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Abstract: In this paper, we prove the existence of homoclinic orbits for the se-
cond order Hamiltonian system: q̈(t) + ∇V (t, q(t)) = f(t), where V ∈ C1(R ×
R

n,R), V (t, q) = −K(t, q) + W (t, q) is T -periodic in t, K satisfies the ”pinching”
condition b1|q|

2 ≤ K(t, q) ≤ b2|q|
2 and W is superquadratic at the infinity and needs

not satisfy the global Ambrosetti-Rabinowitz condition. A homoclinic orbit is ob-
tained as the limit of 2kT -periodic solutions of a certain sequence of second order
differential equations.
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1 Introduction

Let us consider the second order Hamiltonian system

q̈(t) +∇V (t, q(t)) = f(t), (HS)

where V (t, x) = −K(t, x) + W (t, x),∇V (t, x) = (∂V/∂x)(t, x), K, W : R × R
n → R

are C1-maps, T -periodic with respect to t, T > 0 and f : R −→ R
n is continuous and

bounded. We will say that a solution q of (HS) is homoclinic (to 0) if q(t) −→ 0 as
t −→ ±∞. In addition, if q 6≡ 0 then q is called a nontrivial homoclinic solution.

The problem of finding subharmonic and homoclinic solutions for Hamiltonian sys-
tems has been the object of many works under different assumptions on the growth
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of W at infinity, see [1,3-5,8,12,13] and references therein. Most of them treat the su-

perquadratic case. They usually suppose K(t, x) =
1

2
(L(t)x, x) with L(t) is a symmetric

matrix valued function and W satisfies the global Ambrosetti-Rabinowitz condition, that
is, there exists µ > 2 such that

0 < µW (t, x) ≤ (∇W (t, x), x), ∀ (t, x) ∈ R× R
n\{0}.

Especially, in [13], Rabinowitz established the existence of homoclinic orbits for the
Hamiltonian system (HS) under the above assumptions and f ≡ 0. Recently, the authors
in [7] consider a more general case whereK is assumed to satisfy the ”pinching” condition
b1|x|2 ≤ K(t, x) ≤ b2|x|2 and the function f may be nonzero.

In this paper, we shall study the existence of homoclinic orbits for (HS) when W
satisfies the following superquadratic condition:

W (t, x)/|x|2 −→ +∞ as | x |→ ∞ uniformly in t ∈ R, (1)

and needs not satisfy the global Ambrosetti-Rabinowitz condition.

The superquadratic condition (1) was used in many recent works to study the exis-
tence of periodic and subharmonic solutions for Hamiltonian systems (see for example
[6,12]). Subsequently, this condition was applied among other conditions in [9,11] to look
for homoclinic orbits. Our approach is different from the last ones, in fact, similarly
to [13], a homoclinic orbit will be obtained as a limit, as k −→ ∞, of sequence qk of
subharmonics for second order differential equations. The sequence qk is obtained via
a standard version of the Mountain Pass Theorem (Theorem 2.2 in [14]). Part of the
difficulty in applying this theorem is in verifying the Palais-Smale condition. However,
as it’s shown in [2], a deformation lemma can be proved with the (C) condition, replacing
the usual Palais-Smale condition, and it turns out that the Mountain Pass Theorem still
holds true.

We make the following assumptions :
(H1) there exist a1, a2 > 0 such that

a1|x|2 ≤ K(t, x) ≤ a2|x|2, ∀ (t, x) ∈ R× R
n,

(H2) K(t, x) ≤ (x,∇K(t, x)) ≤ 2K(t, x), ∀ (t, x) ∈ R× R
n,

(H3) W (t, 0) ≡ 0 and ∇W (t, x) = o(|x|) as x −→ 0 uniformly in t,
(H4) there exist constants d1 > 0 and r > 2 such that

W (t, x) ≤ d1|x|r , ∀ (t, x) ∈ R× R
n,

(H5) there exist constants d2 > 0, µ > 1, µ > r − 2 and β ∈ L1(R,R+) such that

(∇W (t, x), x) − 2W (t, x) ≥ d2|x|µ − β(t), ∀ (t, x) ∈ R× R
n.

