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Abstract: In this paper, we consider an optimal control problem arising from the
optimal guidance of a lunar module to achieving soft landing, where the description
of the system dynamics is in a three-dimensional coordinate system. Our aim is to
construct an optimal guidance law to realize the soft landing of the lunar module
with the terminal attitude of the module to be within a small deviation from being
vertical with respect to lunar surface, such that the fuel consumption and the terminal
time are minimized. The optimal control problem is solved by applying the control
parameterization technique and a time scaling transform. In this way, the optimal
guidance law and the corresponding optimal descent trajectory are obtained. We
then move on to consider an optimal trajectory tracking problem, where a desired
trajectory is tracked such that the fuel consumption and the minimum time are
minimized. This optimal tracking problem is solved using the same approach to the
first optimal control problem. Numerical simulations demonstrate that the approach
proposed is highly efficient.
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1 Introduction

Exploration of the moon, the nearest celestial body to the earth, is becoming more and
more attractive for space scientists in recent years. Satellites and probes have been sent
out to the moon for investigations. Generally speaking, there are three kinds of flight
motions, i.e., flying over, circling or landing on the moon. Those missions aiming to land
the lunar module safely on the surface of the moon are the most important ones.

The soft landing of the lunar module starts from the parking orbit of the moon,
after Hohmann transfer the module enters into an elliptical orbit with the aposelene and
perilune, which are, respectively, 110km and 15km away from the moon surface. When
the module reaches the perilune, the powered descent soft landing begins. Normally, the
lunar soft landing process from the perilune to the moon surface can mainly be divided
into three phases. The first part is the powered deceleration phase, from 15km to 2km
above the lunar surface, the module velocity is reduced to 0m/s by the propellant of
the main thruster. The second part, from 2km to 100m above the lunar surface, is the
attitude adjustment phase, and the module attitude is adjusted so that it is vertical to
the moon surface. The last part is the vertical descent phase, a set of small thrusters
is employed to cancel the moon gravity to ensure the module soft landing on the lunar
surface vertically. In view of the fact that the surrounding circumstance of the moon
is vacuum, lunar soft landing can not be performed in the same way as landing on the
earth or mars. This is because the module can not depend on the lunar atmosphere for
deceleration. One way of realizing soft landing is to use the reverse force thruster which
will, however, consume much of the fuel that the lunar module is carrying. Clearly, if
the fuel consumption can be reduced, then more payloads can be equipped. Thus, the
optimal control strategy that guarantees the soft landing with least fuel consumption is
highly in demand. Consequently, there are now many papers devoted to this area in the
literature [1–6]. Meditch [7] discussed the problem of vertical lunar soft landing, where
the thruster is operated at its maximum force. In this way, the mission is equivalent to
a time optimal control problem and hence can be solved by existing theory. Wang [8]
proposed a control scheme for achieving lunar soft landing, where the optimal control
theory is used in combination with nonlinear neuro-control. Xi [9] presented an optimal
control law obtained by utilizing Pontryagin Maximum Principle for the soft landing of
a lunar module. Here, it is assumed that some of the control variables are not bounded.
Liu [10] designed an optimal control strategy for the soft landing of a lunar module
with a pre-specified terminal time by using the control parameterization technique and
a time scaling transform. [1–3] and [7] studied the vertical descent phase of the lunar
landing. In [4–6] and [8–10], the soft landing from the perilune to the moon surface is
taken as a continuously powered descent process. However, none of these papers take into
consideration the terminal angle constraint between the longitudinal axis of the module
and the moon surface. In fact, among these research articles, the terminal angle of the
module between its longitudinal axis and the plumb line is about fifty degree, which
means that the module can not maintain a vertical attitude when it touches down on the
ground. Furthermore, the dynamical system considered in most of these articles is in the
two-dimensional polar coordinate system. The descent trajectory of the lunar module
is assumed to remain in a vertical plane without consideration of the lateral movement.
Neither the influence of the moon rotation is taken into account. However the lunar
module, in practice, does not descend along such a vertical plane. To be realistic, the
motion of the lunar module, which takes into consideration moon rotation, should be



