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Abstract: The use of linear matrix inequalities and Lyapunov functions is a pow-
erful and commonplace tool for Takagi–Sugeno fuzzy controlled system analysis and
synthesis. This paper shows how to split and handle the coupling terms arising from
the existence of different input matrices in the subsystems. Then, a method is pro-
posed which allows to synthesize, for a sufficient number of subsystems, the local
gains of a nonlinear parallel distributed controller. It is shown that the controller
gains depend on the values of the input matrices and of the membership functions,
and are thus able to relax classical stability conditions by embedding information on
the fuzzy premises.
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1 Introduction

The Takagi–Sugeno fuzzy state-space model allows to describe a nonlinear system using a
set of fuzzy rules for which the consequents are a set of linear models, which are smoothly
connected by fuzzy membership functions [1]. An intuitive approach to the control of
T-S fuzzy systems consists of designing a fuzzy controller which shares the same fuzzy
sets with the fuzzy model in the premise parts. In this parallel distributed compensation
method (PDC), each control rule is distributively designed for the corresponding rule of
a T-S fuzzy model [2].
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Most works considering the design of controlled Takagi–Sugeno fuzzy systems lead
to express stability conditions and gain synthesis as a set of linear matrix inequalities
(LMIs) which can be solved via efficient semi-definite programming optimization software
[3]. These works can be extended for very complex systems such as time-delay nonlinear
systems modelling and control [6]. However, very few works will consider the relevance
of a nonlinear PDC controller. Original results dealing with the search for a common
quadratic Lyapunov functions (CQLF) are known to be quite conservative, and, as a
result, a number of methods have been proposed to relax standard stability conditions
[4, 7, 8, 9], and new tools such as piecewise quadratic Lyapunov functions or fuzzy
Lyapunov functions have been introduced (e.g. [10]). Extended results have allowed to
consider bounds and/or shapes of the premises’ membership functions considering PDC
[11, 12] or non PDC [13, 14, 15] controllers (see [24] for a summary of conservativeness
issues). An extension of these results to fuzzy nonlinear systems can be done using vector
norm approaches [5] with the drawback of adding more conservatism.

A main difficulty to the synthesis of fuzzy controlled systems lies in the combination of
closed-loop subsystems which does not result into a parallel distribution of the individual
closed-loop subsystems, because of additional coupling terms. These coupling terms
result from the linkage of the local subsystems to the other subsystems’ local controllers,
in particular when input matrices are not identical. Some works, e.g. [22, 23] allow to
handle subsystems with different matrices, and a descriptor formulation along with a non
quadratic Lyapunov function has been proposed [21] to decouple input and gain matrices.
The whole coupling term has also been represented explicitly by a product of matrices
involving a single uncertain matrix with a norm smaller than one, leading to a global
Riccati equation (e.g. [2]). Finding a global bounding matrix for the coupling term is
often not easy to work out, because these terms depend on the membership functions
and on the control gains themselves, which prevent the use of the method for control
synthesis. The exact cancelation of coupling terms has been tackled explicitly only for
large-scale systems [17].

In this paper, it is shown that the closed-loop T-S fuzzy system under PDC control is
the sum of distributed closed-loop fuzzy systems and of a coupling term. This coupling
term is rewritten as a sum of pairwise products involving input matrices and control gains.
A first method is proposed to design fuzzy control gains which attenuate the coupling
effect for any of the closed-loop subsystems, considering a common CQLF. This is done
by considering bounds on the coupling term, and, when a priori limitations are given
for control gains, the stability conditions are resumed to a set of independent Lyapunov
equations. As this method still presents high degrees of conservatism, it is shown that
when the number of subsystems is large enough, the coupling terms can be canceled by
proposing nonlinear control gains for the PDC control structure.

2 Analysis of Fuzzy Systems Under PDC Control

2.1 Closed-loop T-S fuzzy systems decomposition

The fuzzy model proposed by Takagi and Sugeno consists of a set of r fuzzy IF...THEN
rules for which the consequents are linear state-space models:

Plant Rule Ri: IF z1 IS Mi1 AND · · · AND zg IS Mig THEN ẋ = Aix+Biu;
where x(t), u(t) are respectively the state and input vectors, zi(t), Mij are the premise
variables and the corresponding fuzzy models.
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The final output of the fuzzy system is inferred as follows:

ẋ =
r

∑

i=1

µi

(

Aix+Biu
)

, (1)

where µi =
ωi∑
r
i=1

ωi
and ωi is the grade of membership function of the rule Ri.