Here (., .) denotes the standard inner product in R
n and | . | is the induced norm.

For each k ∈ N, let Ek = W 1,2
2kT (R,R

n), the Hilbert space of 2kT -periodic functions
on R with values in R

n under the norm

||q||Ek
=

(

∫ kT

−kT

(|q̇(t)|2 + |q(t)|2)dt
)

1

2

.
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Furthermore, let L∞
2kT (R,R

n) denote the space of 2kT -periodic essentially bounded (mea-
surable) functions from R into R

n equipped with the norm

||q||L∞

2kT
= ess sup{|q(t)|; t ∈ [−kT, kT ]}.

The following result was proved by Rabinowitz in [13].

Proposition 1.1 There is a positive constant C such that for each k ∈ N, and q ∈ Ek

the following inequality holds:

||q||L∞

2kT
≤ C||q||Ek

. (2)

Set b1 := min{1, 2a1}, b2 := max{1, 2a2} and suppose that

(H6) 2d1 < b1, f ∈ L2(R,Rn) ∩ Lγ(R,Rn) and ||f ||L2 <
b1 − 2d1

2C
, where

1

γ
+

1

µ
= 1.

Our main result is the following :

Theorem 1.1 Suppose (H1) − (H6) and (1) are satisfied then the system (HS)
possesses a nontrivial homoclinic solution q ∈ W 1,2(R,Rn) such that q̇(t) −→ 0 as
t −→ ±∞.

Remark 1.1 Consider the functions

K(t, x) = (1 +
1

1 + x2
)x2, W (t, x) = h(t)|x|2 ln(1 + |x|2),

where h is positive, continuous and T -periodic function. A straightforward computation
shows that W satisfies the assumptions (H3)− (H5) of Theorem 1.1 but does not satisfy
the global Ambrosetti–Rabinowitz condition essentially. Moreover, K(t, x) satisfies the
assumptions (H1) and (H2) but can not be written in the form 1/2(L(t)x, x). Hence,
Theorem 1.1 extends the results in [7,13] mainly. Furthermore, contrary to [7,13], the
conditions of our result permit to W to change sign near the origin. Theorem 1.1 is also
related to those in [9,11,15], where K(t, x) has the form 1/2(L(t)x, x) without periodicity
assumption on V and f ≡ 0.

2 Proof of Theorem 1.1

For each k ∈ N, let L2
2kT (R,R

n) denote the Hilbert space of 2kT -periodic functions on

R with values in R
n under the norm ||q||L2

2kT
= (

∫ kT

−kT |q(t)|2dt)1/2. Let fk : R −→ R
n

be the 2kT -periodic extension of the restriction of f to the interval [−kT, kT ] and ηk :
Ek −→ [0,+∞[ given by

ηk(q) =
(

∫ kT

−kT

[

|q̇(t)|2 + 2K(t, q(t))
]

dt
)1/2

.

By (H1) we get
b1||q||2Ek

≤ η2k(q) ≤ b2||q||2Ek
. (3)

Let Ik : Ek −→ R, be defined by

Ik(q) =

∫ kT

−kT

[1

2
|q̇(t)|2 − V (t, q(t))

]

dt+

∫ kT

−kT

(fk(t), q(t))dt

=
1

2
η2k(q)−

∫ kT

−kT

W (t, q(t))dt+

∫ kT

−kT

(fk(t), q(t))dt. (4)
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Then Ik ∈ C1(Ek,R) and it’s easy to show that

I ′k(q)v =

∫ kT

−kT

[

(q̇(t), v̇(t))− (∇V (t, q(t)), v(t))
]

dt+

∫ kT

−kT

(fk(t), v(t))dt.

