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Abstract: In this paper, we prove the existence of homoclinic orbits for the se-
cond order Hamiltonian system: §(t) + VV(t,q(t)) = f(t), where V € C'(R x
R™ R),V(t,q) = —K(t,q) + W(t,q) is T-periodic in t, K satisfies the ”pinching”
condition b;|¢|®> < K(t,q) < b2|q|? and W is superquadratic at the infinity and needs
not satisfy the global Ambrosetti-Rabinowitz condition. A homoclinic orbit is ob-
tained as the limit of 2kT-periodic solutions of a certain sequence of second order
differential equations.
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1 Introduction

Let us consider the second order Hamiltonian system
G(t) + VV(t.q(t) = f(t), (HS)

where V(t,z) = —K(t,z) + W(t,x),VV(t,x) = (0V/ox)(t,z), K, W : RxR" = R
are C''-maps, T-periodic with respect to t, T > 0 and f : R — R™ is continuous and
bounded. We will say that a solution ¢ of (HS) is homoclinic (to 0) if ¢q(t) — 0 as
t — +o0o. In addition, if ¢ #Z 0 then ¢ is called a nontrivial homoclinic solution.

The problem of finding subharmonic and homoclinic solutions for Hamiltonian sys-
tems has been the object of many works under different assumptions on the growth
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of W at infinity, see [1,3-5,8,12,13] and references therein. Most of them treat the su-
1
perquadratic case. They usually suppose K (t,z) = §(L(t)x, x) with L(t) is a symmetric

matrix valued function and W satisfies the global Ambrosetti-Rabinowitz condition, that
is, there exists p > 2 such that

0 < uW(t,x) < (VW (t,x),x), V (t,x)€ R xR"\{0}.

Especially, in [13], Rabinowitz established the existence of homoclinic orbits for the
Hamiltonian system (H.S) under the above assumptions and f = 0. Recently, the authors
in [7] consider a more general case where K is assumed to satisfy the ”pinching” condition
bi|z|> < K(t,2) < by|z|? and the function f may be nonzero.

In this paper, we shall study the existence of homoclinic orbits for (HS) when W
satisfies the following superquadratic condition:

W(t,z)/|z|> — +o0 as | x |— co uniformly in t € R, (1)

and needs not satisfy the global Ambrosetti-Rabinowitz condition.

The superquadratic condition (1) was used in many recent works to study the exis-
tence of periodic and subharmonic solutions for Hamiltonian systems (see for example
[6,12]). Subsequently, this condition was applied among other conditions in [9,11] to look
for homoclinic orbits. Our approach is different from the last ones, in fact, similarly
to [13], a homoclinic orbit will be obtained as a limit, as k¥ — oo, of sequence g of
subharmonics for second order differential equations. The sequence ¢ is obtained via
a standard version of the Mountain Pass Theorem (Theorem 2.2 in [14]). Part of the
difficulty in applying this theorem is in verifying the Palais-Smale condition. However,
as it’s shown in [2], a deformation lemma can be proved with the (C) condition, replacing
the usual Palais-Smale condition, and it turns out that the Mountain Pass Theorem still
holds true.

We make the following assumptions :

(Hy) there exist ay,as > 0 such that

ailz|* < K(t,x) < aglz?, ¥ (t,2) € R x R,

(Hy) K(t,z) <(z,VK(t,z)) <2K(t,x),V (t,x) €e R x R,
(Hs) W(t,0)=0 and VW(t,x)=o(|x|) as x — 0 uniformly in t,
(Hy) there exist constants di > 0 and r > 2 such that

W(t,z) <di|z|", ¥ (t,z) € R x R",

(Hs) there exist constants do > 0, > 1,0 >7—2 and f € LY(R,R,) such that

(VW (t,x),x2) — 2W (t,x) > do|z|" — B(t), V (t,z) € R x R".

Here (.,.) denotes the standard inner product in R™ and | . | is the induced norm.
For each k € N, let E, = Wzlké (R,R™), the Hilbert space of 2kT-periodic functions
on R with values in R™ under the norm

1

lalle, = ( " ar + oP))

—kT
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Furthermore, let L35 (R, R™) denote the space of 2kT-periodic essentially bounded (mea-
surable) functions from R into R™ equipped with the norm

lgllzs;, = ess sup{lq(t)[;t € [-KT, KTT}.
The following result was proved by Rabinowitz in [13].

Proposition 1.1 There is a positive constant C' such that for each k € N, and q € E},
the following inequality holds:

lallzg;, < Cllalle, - (2)
Set by := min{1,2a1}, be := max{1,2as} and suppose that
(Hg) 2dy <by, feL*R,R")NLY(R,R") and ||f]|r> < %, where %—i— % =1.
Our main result is the following :
Theorem 1.1 Suppose (H1) — (Hg) and (1) are satisfied then the system (HS)

possesses a nontrivial homoclinic solution ¢ € WL2(R,R™) such that ¢(t) — 0 as
t — £oo.

