1 Unconstrained minimization

3.1.1 Steepest descent

The simplest algorithm for minimizing an unconstrained function φ(x) is the Steepest
Descent algorithm

ẋ = −∇φ,

with ∇φ
4

= [∂φ/∂x]
ᵀ
, which yields

dφ

dt
=
∂φ

∂x
ẋ = −‖∇φ‖2 ,

where ‖·‖ denotes the Euclidian norm. If x∗ is a local minimal point for φ(x) then
V (x) = φ(x) − φ(x∗) is a local Lyapunov function, establishing that Steepest Descent
is at least locally asymptotically stable at a proper local minimum. In addition, if
x∗ is unique and ‖∇φ(x)‖ → ∞ as ‖x‖ → ∞ then the minimal point x∗ is globally
asymptotically stable.

Steepest Descent may produce stiff systems. Such systems require much more compli-
cated differential equation solvers than Euler’s method or Runge–Kutta methods, leading
to complicated discrete versions.
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3.1.2 Newton’s method

From Taylor’s theorem applied to the stationarity necessary condition

∇φ = 0,

we get
∇φ(x+∆x) = ∇φ(x) +∇

2φ(x)∆x +O(‖∆x‖2), (7)

where ∇
2φ

4

= ∂2φ/∂x2 is the Hessian matrix, ∆x = ẋ∆t +O(∆t2), and O(α2)/α→ 0
as α→ 0. Setting the left-hand side equal to zero yields the discrete-time (∆t = 1, small

‖∆x‖) version of Newton’s method: ∆x = −
[

∇
2φ

]−1
∇φ.

In the limit as ∆t→ 0, the continuous-time Newton method is given by

ẋ = −
[

∇
2φ

]−1
∇φ. (8)

The discrete-time version of Newton’s method corresponds to applying Euler integration
∆x = ẋ∆t to (8) with ∆t = 1.

Note that Newton’s method is only well defined in a region where the determinant
∣

∣∇
2φ(x)

∣

∣ does not change sign and is nonzero, such as some neighborhood of a proper

local minimal point x∗, at which ∇
2φ(x∗) > 0 (positive definite). Newton’s method,

in regions where it does work, typically converges much faster than Steepest Descent,
and yields non-stiff systems. In particular, in terms of the gradient ∇φ [x (t)] along x(t),
Newton’s method (8) yields

d∇φ

dt
=

[

∇
2φ

]

ẋ = −∇φ,

which is non stiff, with eigenvalues µk = −1, k = 1, . . . , n. Note that, along x(t) we
have ∇φ [x (t)] = ∇φ [x (0)] e−t → 0 as t → ∞, hence ∇φ [x(t)] → 0. As with Steepest
Descent, Newton’s method is at least locally asymptotically stable to a proper local
minimal point.

3.2 Constrained minimization

3.2.1 Penalty functions

The earliest approach to handling equality constraints ψ(x) = 0 was to apply uncon-
strained minimization to a penalty function such as Courant’s penalty function

π(x, β) = φ(x) +
1

2
β ‖ψ(x)‖2 = φ(x) +

1

2
βψᵀ(x)ψ(x), (9)

with a sequence of increasing values for β > 0. Then Steepest Descent yields

ẋ = −∇π = −∇φ(x) − βΓᵀ(x)ψ(x),

where Γ ∈ Rm×n is given by
Γ(x) = ∂ψ(x)/∂x. (10)

The main difficulty with this approach is that, for any finite β > 0, the point that
minimizes π(x, β) is not exactly the same point that minimizes φ(x) subject to ψ(x) = 0,
except in the limit as β → ∞. In addition, large values of β yield stiff systems. Note
that Newton’s method applied to (9) may alleviate the stiffness, but not the “mismatch”
between the two minimization solutions, which requires β →∞.
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3.2.2 Newton’s method

The first-order necessary conditions for a stationary point of φ(x) subject to ψ(x) = 0
are given by (3) in terms of a Lagrange multiplier vector. Newtons method, applied to
(4), is given by

[

ẋ

λ̇

]

= −H−1(y)

[

∇xL
−ψ(x)

]

, (11)

where

H(y) = ∇
2
yL

4

=
∂2L

∂y2
=











∂2L

∂x2

∂2L

∂λ∂x

∂2L

∂x∂λ

∂2L

∂λ2











=







∂2L

∂x2
−Γᵀ

−Γ 0






. (12)

3.2.3 Min-Max Lagrangians

Consider the Lagrangian

L(x,λ) = φ(x) − λᵀψ(x).

Let x(λ) denote the unconstrained minimizer for L(x,λ), and let x∗ and λ∗ be the
solution and Lagrange multiplier, respectively, for the constrained minimization problem
(1). Then L(x(λ),λ) ≤ L(x,λ) ∀ x, along with ψ(x∗) = 0 , yields

L(x(λ),λ) ≤ L(x∗,λ) = φ(x∗)− λᵀψ(x∗)

= φ(x∗) = φ(x∗)− λ∗ᵀψ(x∗)

= L(x∗,λ∗) = L(x (λ∗) ,λ∗).

Thus

L(x∗,λ∗) = max
λ

min
x
L(x,λ) = min

x
max
λ

L(x,λ), (13)

since L(x,λ) is linear in λ.

A Min-Max Ascent algorithm [3] for achieving the Lagrangian saddle point defined
by (13) is given by

ẋ = −∇xL(x,λ) = −∇φ(x) + Γᵀ (x)λ, (14)

λ̇ = ∇λL(x,λ) = −ψ(x). (15)

As noted in [11], methods such as this, where x∗ solves the primal problem (1) and λ(u)
is the Lagrange multiplier vector for an associated dual problem [12, p. 113]:

min
u∈Nu

x(u)∈Nx

φ[x(u)] subject to ψ [x(u)] = u (16)

with λ(0) = λ∗ and Nu⊂ Rm and Nx⊂ Rn being small neighborhoods of u∗ = 0 and
x∗, respectively, have “... serious disadvantages. First, problem (1) must have a locally
convex structure in order for the dual problem (16) to be well defined and (15) to be
meaningful. Second, ..., the ascent iteration (15) converges only moderately fast.”
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3.2.4 Augmented Lagrangians

The following results apply to the equality constrained problem (1), but can be extended
to the general nonlinear programming problem with equality and inequality constraints.

Consider an augmented Lagrangian [13]

L(x,λ,β) 4

= L(x,λ) + 1
2ψ(x)

ᵀSψ(x) = φ(x) + 1
2ψ(x)

ᵀSψ(x) − λᵀ
ψ(x), (17)

where β ∈ Rm, β≥ 0, and S = diag [β] ∈ Rm×m. The augmented Lagrangian (17)
can be viewed either as 1) the Lagrangian plus a penalty term or 2) the Lagrangian for
minimizing a weighted Courant penalty function (9) subject to ψ(x) = 0. In the first
case view, since a purely x-dependent penalty term has been added to L(x,λ), we expect
that in changing to a maxλ minx L(x,λ) vs. maxλ minx L(x,λ) process, λ has no effect,
but x affords a trade-off between the x that minimizes L(x,λ) and the x that minimizes
L(x,λ,β). However, the penalty weights βi on the ψi do not need to approach infinity
for the two solutions to be the same and can be quite moderate in size. We have:

Theorem 3.1 If second-order sufficient conditions (6) hold at (x∗,λ∗) then there
exists β′ ≥ 0 such that for any β >β′, x∗ is an isolated local minimizer of L(x,λ∗,β),

that is, x∗ = x(λ∗). Furthermore, λ∗ is a local maximizer of ν(λ)
4

= L(x(λ),λ,β).

Proof [10, pp. 289–291].

Hereafter we consider the case where S = βIm and drop the β argument in L(·) unless
it is expressly needed for the discussion.

4 Gradient Transformation Trajectory Following

From Theorem 3.1 we seek a maxλ minx L(x,λ). We consider the class of Gradient
Transformation algorithms, of the form

ẏ = −P(y)∇yL(y), (18)

where P(y) ∈ Rp×p is a Gradient Transformation matrix to be chosen, y ∈ Rp with
yᵀ = [xᵀ,λᵀ], and

h(y) = ∇yL(y) =
[

∇xL
∇λL

]

=

[

∇xL+ βΓᵀψ

∇λL

]

=

[

∇φ− Γᵀ [λ− βψ]
−ψ

]

. (19)

Thus the Gradient Transformation algorithms are of the form

[

ẋ

λ̇

]

= −
[

Pxx Pxλ

Pλx Pλλ

] [

∇xL
∇λL

]

=

[

Pxx Pxλ

Pλx Pλλ

] [

−∇φ+ Γᵀ [λ− βψ]
ψ

]

. (20)

If P(y) is nonsingular in a region R ⊆ Rp containing y∗ = (x∗,λ∗) then for (18) the
only equilibrium points in R are where ∇yL(y∗) = 0. We will be concerned with the
uniqueness and local and global stability of the (possibly multiple) equilibria and with
the “stiffness” of the resulting system, corresponding to various choices for P(y).
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4.1 Min-Max ascent

The original trajectory following method [3] for seeking maxλ minx L(x,λ) is via steepest
descent for x and steepest ascent for λ, yielding

ẋ = −∇xL = − [∇xL+ βΓᵀψ] = −∇xφ+ Γᵀ [λ− βψ] ,
λ̇ = ∇λL = ∇λL = −ψ.

This corresponds to choosing

P =

[

Pxx Pxλ

Pλx Pλλ

]

=

[

In 0
0 −Im

]

(21)

in (20), where Ip denotes the p× p identity matrix.