By (H2), we get

I ′k(q)q ≤ η2k(q)−
∫ kT

−kT

(∇W (t, q(t)), q(t))dt +

∫ kT

−kT

(fk(t), q(t))dt. (5)

Moreover, it is well known that critical points of Ik are classical 2kT -periodic solutions
of the second order Hamiltonian system

q̈(t) +∇V (t, q(t)) = fk(t). (HSk)

Lemma 2.1 If V and f satisfy (H1)− (H6) and (1), then for all k ∈ N the system
(HSk) possesses a 2kT -periodic solution.

Proof It suffices to prove that the functional Ik satisfies all the assumptions of the
Mountain Pass Theorem (Theorem 2.2 in [14]) with the (C) condition replacing the usual
Palais-Smale condition. This will be done by a sequence of lemmas. 2

Lemma 2.2 Ik satisfies the (C) condition, i.e., for every constant c and sequence
{un} ⊂ Ek, {un} has a convergent subsequence if Ik(un) −→ c and (1+||un||)I ′k(un) −→ 0
as n −→ ∞.

Proof Assume that {un} ⊂ Ek is a (C) sequence of Ik, that is, Ik(un) is bounded
and (1 + ||un||)||I ′k(un)|| −→ 0 as n −→ ∞. Then there exists Mk > 0 such that

Mk ≥ 2Ik(un)− I ′k(un)un

≥
∫ kT

−kT

[

(∇W (t, un(t)), un(t)) − 2W (t, un(t))
]

dt+

∫ kT

−kT

(fk(t), un(t))dt.

So, by (H5), we get

Mk ≥ d2

∫ kT

−kT

|un(t)|µdt−
∫ kT

−kT

β(t)dt+

∫ kT

−kT

(fk(t), un(t))dt.

Then, by Hölder inequality

d2||un||µLµ
2kT

≤ Mk +

∫ kT

−kT

β(t)dt + ||fk||Lγ
2kT

||un||Lµ
2kT

,

where γ is the conjugate exponent of µ. Since µ > 1, there exists a constant Ck such
that

||un||Lµ
2kT

≤ Ck. (6)

On the other hand, by (3), (4) and (H4), one has

b1||un||2Ek
≤ 2Ik(un) + 2d1

∫ kT

−kT

|un(t)|rdt− 2

∫ kT

−kT

(fk(t), un(t))dt

≤ 2Ik(un) + 2d1

∫ kT

−kT

|un(t)|rdt+ 2Ck||fk||Lγ
2kT

. (7)
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If µ ≥ r, by Hölder inequality

∫ kT

−kT

|un(t)|rdt ≤ (2kT )
µ−r
µ

(

∫ kT

−kT

|un(t)|µdt
)

r
µ

.

Combining the above with (6) and (7), we obtain that ||un||Ek
is bounded.

If µ < r, by (2), we have

∫ kT

−kT

|un(t)|rdt =
∫ kT

−kT

|un(t)|r−µ|un(t)|µdt

≤ ||un||r−µ
L∞

2kT

∫ kT

−kT

|un(t)|µdt

≤ Cr−µ||un||r−µ
Ek

∫ kT

−kT

|un(t)|µdt. (8)

Hence, by (6) and (8) there exists a constant C′
k such that

b1||un||2Ek
≤ 2Ik(un) + C′

k||un||r−µ
Ek

+ 2 Ck||fk||Lγ
2kT

.

Since r − µ < 2 and Ik(un) is bounded, then ||un||Ek
will be bounded too.

In a similar way to Proposition B.35 in [14], we can prove that {un} has a convergent
subsequence. Hence Ik satisfies the (C) condition. 2

Lemma 2.3 The functional Ik satisfies the condition (I1) of the Mountain Pass
Theorem.

Proof Let q ∈ Ek, such that 0 < ||q||L∞

2kT
≤ 1. By (H4) we have

∫ kT

−kT

W (t, q(t))dt ≤ d1

∫ kT

−kT

|q(t)|2dt ≤ d1||q||2Ek
. (9)

Then, by (3), (4), (9) and (H6) it follows that

Ik(q) ≥
b1
2
||q||2Ek

− d1||q||2Ek
− ||fk||L2

2kT
||q||L2

2kT

≥ b1
2
||q||2Ek

− d1||q||2Ek
− ||f ||L2 ||q||Ek

≥ 1

2
(b1 − 2d1 − 2C||f ||L2)||q||2Ek

+ C||f ||L2

(

||q||2Ek
− ||q||Ek

C

)

.