Remark 1.1 Consider the functions
1
1+ 22

K(t,z)=(1+ o2, W(t,z) = h(t)|z[* In(1 + |z|?),

where h is positive, continuous and T-periodic function. A straightforward computation
shows that W satisfies the assumptions (Hs3) — (H5) of Theorem 1.1 but does not satisfy
the global Ambrosetti-Rabinowitz condition essentially. Moreover, K (¢, ) satisfies the
assumptions (H;) and (Hz) but can not be written in the form 1/2(L(¢)x,z). Hence,
Theorem 1.1 extends the results in [7,13] mainly. Furthermore, contrary to [7,13], the
conditions of our result permit to W to change sign near the origin. Theorem 1.1 is also
related to those in [9,11,15], where K (¢, ) has the form 1/2(L(¢)z, ) without periodicity
assumption on V and f = 0.

2 Proof of Theorem 1.1
For each k € N, let L2, (R,R™) denote the Hilbert space of 2kT-periodic functions on
R with values in R™ under the norm ||ql[zz = (IEZT lq(t)|2dt)' /2. Let fr : R — R™

be the 2kT-periodic extension of the restriction of f to the interval [—kT, kT and 7y, :
E, — [0, +00[ given by

nk(q) = (/kT [|q(t)|2 + 2K(t,q(t))} dt)l/z.

—kT

By (Hy) we get

bullal3, < () < bolal 3)
Let I : Ex, — R, be defined by
kT 1 ) kT
o= [ [50F - vieao]das [ g
1 kT kT
git@— [ Wieawis [ (flo.aw)i (®)
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Then I}, € C'(Ex,R) and it’s easy to show that

kT kT
o= [ [a0.50) - (Vo) o@]drr [ (o
By (H2), we get
kT kT
e <t~ [ (OWtao)a®t+ [ 50.a0) (5)

Moreover, it is well known that critical points of I are classical 2kT-periodic solutions
of the second order Hamiltonian system

G(t) + VV(t,q(t)) = fi(t). (H Sk)

Lemma 2.1 If V and f satisfy (H1) — (Hg) and (1), then for all k € N the system
(HSy) possesses a 2kT -periodic solution.

Proof 1t suffices to prove that the functional Ij satisfies all the assumptions of the
Mountain Pass Theorem (Theorem 2.2 in [14]) with the (C) condition replacing the usual
Palais-Smale condition. This will be done by a sequence of lemmas. O

Lemma 2.2 [}, satisfies the (C) condition, i.e., for every constant ¢ and sequence
{un} C Eg,{un} has a convergent subsequence if I, (u,) — ¢ and (1+||un|) I} (un) — 0
as n — oo.

Proof Assume that {u,} C Ej is a (C) sequence of Ij, that is, It(u,) is bounded
and (1 + ||un||)|| 1} (un)|| — 0 as n — oo. Then there exists My > 0 such that
Mk Z 2Ik(un) — I,Q(un)un
kT

kT
> [ [OWun @) un(®) = 2W )] e [ (fult)un(®)i

—kT —kT

So, by (Hs), we get

kT kT kT
M, ng/ lu (8) it — kTﬁ(t)dt+/ (Fu(8), un () .

—kT - —kT
Then, by Hoélder inequality

kT
do |y, |4 < My, + t)dt + n )
allunllpy <Mt [ B0+ el ol

where v is the conjugate exponent of p. Since p > 1, there exists a constant Cj such
that

n < Ck. 6
lanll < G (©
On the other hand, by (3), (4) and (Hy), one has
kT kT
bullunll, < 21k(un) + 2d1/ |un (£)|"dt — 2/ (fi(t), un(t))dt
—kT —kT

kT
< 2Ik(un)+2d1/ |un(t)|rdt+20k||fk||L'y . (7)
—kT 2T
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If > r, by Holder inequality

kT

kT . :
/kT (1) dt < (2kT)T(/_kT (1)) "

Combining the above with (6) and (7), we obtain that ||u,||g, is bounded.
If uw <7, by (2), we have

kT kT
/ fun(B)]"dt = / O () e

—kT

kT
<llullit, [ ol
kT
< Oy 15 / i (£) . (8)
—kT

Hence, by (6) and (8) there exists a constant Cj, such that

ballunl s, < 20u(n) + Chllunll" +2 Cullfell g,

Since r — u < 2 and I (uy,) is bounded, then ||u,||g, will be bounded too.
In a similar way to Proposition B.35 in [14], we can prove that {u,} has a convergent
subsequence. Hence I}, satisfies the (C) condition. O

Lemma 2.3 The functional Ij; satisfies the condition (I) of the Mountain Pass
Theorem.