4.2 Hestenes’ method of multipliers

In a discrete-time setting let λk denote the current estimate for the Lagrange multiplier
λ∗ and let x = x(λk) denote the minimizer of L(x,λk). Then

0 = ∇xL = ∇xL+ βΓᵀψ = ∇xφ− Γᵀ [λk − βψ] .

Hestenes [13] suggests taking λk+1 = λk − βψ. Then if ψ(xk+1) = 0 at the minimizer
xk+1 of L(x,λk+1)

0 = ∇xL = ∇xL = ∇xφ (xk+1)− Γᵀ (xk+1)λk+1

would yield (xk+1,λk+1) = (x∗,λ∗) satisfying the first-order necessary conditions (3).
The continuous-time version of Hestenes’ Method of Multipliers is λ̇ = −βψ. This,

coupled with steepest descent on x, corresponds to choosing in (20):

P =

[

Pxx Pxλ

Pλx Pλλ

]

=

[

In 0
0 −βIm

]

. (22)

4.3 Newton’s method

For maxλ minx L(x,λ) the first-order necessary conditions are

0 = ∇xL = ∇xL+ βΓᵀψ, 0 = ∇λL = ∇λL = −ψ. (23)

Newton’s method applied to (23) is given by

[

ẋ

λ̇

]

= −H−1(y)

[

∇xL
∇λL

]

= −H−1(y)

[

∇xL
−ψ

]

, (24)

where

H(y) 4

= ∇
2
yL =

∂2L
∂y2

=







∂2L
∂x2

−Γᵀ

−Γ 0






, (25)

with Γ(x) defined by (10). This corresponds to choosing in (20):

P =

[

Pxx Pxλ

Pλx Pλλ

]

= H−1.
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Instead of assuming H−1 exists, Newton’s method can be written as

H(y)





ẋ

λ̇



 =







∂2L
∂x2

−Γᵀ

−Γ 0











ẋ

λ̇



 = −





∇xL

∇λL



 . (26)

A geometric interpretation of Newton’s method is given by noting that

d

dt





∇xL

∇λL



 =











∂2L
∂x2

ẋ+
∂2L
∂λ∂x

λ̇

∂2L
∂x∂λ

ẋ+
∂2L
∂λ2 λ̇











=







∂2L
∂x2

−Γᵀ

−Γ 0











ẋ

λ̇



 . (27)

Thus from (26)
d

dt

[

∇xL
∇λL

]

= −
[

∇xL
∇λL

]

. (28)

Hence
[

∇xL
∇λL

]

t

= e−t
[

∇xL
∇λL

]

t=0

and we have

[

∇xL
ψ

]

t

= e−t
[

∇xL
ψ

]

t=0

→
[

0
0

]

as t→∞.

Thus Newton’s method: a) is at least locally asymptotically stable to a point ŷ satisfying
the necessary conditions (3) provided H−1(ŷ) exists, b) is not stiff (all eigenvalues are
µ = −1), and c) has a domain of attraction that is the region containing ŷ, where H−1

exists. However, Newton’s method may not be globally convergent. Furthermore, it
only seeks stationary points of the augmented Lagrangian L(x,λ), not specifically those
yielding maxλ minx L(x,λ).

5 Stiff Differential Equations

Stiff systems are systems of differential equations which have two or more widely sepa-
rated time scales, usually specified in terms of eigenvalues. For nonlinear systems we will
use Lyapunov exponents.

5.1 Lyapunov exponents

Lyapunov exponents [14, p. 205] are generalizations of eigenvalues and characteristic
(Floquet) multipliers that provide information about the (average) rates at which neigh-
boring trajectories converge or diverge in a nonlinear system. Let y(t) and ỹ(t) be
solutions to

ẏ = f(y), (29)

starting from neighboring initial conditions, and let ρ(t) = ‖ỹ(t)− y(t)‖ be the distance
between the trajectory y(t) and the perturbed trajectory ỹ(t) at time t. If ρ(0) is ar-
bitrarily small and ρ(t) → ρ(0)eσt as t → ∞ then σ is called a Lyapunov exponent
for the reference trajectory y(t). The distance between the trajectory points y(t) and
ỹ(t) grows, shrinks, or remains constant for σ > 0, σ < 0, or σ = 0, respectively. In
a p-dimensional state space there are p real Lyapunov exponents, σ1 ≥ . . . ≥ σp, corre-
sponding to exponential growth rates in p orthogonal directions. For a given trajectory
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y(t) the Lyapunov exponents are unique, but are functions of the initial state. Arbitrar-
ily close initial states (e.g., on and to either side of a separatrix) may yield trajectories
with different Lyapunov exponents, corresponding to different behaviors as t→∞.

If f(·) is continuous and continuously differentiable the Lyapunov exponents can be
calculated in terms of the state perturbation equations

η̇ = A(t)η, A(t) =
∂f [y(t)]

∂y
, (30)

where A(t) is evaluated along a trajectory y(t) and, for small α, ỹ(t) = y(t) + αη(t) +
O(α2) is an initially neighboring trajectory. If f(·) is discontinuous across some “switch-
ing surface” in state space certain “jump conditions” must be imposed to accurately
compute Lyapunov exponents [15].

For the special case of an equilibrium y(t) = constant, so that A is constant, the
Lyapunov exponents σk are the real parts of the eigenvalues µk, k = 1, . . . , p, of A. The
same result holds for trajectories that asymptotically approach an equilibrium.

One way to compute Lyapunov exponents numerically [16] is to integrate the equa-
tions of motion (29), along with p copies of the perturbation equations (30), one for
each of p initially orthogonal unit perturbations ηk(0), corresponding to the semi-axes
of an initially spherical p-dimensional ellipsoid in state space. At t > 0 we define the
instantaneous Lyapunov exponents as

σk(t) =
1

t
ln

[ ‖ηk(t)‖
‖ηk(0)‖

]

(31)

with the Lyapunov exponents σk = limt→∞ {σk(t)}. We define the instantaneous “stiff-

ness” as Σ(t)
4

= |σmax(t)− σmin(t)|. As the trajectory y(t) moves through state space,
the perturbation vectors ηk(t) rotate (so they are no longer orthogonal) and stretch or
shrink as the axes of the ellipsoid centered at y(t) change. Over time, the perturbation
vectors will all tend to align with the major axis of the ellipse, corresponding to the
largest Lyapunov exponent, in a manner analogous to the power method for generating
the dominant eigenvalue and eigenvector of a matrix. Since some of the Lyapunov ex-
ponents may be positive, particularly in chaotic systems, the algorithm incorporates a
periodic discontinuous rescaling of the perturbation vectors, to avoid numerical overflow,
using a Gramm-Schmidt orthonormalization procedure [14, p. 207].

5.2 State perturbation equations

Let pᵀ

k(y), k = 1, . . . , p, denote the k-th row of P(y). Then

ẏ = f(y) = −P(y)∇yL(y) = −







pᵀ

1(y)
...

pᵀ

p(y)






∇yL(y).

Along a trajectory y(t) the state perturbation equations (30), with A(y) = ∂f(y)/∂y ,
are given by

A(y) = −P(y)H(y) −









∂L(y)
∂y

∂p1(y)
∂y

...
∂L(y)
∂y

∂pp(y)
∂y









, (32)
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where H = ∇
2
yL(y) = ∂2L/∂y2. At a stationary point y∗ of L(y), ∇yL(y∗) = 0 and

A(y∗) = −P(y∗)H(y∗). This result also holds for P constant. The eigenvalues of A(y∗)
provide a measure of the stiffness of the system (29), at least near y∗. Along a trajectory
y(t) the Lyapunov exponents (31) do so.

6 Unconstrained Min-Max Saddle Point

In [8] a Gradient Enhanced Min-Max (GEMM) algorithm is developed as a variable
Levenberg-Marquardt modification [17, p. 145] to Newton’s method, designed to find
saddle points of a scalar-valued function. The GEMM algorithm specifically seeks min-
max saddle points, whereas Newton’s method seeks stationary points. As we shall see,
GEMM generally has a larger domain of attraction than Newton’s method (by keeping
the Hessian matrix nonsingular), is not stiff, and is faster than Newton’s method.

As background we summarize some results from [8] for GEMM applied to the problem
of finding a game-theoretic saddle point in the absence of equality constraints.

Let Mᵀ denote the transpose of a matrix M. For yᵀ = [uᵀ,vᵀ], with u ∈ U ⊆ Rn,
v ∈ V ⊆ Rm, and y ∈ Rp, p = n + m, we are concerned with finding a point y∗ =
(u∗,v∗) to yield a min-max for a C2 scalar-valued function φ(y) = φ (u,v), such that
u∗ minimizes φ and v∗ maximizes φ. That is, φ (u∗,v) ≤ φ (u∗,v∗) ≤ φ (u,v∗) for all
u ∈ U and v ∈ V . Denote the gradient of φ by

g =

[

∂φ

∂y

]ᵀ

=

[

gu
gv

]

=





[

∂φ
∂u

]ᵀ

[

∂φ
∂v

]ᵀ





and the Hessian of φ by

G =
∂2φ

∂y2
=

[

Guu Guv

Gᵀ

uv Gvv

]

,

where gu ∈ Rn, gv ∈ Rm, Guu = ∂2φ/∂u2 ∈ Rn×n, Gvv = ∂2φ/∂v2 ∈ Rm×m, and
Guv = ∂2φ/∂u∂v ∈ Rn×m.