For every subsystem Si, a local controller can be defined as u = Kix, where Ki is
a control gain. The rules which describe the fuzzy controller share the same premises
as the fuzzy models, hence distributing the local controllers into the global controllers
according to their systems’ weights. In general, the controllers are supposed to be linear,
but, in this study, it will be shown that nonlinear consequents might be preferred.

Controller Ci: IF z1 IS Mi1 AND · · · AND zg IS Mig THEN u = Kix, yielding:

u =
r

∑

i=1

µiKix. (2)

Lemma 2.1 Let the system ẋ =
∑r

i=1
µi(Aix + Biu) with PDC control u =

∑r

i=1
µiKix such that Ai + BiKi = Gi and

∑r

i=1
µi ≤ 1, µi ≥ 0. The closed-loop

system is:

ẋ =













r
∑

i=1

r
∑

j=1

µiµjGi+
r

∑

i=1

µiAi

(

1−
r

∑

j=1

µj

)

+
r

∑

i,j=1,j 6=i

µiµj(Bi−Bj)(Kj−Ki)













x. (3)

Proof One has

ẋ =
r

∑

i=1

µi

(

Aix+Bi

r
∑

j=1

µjKjx

)

=
r

∑

i=1

µi

(

Ai + µiBiKi +Bi

r
∑

j=1,j 6=i

µjKj

)

x.

ẋ =
r

∑

i=1













µ2

iGi + µiAi(1− µi) + µiBi

r
∑

j=1,j 6=i

µjKj













x.

Moreover,

r
∑

i=1

µiBi

r
∑

j=1,j 6=i

µjKj =

r
∑

i=1

r
∑

j=1,j 6=i

µiµj(Gi −Ai)

+
r

∑

i=1

µiBi

r
∑

j=1,j 6=i

µjKj −
r

∑

i=1

r
∑

j=1,j 6=i

µiµjBiKi.

In this equation, one can rearrange the two last sums into a sum of pairwise terms:

r
∑

i,j=1,j 6=i

µjBjµiKi + µiBiµjKj − µiµjBiKi − µjµiBjKj

=
r

∑

i,j=1,j 6=i

µiµj(Bi −Bj)(Kj −Ki).
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Hence,

r
∑

i=1

µiBi

r
∑

j=1,j 6=i

µjKj =

r
∑

i=1

r
∑

j=1,j 6=i

µiµj(Gi−Ai)+

r
∑

i,j=1,j 6=i

µiµj(Bi−Bj)(Kj −Ki).

One has now:

ẋ =













r
∑

i=1

(

µ2

iGi + µiAi(1− µi)
)

+
r

∑

i=1

r
∑

j=1,j 6=i

µiµj(Gi −Ai)

+
r

∑

i,j=1,j 6=i

µiµj(Bi −Bj)(Kj −Ki)













x.

As

r
∑

i=1

µ2

iGi +

r
∑

i=1

r
∑

j=1,j 6=i

µiµjGi =

r
∑

i=1

r
∑

j=1

µiµjGi, and

r
∑

i=1

µiAi(1− µi)−

r
∑

i=1

r
∑

j=1,j 6=i

µiµjAi =

r
∑

i=1

µiAi

(

1−

r
∑

j=1

µj

)

,

we demonstrate the final result:

ẋ =













r
∑

i=1

r
∑

j=1

µiµjGi +

r
∑

i=1

µiAi

(

1−

r
∑

j=1

µj

)

+

r
∑

i,j=1,j 6=i

µiµj(Bi −Bj)(Kj −Ki)













x.

2.2 Specific cases

Note that in the Lemma, the formula could also be valid for
∑r

i=1
µi ≤ 1. One can derive

more specific cases.
Polytopic systems: When

∑r
i=1

µi = 1, formula (3) is reduced to:

ẋ =









r
∑

i=1

µiGi +

r
∑

i,j=1,j 6=i

µiµj(Bi −Bj)(Kj −Ki)







x.