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 10 (2) (2010) 189–201 191

described in a three-dimensional coordinate system [11].
The problem of the soft landing of a lunar module at the minimum time with the

least fuel consumption can be formulated as an optimal control problem with constraints
on the control and the terminal states. However, it is much too complex to be solved
by using Pontryagin Maximum Principle. In this paper, we calculate the optimal de-
scent trajectory of the lunar module by using the control parameterization technique in
conjunction with a time scaling transform [12]. The lunar soft landing is treated as a
continuously powered descent process with a constraint on the angle of the module be-
tween its longitudinal axis and the moon surface. During the entire process of the lunar
landing, only the main reverse force thruster is needed for deceleration. Therefore, the
design complexity of the guidance control law is reduced substantially. By applying the
control parameterization technique and the time scaling transform, the optimal control
problem is approximated by a sequence of optimal parameter selection problems. Each
of which is basically a mathematical programming problem and hence can be solved by
existing gradient-based optimization methods [13–15]. A general purpose optimal control
software package, called MISER 3.3 [15], was developed based on these methods. We
make use of this optimal control software package to solve our problem in this paper. The
optimal trajectory tracking problem, where a desired trajectory is to be tracked with the
least fuel consumption in the minimum time, is also considered and the same approach to
the first optimal control problem is utilized to solve such an optimal trajectory tracking
problem.

2 Problem Formulation

For continuously powered descent soft landing, the reverse force thruster begins to work,
starting from the perilune to decelerate the initial velocity of the module. With the
cooperation of the attitude control thrusters, the module is guided to reach the landing
target vertically with a small and safe final velocity. In this paper, we study the optimal
guidance scheme for ensuring the soft landing of the lunar module from the perilune to
the moon surface.
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Figure 2.1: Coordinate systems.

As the influences of other celestial bodies on the lunar module are small, compared
with the moon gravity, the lunar module soft landing can be treated in a two-body system
[16]. The motion of the lunar module soft landing is described in a three-dimensional
coordinate system (Figure 2.1). Suppose oxyz and oxLyLzL are, respectively, the Lunar
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Central Inertial Coordinate and Lunar Fixed Coordinate with the moon equator as the
reference plane. Ax1y1z1 is the orbit coordinate, A is the position of the lunar module.
The three coordinates form a right handed system. α and β represent, respectively,
the rotation angles between oxyz and Ax1y1z1. The direction of the thrust force P
in the coordinate Ax1y1z1 can be described in terms of ϑ and ψ. γ is the rotation
angle between oxyz and oxLyLzL. Without lose of generality, we assume that oxyz
and oxLyLzL coincide with each other at the beginning of the soft landing. Based on
Newton’s second law, system dynamic equations can be derived to give [11]
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ẋL = VxL,
ẏL = VyL,
żL = VzL,

V̇xL = BQVr/m+ gxL − 2ωLVzL,

V̇yL = CQVr/m+ gyL,

V̇zL = DQVr/m+ gzL + 2ωLVxL,
ṁ = −Q,

(2.1)

where

B = (cosα cosβ cos γ − sinα sin γ) sinϑ cosψ

−(sinα cosβ cos γ + cosα sin γ) sinϑ sinψ + sinβ cos γ cosϑ,

C = − cosα sinβ sinϑ cosψ + cosβ cosϑ+ sinα sinβ sinϑ sinψ,

D = (cosα cosβ sin γ + sinα cos γ) sinϑ cosψ

−(sinα cosβ sin γ − cosα cos γ) sinϑ sinψ + sinβ sin γ cosϑ.

while xL, yL, zL and VxL, VyL, VzL are the positions and velocities in the Lunar Fixed
Coordinate. m is the mass of the lunar module, Q and Vr represent, respectively, the
fuel consumption rate and the specific impulse of the thruster, gxL, gyL, and gzL denote
the components of lunar gravity in oxLyLzL, and ωL is the angular velocity of the moon
rotation.

Introduce two new state equations

ϑ̇ = v, (2.2)

ψ̇ = w (2.3)

and let

x = [xL, yL, zL, VxL, VyL, VzL, ϑ, ψ,m]T

= [x1, x2, x3, x4, x5, x6, x7, x8, x9]
T ,

u = [Q, v, w]T = [u1, u2, u3]
T .

The original system dynamics (2.1) can be rewritten in the form of an affine nonlinear
system given below.

