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Abstract: In this paper we consider a nonlocal initial boundary value problem for

a parabolic integro-differential equation. We reformulate this problem as an abstract

functional differential equation in a Banach space with a nonlocal history condition.

We establish the existence, uniqueness and continuation of mild, strong and classical

solutions of the abstract functional differential equation under different conditions.
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1 Introduction

Consider the following parabolic integro-differential equation in a bounded domain
Ω ⊂ R

n with sufficiently smooth boundary ∂Ω:

∂tw(t, x) +
∑

|α|≤2m aα(x)D
αw(t, x) = f1(t, x)

+
(∫

Ω f2(w(t, x))dx
) ∫ t

t−τ
k(t− s)f3(s, w(s, x))ds, 0 < t ≤ T, τ > 0, x ∈ Ω,

Dαw(t, x) = 0, t ≥ 0, x ∈ ∂Ω, |α| ≤ m− 1,

g(w0)(x) = φ(x), x ∈ Ω,
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where the sought-for real-valued function w is defined on [−τ, T ]×Ω, w0 is the restriction
of w on [−τ, 0] × Ω, for all multi-indices α, with |α| ≤ 2m, the functions aα(x) are
sufficiently smooth and are such that the corresponding partial differential operator is
strongly elliptic in Ω, fi, i = 1, 2, 3, are smooth real-valued functions defined on [0, T ]×Ω,
R, [−τ, T ] × R, respectively, for t ∈ [0, T ], k ∈ Lp(0, τ), 1 < p < ∞, g is a map from
C([−τ, 0];Lp(Ω)) into Lp(Ω) and φ ∈ Lp(Ω).

A few choices of the function g, for instance, are the following:

g(ψ)(x) =

∫ 0

−τ

k1(−s)ψ(s)(x)ds, x ∈ Ω, ψ ∈ C([−τ, 0];Lp(Ω)),

where k1 ∈ L1(0, τ) with
∫ τ

0 k1(s)ds 6= 0;

g(ψ)(x) =

r
∑

i=1

ciψ(ti)(x), x ∈ Ω, ψ ∈ C([−τ, 0];Lp(Ω)),

where −τ ≤ t1 < t2 < · · · < tr ≤ 0, C :=
∑r

i=1 ci 6= 0; and

g(ψ)(x) =

r
∑

i=1

ci

∫ ti

ti−εi

ψ(s)(x)ds, x ∈ Ω, ψ ∈ C([−τ, 0];Lp(Ω)),

where r and ci are as above and εi > 0, i = 1, 2, . . . , r.

Let X := Lp(Ω), 1 < p <∞. Let the linear operator A : D(A) ⊂ X → X be defined by

D(A) =W 2m,p(Ω) ∩Wm,p
0 (Ω), Au =

∑

|α|≤2m

aα(x)D
αu, u ∈ D(A).

Then −A is the infinitesimal generator of an analytic semigroup S(t), t ≥ 0, of bounded
linear operators in X (cf. Theorem 7.3.5 in [14]).

For t ≥ 0, let Ct := C([−τ, t];X) be the Banach space of all continuous functions from
[−τ, t] into X endowed with the supremum norm

‖ψ‖t := sup
−τ≤η≤t

‖ψ(η)‖X , u ∈ Ct,

where ‖.‖X is the norm in X . Define the nonlinear map F : [0, T ]×X × C0 → X by

F (t, u, ψ)(x) = f1(t, x)

+

(
∫

Ω

f2(u(x))dx

)
∫ 0

−τ

k(−θ)f3(t+ θ, ψ(θ))dθ, t ∈ [0, T ], u ∈ X, ψ ∈ C0.(1.2)

For u ∈ CT , let ut ∈ C0 be defined by ut(θ) = u(t + θ), θ ∈ [−τ, 0]. Then (1.1) can
be reformulated as the following functional differential equation with a nonlocal history
condition in the Banach space X = Lp(Ω):

u′(t) +Au(t) = F (t, u(t), ut), 0 < t ≤ T,
g(u0) = φ.