Two-subsystems: The coupling term is now µ1µ2(B1 − B2)(K2 −K1). In this case,
the deviation from the polytopic closed-loop system only depends on the difference
between gains K2 and K1, and this only degree of freedom is a limitation to the
cancellation of the coupling term and of the choice of the local controllers.

Common input matrix: Suppose that ∀i, Bi = B, and
∑r

i=1
µi = 1, then formula (3)

is reduced to:

ẋ =









r
∑

i=1

µiGi







x.

As a remark, one can say that, when the system exhibits a common input matrix, the
closed-loop system behavior is a polytope of closed-loop local systems, and, thus, the cou-
pling terms vanishes. The analysis of the whole closed-loop system can be handled easily.
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Proportional input matrices: Suppose that ∀i, Bi = αiB, where αi ∈ R, then the
closed-loop subsystem is

ẋ =









r
∑

i=1

µiGi +B

r
∑

i,j=1,j 6=i

µiµj(αi − αj)(Kj −Ki)







x.

This case arises often in Takagi-Sugeno modelling, and it can be seen that the coupling
term is strongly dependent of the membership functions and the gains amplitude.

2.3 Global stability verification

Theorem 2.1 [2] The system ẋ =
∑r

i=1
µi(Aix + Biu), under PDC control u =

∑r

i=1
µiKix, such that Ai + BiKi = Gi and Ai +BiKj = Gij , is stable if there exists a

common positive definite matrix P such that:

∀ i = 1, · · · , r, PGi +GT
i P ≺ 0,

∀ i < j, P (Gij +Gji) + (Gij +Gji)
T P ≺ 0.

(4)

Remark 2.1 Theorem (2.1) allows the determination of both the Lyapunov matrix
and the controller gain, using a change of variable Ni = KiP

−1, when being replaced
in the stability conditions, leads to a set of LMIs in Ni and in P , the PDC controller
being provided by Ki = NiP . The existence of a common quadratic Lyapunov function
is only a sufficient stability condition, and, moreover, the conditions of Theorem (2.1)
are independent of the membership functions, leading to conservative results. Coupling
terms are not accounted for, since any of local subsystems i under any local controller
u = Kjx, where j 6= i, should be performing, whereas it cannot be expected that a
system with a controller designed for another plant has necessarily a ”good” behavior.
Hence, the PDC controller is designed according to the ”worst” case among the pairs
{Plant i, Controller j}.

Corollary 2.1 Suppose that ∀i, j, Bi 6= Bj iff µiµj ≡ 0, then the closed-loop system
in Theorem (2.1) is stable if there exists a common positive definite matrix P such that:

∀i = 1, · · · , r, PGi +GT
i P ≺ 0.

This corollary shows that, when there exists a common input matrix, the closed-loop
systems are uncoupled. What is more interesting is that, within the coupling term, the
contributions involving different input matrices can be canceled when their corresponding
membership functions do not overlap, i.e. their product is identically zero.

3 Coupling Terms Attenuation

Theorem 3.1 [16] First, we consider the linear uncertain system for which ẋ =
A+

∑r
i=1

DiδiEi, ‖δi‖ ≤ 1 , and the elements of the time-varying matrices δi are Lebesgue
measurable. Then the positive-definite matrix P is a common Lyapunov matrix for this
system if there exists r positive scalars ηi such that:

PA+ATP +

r
∑

i=1

ηiPDiD
T
i P + η−1

i ET
i Ei ≺ 0,
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or, as a specific case:

PA+ATP +
r

∑

i=1

PDiD
T
i P + ET

i Ei ≺ 0. (5)

Remark 3.1 This Theorem was applied first by Tanaka et al. [2] and then by nu-
merous authors to the whole coupling term. Note that some authors [19, 18] introduce a
DδE component within the consequent part. Whereas this method provides for a rather
non-conservative solution, it is clear that finding individual uncertain matrices might be
a tedious task, because the rate of variation and thus the bounds of the uncertain matrix
depend on the control gains themselves. It can thus be applied to analyze an existing
solution (when the gains are fixed a priori) but not for gain synthesis considering mod-
els/controllers coupling. The following theorem proposes a different application of this
method to every individual component of the coupling term.