Proof Let g € Ej, such that 0 < ||¢||r.. < 1. By (H4) we have

2T —

kT

kT
W (t,q(t))dt < dy / lg(t)2dt < dullal|%, - 9)
—kT —kT

Then, by (3), (4), (9) and (Hp) it follows that

llgllzz

2kT 2T

by
Ii(q) > §||Q||125k — dillgl|%, — I fxll 2

by
> §||Q||125k — dillgl|%, — 11 f1z2llqlle,

1 |lql| 2.
> (b1 — 201 = 20|12 lall, + Ol fllas (Jlal, — 2522,
Set
_ 1 =24 -2 e
P=c °- 2C? '

By (2), if [|g]| g, = p, then 0 <|[g|[z~ <1 and Ix(q) = a. O

Lemma 2.4 Under the assumption (1), I, satisfies the condition (Iz) of the Moun-
tain Pass Theorem.
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b 2
Proof Let q € Ey,q # 0 such that ¢(T) = ¢(—T) = 0 and A > % By (1),
Lir
there exists B > 0 such that for all z € R” and t € R, W(t,z) > Alz|*> — B.
Hence, for all ¢ € R the following inequality holds :
bo
(o) < 2 lally, — AC Nl + 1l fillg, lall s, +2TB. (10)

Then by (10) and the choice of A there exists ¢ € R satisfying ||(q||g, > p and I1({q) < 0.
For k > 1, set e1(t) = (q(t) and

_J e(t) for ¢ <T,
ex(t) = { 0 for T<lt|<kT. (11)

Then ey, € Ex, |lex||g, = |le1l|le, > p and Ix(ex) = Ii(e1) < 0 for every k € N. O
For our setting, clearly I (0) = 0, so, by applying the Mountain Pass Theorem, I,
possesses a critical value ¢, > «. Hence, for every k € N, there is g € Ej such that

In(qe) = ek, Ii(ax) = 0. (12)
This completes the proof of Lemma 2.4.

Lemma 2.5 Let (qi)ren be the sequence given by (12). Then there exists a subse-
quence (qx,)jen convergent to a certain function qo in Ct . (R,R™).

Proof First of all we show that the sequences {ci }ren and {||gk|| g, } ren are bounded.
For every k € N, let g, : [0,1] — E}, be a curve given by gr(s) = sey, where ey, is defined
by (11). Then gi € T'y, and I (gr(s)) = I1(g1(s)) for all k € N and s € [0,1]. Therefore,
by the Mountain Pass Theorem,

e < max I1(g1(s)) = My (13)

s€[0,1]

independent of k € N. As I} (q;) = 0, we receive from (4), (5) and (Hs) that

2¢k = 20k (qr) — I (aw)an

kT kT
> [ [OWa)ao) -2 a)]d+ [ (oo
—kT —kT
kT kT kT
do [ apar- [ swars [ io.aae (14)
—kT —kT —kT

By Hélder inequality, (13) and (14) we get

dollar||s < 2Mo+ Bo + ollgrllzy

2kT’

+oo
where ag = |[f||zy and By = / B(t)dt. Since > 1 and all the constants in the above

—o00
inequality are independent of k, then there exists a constant L such that

laklly,, < L. (15)

2kT T
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On the other hand, by (3), (4) and (Hy), one has

kT kT
mmmas2Mﬁam/ kmmwwa/"<nmaamm. (16)
kT —kT

If r > u, by (1), (15) and Holder inequality we obtain

kT kT
bullarllE, < 2Mo -+ 2di lgx |75 /w lqe ()| dt — Z/kT(fk(t)7Qk(t))dt
< 2Mo + 2¢L¥||gr |, " + 2a0L. (17)

Since r — p < 2 and all coefficients of (17) are independent of k, we see that there is
M > 0 independent of £ such that

llgk|| e, < M. (18)

If r < p, we have

kT
/ mmWﬁ=/ mmWﬁ+/ ge ()"t
—kT {te[—kT,kT);|qr (t)|<1} {te[—kT,kT);|qr (t)|>1}

0P+ [ )
{te[=kTETT;|ar (£)[>1}

<

/{te[kTJcT];IQk (t)I<1}

kT kT
g/ MWWM+/ i ()|t (19)
kT kT

By (16) and (19) we get
billgel|E, < 2Mo + 2d1||gxl|E, + 2d1L" + 200L.
Hence
(b1 — 2d1)||qr||B, < 2Mo+ 2d1L* + 2a0L.