We are particularly concerned with finding a proper stationary min-max point
y∗, at which:

1. φ (u∗,v) < φ (u∗,v∗) < φ (u,v∗) for all u ∈ U − {u∗} and v ∈ V − {v∗},
2. g∗ = g(y∗) = 0,

3. G∗
uu = Guu(y

∗) ≥ 0 (positive semidefinite),

4. G∗
vv = Gvv(y) ≤ 0 (negative semidefinite),

5. |G∗| = |G(y∗)| < 0,

where |·| denotes the determinant. In addition we assume that g(y) 6= 0 for y 6= y∗ and
that ‖g(y)‖ → ∞ as ‖y − y∗‖ → ∞, where ‖·‖ denotes the Euclidian norm.

For u ∈ U and v ∈ V let

Ru = {(u,v) : v ∈ V and φ(u,v) ≤ φ(ū,v) for all ū ∈ U , }

denote the rational reaction set for the minimizing player u, and let

Rv = {(u,v) : u ∈ U and φ(u, v̄) ≤ φ(u,v) for all v̄ ∈ V}
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Figure 1: Banana saddle (a = 1000, c = 1).

denote the rational reaction set for the maximizing player v. On Ru with u ∈
o

U(interior
of U) it is necessary [9, p. 149] that

0 = gu(u,v) =

[

∂φ(u,v)

∂u

]ᵀ

(33)

and

Guu(u,v) =
∂2φ(u,v)

∂u2
≥ 0.

On Rv with v ∈
o

V it is necessary that

0 = gv(u,v) =

[

∂φ(u,v)

∂v

]ᵀ

(34)

and

Gvv(u,v) =
∂2φ(u,v)

∂v2
≤ 0.

6.1 Stingray saddle function

For a > 0 and c > 0 we consider the “Stingray” saddle function

φ =
a

2
u2 +

c

2
(u− 1) v2 (35)

with gradient and Hessian

g =

[

gu
gv

]

=

[

au+ c
2v

2

c (u− 1) v

]

, G =

[

Guu Guv
Guv Gvv

]

=

[

a cv
cv c (u− 1)

]

.

The function has a unique proper min-max point at y∗ = (u∗, v∗) = (0, 0), with
g 6= 0 for y 6= 0 and ‖g‖ → ∞ as ‖y‖ → ∞. Note that |G| = ac (u− 1)− c2v2 = 0 on
u = 1 + c

a
v2. Also note that Guu = a > 0 for all (u, v), but Gvv = c (u− 1) < 0 only for

u < 1. The Stingray function φ(u, v) is convex in u for each v, but is concave in v only
for u < 1. For u > 1 the function is convex in v.
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Figure 2: Stingray saddle (a = 1, c = 1).

Figure 3: Stingray saddle (a = 1 , c = 100).
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Figures 1–3 show three-dimensional and contour plots for various values of a and c.
For a = 1000 and c = 1 the function is similar to Rosenbrock’s “banana” function, having
a steep-walled canyon with a parabolic valley, except that the stationary point is a saddle
point instead of a minimum point. For a = 1 and increasing values of c the function
looks like a stingray flapping its wings. Unless otherwise specified, we will consider the
case where a = 1 and c = 100. For these parameter values the stingray function has a
sharp local maxv ridge on v = 0, u < 1, and a local maxu valley on u = − c

2av
2.

As illustrated in Figure 2, the minumaxv φ rational reaction sets, for vmin ≤ v ≤ vmax

with vmax > 0 and vmin < 0, are

Ru =
{

(u, v) : u = − c

2a
v2
}

, Rv = {(u, v) : v = v◦(u)} ,

where

v◦(u) =















0 if u < 1,
∈ [vmin, vmax] if u = 1,

vmax if u > 1 and vmax ≥ |vmin| ,
vmin if u > 1 and vmax ≤ |vmin| .

In particular, while the minimizing player u seeks gu = 0, the maximizing player v only
seeks gv = 0 for u < 1. For u > 1 the maximizing player seeks either the upper or lower
bound on v. Nevertheless, the intersection Ru ∩ Rv of the reaction sets is the min-max
point u∗ = v∗ = 0, where both gu = 0 and gv = 0.

6.2 Gradient enhanced Newton (GEN) minimization

Consider, for a moment, Newton’s method applied to the problem of finding a unique
proper minimum point for a function φ(y). For the case where G(y) = ∂2φ/∂y2 is
not positive definite everywhere, the Levenberg–Marquardt modification to Newton’s
method [17, pp. 145–149] is given by (αI +G)ẏ = −g, where α ≥ 0 and I denotes the
p × p identity matrix. If F = αI + G is positive definite, then let ẏ = −P(y)g, with
P(y) = F−1 = (αI +G)−1. Then φ̇ = gᵀẏ = −gᵀPg < 0 for g 6= 0 establishes (global)
asymptotic stability.

Let µi and ξi, i = 1, . . . , p, denote the eigenvalues and eigenvectors of G, respectively.
For symmetric G the eigenvalues are all real, but may not all be positive. The matrix
F = αI + G has eigenvalues ωi = µi + α and eigenvectors ξi, since Fξi = (µi + α) ξi.
Thus, at a point y, if α is sufficiently large all of the eigenvalues of F will be positive.
As α→ 0 the method approaches Newton’s method applied to φ(y), and as α→∞ the
method approaches Steepest Descent applied to φ(y)/α.

The Levenberg–Marquardt minimization method generally will not work with con-
stant α. If |G(y)| changes sign somewhere then for constant α the determinant
|F| = |αI+G| will also generally change sign, although at a different place than |G(y)|.

In [7] we develop a Gradient Enhanced Newton (GEN) minimization method, in
which α = γ ‖g‖ = γ

√
gᵀg with constant γ ≥ 0, yielding

ẏ = −P(y)g = − [γ ‖g‖ I+G]
−1

g. (36)

The ideas behind this minimization method are: 1) at points where ‖g‖ 6= 0 we can make
F be positive definite for sufficiently large γ ≥ 0; 2) for small γ or near places where g = 0
the method behaves like Newton’s method; 3) the speed ‖ẏ‖ ≈ 1/γ. In [7] it is shown
that, for sufficiently large γ ≥ 0, GEN is globally asymptotically stable for functions that
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have a single proper stationary minimum point and satisfy a Lyapunov growth condition.
In addition, when applied to Rosenbrock’s “banana” function, GEN is uniformly nonstiff
and approximately 25 times faster than Newton’s method and approximately 2500 times
faster than Steepest Descent.

A very recent paper [18] shows that, for long-term optimization algorithms,
Levenberg–Marquardt, especially in the form (36), is more fundamental than Newton’s
method and that Newton’s method should be viewed as a special case of Levenberg–
Marquardt, rather than the other way around.

6.3 Gradient enhanced min-max

The Levenberg–Marquardt modification of Newton’s method can not be used for min-
max problems, but a variation of it can. Consider the Hessian

G(y) =
∂2φ

∂y2
=





∂2φ
∂u2

∂2φ
∂u∂v

∂2φ
∂v∂u

∂2φ
∂v2



 =

[

Guu Guv

Gᵀ

uv Gvv

]

,

which is positive definite at a proper minimum point. But at a proper min-max point
y∗ we have G∗

uu = Guu (y
∗) ≥ 0, G∗

vv = Gvv (y
∗) ≤ 0, and |G∗| = |G(y∗)| < 0. Thus

the eigenvalues of G∗
uu are ≥ 0, the eigenvalues of G∗

vv are ≤ 0, and the product of the
eigenvalues of G∗ is negative. When |G(y)| passes through zero, so does one or more of
its eigenvalues. The Levenberg-Marquardt matrix F = αI+G could be used to make all
of its eigenvalues be positive (or all of them negative, for α < 0) at any given point ŷ.
But if α = α(y) ≥ 0, with α(y∗) = 0 and |G∗| = |G(y∗)| < 0, then somewhere between
y∗ and ŷ we would have |F(y)| = 0, as one of the positive eigenvalues goes negative
or one of the negative eigenvalues goes positive. What we need to do, to ensure that
the replacement matrix F(y) for G (y) is nonsingular, is to keep the positive eigenvalues
positive and the negative eigenvalues negative, yielding |F(y)| < 0.

Consider
ẏ = −Pg (37)

with

P = F−1 =

[

αuIu +Guu Guv

Gᵀ

uv −αvIv +Gvv

]−1

. (38)

For αu = αv = α → ∞ the method approaches Min-Max Ascent (see Section 6.4.1)
applied to φ/α. For α→ 0 the method approaches Newton’s method applied to φ. The
Gradient Enhanced Min-Max (GEMM) method is given by (37)–(38) with αu =
γu ‖g‖ and αv = γv ‖g‖ for constants γu ≥ 0 and γv ≥ 0. That is, P = F−1, with

F =

[

γu ‖g‖ Iu +Guu Guv

Gᵀ

uv −γv ‖g‖ Iv +Gvv

]

. (39)

In [8] we prove that for sufficiently large constants γu ≥ 0 and γv ≥ 0 the matrix
F in (39) is nonsingular for all y. Hence the only equilibrium for (37)–(39) is at y∗.
A Lyapunov approach can be used to investigate whether the unique equilibrium at y∗

is (globally) asymptotically stable. However, note that using W (y) = gᵀg as a descent
function [14, p. 276] would not work, since Ẇ = gᵀġ+ ġᵀg = gᵀGẏ+ ẏᵀGg = −gᵀQg,
with Q = GP + PᵀG not being positive definite if |G| changes sign (see Lyapunov’s
lemma [14, p. 223]). Also note that replacing the minumaxv φ problem with Newton’s
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method (or the Levenberg–Marquardt modification) applied to the least squares problem
[17, pp. 146–148] of minimizing W (y), via ẏ = −H−1(y)∇W , where ∇W = [∂W/∂y]

ᵀ

and H(y) = ∂2W/∂y2, would involve third derivatives of φ(y).