Theorem 3.2 Consider the system ẋ =
∑r

i=1
µi(Aix+Biu), under PDC controller:

ẋ =













r
∑

i=1

µiGi +
r

∑

i,j=1,j 6=i

µiµj(Bi −Bj)(Kj −Ki)













x.

Let us suppose that: ∀ i, there exists bi such that:
∑

Bi 6=Bj

µj(Bj −Bi) = biδi, where ‖δi‖ ≤ 1.

The matrices δi thus depend on membership functions µi and other input matrices µj

and Bj; as µj may vary with time, δi is a matrix which may vary with time or with the
state space x.

The closed-loop system is quadratically stable if:

∀ i = 1, · · · , r, PGi +GT
i P + Pbib

T
i P +KT

i Ki ≺ 0. (6)

This can be turned into:

∀ i = 1, · · · , r,





PGi +GT
i P Pbi KT

i

bTi P −I 0
Ki 0 −I



≺ 0. (7)

Proof

ẋ =













r
∑

i=1

µiGi +

r
∑

i,j=1,j 6=i

µiµj(Bi −Bj)(Kj −Ki)













x

=













r
∑

i=1

µi

r
∑

j=1,j 6=i

(Gi + µj(Bi −Bj)Ki)













x.

One has now:

r
∑

j=1,j 6=i

(Gi + µj(Bi − Bj)Ki) = Gi + biδiKi, and one can apply the

Theorem 3.1.
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Remark 3.2 Results involving a CQLF are known to be conservative. However,
other Lyapunov functions can be searched for the TS system represented with an explicit
coupling term, e.g. piecewise or fuzzy Lyapunov functions. However, this theorem wants
to show that, taking explicitly the coupling term into account, one may relax standard
or existing conditions for a given method.

Uncertain matrices δi do not depend anymore on the control gains but only on input
matrices and membership functions which are supposed to be known as a part of the
fuzzy model representation. Their determination is thus quite easy and the membership
functions are indeed embedded in the control synthesis. Of course, it is assumed that
such matrices exist. Note also that the corresponding i Riccati equations in (6) are
decoupled, i.e. the ith equation only depends on the ith control gain, the influence of the
other subsystems are merged into the matrix biδi. The following corollary is a simplified
condition of equation (7).

Corollary 3.1 Let us suppose that:

∀ i = 1, · · · , r, ∃Qi � 0, KT
i Ki −Qi ≺ 0.

Then, condition (7) can be expressed as:

∃P ≺ 0, ∀ i = 1, · · · , r, PGi +GT
i P +Q′

i ≺ 0, (8)

where Q′
i = Pbib

T
i P +Qi, with KT

i Ki −Qi ≺ 0, which can be turned into:

∀ i = 1, · · · , r,











(

PGi +GT
i P +Q′

i Pbi
bTi P −I

)

≺ 0,

KT
i Ki −Qi ≺ 0.

The Corollary simply reduces the search for a common Lyapunov matrix to a series of
r Lyapunov equations and thus r LMIs. This is really an improvement to other methods
because, now, control gains can nearly be selected independently without the need of
taking care of coupling terms, at the expense of gain limitation. The synthesis gains are
now completely uncoupled, the interdependence being lumped into the matrices bi; in
general, matrices bi can be obtained from simple membership functions analysis. The
following corollary focuses on the specific (and commonly encountered) case for which
input matrices are proportional, and shows that the computation of matrices bi is quite
direct.

Corollary 3.2 Suppose that the input matrices are proportional, i.e. ∀i, Bi = αiB,
where αi ∈ R, then the bounding matrices in Theorem 3.2 are given by:

bi = Bmax









r
∑

j=1,j 6=i

µiµj(αj − αi)







.

4 Coupling Terms Exact Compensation

In the previous section, a method has been proposed to choose control gains by balancing
the effect of coupling terms resulting from other subcontrollers. The problem is that a
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CQLF is still needed and that the coupling still exixsts, still yielding conservative solu-
tions. Of course, a high number of subsystems increases the size of the set of Lyapunov
equations but offers more degrees of freedom. It will be shown that, when these degrees of
freedom are numerous enough, they can be used to cancel explicitly the coupling terms.