}

(1.3)

If we define Φ ∈ C0 given by Φ(θ) ≡ φ for all θ ∈ [−τ, 0] and H : C0 → C0 given
by H(χ)(θ) ≡ g(χ) for all θ ∈ [−τ, 0] and all χ ∈ C0, then the condition g(χ) = φ is
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equivalent to the condition H(χ) = Φ. Thus we may consider the following functional
differential equation with a more general nonlocal history condition:

u′(t) +Au(t) = F (t, u(t), ut), 0 < t ≤ T,
H(u0) = Φ,

}

(1.4)

which also includes the functional differential equation:

u′(t) +Au(t) = F (t, u(t), ut), 0 < t ≤ T,
u0 = Φ,

}

(1.5)

as a particular case.
The functional differential equation (1.5) has been extensively studied in literature.

We refer to Kartsatos [10, 11], Kartsatos and Liu [9], Kartsatos and Parrott [12, 13].
Amraoui and Rhali [3] have used integrated semigroups to study the existence and

uniqueness of integral solutions and other forms of solutions of the abstract Cauchy
problem u′(t) = Bu(t) + Lut, t > 0, where B is a nondensely defined linear operator in
a Banach space X and L is a bounded linear operator on X .

Recently, Bahuguna [4], Bahuguna, Dabas and Shukla [5], Bahuguna and Dabas [6],
Bahuguna and Muslim [7, 8], Agarwal and Bahuguna [1, 2] have linear as well as nonlinear
nonlocal history-valued evolution equations using the theory of semigroups and the theory
of accretive operators.

Let ψ ∈ C0 such that H(ψ) = Φ. The function u ∈ CT̃ , 0 < T̃ ≤ T , such that

u(t) =

{

ψ(t), t ∈ [−τ, 0],

S(t)ψ(0) +
∫ t

0
S(t− s)F (s, u(s), us)ds, t ∈ [0, T̃ ],

(1.6)

is called a mild solution of (1.4) on [−τ, T̃ ]. If a mild solution u of (1.4) on [−τ, T̃ ] is
such that u(t) ∈ D(A) for a.e. t ∈ [0, T̃ ], u is differentiable a.e. on [0, T̃ ] and

u′(t) +Au(t) = F (t, u(t), ut), a.e. on [0, T̃ ],

it is called a strong solution of (1.4) on [−τ, T̃ ]. If a mild solution u of (1.4) on [−τ, T̃ ] is
such that u ∈ C1((0, T̃ ];X), u(t) ∈ D(A) for t ∈ (0, T̃ ] and satisfies

u′(t) +Au(t) = F (t, u(t), ut), t ∈ (0, T̃ ],

then it is called a classical solution of (1.4) on [−τ, T̃ ].
We first establish the existence of a mild solution u ∈ CT̃ of (1.4) for some 0 < T̃ ≤ T

and its continuation to either on the whole of [−τ, T ] or show that there exists the
maximal interval [−τ, tmax), 0 < tmax ≤ T such that u is a mild solution of (1.4) on
every subinterval [−τ, T̃ ], 0 < T̃ < tmax, under the assumptions that there exists a
ψ ∈ C0 such that H(ψ) = Φ and −A is the infinitesimal generator of a C0-semigroup
S(t), t ≥ 0, of bounded linear operators in X . In the later case, since tmax ≤ T < ∞,
we obtain that

lim
t→tmax−

‖u(t)‖X = ∞.

Under the additional assumption of Lipschitz continuity on ψ on [−τ, 0], we show that the
mild solution u is a strong solution of (1.4) on the interval of existence and it is Lipschitz
continuous. Under further additional assumption that S(t) is analytic, we show that u
is a classical solution of (1.4) on the interval of existence. We also show that u is unique
if and only if ψ satisfying H(ψ) = Φ is unique.
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2 Local Existence of Mild Solutions

We first prove the following result establishing the local existence and uniqueness of a
mild solution of (1.4).

Theorem 2.1 Suppose that −A is the infinitesimal generator of a C0-semigroup
S(t), t ≥ 0 of bounded linear operators in X. Let H : C0 → C0 be such that there
exists a function ψ ∈ C0 such that H(ψ) = Φ. Let F : [0, T ] × X × C0 → X satisfy a
Lipschitz-like condition

‖F (t1, u1, φ1)− F (t2, u2, φ2)‖X ≤ LF (r)[|t1 − t2|+ ‖u1 − u2‖X + ‖φ1 − φ2‖C0
],

for all ti ∈ [0, T ], ui ∈ Br(X,ψ(0)), φi ∈ Br(C0, ψ) i = 1, 2, where LF : R+ → R
+ is a

nondecreasing function. Then there exists a mild solution u of (1.4) on [−τ, T0] for some
0 < T0 ≤ T . Here Br(Z, z0) := {z ∈ Z : ‖z − z0‖Z ≤ r} for any Banach space (Z, ‖.‖Z),
z0 ∈ Z and r > 0. Moreover, the mild solution u is unique if and only if ψ is unique.