Since by > 2d;, (18) remains true.
Now, we observe that the sequences {qi}ren, {Gr}tren and {gx}ren are uniformly
bounded. By (2) and (18),
lallegs, < CM; = M (20)

2kT —

for every k € N. Since ¢y, satisfies (HSy), if t € [—kT, kT] we have

|G (D) < [fe@O)] + [VV (¢, qr(t))] < ilelﬂrglf(t)l +[VV (2, qr (1)1,

so0, by (20), there exists M3 > 0 independent of k such that

lldrllLg, < Ms. (21)

2kT —

From the Mean Value Theorem it follows that for every k € N and ¢ € R there exists
T € [t — 1,t] such that

) = [ dn(s)ds = au(t) — ault = 1),
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Combining the above with (20) and (21) we obtain
t
] =1 [ u(s)ds + du(m)
Tk

t
s/ G (5)]ds + |k (t) — qu(t — 1)] < My + 2My = M,
t—1
and hence for every k € N
< My. (22)

To finish the proof it is sufficient to note that the sequences {q;treny and {gx}ren are
equicontinuous. Indeed, for every k € N and ¢1,t2 € R, we have by (22)

kg,

ta

to
ge(t1) — qe(t2)| = | [ qu(s)ds| < / |qi(s)|ds < Malty — tof,

t1 tl

and similarly, by (21), we have

ldr (t1) — Gr(t2)| < M|ty — taf.
Applying now the Arzela-Ascoli theorem, we receive the claim. O

Lemma 2.6 Let qp : R — R"™ be the function given by Lemma 2.5. Then qq is the
desired homoclinic solution of (HS).

Proof The proof of this lemma is based on the two following facts.
Fact 1 Let q: R — R” be a continuous map. If ¢ : R — R™ is continuous at ty then

L alD) —qlto)

t—>to t— tO

= q(to).

Fact 2 Let ¢ : R — R™ be a continuous map such that ¢ is locally square integrable.
Then, for allt € R, we have

t+3

la() < v3( / (la(s)? + ld(s)[*)ds) (23)

1
t—3

The proofs of these facts are elementary and can be found in [7, p 385].

First, we show that go is a solution of (HS). By Lemma 2.1 and Lemma 2.5, we have
arx, — qo in CL (R, R"), as j —> oo, and
Gy (8) + VV(t,qx, (1) = fr, (1)

for every j € N, and t € [—k;T, k;T]. Take a,b € R with a < b. There exists jo € N such
that for all j > jo and ¢ € [a,b], we have

G; () = =VV(t,qx,; (1)) + f(2).

Hence, Gy, is continuous in [a,b] and gk, (t) — —VV(t,qo(t)) + f(t) uniformly on [a, b].
Fact 1 implies that Gy, is a classical derivative of i, in (a,b) for all j > jo. Moreover,
since gy, — go uniformly on [a, b], we obtain

Go(t) = =VV(t,qo(t)) + f (1)
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for every t € (a,b). Since a and b are arbitrary, we conclude that qo satisfies (HS).

Now we prove that go(t) — 0, as |t| — oo. First of all remark that for all [ € N
there exists jo € N such that for all j > jy, we have

T
[ o (0F + b P )it < s, < M2

By Lemma 2.5, we get

T
| Q@) + (o)) < 212

Letting | — oo, we obtain [ (|go(t)|* + |do(¢)|*)dt < M?, and so

— 0o

/u (P + lio )it — 0 (24)

as r — oo. Combining (23) and (24), we receive our claim.
In the next step we show that ¢o(t) — 0, as |[t| — oo. To do this, applying (23),

we obtain
t+3

(ldo(s)|2 + Iijo(s)|2)ds)

(o) < V3( [

1
2
From (24), we get
t+3
[ lin(s)Pds — o,
t 1

2

as |t| — oo. Hence, it suffices to prove that

t+3
[ lin(s)Pds —o. (25)
t

1
2

as |t| — oo. Since qp is a solution of (HS), we obtain

t+1 t+3 t+3
/ lo(s) [2ds = / YV (s, ao(s))|2ds + / F(s)|2ds
= } =

t+3
=2 [ (O (sl S5

1
2

and then

t+1 t+3 t+3
/ ()| 2ds < / YV (s, ao(s))|Pds + / F(s)]2ds
1 1 t,l

2 t 2 2

t+1 1

vo [ v aoras) ([ eopa) (26)

By (Hg), we have
t+3

/ F(s)2ds — 0, (27)
t—1

2
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as [t| — oo. On the other hand, since VV(¢,0) = 0 for all ¢ € R and ¢o(t) — 0, as
[t| — oo, (25) follows from (26) and (27).

Finally, it remains to show that gy is nontrivial. Obviously, this will be the case when
f # 0, otherwise, using (Hs), the proof is the same as in [13]. O
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