Proposition 4.1 Let the system:

ẋ =









r
∑

i=1

µiGi +

r
∑

i,j=1,j 6=i

µiµj(Bi −Bj)(Kj −Ki)







x,

and let n = dim(x). Let us suppose also that rank[B1 · · ·Bn] = n and µiµj 6≡ 0. There

exists a nonlinear PDC controller K(µi), such that

r
∑

i,j=1,j 6=i

µiµj(Bi−Bj)(Kj−Ki) = 0

and ∃i, j,Ki 6= Kj, only if r > n+ 1.

Proof There exists of course a trivial solution Ki = K, ∀i. The system has a solution
different from this trivial solution, i.e. a true nonlinear PDC iff the system

r
∑

i,j=1,j 6=i

µiµj(Bi −Bj)(Kj −Ki) = 0

is compatible. The weight corresponding to control gain Ki is:

wi =

r
∑

j=1,j 6=i

µiµj(Bi −Bj).

One can notice that
∑r

i=1
wi = 0. Hence, there is a solution Ki 6≡ 0 only if r > n+ 1.

In this case, the nonlinear PDC gain is membership-function dependent and non
linear; one has to check that all the subsystems share a CQLF – or some other common
Lyapunov function – which can however be more complicated. The workout will be
shown in the example section.

5 Examples

5.1 Example 1

Let us take the following 3 systems:

A1 =

(

−1 2
0 −2

)

, B1 =

(

2
1

)

;

A2 =

(

−1 −1
1 0

)

, B2 =

(

0
1

)

;

A3 =

(

−2 1
1 −2

)

, B3 =

(

1
0

)

;

along with local gains: K1 = ( 2 1 ),K2 = ( −2 1 ),K3 = ( 2 0 ).
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In these examples, gains were fixed a priori. The grades of membership corresponding
to systems 1, 2 and 3 are: ω1 = z, ω2 = 1− z and ω3 = z where z ∈ [−1 · · ·1].
For every subsystem i, it is quite easy to compute the matrices bi such that

∑

Bi 6=Bj

µi(Bj −Bi) = biδi

since the upper bound depends on the fuzzy variable z. One finds: b1
T =

( 1 0.25 ), b2
T = ( 0.75 0.25 ), b3

T = ( 1 1 ).
The application of Theorem 3.2 allows to find a common positive definite matrix

P =

(

1.28 −0.37
−0.37 0.87

)

whereas it is impossible to find one by the classical method; it is

easy to check that the gainK2 is unable to stabilize matrixA1 and the converse forK1 and
A2. It is quite interesting to note that the result is quite tied to the value of the matrices
bi. When all other variables keep the same values, but bT2 = ( 1 1 ), then Theorem 3.2
is no more applicable because a positive definite CQLF cannot be found. Thus, Theorem
3.2 is able to relax stability conditions, depending strongly on the membership functions
and input matrices values. Yet, results may remain conservative with respect to other
methods, but, such methods as piecewise Lyapunov or fuzzy functions can also be applied
(with further insight) to the TS fuzzy system with coupling terms.

Suppose that, now, we add the following subsystem

A4 =

(

−1 0
0 −1

)

, B4 =

(

0
1

)

along with the grade of membership ω4 = (1− z)/2. It is possible, in this case, to find a
nonlinear PDC controller such that

r
∑

i,j=1,j 6=i

µiµj(Bi −Bj)(Kj −Ki) = 0.

Indeed, the solution of this system of equations is:

K1 =
(

k31 + (1− z)k41 k32 + (1− z)k42
)T

,K2 = K1,

K3 =
(

k31 k32
)T

,K4 =
(

k41 k42
)T

.

In this case, one only has to ensure that the local closed-loop controlled systems share
a CQLF. If Ai +BiKi(z) = Gi(z), one has to check that there exists a common positive
definite matrix P such that ∀ i = 1 · · · r, PGi(z) + Gi(z)

TP ≺ 0, which is easy to solve
since the closed-loop matrices are affine in z.