6.4 Gradient transformation results for the stingray saddle function

6.4.1 Min-max ascent

Since u seeks minu φ(u,v) and v seeks maxv φ(u,v), the first min-max algorithm inves-
tigated by researchers [3] was steepest descent on u and steepest ascent on v.

Let Iu and Iv denote the n× n and m×m identity matrices, respectively. Taking

P(y) = diag [Iu,−Iv] =
[

Iu 0
0 −Iv

]

yields the Min-Max Ascent algorithm

u̇ = −gu, v̇ = gv (40)

with the state perturbation equations

[

η̇u
η̇v

]

=

[

−Guu −Guv

Gᵀ

uv Gvv

] [

ηu
ηv

]

.

For the Stingray saddle function

φ =
a

2
u2 +

c

2
(u− 1) v2

the Min-Max Ascent system is given by

u̇ = −gu = −au− c

2
v2, v̇ = gv = c (u− 1) v

with the state perturbation equations

[

η̇u
η̇v

]

=

[

−a −cv
cv c (u− 1)

] [

ηu
ηv

]

.

At the stationary point the state perturbation matrix

A(y∗) =

[

−a 0
0 −c

]

has eigenvalues {−a,−c}. For a = 1 and c = 100 Min-Max Ascent yields a very stiff
system.

Figure 4 shows Min-Max Ascent trajectories for the case where a = 1 and c = 100. For
numerical integration we use fixed step size (∆t = 10−5, because of stiffness) standard
4th-order Runge-Kutta. Trajectories for u < 1 rapidly approach the v = 0 (gv = 0)
surface (the sharp local maximum ridge of the Stingray) and then slowly move along the
ridge toward the saddle point at the origin. This is caused by the stiffness of the system.
Notice the tendency, in the region u > 1, for trajectories to diverge from the gv = 0
surface rather than converge to it. This is caused by Gvv not being negative definite
everywhere.
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Figure 4: Min-Max Ascent (a = 1, c = 100).

|G|=0

Figure 5: Newton’s method (a = 1, c = 100).

6.4.2 Newton’s method

Newton’s method, in which dg/dt = −g, [hence, g(t) = g(0)e−t → 0 as t → ∞],
corresponds to P(y) = G−1(y). Applied to the Stingray saddle function, Newton’s
method is given by

ẏ = −G−1g (41)

= −
[

a cv
cv c (u− 1)

]−1 [
au+ c

2v
2

c (u− 1) v

]

= − c

|G|

[

(u− 1)
(

au+ 1
2cv

2
)

− cv2 (u− 1)
−v

(

au+ 1
2cv

2
)

+ a (u− 1) v

]

,

where |G| = ac (u− 1)−c2v2. Figure 5 shows trajectories for Newton’s method applied to
the Stingray saddle function (a = 1, c = 100) using 4th-order Runge-Kutta (∆t = 10−3).

At y∗ = (u∗, v∗) = (0, 0) the state perturbation equations yield

A(y∗) =

[

−1 0
0 −1

]

with eigenvalues {−1,−1}. This is clearly not a stiff system near y∗. Trajectories move
at a much better speed than in Min-Max Ascent, as indicated by the step size. However,
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Newton’s method is not globally asymptotically stable to y∗. Note that solutions to (41)
only exist for |G| 6= 0 and that |G| = 0 on v2 = (u− 1) a/c. The domain of attraction
to y∗ is only the region u < 1, that is, the region where Gvv < 0.

6.4.3 GEMM

For a and c > 0 in the Stingray saddle function (35) consider

F =

[

αuIu +Guu Guv

Gᵀ

uv −αvIv +Gvv

]

=

[

αu + a cv
cv −αv + c (u− 1)

]

.

The determinant |F| = (αu + a) [−αv + c (u− 1)] − c2v2 is zero on c2v2 =
(αu + a) [−αv + c (u− 1)] provided −αv + c (u− 1) ≥ 0. Since αu + a > 0 for all αu ≥ 0
with a > 0 and c > 0, a necessary and sufficient condition for |F(u, v)| < 0 for all u, v is
that −αvIv +Gvv = −αv + c (u− 1) < 0 for all u. We can ensure that |F(u, v)| < 0 for
all u, v by taking

αv = γv ‖g‖ = γv

√

(

au+
c

2
v2
)2

+ c2 (u− 1)2 v2

with sufficiently large γv > 0. Then

|F| = −γv (αu + a)

√

(

au+
c

2
v2
)2

+ c2 (u− 1)
2
v2 + (αu + a) c (u− 1)− c2v2.

The maxv |F| occurs on v = 0, with

|F|v=0 = −γv (αu + a)

√

(au)
2
+ (αu + a) c (u− 1) = (αu + a) [−γva |u|+ c (u− 1)] .

For u ≤ 0 we have |F|v=0 < 0. For u > 0 we have

0 = |F|v=0 = (αu + a) [−γvau+ c (u− 1)] = (αu + a) [(c− γva)u− c]

at

u =
1

1− γv ac
which yields u < 0 (a contradiction) for γv > c/a. We conclude that |F(u, v)| < 0 for all
u, v if we take αu = γu ‖g‖ and αv = γv ‖g‖, with γu ≥ 0 and γv > c/a.

Applied to the Stingray function, the Gradient Enhanced Min-Max algorithm is given
by

[

u̇
v̇

]

= −F−1g = − 1

|F|

[

[−γv ‖g‖+ c (u− 1)]
(

au+ 1
2cv

2
)

− c2v2 (u− 1)
−cv

(

au+ 1
2cv

2
)

+ (γu ‖g‖+ a) c (u− 1) v

]

,

where 0 > |F| = (γu ‖g‖+ a) [−γv ‖g‖+ c (u− 1)] − c2v2 for all u, v, provided γu ≥ 0
and γv > c/a. For a = 1, c = 100, and γv = 101, Figures 6–7 show trajectories for the
Gradient Enhanced Min-Max algorithm for γu = 1 and 10, respectively.
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Figure 6: GEMM trajectories (γu = 1, γv = 101).

Figure 7: GEMM trajectories (γu = 10, γv = 101).

6.4.4 Unconstrained trajectory following performance comparisons

For comparison of Min-Max Ascent, Newton’s method, and the Gradient Enhanced Min-
Max (GEMM) method, we consider the trajectories starting from (u, v) = (−1.5, 0.5)
for the Stingray saddle function. We use fixed time step standard 4th-order Runge-
Kutta with the time step ∆t chosen to control the approximate initial displacement
∆s = ‖ẏ(0)‖∆t. The trajectories are terminated when ‖g‖ < 10−3. We consider two
cases: Table 1 shows results for the “Banana saddle” (a = 1000, c = 1, γu = γv = 1,
stiffness ≈ 1000), and Table 2 shows results for the “Stingray saddle” (a = 1, c = 100,
γu = 1, γv = 101, stiffness ≈ 100). The results indicate that Newton’s method is
about 60 to 440 times faster than Min-Max Ascent, and that the Gradient Enhanced
Min-Max method is about 2 to 3 times faster than Newton’s method and about 175 to
1000 times faster than Min-Max Ascent. These results are consistent with the results
[7] for the Gradient Enhanced Newton (GEN) minimization method. When applied to
Rosenbrock’s function, GEN is approximately 25 time faster than Newton’s method and
approximately 2500 times faster than Steepest Descent.

In [8] we show that the Gradient Enhanced Min-Max method provides global asymp-
totic stability to the saddle point for functions such as the Stingray saddle function,
which have a single proper stationary min-max point and satisfy a Lyapunov growth
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Table 1: Banana saddle results (a = 1000, c = 1).

Method ∆t ‖ẋ(0)‖∆t Final t # Steps Ratio

Min-Max Ascent 10−6 1. 4999 × 10−3 6.210995 6, 210, 995 980.2

Newton 10−3 1. 5133 × 10−3 14.221 14221 2. 24

GEMM 2.5 × 10−3 1. 4999 × 10−3 15.84 6336 1

Table 2: Stingray saddle results (a = 1, c = 100).

Method ∆t ‖ẋ(0)‖∆t Final t # Steps Ratio

Min-Max Ascent 10−5 1. 254 8 × 10−3 7.32973 732, 973 175. 5

Newton 10−3 1. 296 2 × 10−3 11.74 11, 740 2. 81

GEMM 1.5 × 10−2 1. 254 3 × 10−3 62.625 4, 175 1

condition. For the Stingray function Newton’s method is not stiff but does not provide
global asymptotic stability. Min-Max Ascent, applied to the Stingray function, provides
global asymptotic stability [8] but is very stiff. When applied to the Stingray function,
the Gradient Enhanced Min-Max method is very fast and is not stiff, whereas Min-Max
Ascent is very slow and very stiff. The Gradient Enhanced Min-Max method is approxi-
mately 3 times faster than Newton’s method and approximately 175 to 1000 times faster
than Min-Max Ascent.

7 Min-Max Saddle Point with Equality Constraints

In this section we extend the results in [8] to the problem of finding Lagrangian saddle
points y = (x,λ) for the problem of minimizing a scalar-valued function φ(x) subject to
equality constraints ψ(x) = 0. In particular we expand our previous results to handle
the fact that L(x,λ) is linear in λ.