ẋ(t) = f(x(t)) +B(x(t))u(t), (2.4)

where
f(x) = [x4, x5, x6, gxL − 2ωLx6, gyL, gzL + 2ωLx4, 0, 0, 0]

T , (2.5)
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B(x) =





0 0 0 M1 M2 M3 0 0 −1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0





T

(2.6)

while

M1 = [(cosα cosβ cos γ − sinα sin γ) sinx7 cosx8

−(sinα cosβ cos γ + cosα sin γ) sinx7 sinx8 + sinβ cos γ cosx7]Vr/x9,

M2 = [− cosα sinβ sinx7 cosx8 + cosβ cosx7 + sinα sinβ sinx7 sinx8]Vr/x9,

and

M3 = [(cosα cosβ sin γ + sinα cos γ) sinx7 cosx8

−(sinα cosβ sin γ − cosα cos γ) sinx7 sinx8 + sinβ sin γ cosx7]Vr/x9.

The boundedness constraints on the control vector u = [u1, u2, u3]
T are specified below:

α ≤ u(t) ≤ β, ∀ t ≥ 0, (2.7)

where α = [α1, α2, α3]
T and β = [β1, β2, β3]

T , while αi, i = 1, 2, 3, and βi, i = 1, 2, 3,
are given constants. Let U be the set of all such controls. Elements from U are called
admissible controls and U is referred to as the class of admissible controls.

The initial conditions of the soft landing are determined by the state of the lunar
module in the perilune at the initial time t0 = 0. The terminal constraints are specified
by the requirement of the soft landing, i.e., when the lunar module reaches the target at
the terminal time tf which is free, its velocity should be close to zero and its longitudinal
axis should be close to vertical to the moon surface. So the initial conditions and terminal
state constraints can be expressed as:

x(t0) = [xL0, yL0, zL0, VxL0, VyL0, VzL0, ϑ0, ψ0,m0]
T (2.8)

and

Φ =

















xL(tf )− xLr

yL(tf )− yLr

zL(tf )− zLr

VxL(tf )− 0
VyL(tf )− 0
VzL(tf )− 0

















= 0, (2.9)

ϑtf ≤ x7(tf ) ≤ 0, (2.10)

where (xLr, yLr, zLr) represents the position of the landing target in the Lunar Fixed
Coordinate, ϑtf is the terminal separation angle of the module between its longitudinal
axis and the direction of the plumb line. Our aim is to design an optimal control strategy
to achieve the task of soft landing of the lunar module such that conditions (2.9) and
(2.10) are satisfied and the fuel consumption and the flying time are minimized. The
task of minimizing the fuel consumption and the flying time is formulated as the task of
minimizing the following cost function

J = m0 − x9(tf ) + tf . (2.11)

We may now formally state our optimal control problem as follows.
Problem (P): Given system (2.4), find a control u ∈ U such that the cost function (2.11)
is minimized subject to the control constraint (2.7), the initial condition (2.8) and the
terminal state constraints (2.9) and (2.10).
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3 Parameterization of the Control

To solve Problem (P), we shall utilize the control parameterization technique to approx-
imate the control vector u with piecewise constant functions over the time interval [0, tf ]
as:

up1(t) =

np
∑

k=1

σk
1χ[τk−1,τk)(t), (3.1)

up2(t) =

np
∑

k=1

σk
2χ[τk−1,τk)(t), (3.2)

up3(t) =

np
∑

k=1

σk
3χ[τk−1,τk)(t), (3.3)

where
τ0, τ1, . . . , τnp

, τk−1 < τk, k = 1, 2, . . . , np (3.4)

(with τ0 = 0 and τnp
= tf ) are partition points of the time interval [0, tf ], and χI(t)

denotes the indicator function of I defined by

χI(t) =

{

1, t ∈ I,
0, elsewhere.

(3.5)

Let τ = [τ1, . . . , τnp
]T and let Υp be the set which consists of all such τ . For each

j = 1, 2, 3, and k = 1, 2, . . . , np , σk
j is a constant control parameter, and τk , k =

1, . . . , np − 1, are the switching times. Let σj = [σ1
j , · · · , σ

np

j ]T , j = 1, 2, 3 , and let

σ = [(σ1)
T , (σ2)

T , (σ3)
T ]T . Define up = [up1, u

p
2, u

p
3]

T .
As up ∈ U , it is clear that

αj ≤ σk
j ≤ βj (3.6)

for j = 1, 2, 3, and k = 1, 2, . . . , np. Let Ξp denote the set containing all such σ.
Here, for the soft landing of a lunar module, the terminal time τnp

= tf is unknown and
regarded as a decision variable.