Set

ρ =
1

C
, α =

b1 − 2d1 − 2C||f ||L2

2C2
.

By (2), if ||q||Ek
= ρ, then 0 < ||q||L∞ ≤ 1 and Ik(q) ≥ α. 2

Lemma 2.4 Under the assumption (1), Ik satisfies the condition (I2) of the Moun-
tain Pass Theorem.



344 A. DAOUAS

Proof Let q ∈ E1, q 6≡ 0 such that q(T ) = q(−T ) = 0 and A >
b2||q||2E1

2||q||2
L2

2T

. By (1),

there exists B > 0 such that for all x ∈ R
n and t ∈ R, W (t, x) ≥ A|x|2 −B.

Hence, for all ζ ∈ R the following inequality holds :

I1(ζq) ≤
b2
2
ζ2||q||2E1

−Aζ2||q||2L2

2T
+ |ζ|||f1||L2

2T
||q||L2

2T
+ 2TB. (10)

Then by (10) and the choice of A there exists ζ ∈ R satisfying ||ζq||E1
> ρ and I1(ζq) < 0.

For k > 1, set e1(t) = ζq(t) and

ek(t) =

{

e1(t) for |t| ≤ T,
0 for T < |t| ≤ kT.

(11)

Then ek ∈ Ek, ||ek||Ek
= ||e1||E1

> ρ and Ik(ek) = I1(e1) < 0 for every k ∈ N. 2

For our setting, clearly Ik(0) = 0, so, by applying the Mountain Pass Theorem, Ik
possesses a critical value ck ≥ α. Hence, for every k ∈ N, there is qk ∈ Ek such that

Ik(qk) = ck, I ′k(qk) = 0. (12)

This completes the proof of Lemma 2.4.

Lemma 2.5 Let (qk)k∈N be the sequence given by (12). Then there exists a subse-
quence (qkj

)j∈N convergent to a certain function q0 in C1
loc(R,R

n).

Proof First of all we show that the sequences {ck}k∈N and {||qk||Ek
}k∈N are bounded.

For every k ∈ N, let gk : [0, 1] −→ Ek be a curve given by gk(s) = sek, where ek is defined
by (11). Then gk ∈ Γk and Ik(gk(s)) = I1(g1(s)) for all k ∈ N and s ∈ [0, 1]. Therefore,
by the Mountain Pass Theorem,

ck ≤ max
s∈[0,1]

I1(g1(s)) ≡ M0 (13)

independent of k ∈ N. As I ′k(qk) = 0, we receive from (4), (5) and (H5) that

2ck = 2Ik(qk)− I ′k(qk)qk

≥
∫ kT

−kT

[

(∇W (t, qk(t)), qk(t))− 2W (t, qk(t))
]

dt+

∫ kT

−kT

(fk(t), qk(t))dt

≥ d2

∫ kT

−kT

|qk(t)|µdt−
∫ kT

−kT

β(t)dt+

∫ kT

−kT

(fk(t), qk(t))dt. (14)

By Hölder inequality, (13) and (14) we get

d2||qk||µLµ

2kT

≤ 2M0 + β0 + α0||qk||Lµ

2kT
,

where α0 = ||f ||Lγ

R

and β0 =

∫ +∞

−∞

β(t)dt. Since µ > 1 and all the constants in the above

inequality are independent of k, then there exists a constant L such that

||qk||Lµ

2kT
≤ L. (15)
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On the other hand, by (3), (4) and (H4), one has

b1||qk||2Ek
≤ 2M0 + 2d1

∫ kT

−kT

|qk(t)|rdt− 2

∫ kT

−kT

(fk(t), qk(t))dt. (16)