For the augmented Lagrangian L, and its gradient h(y) and Hessian H(y) given
by (19) and (25), respectively, we are particularly concerned with finding a proper
Lagrangian saddle point y∗ = (x∗,λ∗), at which:

i) L (x∗,λ) ≤ L (x∗,λ∗) < L (x,λ∗) for all (x,λ) 6= (x∗,λ∗),

ii) h∗ = [∂L(y∗)/∂y]ᵀ = 0, where h(y) = ∇y L(y),
iii) H∗

xx = ∂2L (x∗,λ∗) /∂x2 ≥ 0 (positive semidefinite),

where, for β ≥ 0, the augmented Lagrangian is

L(x,λ) = φ(x) − λᵀψ(x) + β
1

2
ψᵀ(x)ψ(x). (42)

In addition we assume that h(y) = ∇yL(y) = [∂L(y)/∂y]ᵀ 6= 0 for y 6= y∗ and that
‖h(y)‖ → ∞ as ‖y − y∗‖ → ∞, where ‖·‖ denotes the Euclidian norm.

As a modification to Newton’s method (26) we consider a gradient transformation
algorithm of the form

ẏ = −P(y)∇yL(y) = −F−1(y)∇yL(y), (43)

where

F(y) = H(y) + ‖h‖
[

γxIn 0
0 −γλIm

]

=





γx ‖h‖ In +
∂2L
∂x2

−Γᵀ

−Γ −γλ ‖h‖ Im



 , (44)
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with

h(y) = ∇yL(y) =
[

∇xL
∇λL

]

=









[

∂L
∂x

]ᵀ

−ψ









, (45)

H(y) = ∂2L(y)
∂y2

=

[

Hxx Hλx

Hᵀ

λx Hλλ

]

=







∂2L
∂x2

−Γᵀ

−Γ 0






, (46)

Γ =
∂ψ

∂x
. (47)

7.1 Nonsingularity of F(y)
We will show that for a sufficiently large constant γx ≥ 0 and any constant γλ > 0 the
matrix F(y) in (44) is nonsingular for all y. Hence the only equilibrium for (18) with
(43)–(44) is at y∗. To prove that F(y) is nonsingular, we have the following results:

Lemma 7.1 For y ∈ Rp let M(y) be an s× s matrix whose elements are functions
of class Cq, q ≥ 0, in a neighborhood of ŷ ∈ Rp, with distinct eigenvalues at ŷ. Then
the eigenvalues µk(y), k = 1, . . . , s, of M(y) are of class Cq in a neighborhood of ŷ.

Proof The characteristic equation is 0 = P(µ,y) = |µI−M(y)| = µs+ ps−1µ
s−1+

. . . + p1µ + p0, where I denotes the s × s identity matrix. The coefficients pk(y) are
Cq since they can be determined from Newton’s identities [14, p. 227] in terms of the
trace(Mk), k = 1, . . . , s, of powers of M(y), which only involves products and sums of
the elements of M(y). Then the lemma follows from the implicit function theorem [9, p.
21], with Jacobian dP (µk, ŷ) /dµ 6= 0 for the case where the eigenvalues µk, k = 1, . . . , s,
are distinct.

For repeated eigenvalues, the elements of M(y) can be perturbed by an arbitrarily
small amount ε > 0 to yield distinct eigenvalues [19, p. 89]. For a more detailed analysis
of the case of repeated eigenvalues, see [20, p. 134]. Henceforth, we will consider only
the case of distinct eigenvalues.

Theorem 7.1 For y ∈ Rp let M(y) ∈ Rs×s be a continuous symmetric matrix
with M(y∗) ≥ 0 (≤ 0) and let L(y) be a scalar-valued function of class Cq, q ≥ 1.
Let h(y) = [∂L/∂y]ᵀ. If h(y∗) = 0, with h(y) 6= 0 for y 6= y∗ and ‖h(y)‖ → ∞
as ‖y − y∗‖ → ∞, then for γ ≥ 0 (≤ 0) with |γ| sufficiently large, the s × s matrix
N(y) = γ ‖h(y)‖ I+M(y) is positive definite (negative definite) for all y 6= y∗.

Proof We consider the positive semidefinite case for M(y∗). The proof for the
negative semidefinite case is analogous. At y let µ(y) denote the smallest (possibly
negative) eigenvalue of M(y), with corresponding unit eigenvector ξ(y). For γ ≥ 0 let
ω(y) = µ(y) + γ ‖h(y)‖ denote the corresponding smallest eigenvalue of N(y), with
corresponding unit eigenvector ξ(y), where ξᵀN(y)ξ = ω(y)ξᵀξ = ω(y) = µ(y) +
γ ‖h(y)‖. Let Br = {y : ‖y − y∗‖ ≤ r}. From Lemma 7.1 µ(y) is continuous on Rp,
with µ(y∗) ≥ 0 and all the other eigenvalues of M(y∗) are positive. For arbitrarily
small ε > 0 let ȳ be a minimal point for µ(y) on Bε. If ȳ = y∗ choose any γ̄ > 0. If
ȳ 6= y∗ choose γ̄ > max {0,−µ(ȳ)/ ‖h(ȳ)‖}. Then for γ > γ̄, µ(y) > 0 ∀ y ∈ Bε − {y∗}.
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For any r ≥ ε let Xr = {y : ε ≤ ‖y − y∗‖ ≤ r}, with ‖h(y)‖ > 0 ∀ y ∈ Xr. From the
theorem of Weierstrass µ(y)/ ‖h(y)‖ takes on a minimum value at some point ŷ ∈ Xr.
Let γ̂(r) = max {0,−µ(ŷ)/ ‖h(ŷ)‖} ≥ 0. Then for γ > γ̂(r) we have ω(y)/ ‖h(y)‖ =
γ + µ(y)/ ‖h(y)‖ ≥ γ + µ(ŷ)/ ‖h(ŷ)‖ ≥ γ − γ̂(r) > 0 ∀ y ∈ Xr. The conditions on
h(y) ensure that ‖h(y)‖ 6→ 0 as ‖y − y∗‖ → ∞. Thus γ̂ = limr→∞ {γ̂(r)} exists. Then
ω(y) > 0 ∀ y 6= y∗ provided γ > max (γ̄, γ̂).

Lemma 7.2 Let A ∈ Rn×nbe symmetric and B ∈ Rn×m. If A is positive definite
(A > 0) then BᵀAB is at least positive semidefinite (BᵀAB ≥ 0).

Proof For z ∈ Rm and s ∈ Rn, let s = Bz. Then sᵀAs > 0 for s 6= 0. Hence
zᵀBᵀABz ≥ 0 for z 6= 0.

Lemma 7.3 Let A ∈ Rn×n be symmetric and B ∈ Rn×n. If A > 0 (< 0) and B ≥ 0
(≤ 0) then A+B > 0 (< 0).

Proof For s ∈ Rn we have sᵀ(A+B)s = sᵀAs + sᵀBs > 0 (< 0) for all s 6= 0.

Theorem 7.2 For A ∈ Rn×n symmetric, B ∈ Rn×m, and D ∈ Rm×m symmetric,
the matrix

F =

[

A B
Bᵀ D

]

is nonsingular, with |F| < 0, if A > 0 and D < 0 (or if A < 0 and D > 0).

Proof Pre-multiplying the first block row by BᵀA−1 and subtracting from the
second block row yields

|F| =
∣

∣

∣

∣

A B
0 D−BᵀA−1B

∣

∣

∣

∣

= |A|
∣

∣D−BᵀA−1B
∣

∣ .

For A > 0, we have [21, p. 128] |A| = µ1 · · ·µn > 0, where µk, k = 1, . . . , n, are the
eigenvalues of A. From Lemma 7.2 BᵀA−1B ≥ 0. Thus from Lemma 7.3 with D < 0 we
have D−BᵀA−1B < 0. Hence

∣

∣D−BᵀA−1B
∣

∣ = ω1 · · ·ωm < 0, where ωj , j = 1, . . . ,m,
are the eigenvalues of D−BᵀA−1B. Thus, |F| = µ1 · · ·µnω1 · · ·ωm < 0.

Theorem 7.3 If y∗ = (x∗,λ∗) is a proper Lagrangian maxλ-minx saddle point for
a scalar-valued C2 function

L(x,λ) = φ(x) − λᵀψ(x) +
1

2
βψᵀ(x)ψ(x),

with h(x,λ) = [∂L/∂x, ∂L/∂λ]ᵀ 6= 0 for y 6= y∗ and ‖h(y)‖ → ∞ as ‖y − y∗‖ → ∞,
and with

H(y) = ∂2L(y)
∂y2

=

[

Hxx Hxλ

Hᵀ

xλ Hλλ

]

,

then for sufficiently large γx ≥ 0 and any γλ > 0 the matrix

F =

[

γx ‖h‖ In +Hxx Hxλ

Hᵀ

xλ −γλ ‖h‖ Im

]

is nonsingular, with |F| < 0, for all y 6= y∗.

Proof From Theorem 7.1, for y 6= y∗, γx ‖h‖ In + Hxx > 0 for sufficiently large
γx ≥ 0 and −γλ ‖h‖ Im < 0 for any γλ > 0. Then |F| < 0 follows from Theorem 7.2
with A = γx ‖h‖ In +Hxx, B = Hxλ, and D = −γλ ‖h‖ Im.
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7.2 Speed of GEMM

Using F from (44) write the GEMM algorithm in the form











‖h‖





γxIn 0

0 −γλIm



+







∂2L
∂x2

−Γᵀ

−Γ 0

















[

ẋ

λ̇

]

= −
[

∇xL
∇λL

]

. (48)

Thus, using (45), (27), and (28), we have

‖h‖
[

γxIn 0
0 −γλIm

] [

ẋ

λ̇

]

+
dh

dt
= −h.