We shall map all these variable time points τk, k = 1, . . . , np, into fixed time points
ςk, k = 1, . . . , np, in a new time horizon [0, 1], such that

0 = ς0 < ς1 < · · · < ςnp−1 < ςnp
= 1. (3.7)

For this, we introduce a new state equation defined on [0, 1]

dt(s)

ds
= µp(s), (3.8)

where t(0) = 0, t(1) = tf ,

µp(s) =

np
∑

k=1

δkχ[ςk−1,ςk)(s). (3.9)

Here,
δk ≥ 0, k = 1, . . . , np, (3.10)

are decision variables. µp(s) is called the time scaling control. It is a nonnegative
piecewise constant function with possible discontinuities at the pre-fixed knots ςk, k =
1, . . . , np − 1. Let δ = [δ1, · · · , δnp

]T .
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By applying the time scaling transform (3.8), system equations (2.4) and (3.8) are
transformed into

dx̃(s)

ds
=

[

µp(s)[f (t(s), x̂(s)) +B(t(s), x̂(s))ûp(s)]
µp(s)

]

, (3.11)

where x̃ = [x̃1, · · · , x̃9, x̃10]
T = [(x̂)T , t]T , x̂(s) = x(t(s)), and ûp(s) = u(t(s)) given by

ûp(s) =

np
∑

k=1

σkχ[ςk−1,ςk)(s). (3.12)

The initial condition is

x̃(0) = [xL0, yL0, zL0, VxL0
, VyL0

, VzL0, ϑ0, ψ0,m0, 0]
T . (3.13)

The cost function (2.11) and the terminal constraints (2.9) and (2.10) become

J̃ = m0 − x̃9(1) + x̃10(1) (3.14)

and

Φ̃ =





















x̃1(1)− xLr

x̃2(1)− yLr

x̃3(1)− zLr

x̃4(1)− 0
x̃5(1)− 0
x̃6(1)− 0

x̃10(1)− tf





















= 0, (3.15)

ϑtf ≤ x̃7(1) ≤ 0, (3.16)

respectively. They can be written in canonical form as:

g̃0(σ, δ) = Φ̃0(x̃(1|σ, δ), σ, δ) +

∫ 1

0

˜̀
0(s, x̃(s|σ, δ), σ, δ)ds (3.17)

and

g̃i(σ, δ) = Φ̃i(x̃(1|σ, δ), σ, δ) +

∫ 1

0

˜̀
i(s, x̃(s|σ, δ), σ, δ)ds = 0, i = 1, ..., 7, (3.18)

g̃i(σ, δ) = Φ̃i(x̃(1|σ, δ), σ, δ) +

∫ 1

0

˜̀
i(s, x̃(s|σ, δ), σ, δ)ds ≤ 0, i = 8, 9, (3.19)

where ˜̀
i = 0, for i = 0, 1, ..., 9,, while Φ̃i, i = 0, 1, ..., 9, are defined by (3.14), (3.15) and

(3.16), respectively.
The original optimal control problem is now approximated by a sequence of optimal

parameter selection problems depending on p, the number of the partition points of the
time horizon [0, tf ], given below.

Problem (P̃(p)): Given system (3.11) with the initial condition (3.13) on the time
interval s ∈ [0 , 1], find a control parameter vector σ ∈ Ξp and a switching time vector
δ ∈ Υp, such that the cost function (3.14) is minimized subject to the terminal constraints
(3.15) and (3.16).
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For each p, Problem (P̃(p)) can be solved as a nonlinear optimization problem where
the cost function (3.14) is minimized subject to the terminal constraints (3.15) and (3.16)
and the constraints on the decision vectors σ and δ given by (3.6) and (3.10), where the
dynamical system (3.11) is used to generate the values of the cost function (3.14) and the
constraint functions (3.15) and (3.16). Existing gradient-based optimization methods can
be used to solve Problem (P̃(p)). For this, we need the gradient formulas of the objective
function and the constraint functions. For the constraints (3.6) and (3.10), their gradient
formulas are straightforward to calculate. The gradient formulas of the objective function
(3.14) and the constraint functions (3.15) and (3.16) are given bellow.