If r ≥ µ, by (1), (15) and Hölder inequality we obtain

b1||qk||2Ek
≤ 2M0 + 2d1||qk||r−µ

L∞

2kT

∫ kT

−kT

|qk(t)|µdt− 2

∫ kT

−kT

(fk(t), qk(t))dt

≤ 2M0 + 2cLµ||qk||r−µ
Ek

+ 2α0L. (17)

Since r − µ < 2 and all coefficients of (17) are independent of k, we see that there is
M1 > 0 independent of k such that

||qk||Ek
≤ M1. (18)

If r < µ, we have

∫ kT

−kT

|qk(t)|rdt =
∫

{t∈[−kT,kT ];|qk(t)|≤1}

|qk(t)|rdt+
∫

{t∈[−kT,kT ];|qk(t)|>1}

|qk(t)|rdt

≤
∫

{t∈[−kT,kT ];|qk(t)|≤1}

|qk(t)|2dt+
∫

{t∈[−kT,kT ];|qk(t)|>1}

|qk(t)|µdt

≤
∫ kT

−kT

|qk(t)|2dt+
∫ kT

−kT

|qk(t)|µdt. (19)

By (16) and (19) we get

b1||qk||2Ek
≤ 2M0 + 2d1||qk||2Ek

+ 2d1L
µ + 2α0L.

Hence
(b1 − 2d1)||qk||2Ek

≤ 2M0 + 2d1L
µ + 2α0L.

Since b1 > 2d1, (18) remains true.
Now, we observe that the sequences {qk}k∈N, {q̇k}k∈N and {q̈k}k∈N are uniformly

bounded. By (2) and (18),
||qk||L∞

2kT
≤ CM1 ≡ M2 (20)

for every k ∈ N. Since qk satisfies (HSk), if t ∈ [−kT, kT ] we have

|q̈k(t)| ≤ |fk(t)|+ |∇V (t, qk(t))| ≤ sup
t∈R

|f(t)|+ |∇V (t, qk(t))|,

so, by (20), there exists M3 > 0 independent of k such that

||q̈k||L∞

2kT
≤ M3. (21)

From the Mean Value Theorem it follows that for every k ∈ N and t ∈ R there exists
τk ∈ [t− 1, t] such that

q̇k(τk) =

∫ t

t−1

q̇k(s)ds = qk(t)− qk(t− 1).
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Combining the above with (20) and (21) we obtain

|q̇k(t)| = |
∫ t

τk

q̈k(s)ds+ q̇k(τk)|

≤
∫ t

t−1

|q̈k(s)|ds+ |qk(t)− qk(t− 1)| ≤ M3 + 2M2 ≡ M4,

and hence for every k ∈ N

||q̇k||L∞

2kT
≤ M4. (22)

To finish the proof it is sufficient to note that the sequences {qk}k∈N and {q̇k}k∈N are
equicontinuous. Indeed, for every k ∈ N and t1, t2 ∈ R, we have by (22)

|qk(t1)− qk(t2)| = |
∫ t2

t1

q̇k(s)ds| ≤
∫ t2

t1

|q̇k(s)|ds ≤ M4|t1 − t2|,

and similarly, by (21), we have

|q̇k(t1)− q̇k(t2)| ≤ M3|t1 − t2|.

Applying now the Arzelà-Ascoli theorem, we receive the claim. 2

Lemma 2.6 Let q0 : R −→ R
n be the function given by Lemma 2.5. Then q0 is the

desired homoclinic solution of (HS).

Proof The proof of this lemma is based on the two following facts.
Fact 1 Let q : R −→ R

n be a continuous map. If q̇ : R −→ R
n is continuous at t0 then

lim
t−→t0

q(t)− q(t0)

t− t0
= q̇(t0).

Fact 2 Let q : R −→ R
n be a continuous map such that q̇ is locally square integrable.