For small ‖h‖ or small γx, γλ GEMM approaches Newton’s method applied to L. For
large ‖h‖ or large γx, γλ GEMM approaches Hestenes’s Method of Multipliers applied
to L/(γx ‖h‖) with β → γx/γλ, that is,

‖h‖
[

γxIn 0
0 −γλIm

] [

ẋ

λ̇

]

≈ −h

yields

[

ẋ

λ̇

]

≈ −





1
γx
In 0

0 − 1

γλ
Im





1

‖h‖h =
1

‖h‖







− 1

γx
∇xL

1

γλ
∇λL







with “speed”

‖ẏ‖ →







1/γ if γx = γλ = γ,
1/γx if γx << γλ,
1/γλ if γλ << γx,

for large ‖h‖, γx, or γλ.

7.3 Stability of GEMM

For ẏ = F−1h the only equilibrium is at h = ∇yL = 0. As ‖h‖ → 0 GEMM approaches
Newton’s method (F → H). Thus y∗ is at least locally asymptotically stable and non-
stiff, with all eigenvalues µ = −1. From Theorem 7.3 F−1(y) exists for all y, provided
γλ > 0 and γx ≥ 0 is sufficiently large. Therefore the domain of attraction is all of Rp
and GEMM is globally asymptotically stable to y∗.

8 Rosenbrock’s Function with Constraint

As an Example we consider the problem of minimizing Rosenbrock’s function

φ(x) = 100(x21 − x2)2 + (1− x1)2, (49)

subject to the parabolic constraint

ψ(x) = (x1 − 2)2 + x2 − 1 = 0. (50)

Figure 8 shows contours of constant φ(x), along with the constraint ψ(x) = 0.
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Figure 8: Rosenbrock’s function with parabolic constraint.

The gradient and the Hessian matrix of φ are given by

∇φ(x) =

[

∂φ

∂x

]ᵀ

=





400x1
(

x21 − x2
)

+ 2 (x1 − 1)

−200
(

x21 − x2
)



 , (51)

∇
2φ(x) =

∂2φ

∂x2
=

[

1200x21 − 400x2 + 2 −400x1
−400x1 400

]

. (52)

Rosenbrock’s function φ is analogous to a curved canyon with very steep walls and a
shallow sloping parabolic valley floor, defined by x2 = x21. The function has a single
proper unconstrained global minimum at x̂ = [1, 1]

ᵀ
, with φ(x) > 0 for all x 6= x̂. Note

that ∇φ(x) 6= 0 except at x̂ and ‖∇φ(x)‖ → ∞ as ‖x− x̂‖ → ∞. Hence contours
of constant φ are topologically equivalent to spheres [14, p. 215]. On the other hand,
φ(x) is not a convex function, that is, it does not satisfy φ [θx1 + (1− θ)x2] ≤ θφ(x1) +
(1 − θ)φ(x2) for all x1, x2, and 0 ≤ θ ≤ 1. This follows [17, p. 425] from the fact
that ∇

2φ(x) is positive definite only in the region x2 < x21 + 1/2. Some numerical
optimization algorithms have trouble with Rosenbrock’s function because they exhibit
“stiff” dynamics. For example, applied to the unconstrained problem, the discrete version
of Steepest Descent “chatters” along the valley floor.

For the constrained optimization problem the augmented Lagrangian is

L = φ− λψ +
1

2
βψ2

= 100(x21 − x2)2 + (1− x1)2 − λ
[

(x1 − 2)2 + x2 − 1
]

+
1

2
β
[

(x1 − 2)
2
+ x2 − 1

]2

.
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With yᵀ = [xᵀ, λ], the gradient of L is

∇yL=
[

∂L
∂y

]ᵀ

=













∂L
∂x1

∂L
∂x2

∂L
∂λ













=













∂φ
∂x1

+ (βψ − λ) ∂ψ
∂x1

∂φ
∂x2

+ (βψ − λ) ∂ψ
∂x2

−ψ













(53)

=









400(x21 − x2)x1 − 2(1− x1) +
(

β
[

(x1 − 2)
2
+ (x2 − 1)

]

− λ
)

2 (x1 − 2)

−200(x21 − x2) +
(

β
[

(x1 − 2)
2
+ (x2 − 1)

]

− λ
)

− (x1 − 2)
2 − x2 + 1









and the Hessian of L is

H 4

= ∇
2
yL =

∂2L
∂y2

=











∂2L
∂x2

−
[

∂ψ

∂x

]ᵀ

−∂ψ
∂x

0











= [Hij ] , (54)

where

H11 =
∂2L
∂x21

=
∂2φ

∂x21
+ (βψ − λ) ∂

2ψ

∂x21
+ β

(

∂ψ

∂x1

)2

(55)

= 1200x21 − 400x2 + 2 + 2
(

β
[

(x1 − 2)
2
+ (x2 − 1)

]

− λ
)

+ 4β (x1 − 2)
2
,

H12 = H21 =
∂2L

∂x1∂x2
=

∂2φ

∂x1∂x2
+ (βψ − λ) ∂2ψ

∂x1∂x2
+ β

∂ψ

∂x1

∂ψ

∂x2
(56)

= −400x1 + 2β (x1 − 2) ,

H13 = H31 =
∂2L
∂x1∂λ

= − ∂ψ
∂x1

= −2 (x1 − 2) , (57)

H22 =
∂2L
∂x22

=
∂2φ

∂x22
+ (βψ − λ) ∂

2ψ

∂x22
+ β

(

∂ψ

∂x2

)2

= 200 + β, (58)

H23 = H32 =
∂2L
∂x2∂λ

= − ∂ψ
∂x2

= −1, (59)

H33 =
∂2L
∂λ2

= 0. (60)

The first-order necessary conditions for maxλminx L(x, λ, β) are:

0 =
∂L
∂x1

= 400(x21 − x2)x1 − 2(1− x1)− 2λ (x1 − 2) (61)

+ β
[

(x1 − 2)2 + x2 − 1
]

2 (x1 − 2) ,

0 =
∂L
∂x2

= −200(x21 − x2)− λ+ β
[

(x1 − 2)2 + x2 − 1
]

, (62)

0 =
∂L
∂λ

= −ψ = − (x1 − 2)
2 − x2 + 1. (63)
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At (x, λ) = (x∗, λ∗), with Lagrangian L(x, λ) = L(x, λ, β)|β=0, using (63) in (62) with
β = 0 yields

λ = −200
{

x21 +
[

(x1 − 2)
2 − 1

]}

. (64)

Then using (63) and (64) in (61) yields

0 =
∂L

∂x1
= 800x31 − 2400x21 + 2801x1 − 1201.

This cubic polynomial has roots x1 = 1, 1± 1
40 i
√
802.

Thus the unique constrained global minimal point is

y∗ = (x∗1, x
∗
2, λ

∗) = (1, 0,−200) , (65)

with φ∗ = φ(x∗) = 100 and ψ∗ = ψ(x∗) = 0, at which ∇yL(x
∗, λ∗) = ∇yL(x∗, λ∗, β) =

0, with

∇xL (y) 6= 0 and ∇yL (y) 6= 0 for y 6= y∗ (66)

and

‖∇xL (y)‖ → ∞ and ‖∇yL (y)‖ → ∞ as ‖y − y∗‖ → ∞ (67)

for all β ≥ 0.

Note that at y∗ the Hessian matrix (12) for the Lagrangian L,

H(y∗) =
∂2L (x∗, λ∗)

∂x2
=

[

1602 −400
−400 200

]

(68)

is positive definite. Thus the second-order sufficient condition (6) is satisfied by the
stronger condition that H(x∗, λ∗) is positive definite. For this Example switching from
maxλminx L(x, λ) to maxλminx L(x, λ, β) is not mandatory. However, we will continue
using L(x, λ, β), with L(x, λ) = L(x, λ, 0).

9 Augmented Lagrangian Trajectory Following

9.1 Min-max ascent

Choosing

P =

[

Pxx Pxλ

Pλx Pλλ

]

=

[

In 0
0 −Im

]

(69)

in (20) yields

ẋ = −∇xL =−∇φ+ Γᵀ [λ− βψ] , (70)

λ̇ = ∇λL =−ψ, (71)

which corresponds to steepest descent for x on L(x,λ,β) and steepest ascent for λ on
L(x,λ,β). We will set β = 0, yielding the Min-Max Ascent algorithm considered in [3].
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9.1.1 Simulation results

For the Example problem in Section 8 the Min-Max Ascent equations of motion are

ẋ1 = −400(x21 − x2)x1 + 2(1− x1) +
(

λ− β
(

(x1 − 2)
2
+ (x2 − 1)

))

2 (x1 − 2) ,

ẋ2 = 200(x21 − x2) +
(

λ− β
(

(x1 − 2)
2
+ (x2 − 1)

))

, (72)

λ̇ = − (x1 − 2)
2 − x2 + 1.

The state perturbation equations η̇ = Aη are





η̇x

η̇y



 =











−∂
2L
∂x2

− ∂2L
∂x∂λ

∂2L
∂λ∂x

∂2L
∂λ2















ηx

ηy



 (73)

and yield





η̇1
η̇2
η̇3



 =





a11 400x1 − 2β (x1 − 2) 2 (x1 − 2)
400x1 − 2β (x1 − 2) −200− β 1
−2 (x1 − 2) −1 0









η1
η2
η3



 ,

where

a11 = −1200x21 + 400x2 − 2− 2
(

β
(

(x1 − 2)
2
+ (x2 − 1)

)

− λ
)

− 4β (x1 − 2)
2
.

At (x∗, λ∗) = (1, 0,−200)




η̇1
η̇2
η̇3



 =





−1602− 4β 400 + 2β −2
400 + 2β −200− β 1

2 −1 0









η1
η2
η3



 .

