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Abstract: In this paper, the generalized Hamiltonian system approach was applied
to the synchronization of chaotic systems. The synchronization is between the trans-
mitter and the receiver dynamics. The synchronization of several chaotic systems is
studied by the method, respectively. The numerical results are in very good agree-
ment with the theoretical analysis.
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1 Introduction

In the 17th century, the analysis of synchronization phenomena in the evolution of dy-
namical systems was a subject of active investigation [1]. Recently, the search for syn-
chronization has moved to chaotic systems. Synchronization of chaos refers to a process
wherein two (or many) chaotic systems adjust a given property of their motion to a
common behavior due to a coupling or to a forcing.

The first thing to be highlighted is that there is a great difference in the process
leading to synchronized states, depending upon the particular coupling configuration [1].
Namely, one should distinguish two main cases: unidirectional coupling and bidirectional
coupling. In the former case, one subsystem evolves freely and drives the evolution of
the other; in the latter case, both subsystems are coupled with each other.
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In the context of coupled chaotic elements, many different synchronization states have
been studied in the past 10 years: namely complete or identical synchronization [2]-[4],
phase [5, 6] and lag synchronization [7], generalized synchronization [8, 9], intermittent
lag synchronization [7, 10], imperfect phase synchronization [11], and almost synchro-
nization [12]. Complete synchronization was the first discovered and is the simplest form
of synchronization in chaotic systems. It consists in a perfect hooking of the chaotic
trajectories of two systems which is achieved by means of a coupling signal, in such a
way that they remain in step with each other in the course of time.

The phenomena of chaotic synchronization exists widely in laboratory experiments
and natural systems [13]-[22]. The natural continuation of the pioneering works was
to investigate synchronization phenomena in spatially extended or infinite dimensional
systems [13]-[16], to test synchronization in experiments or natural systems [17]-[22].
The synchronization has also been applied to encoding or masking where the chaotic
system is called the “transmitter”. Correspondingly for the decoding or unmasking,
the second chaotic system is called the “receiver”. The synchronization between the
“transmitter” and the “receiver” means that, under the assumption of no masked signal
transmission, the receiver state trajectory asymptotically tracks that of the transmitter.
In [23], the authors have studied the synchronization of two chaotic systems by the
generalized Hamiltonian system and observer approach. Furthermore, the method is
extended to the time-delay Chua’s oscillator [24].

The objective of this paper is to apply the generalized Hamiltonian system and ob-
server approach developed in [23] to the complete synchronization of two identical chaotic
systems coupled unidirectionally. The organization of the paper is as follows: In Section
2, we obtain the synchronization of chaotic systems by the generalized Hamiltonian sys-
tem and observer approach. In Section 3, we present several chaotic systems and study
their synchronization by this method, respectively. In Section 4, the conclusion is given.

2 The Synchronization of Chaotic Systems

A smooth system is given as follows:

ẋ = f(x, t), x = (x1, x2 . . . xn)
T ∈ Rn, (1)

where f ∈ Rn is smooth.

Equation (1) may be written in the generalized Hamiltonian system:

ẋ = J1(x)
∂H

∂x
+ S(x)

∂H

∂x
+ F1(x, t), (2)

where H(x) denotes a smooth energy function and is globally positive definite in Rn, and
the column gradient vector ∂H

∂x
of H(x) is assumed to exist everywhere; if the form of

quadratic energy function is H = 1
2x

TMx (M is a constant symmetric positive definite

matrix), ∂H
∂x

= Mx. J1(x)+JT
1 (x) = θ, S(x) = ST (x). The vector field J(x)∂H

∂x
exhibits

the conservative part of the system and it is also referred to as the workless part; and
S(x) depicts the working part of the system. F1(x, t) is a locally destabilizing vector
field. According to the form of H(x) and the different expression of J1(x), S(x), F1(x, t),
the form of the Generalized Hamiltonian system (2) is not unique.

In the context of observer design, we consider a special class of Generalized Hamilto-
nian system with liner output map y:
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{

ẋ = J(y)∂H
∂x

+ (I + S)∂H
∂x

+ F (y, t),
y = C ∂H

∂x
,

(3)

where J(x)+JT (x) = θ, I is a constant skew symmetric matrix, S is a constant symmetric
matrix, and F (x, t) is a locally destabilizing vector field. The vector variable y is referred
to as the system output, and the matrix C is a constant matrix. Equation (3) is called
the transmitter.