Then, for all t ∈ R, we have

|q(t)| ≤
√
2
(

∫ t+ 1

2

t− 1

2

(|q(s)|2 + |q̇(s)|2)ds
)

1

2

. (23)

The proofs of these facts are elementary and can be found in [7, p 385].

First, we show that q0 is a solution of (HS). By Lemma 2.1 and Lemma 2.5, we have
qkj

−→ q0 in C1
loc(R,R

n), as j −→ ∞, and

q̈kj
(t) +∇V (t, qkj

(t)) = fkj
(t)

for every j ∈ N, and t ∈ [−kjT, kjT ]. Take a, b ∈ R with a < b. There exists j0 ∈ N such
that for all j > j0 and t ∈ [a, b], we have

q̈kj
(t) = −∇V (t, qkj

(t)) + f(t).

Hence, q̈kj
is continuous in [a, b] and q̈kj

(t) −→ −∇V (t, q0(t)) + f(t) uniformly on [a, b].
Fact 1 implies that q̈kj

is a classical derivative of q̇kj
in (a, b) for all j > j0. Moreover,

since q̇kj
−→ q̇0 uniformly on [a, b], we obtain

q̈0(t) = −∇V (t, q0(t)) + f(t)
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for every t ∈ (a, b). Since a and b are arbitrary, we conclude that q0 satisfies (HS).

Now we prove that q0(t) −→ 0, as |t| −→ ∞. First of all remark that for all l ∈ N

there exists j0 ∈ N such that for all j > j0, we have

∫ lT

−lT

(|qkj
(t)|2 + |q̇kj

(t)|2)dt ≤ ||qkj
||2Ekj

≤ M2
1 .

By Lemma 2.5, we get
∫ lT

−lT

(|q0(t)|2 + |q̇0(t)|2)dt ≤ M2
1 .

Letting l −→ ∞, we obtain
∞
∫

−∞

(|q0(t)|2 + |q̇0(t)|2)dt ≤ M2
1 , and so

∫

|t|≥r

(|q0(t)|2 + |q̇0(t)|2)dt −→ 0, (24)

as r −→ ∞. Combining (23) and (24), we receive our claim.
In the next step we show that q̇0(t) −→ 0, as |t| −→ ∞. To do this, applying (23),

we obtain

|q̇0(t)| ≤
√
2
(

∫ t+ 1

2

t− 1

2

(|q̇0(s)|2 + |q̈0(s)|2)ds
)

1

2

.

From (24), we get
∫ t+ 1

2

t− 1

2

|q̇0(s)|2ds −→ 0,

as |t| −→ ∞. Hence, it suffices to prove that

∫ t+ 1

2

t− 1

2

|q̈0(s)|2ds −→ 0, (25)

as |t| −→ ∞. Since q0 is a solution of (HS), we obtain

∫ t+ 1

2

t− 1

2

|q̈0(s)|2ds =
∫ t+ 1

2

t− 1

2

|∇V (s, q0(s))|2ds+
∫ t+ 1

2

t− 1

2

|f(s)|2ds

−2

∫ t+ 1

2

t− 1

2

(∇V (s, q0(s)), f(s))ds,

and then
∫ t+ 1

2

t− 1

2

|q̈0(s)|2ds ≤
∫ t+ 1

2

t− 1

2

|∇V (s, q0(s))|2ds+
∫ t+ 1

2

t− 1

2

|f(s)|2ds

+2
(

∫ t+ 1

2

t− 1

2

|∇V (s, q0(s)|2ds
)

1

2

(

∫ t+ 1

2

t− 1

2

|f(s)|2ds
)

1

2

. (26)

By (H6), we have
∫ t+ 1

2

t− 1

2

|f(s)|2ds −→ 0, (27)
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as |t| −→ ∞. On the other hand, since ∇V (t, 0) = 0 for all t ∈ R and q0(t) −→ 0, as
|t| −→ ∞, (25) follows from (26) and (27).

Finally, it remains to show that q0 is nontrivial. Obviously, this will be the case when
f 6≡ 0, otherwise, using (H3), the proof is the same as in [13]. 2
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