For β = 0 the eigenvalues (µk) and eigenvectors (ξk) of A are

µ1 = −5. 00× 10−3, ξ
ᵀ

1 =
[

6. 23× 10−8 5. 00× 10−3 1. 0
]

,

µ2 = −93. 90, ξ
ᵀ

2 =
[

−0.256 −0.967 −4. 83× 10−3
]

,

µ3 = −1708. 09, ξ
ᵀ

3 =
[

−0.967 0.256 1. 28× 10−3
]

.

(74)

The Lyapunov exponents are (σ1, σ2, σ3) = (µ1, µ2, µ3). This is a very stiff system, with

“stiffness” Σ
4

= |σmax − σmin| ≈ 1, 700.
Figure 9 shows Min-Max Ascent trajectories for λ(0) = 0 and β = 0, starting from

initial x(0) at the edges of the plot region. The trajectories were generated using standard
4-th order Runge-Kutta integration with a fixed step size ∆t = 2×10−4. The trajectories
in Figure 9 rapidly approach the valley of Rosenbrock’s function then move more slowly
along the valley until they reach a region just below the unconstrained minimal point x̂ =
(1, 1). Then they move agonizingly slowly down to the constrained minimal point x∗ =
(1, 0). For example, the trajectory from y(0) = (−2, 4, 0) takes approximately 0.1 sec. of
simulation time to reach the valley, approximately 3 sec. more to reach a neighborhood
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Figure 9: Min-Max Ascent (λ(0) = 0, β = 0).

Figure 10: Min-Max Ascent (λ(0) = λ∗ = −200, β = 0).

of x̂, and then more than 1300 sec. longer to converge to y∗ = (1, 0,−200), at tf ≈ 1400
sec., with stopping criterion ‖∇yL‖ ≤ 10−3. All other trajectories, which are x1, x2
projections of the three-dimensional y = (x1, x2, λ) trajectories, behaved similarly and
converged to y∗, but for plotting purposes were terminated after t = 0.1 sec., to illustrate
that they overshoot or undershoot the valley.

The extremely slow convergence is associated with λ [due to µ1 in (74)] and is a result
of the choice λ(0) = 0. The trajectories are essentially steepest descent on φ(x) until λ(t)
very slowly converges to λ∗. Figure 10 shows trajectories from the same initial conditions
as in Figure 9, except with λ(0) = λ∗. All trajectories, with step size ∆t = 10−4, were
terminated when ‖∇yL‖ ≤ 10−3, but only required a total of approximately 0.1 sec. of
simulation time to converge to y∗.

Figure 11 shows the Lyapunov exponent time histories for Min-Max Ascent on L,
starting from (x1, x2 λ) = (−2.5, 0, 0) with β = 0. The system is uniformly very stiff, with
Σ(t) = |σmax(t)− σmin(t)| varying between approximately 250 and 1, 700 and converging
to Σ ≈ 1, 700.
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Figure 11: Lyapunov exponents for Min-Max Ascent (λ(0) = 0, β = 0).

9.1.2 Stability analysis

Lyapunov’s first method establishes that the Min-Max Ascent system (72) is locally
asymptotically stable to y∗ for β = 0. Alternatively, in [4] a min-max sufficiency condi-
tion is developed using

V (y) =
1

2
[y − y∗]

ᵀ
[y − y∗] =

1

2
[x− x∗]

ᵀ
[x− x∗] +

1

2
[λ− λ∗]

ᵀ
[λ − λ∗] . (75)

Along y(t)

V̇ (y) =
∂V

∂x
ẋ+

∂V

∂λ
λ̇ = − [x− x∗]

ᵀ
∇xL+ [λ − λ∗]

ᵀ
∇λL. (76)

If
V̇ (y) < 0 provided ẏ 6= 0 (77)

in a neighborhood of y∗, then V (y) is a Lyapunov function, establishing at least local
asymptotic stability [14, p. 217]. The function (75), with β = 0 so L = L, is used in
[3] to establish local asymptotic stability of y∗ for Min-Max Ascent applied to finding a
saddle point of L(x,λ) under the conditions that L is linear in λ and H = ∂2L/∂x2 is
positive definite at (x∗,λ∗).

Unfortunately, for our Example the function (75) does not satisfy (77) everywhere
and can not be used to establish global asymptotic stability for our Example. In fact,
for some saddle-point problems, Min-Max Ascent can produce Hamiltonian systems [8],
which can not be asymptotically stable. However, simulation experiments indicate that
Min-Max Ascent is globally asymptotically stable to y∗ for our Example.

9.2 Hestenes’ method of multipliers

Choosing

P =

[

Pxx Pxλ

Pλx Pλλ

]

=

[

In 0
0 −βIm

]

(78)

in (20) yields

ẋ = −∇xL = −∇φ+ Γᵀ [λ− βψ] , (79)

λ̇ = ∇λL = −βψ, (80)
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corresponding to Hestenes’ Method of Multipliers [13].
For our Example the equations of motion for Hestenes’ Method of Multipliers are

ẋ1 = −400(x21 − x2)x1 + 2(1− x1) +
(

λ− β
(

(x1 − 2)2 + (x2 − 1)
))

2 (x1 − 2) ,

ẋ2 = 200(x21 − x2) +
(

λ− β
(

(x1 − 2)
2
+ (x2 − 1)

))

,

λ̇ = −β
[

(x1 − 2)
2
+ x2 − 1

]

.

The state perturbation equations are





η̇1
η̇2
η̇3



 =





a11 400x1 − 2β (x1 − 2) 2 (x1 − 2)
400x1 − 2β (x1 − 2) −200− β 1
−2β (x1 − 2) −β 0









η1
η2
η3



 ,

where

a11 = −1200x21 + 400x2 − 2− 2
(

β
(

(x1 − 2)
2
+ (x2 − 1)

)

− λ
)

− 4β (x1 − 2)
2
.

At (x∗, λ∗)




η̇1
η̇2
η̇3



 =





−1602− 4β 400 + 2β −2
400 + 2β −200− β 1

2β −β 0









η1
η2
η3



 .

For β = 5 the state perturbation equations have Lyapunov exponents (σ1, σ2, σ3) equal
to the eigenvalues (µ1, µ2, µ3) =

(

−2. 44 × 10−2,−94. 91 ,−1732. 07
)

. This is a very stiff
system, with stiffness Σ = |σmax − σmin| ≈ 1, 700, which is approximately that of Min-
Max Ascent. For β = 100 the eigenvalues are (µ1, µ2, µ3) = (−0.33,−109. 64,−2192. 03),
with stiffness Σ = |σmax − σmin| ≈ 2, 200. For very large β the state perturbation matrix

A ≈





−4β 2β −2
2β −β 1
2β −β 0





has eigenvalues (µ1, µ2, µ3) =
(

0,− 5
2β + 1

2

√

25β2 − 20β,− 5
2β − 1

2

√

25β2 − 20β
)

→
(0, 0,−5β). Thus the stiffness increases with increasing β. However, as we shall show
later, even for β = 5 the convergence for the Method of Multipliers is much faster than
for Min-Max Ascent.

As with Min-Max Ascent, Lyapunov’s first method establishes local asymptotic sta-
bility of y∗, but no suitable Lyapunov function is known to establish global asymptotic
stability. However, experimental simulation results indicate that Hestenes’ Method of
Multipliers is globally asymptotically stable for our Example.

Figure 12 shows trajectories for Hestenes’ Method of Multipliers applied to the aug-
mented Lagrangian L with λ(0) = 0 and β = 5, using step size ∆t = 10−4 with termina-
tion when ‖∇yL‖ ≤ 10−3. The behavior is similar to Min-Max Ascent, except for faster
convergence to the constrained minimum point, at approximately tf = 300 sec.

Figure 13 shows the Lyapunov exponent time histories for Hestenes Method of Mul-
tipliers applied to L, starting from (x1, x2 λ) = (−2.5, 0, 0) with β = 5. The stiffness
is similar to Min-Max Ascent, with Σ(t) varying between approximately 100 and 1, 700
and converging to Σ ≈ 1, 700.
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Figure 12: Method of Multipliers (λ(0) = 0, β = 5).

Figure 13: Method of Multipliers Lyapunov exponents (λ(0) = 0, β = 5).

9.3 Newton’s method

Choosing

P =

[

Pxx Pxλ

Pλx Pλλ

]

= H−1 =

[

∂2L
∂y2

]−1

=







∂2L
∂x2

−Γᵀ

−Γ 0







−1

, (81)

in (20), where Γ = ∂ψ/∂x, yields Newton’s method

[

ẋ

λ̇

]

= −H−1(y)

[

∇xL
∇λL

]

= −H−1(y)

[

∇xL
−ψ

]

. (82)

At the constrained minimal point the state perturbation equations (30) and (32) have
A(y∗) = −I, with eigenvalues µ = −1, yielding a non stiff system.

For our Example problem,

H =





H11 −400x1 + 2β (x1 − 2) −2 (x1 − 2)
−400x1 + 2β (x1 − 2) 200 + β −1

−2 (x1 − 2) −1 0



 ,
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where

H11 = 1200x21 − 400x2 + 2 + 2
(

β
(

(x1 − 2)
2
+ (x2 − 1)

)

− λ
)

+ 4β (x1 − 2)
2
.