Theorem 3.1 [12] For each i = 0, 1, . . . , 9, the gradient of the function g̃i with respect

to σ and δ are given by

∂g̃i(σ, δ)

∂σ
=

∫ 1

0

∂H̃i(s, x̃(s),σ, δ, λ̃
i
(s|σ, δ))

∂σ
ds (3.20)

and

∂g̃i(σ, δ)

∂δ
=

∫ 1

0

∂H̃i(s, x̃(s),σ, δ, λ̃
i
(s|σ, δ))

∂δ
ds, (3.21)

where

H̃i(s, x̃,σ, δ, λ̃
i
) = ˜̀

i(s, x̃,σ, δ) + (λ̃
i
)T f̃(s, x̃,σ, δ) (3.22)

and, for each i = 0, 1, . . . , 9, λ̃
i
(s|σ, δ) is the solution of the following co-state system

corresponding to (σ, δ):

d(λ̃(s))
T

ds
= −

∂H̃i(s, x̃(s|σ, δ),σ, δ, λ̃(s))

∂x̃
, s ∈ [0, 1) (3.23)

with

(λ̃(1))T =
∂Φ̃i(x̃(1|σ, δ))

∂x̃
. (3.24)

Proof The proof of Theorem 3.1 is similar to that given for Theorem 5.2.1 of [12].
For each p, Problem (P̃(p)) is an optimal parameter selection problem, which can be

viewed as a nonlinear optimization problem. The gradient formulas of the cost function
(3.17) and the constraint functions (3.18) and (3.19) are given in Theorem 3.1, while the
constraints (3.6) are just the bounds for these control parameter vectors.

Thus, any existing gradient-based optimization method, such as sequential quadratic
programming algorithm [17], can be used to solve Problem (P̃(p)). The optimal control
software MISER 3.3 was implemented based on these ideas. It is used in this paper to
solve our optimal control problem. Intuitively, the larger the p, the closer Problem (P̃(p))
is to Problem (P). This intuition is true. We shall briefly discuss the convergence issue
as follows. Let (σp,∗, δp,∗) be the optimal parameter vector of Problem (P̃(p)), and let
ũp,∗ be the corresponding piecewise constant control given by

ũp,∗(s) =

np
∑

k=1

σp,∗χ[ k−1

np
, k
np

)(s), (3.25)

where
ũp,∗ = [ũp,∗1 , ũp,∗2 , ũp,∗3 ]T , (3.26)
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σp,∗ = [(σp,∗
1 )T , (σp,∗

2 )T , (σp,∗
3 )T ]T , (3.27)

δp,∗ = [δp,∗1 , . . . , δp,∗np
]T . (3.28)

In the original time horizon [0, tf ], we have

up,∗(t) =

np
∑

k=1

σp,∗χ[τp,∗

k−1
,τ

p,∗

k
)(t), (3.29)

where

τp,∗i =

i
∑

k=1

δp,∗k , i = 1, . . . , np. (3.30)

Furthermore, let u∗ be the optimal control of Problem (P). Then, by virtue of the
discussion presented in Section 5 on Convergence Analysis of [18], it holds that

(i) g0(u
p,∗) → g0(u

∗) ;

(ii) if up,∗ → ũ almost everywhere in [0, tf ], then ũ is an optimal control of Problem (P).

From our extensive simulation study experience, we observe that p does not need
to be chosen to be too large. In fact, the difference in the cost values between p = 20
and those with larger p is, in general, very insignificant. Thus, p = 20 is chosen in our
numerical simulation.

4 Optimal Trajectory Tracking

We now move on to consider a situation for which the spacecraft is required to track a
desired trajectory, such that the fuel consumption and the terminal time are minimized.
To realize such an optimal tracking control problem, we only need to modify the cost
function J of Problem (P) as:

J = m0 − x9(tf ) + tf +

∫ tf

0

[(x1(t)− x̄r(t))
2
+ (x2(t)− ȳr(t))

2
+ (x3(t)− z̄r(t))

2
]dt,

(4.1)
where (x̄r , ȳr, z̄r) denotes the desired reference trajectory. Let this optimal trajec-
tory control problem be referred to as Problem (Q). Using the control parameterization
technique and the time scaling transform as described in Section 3, Problem (Q) is trans-
formed into Problem (Q̃(p)) , where the transformed cost function

J̃ = m0 − x̃9(1) + x̃10(1) +

∫ 1

0

[(x̃1(s)− x̂r(s))
2
+ (x̃2(s)− ŷr(s))

2
+ (x̃3(s)− ẑr(s))

2
]ds

(4.2)
is to be minimized over (Ξp × Υp) subject to the system dynamic (3.11) with initial
condition (3.13) and the terminal state constraints (3.15) and (3.16), where x̂r(s) =
x̄r(t(s)), ŷr(s) = ȳr(t(s)), ẑr(s) = z̄r(t(s)).

