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Abstract: We study an integral equation of the form x(t) = a(t)−
∫

t

0
C(t, s)g(x(s))ds

where C is convex and g has the sign of x. In earlier work we treated the case of
sup

∫
t

s
C2(u, s)du =: Γ < ∞. Here, we study the case of Γ = ∞ by looking at a new

equation formed from x′ + kx with k a positive constant. This enables us to define
a Liapunov functional which will give a bound on

∫
t

0
g2(x(s))ds and a parallel bound

on one of the resolvents in the linear case. Equations of this type have been used
since the early work of Volterra in a number of real-world problems.
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1 Introduction

We are concerned here with an integral equation

x(t) = a(t)−

∫ t

0

C(t, s)g(x(s))ds, (1)

where a : [0,∞) → < is continuous, while C is continuous for 0 ≤ s ≤ t < ∞, and
g : < → < is continuous with xg(x) > 0 if x 6= 0. Continuity of a, C, g will ensure the
existence of a solution. If the solution remains bounded, then it can be continued on
[0,∞). See [5; pp. 178-180], for example.

It is always assumed that the kernel, C(t, s), is convex in the sense that

C(t, s) ≥ 0, Cs(t, s) ≥ 0, Cst(t, s) ≤ 0, Ct(t, s) ≤ 0. (2)

Convolution problems of this type are seen in Levin [10] and Londen [11], for example.
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