Proof Let R > 0 be fixed. LetM ≥ 1 and ω ≥ 0 be such that ‖S(t)‖B(X) ≤Meωt for
t ≥ 0. Here B(X) is the space of all bounded linear operators on X . Choose 0 < T0 ≤ T
be such that

T0LF (R) ≤ 3/8,

sup
0≤t≤T0

‖(S(t)− I)ψ(0)‖X ≤ R/2,

T0M0 ≤ R/2,

where
M0 := T + 2‖ψ‖0 + 2MRLF (R)e

ωT + ‖F (0, ψ(0), ψ)‖X .

Define a map F : CT0
→ CT0

by

Fw(t) =

{

ψ(t), t ∈ [−τ, 0],

S(t)ψ(0) +
∫ t

0
S(t− s)F (s, w(s), ws)ds, t ∈ [0, T0],

w ∈ CT0
. (2.7)

Let ψ̃ ∈ CT be defined by

{

ψ̃(t) = ψ(t), t ∈ [−τ, 0],
ψ(0), t ∈ [0, T ].

Then from the choice of T0 it follows that F maps BR(CT0
, ψ̃) into itself. Here and

subsequently, any function in CT is also in CT̃ , 0 ≤ T̃ ≤ T , as its restriction on the

subinterval. Also, for wi ∈ BR(CT0
, ψ̃), i = 1, 2, we have

‖Fw1(t)−Fw2(t)‖X ≤ 2T0LF (R)‖w1 − w2‖T0
.

Since T0LF (R) ≤ 3/8, F is a strict contraction on BR(CT0
, ψ̃) and hence has a unique

fixed point u ∈ BR(CT0
, ψ̃). Clearly u is a mild solution of (1.4) on [−τ, T0]. It can be

shown that if ψ ∈ C0 satisfying H(ψ) = Φ is unique then the mild solution u ∈ CT0
is

unique. If there are two different ψ1 and ψ2 in C0 satisfying H(ψ1) = H(ψ2) = Φ, then
the corresponding mild solutions differ on [−τ, 0]. This completes the proof of Theorem
2.1. 2
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3 Continuation of Solutions

Theorem 3.1 Assume the hypotheses of Theorem 2.1. Then the local mild solution u of
(1.4) on [−τ, T0], 0 < T0 ≤ T , can be continued either on the whole interval [−τ, T ] or on
the maximal interval [−τ, tmax) of existence and since in the later case tmax ≤ T < ∞,
we have

lim
t→tmax−

‖u(t)‖X = ∞.

Proof Assume that T0 < T . Consider the functional differential equation

v′(t) +Av(t) = G(t, v(t), vt), 0 < t ≤ T − T0,

H̃(v0) = Φ̃,

}

(3.8)

where G : [0, T − T0]×X ×C([−τ, 0];X) → X is defined by G(t, u, χ) = F (t+ T0, u, χ),
H̃ : C0 → C0 given by H̃χ = χ for χ ∈ C0 and Φ̃(θ) = u(T0 + θ) for θ ∈ [−τ, 0]. Since all
the hypotheses of Theorem 2.1 are satisfied for problem (3.8), we have the existence of a
mild solution w ∈ CT1

, 0 < T1 ≤ T − T0 of (3.8). This mild solution w is unique as H̃ in
(3.8) is the identity map on C0. We define

ū(t) =

{

u(t), t ∈ [−τ, T0],
w(t − T0), t ∈ [T0, T0 + T1].

(3.9)

Then ū is a mild solution of (1.4) on [−τ, T0 +T1]. Continuing this way, we get the exis-
tence of a mild solution u either on the whole interval [−τ, T ] or on the maximal interval
[−τ, tmax) of existence. In the later case we may use the arguments similar to those in the
proof of Theorem 6.2.2 in [14] (pp. 193–194) to conclude that limt→tmax− ‖u(t)‖X = ∞.
This completes the proof of Theorem 3.1. 2

4 Regularity of Solutions

Theorem 4.1 Assume the hypotheses of Theorem 2.1. If, in addition, ψ is Lipschitz
continuous on [−τ, 0] and ψ(0) ∈ D(A), then u is Lipschitz continuous on every compact
subinterval of existence. If, in addition, X is reflexive, then u is a strong solution of
(1.4) on the interval of existence and this strong solution is a classical solution of (1.4)
provided S(t) is an analytic semigroup.