5.2 Example 2

Consider the model of a stirred tank reactor:

ĊA =
q

V
(CAf − CA)− k0CAe

− E
RT ,

Ṫ =
q

V
(Tf − T )−

∆Hk0
ρCp

CAe
− E

RT +
ρcCpc

ρCpV
qc(1− e

−
hA

ρcCpcqc )(Tcf − T ),
(9)
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where q,qc are the process and coolant flowrates, CA and CAf are the ouput and feed
concentrations, T , Tf , Tcf are the reactor, feed and coolant temperatures. V is the reactor
volume, ha a heat transfer coefficient, E/R an energy activation term, ∆H the heat of
reaction, ρc, ρ the liquid and coolant densities, and Cpc, Cp their specific heats. All values
can be found in [20]. The coolant flowrate qc is the control, CA is the measured variable,
and one supposes that CA ∈ [0.06 · · ·0.13], the operating points for C1

A = 0.06, C2

A =
0.1, C3

A = 0.13 have the following linear models:

A1 =





0 1 0
0 −16.67 −0.047
0 3133.33 7.42



 , B1 =





0
0

−0.99



 ,

A2 =





0 1 0
0 −10 −0.047
0 1800 7.33



 , B2 =





0
0

−0.88



 ,

A3 =





0 1 0
0 −7.69 −0.046
0 1338.46 7.19



 , B3 =





0
0

−0.82



 .

T 1 = 449.47, q1c = 89.03, T 2 = 438.54, q2c = 103.41, T 3 = 432.92, q3c = 110.03.

For Gaussian validity functions, the nominal T-S model is given by:





˙∫CA(t)dt

ĊA(t)

Ṫ (t)



 =

3
∑

i=1

µi(CA)













Ai





CA(t)
CA(t)− Ci

A

T (t)− T i



+Bi(qc(t)− qic)













,

where µi = ωi(CA)/
∑3

j=1
(ωj(CA)), ωi = exp(− 1

2
(CA−CAi

σi
)2), and σi = 0.01, i = 1, 2, 3

is a reasonable choice to represent with a good accuracy the nonlinear model (see [20]
for full details).

The state space is x = (
∫

cAdt, cA, T )
T , and the control gains have been chosen to

place the poles at λ = (−3.4205 + 1.8701i,−3.4205− 1.8701i,−5)T .

In this case the products µ1µ2 and µ2µ3 are bounded by 0.25 and µ1µ3 is bounded
by 10−5. Thus, it is easy to find bounds for b1, b2, b3. It is impossible to find a common
Lyapunov matrix P for the T-S system using Theorem (2.1), but it is possible to find
one using Theorem (3.2) with

P = 105.





10 −0.72 −0.23
−0.72 2.71 0.014
−0.23 0.014 0.0001



 .

The magnitude of elements of P is still important because of the small overlapping
between membership functions. Of course, this result only guaranties the convergence of
the Takagi–Sugeno fuzzy system and not that of the corresponding nonlinear system, for
which uncertainties should be lumped into the T-S fuzzy model as for example in [19].
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6 Conclusion

In this paper, the stability of a Takagi–Sugeno fuzzy system under the Parallel Dis-
tributed Compensation controller has been studied. This control strategy allocates the
same weight to a local controller as the one in the fuzzy combination of local submod-
els. The influence of the coupling between any local subsystem and any local controller
(different from the corresponding local controller designed from the local subsystem con-
sidered) in the closed-loop response has been highlighted, and it has been shown to be
effective when the input matrices of the subsystems are different. It has been subse-
quently shown that a controller synthesis based on an analysis of each local subsystem
controlled by any local compensator, would lead to conservative results. A new approach
has been proposed which, for every local subsystem, takes the coupling term coming from
other subsystems into account, and proposes to choose the gain in order to cope with the
effect of the coupling terms. This strategy allows to minimize the number of linear matrix
inequalities to be solved for controller synthesis and to take into account the shape of the
membership functions. Moreover, an exact compensation using a nonlinear PDC con-
troller has been proposed, which is tractable only if the number of subsystems is greater
than the model order plus one. Further investigation will be undertaken to generalize
the results for Lyapunov functions leading to less conservative results, i.e. piecewise and
fuzzy Lyapunov functions.
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