The gradient formulas of the cost function (4.2) and constraint functions (3.15) and
(3.16) can be derived in the same way as those of Problem (P̃(p)) given in Theorem
3.1. The optimal control parameter selection problem (Q̃(p)) is thus solved utilizing the
optimal control software MISER 3.3.
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5 Numerical Simulations

The initial conditions of the lunar module are given as: xL0 = 8.19371 × 105m, yL0 =
1.428867× 106m, zL0 = 5.996306× 105m, VxL0 = 1115m/s, VyL0 = −981.82m/s, VzL0 =
816m/s, m0 = 600kg. At the initial time of the soft landing, the rotation angle γ(t0) =
0◦. Specific impulse Vr = 300 × 9.8m/s and angular velocity of the moon rotation
ωL = 2.661699× 10−6rad/s.

We first consider the task of achieving the soft landing of the lunar module. The
landing target is in Mare Imbrium on the moon surface, which is located at 38.628◦

North latitude and 36.806◦ West longitude. Control variables are chosen subject to the
bounds: 0 kg/s ≤ σk

1 ≤ 0.51 kg/s,
∣

∣σk
2

∣

∣ ≤ 1 ◦/s,
∣

∣σk
3

∣

∣ ≤ 1 ◦/s, k = 1, 2, . . . , np.
Terminal separation angle of the module between its longitudinal axis and the plumb line
is ϑtf = 5◦. The scaled time interval is s ∈ [0, 1] partitioned into 20 equal subintervals.
Terminal time of the soft landing is free to vary. The corresponding optimal parameter
selection problem is then solved by using the software MISER 3.3. Terminal conditions
of the lunar module obtained are listed below.

xL(tf ) = 1.0871218× 106m, yL(tf ) = 1.0849749× 106m, zL(tf ) = 8.134568× 105,

VxL(tf ) = 1× 10−4m/s, VyL(tf ) = 0m/s, VzL(tf ) = 2× 10−4m/s.

Figure 5.1 shows the time history in the original time horizon [0, tf ] of the lunar
module velocity. We see that it converges smoothly to zero as the module lands on the
moon. Figures 5.2, 5.4 and 5.6 are optimal control outputs during the period of soft
landing, also in the original time horizon [0, tf ]. Here, we see that the reverse force
thruster works at its maximum thrust force all the time, while the two angular velocity
controllers are operating within their bounds. Under the optimal control law, the lunar
module is guided to the target precisely, and the optimal descent trajectory is shown
in Figure 5.3. Terminal mass of the module is 319.2728kg. Figure 5.5 depicts the time
scaling control. Lunar module lands on the moon surface vertically after 550.4455s, with
the terminal separation angle between the module longitudinal axis and the plumb line
ϑ(tf ) = −4.998◦.

Our next task is to investigate the mission of the optimal trajectory tracking. Suppose
the desired trajectory is the one obtained from the solution of Problem (P). Suppose
that the initial position of the lunar module is given as xL0 = 8.18348 × 105m, yL0 =
1.428821× 106m, zL0 = 6.01136× 105m, which are different from those for Problem (P).
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Figure 5.3: Optimal descent trajectory.
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Figure 5.5: Time scaling control µp,∗.
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Let this optimal tracking problem be referred to as Problem (Q). It is solved by using the
approach detailed in Section 4, where the optimal control software MISER 3.3 is utilized.
The optimal control obtained for Problem (P) is used as the initial guess for the search
of the optimal control of Problem (Q). Let the optimal control of Problem (Q) obtained
be denoted as υ∗. Then, under this control, the Lunar module is guided to the target
at the terminal time tf = 572.8s. The terminal velocity is 6.2e-4m/s, while the terminal
mass is 315.43kg. From Figure 5.7, we see that the optimal trajectory tracks the desired
trajectory satisfactorily.

6 Conclusions

This paper studied the soft landing of the lunar module, where its system dynamics is
described in a three-dimensional coordinate system. The constraints on the control and
the terminal state are also taken into consideration. By using the control parameteriza-
tion technique and the time scaling transform, the optimal control problem is solved as
an optimal parameter selection problem by the optimal control software package MISER
3.3, yielding an optimal control law. This optimal control law steers the lunar module
to achieve the pre-specified landing target precisely such that the fuel consumption and
the terminal time are minimized. The module touches down on the moon vertically with
reference to lunar surface. The task of optimal trajectory tracking was also formulated
and solved. The proposed approach is highly effective.
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