Proof We shall prove the result for the first case when the mild solution u exists on
the whole interval. The proof can be modified easily for the second case.

We need to show the Lipschitz continuity of u only on [0, T ]. In what follows, Ci’s
are positive constants depending only on R, T and ‖φ‖0. Let t ∈ [0, T ] and h ≥ 0. Then

‖u(t+ h)− u(t)‖X ≤ ‖(S(h)− I)S(t)ψ(0)‖X

+

∫ 0

−h

‖S(t− s)f(s+ h, u(s+ h), us+h)‖Xds

+

∫ t

0

‖s(t− s)[f(s+ h, u(s+ h), us+h)− f(s, u(s), us)]‖X ds

≤ C1

[

h+

∫ t

0

[‖u(s+ h)− u(s)‖X + ‖us+h − us‖C0
]ds

]

≤ 2C1

[

h+

∫ t

0

sup
−τ≤θ≤0

‖u(s+ h+ θ)− u(s+ θ)‖X

]

ds, (4.10)
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For the case when −τ ≤ t < 0 and 0 ≤ t+ h (clearly, t+ h ≤ h in this case), we have

‖u(t+ h)− u(t)‖X ≤ ‖(S(t+ h)− I)ψ(0)‖X + ‖ψ(t)− ψ(0)‖X

+

∫ h

0

‖S(t+ h− s)f(s, u(s), us)‖X ds

≤ C2h. (4.11)

Combining inequalities (4.10) and (4.11), we have for −τ ≤ t̄ ≤ t,

‖u(t̄+ h)− u(t̄)‖X ≤ C3

[

h+

∫ t

0

sup
−τ≤θ≤0

‖u(s+ h+ θ)− u(s+ θ)‖Xds

]

. (4.12)

Putting t̄ = t+ θ̄, −t− τ ≤ θ̄ ≤ 0, in (4.12), and taking supremum over θ̄ on [−τ, 0], we
get

sup
−τ≤θ≤0

‖u(t+ h+ θ)− u(t+ θ)‖X

≤ 2C3

[

h+

∫ t

0

sup
−τ≤θ≤0

‖u(s+ h+ θ)− u(s+ θ)‖Xds

]

. (4.13)

Applying Gronwall’s inequality in (4.13), we obtain

‖u(t+ h)− u(t)‖X ≤ sup
−τ≤θ≤0

‖u(t+ h+ θ)− u(t+ θ)‖X ≤ C4h.

Thus, u is Lipschitz continuous on [−τ, T ].
The function F̄ : [0, T ] → X given by F̄ (t) = F (t, u(t), ut), is Lipschitz continuous

and therefore differentiable a.e. on [0, T ] and F̄ ′ is in L1((0, T );X). Consider the Cauchy
problem

{

v′(t) +Av(t) = F̄ (t), t ∈ (0, T ],
v(0) = u(0),

(4.14)

By Corollary 2.10 on page 109 in Pazy [14], there exists a unique strong solution v of
(4.14) on [0, T ]. Clearly, v̄ defined by

v̄(t) =

{

u(t), t ∈ [−τ, 0],
v(t), t ∈ [0, T ],

is a strong solution of (1.4) on [−τ, T ]. But this strong solution is also a mild solution
of (1.4) and v̄ ∈ W(ψ, T ) := {Ψ ∈ CT : Ψ = ψ on [−τ, 0]}. By the uniqueness of such a
function in W(ψ, T ), we get v̄(t) = u(t) on [−τ, T ]. Thus u is a strong solution of (1.4).
If S(t) is analytic semigroup in X then we may use Corollary 3.3 on page 113 in Pazy
[14] to obtain that u is a classical solution of (1.4). Clearly, if ψ ∈ CT satisfying h(ψ) = Φ
on [−τ, 0] is unique on [−τ, 0], then u is unique. If there are two ψ and ψ̃ in CT satisfying
h(ψ) = h(ψ̃) = Φ on [−τ, 0], with ψ 6= ψ̃ on [−τ, 0], then W(ψ, T ) ∩ W(ψ̃, T ) = ∅ and
hence the corresponding solutions u and ũ of (1.4) belonging to W(ψ, T ) and W(ψ̃, T ),
respectively, are different. This completes the proof of Theorem 4.1. 2
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