Then

P = H−1 =
1

|H| adj(H), (83)

where

|H| = − (3600 + 2β)x21 + (6400 + 8β)x1 + (400− 2β)x2 − 3202− 6β + 2λ (84)

and the adjugate matrix is

adj(H) =





−1 2 (x1 − 2) 800(x1 − 1)

2 (x1 − 2) −4 (x1 − 2)
2

c23
800(x1 − 1) c32 c33



 (85)

with

c23 = c32 = (2β + 2000)x21 − (8β + 1600)x1 + (2β − 400)x2 + 2 + 6β − 2,

c33 =
(

2β2 + 4000β + 80 000
)

x21 − 8β (1000 + β) x1

+
(

2β2 − 80 000
)

x2 + 6β2 + 4402β − λ (400 + 2β) + 400.

At points where |H| = 0 the inverse H−1 fails to exist. As a result, Newton’s method
is not globally asymptotically stable to the solution point (x∗1, x

∗
2, λ

∗) = (1, 0,−200) for
our Example problem. Specifically, we have |H| = 0 on the parabola

(400− 2β)x2 = (3600 + 2β)x21 − (6400 + 8β)x1 + 3202− 2λ+ 6β.

At the optimal point y∗ = (1, 0,−200) with β = 0

|H | = −3600x21 + 6400x1 + 400x2 − 3402 = −602.

Furthermore,

H∗
xx =

∂2L(x∗,λ∗)

∂x2
=

[

802 −400
−400 200

]

has |H∗
xx| = 400 and is positive definite. However, L(x∗,λ) = L(x∗,λ∗)∀λ, since

ψ(x∗) = 0. Thus (x∗,λ∗) is not a proper saddle point, since Hλλ = ∂2L/∂λ2 ≡ 0
instead of Hλλ < 0. However, at y∗ with β = 0

H∗|β=0 =







∂2L
∂x2

1

∂2L
∂x1∂x2

− ∂ψ
∂x1

∂2L
∂x1∂x2

∂2L
∂x2

2

− ∂ψ
∂x2

− ∂ψ
∂x1

− ∂ψ
∂x2

0







y∗

β=0

=





802 −400 2
−400 200 −1
2 −1 0





is indefinite, with |H∗|β=0 = −2 6= 0. Thus x∗ is a “nonsingular” point [13], so there

exists β ≥ 0 such that H∗
xx = ∂2L(x∗,λ∗)/∂x2 is positive definite. In our case β = 0

suffices, since H∗
xx is already positive definite.
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Figure 14: Newton’s method (λ(0) = 0, β = 0).

Figure 15: Lyapunov exponents for Newton’s method on L.

Figure 14 shows trajectories for Newton’s method for λ(0) = 0 and β = 0. All of the
solid trajectories, generated with standard 4-th order Runge–Kutta with fixed step size
∆t = 2×10−3, rapidly converge to (x∗1, x

∗
2, λ

∗) = (1, 0,−200). The dashed trajectories all
reach points where |H| = 0 and do not converge to the constrained minimal point. These
trajectories were generated using Branin’s method [5], [6], in which |H| = 0 problems
are avoided by replacing H−1 in (83) with adj(H) from (85). The resulting [x(t), λ(t)]
trajectories are the same as for Newton’s method except for the plot speed and the
direction of motion when |H| = 0 surfaces are “crossed”.

Figure 15 shows the Lyapunov exponent time histories for Newton’s method applied
to L, starting from (x1, x2 λ) = (−2.5, 0, 0) with β = 0. The system is initially moderately
stiff but achieves Σ(t) = |σmax(t)− σmin(t)| < 10 in approximately 1 sec., with Σ(t)→ 0
as all of the Lyapunov exponents converge to σk = −1.
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Figure 16: Gradient Enhanced Min-Max (λ(0) = 0, β = 0).

9.4 Gradient enhanced min-max

For GEMM applied to our Example problem of Rosenbrock’s function with a parabolic
constraint, we have from (44)

F =





γx ‖h‖+H11 H12 −2 (x1 − 2)
H21 γx ‖h‖+H22 −1

−2 (x1 − 2) −1 −γλ ‖h‖



 ,

where

H = [Hij ] =





H11 −400x1 + 2β (x1 − 2) −2 (x1 − 2)
−400x1 + 2β (x1 − 2) 200 + β −1

−2 (x1 − 2) −1 0



 ,

h = ∇yL =









400(x21 − x2)x1 − 2(1− x1) +
(

β
[

(x1 − 2)
2
+ (x2 − 1)

]

− λ
)

2 (x1 − 2)

−200(x21 − x2) +
(

β
[

(x1 − 2)2 + (x2 − 1)
]

− λ
)

− (x1 − 2)
2 − x2 + 1









with H11 = 1200x21 − 400x2 + 2 + 4β (x1 − 2)2 + 2
(

β
[

(x1 − 2)2 + (x2 − 1)
]

− λ
)

.

From Theorem 7.2, for y 6= y∗ and γλ > 0, we have |F| < 0 provided γx > 0 is
sufficiently large so that γx ‖h‖ In +Hxx is positive definite for all y 6= y∗. We choose
γx = 10 and γλ = 0.1. For our Example system Figure 16 shows Gradient Enhanced Min-
Max (GEMM) trajectories applied to the Lagrangian L with step size ∆t = 1. Figure 17
shows Gradient Enhanced Min-Max trajectories applied to the augmented Lagrangian
L, with β = 5 and step size ∆t = 1.

Figure 18 shows the Lyapunov exponent time histories for GEMM applied to L,
starting from (x1, x2 λ) = (−2.5, 0, 0) with β = 0, γx = 10, and γλ = 0.1. The system is
uniformly non stiff, with maxΣ(t) < 1 and Σ(t) → 0 as all of the Lyapunov exponents
converge to σk = −1.

10 Constrained Trajectory Following Performance

For each Gradient Transformation algorithm in Section 4 simulation experiments were
conducted for a variety of parameter combinations, with the algorithms being applied to
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Figure 17: Gradient Enhanced Min-Max (λ(0) = 0, β = 5).

Figure 18: Lyapunov exponents for GEMM on L.

both the Lagrangian L and the augmented Lagrangian L. Table 3 shows the parameter
values for each Gradient Transformation trajectory following method that we studied.
For comparison, all trajectories were started at a point x(0) = (−2.5, 0) from which all
the algorithms converged to the constrained minimal point y∗ = (1, 0,−200).

Table 4 shows step sizes and simulation results for the methods in Table 3. For each
algorithm a trajectory y(t) was computed starting from x(0) = (−2.5, 0) using standard
4-th order Runge–Kutta with fixed step size ∆t, determined to control the approximate
initial single step displacement ∆s = ‖y(∆t) − y(0)‖. The trajectories were terminated
when ‖∇yL‖ ≤ 10−3. For reference, we include results for Min-Max Ascent starting
with λ(0) = λ∗, which yields fairly fast convergence to y∗. All other simulations were
started with λ(0) = 0.

11 Summary

For the problem of minimizing a scalar-valued function subject to equality constraints,
the Gradient Transformation family of differential equation algorithms includes, as spe-
cial cases: Min-Max Ascent, Newton’s method, Hestenes’ Method of Multipliers, and
a Gradient Enhanced Min-Max (GEMM) algorithm extended to handle equality con-
straints. Applied to Rosenbrock’s function with a parabolic constraint, we find that
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Table 3: Gradient Transformation algorithm parameters.

Method λ(0) β γx γλ
Min-Max L 0 0 0 0
Min-Max L∗ −200 0 0 0
Hestenes L1 0 5 0 0
Hestenes L2 0 100 0 0
Newton L 0 0 0 0
Newton L1 0 5 0 0
Newton L2 0 100 0 0
GEMM L 0 0 10 0.1
GEMM L1 0 5 10 0.1
GEMM L2 0 100 10 0.1

Table 4: Simulation results for Gradient Transformation algorithms.

Method Speed ‖ẏ(0)‖ ∆t ‖y(∆t) − y(0)‖ Final t # Steps Ratio

Min-Max L 6.381 × 103 2 × 10−4 0.747 1380.364 6901820 92024

Min-Max L∗ 8.125 × 103 1 × 10−4 0.590 0.095 950 13

Hestenes L1 8.060 × 103 1 × 10−4 0.568 288.016 2880161 38402

Hestenes L2 4.104 × 104 2 × 10−5 0.630 24.965 1248253 16643

Newton L 3.055 × 102 2 × 10−3 0.610 15.670 7835 104

Newton L1 3.494 × 102 2 × 10−3 0.698 15.904 7952 106

Newton L2 1.053 × 103 5 × 10−4 0.526 17.529 35058 467

GEMM L 9.394 × 10−2 1 0.094 75 75 1

GEMM L1 9.303 × 10−2 1 0.093 75 75 1

GEMM L2 9.300 × 10−2 1 0.093 78 78 1

Min-Max Ascent is globally asymptotically stable but very stiff and has very slow con-
vergence. Hestenes’ Method of Multipliers is also globally asymptotically stable and has
faster convergence, but is still very slow and very stiff. Newton’s method is not stiff,
but does not yield global asymptotic stability. However, GEMM is both globally asymp-
totically stable and not stiff. The stiffness of the Gradient Transformation family is
studied in terms of Lyapunov exponent time histories. Starting from points where all the
methods in this paper do work, we show that Min-Max Ascent and Hestenes’ Method of
Multipliers are very stiff and slow to converge, but with the Method of Multipliers being
approximately 2 times as fast as Min-Max Ascent. Newton’s method, where it works,
is not stiff and is approximately 900 times as fast as Min-Max Ascent and 400 times as
fast as the Method of Multipliers. In contrast, the Gradient Enhanced Min-Max method
is globally convergent, is not stiff, and is approximately 100 times faster than Newton’s
method, 40, 000 times faster than the Method of Multipliers, and 90, 000 times faster
than Min-Max Ascent
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