Let ξ and µ be the estimates of the state vector x and output y, respectively; and
∂H
∂ξ

= Mξ is naturally the gradient of the Hamiltonian energy function H(ξ)). A dynamic

nonlinear state observer for (3) is obtained as:

{

ξ̇ = J(y)∂H
∂ξ

+ (I + S)∂H
∂ξ

+ F (y, t) +K(y − η),

η = C ∂H
∂ξ

,
(4)

where K is a constant matrix, known as the observer gain. Equation(4) is called the
receiver.

In this paper, we study mainly the synchronization of the transmitter (3) and the re-
ceiver (4). Practically, it is the complete synchronization of two identical chaotic systems
coupled unidirectionally.

Let e(t) = x(t) − ξ(t), ey = y − η, then the state estimation error [23] are governed
by

{

ė =
(

J(y) + I − 1
2 (KC − CTKT )

)

∂H
∂e

+
(

S − 1
2 (KC + CTKT )

)

∂H
∂e

,

ey = C ∂H
∂e

ey ∈ Rm ,
(5)

where ∂H
∂e

= ∂H
∂x

− ∂H
∂ξ

= M(x− ξ) = Me.

In [1], the authors point out that the transmitter (3) synchronizes with the receiver
(4), if lim

t→∞

‖x(t)− ξ(t)‖ = 0 no matter which initial conditions x(0) and ξ(0) have. The

state estimation error e(t) = x(t) − ξ(t)represents the synchronization error. So we will
study the system (5) for the synchronization. In the following, two theorems about (5)
give the condition under which their synchronization happens. Let W = I + S.

Theorem 2.1 [23] The state x(t)of the nonlinear system (3) can be globally expo-

nentially asymptotically estimated by the state ξof the nonlinear observer (4), if the pair

of matrices (C,W )or the pair (C, S), is either observable or, at least, detectable.

An observability condition on either of the pairs (C,W ) or (C, S), is clearly a suffi-
cient but not necessary condition for asymptotic state reconstruction. A necessary and
sufficient condition for global asymptotic stability to zero of the estimation error is given
by the following theorem.

Theorem 2.2 [23] The state x(t)of the nonlinear system (3) can be globally expo-

nentially asymptotically estimated by the state ξof the nonlinear observer (4), if and only

if there exists a constant matrix K such that the symmetric matrix

[W −KC] + [W −KC]
T
= [S −KC] + [S −KC]

T
= 2

[

S −
1

2
(KC + CTKT )

]

(6)

is negative definite.
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3 Numerical Application

3.1 The forced Brusselator

The equation of this system is given as follows [25]:

{

ẋ1 = A− (B + 1)x1 + x2
1x2 + a cos(ωt),

ẋ2 = Bx1 − x2
1x2.

(7)

After taking as a Hamiltonian energy function the scalar function H(x) = 1
2 (x

2
1 + x2

2),
we obtain:

J(x)=

[

0 0
0 0

]

, I=

[

0 −B
2

B
2 0

]

, S=

[

−(B + 1) B
2

B
2 0

]

, F (x)=

[

A+ x2
1x2 + a cos(ωt)
−x2

1x2

]

.

We choose y =

[

x1

x2

]

, then C =

[

1 0
0 1

]

, thus K =

[

K1 K3

K2 K4

]

. The system is in

generalized Hamiltonian canonical form:

ẋ = J(x)
∂H

∂x
+ (I + S)

∂H

∂x
+ F (x, t), (8)

and the receiver is

ξ̇ = J(x)
∂H

∂ξ
+ (I + S)

∂H

∂ξ
+ F (x, t) +K(x− ξ), (9)

The synchronization error, corresponding to this receiver, is

ė =
(

J(x) + I − 1
2 (KC − CTKT )

)

∂H
∂e

+
(

S − 1
2 (KC + CTKT )

)

∂H
∂e

=

[

0 −B−K3+K2

2

−−B−K3+K2

2 0

]

∂H
∂e

+

[

−(B + 1)−K1
B−(K2+K3)

2
B−(K2+K3)

2 0

]

∂H
∂e

.

(10)
The pair (C, S) is observable, and hence detectable. We could prescribe K1,K2,K3

andK4, in order to ensure asymptotic stability of equation(8) and equation(9) to zero of
the synchronization error. By applying Theorem 2.2, we obtain

2

[

−(B + 1)−K1
B−(K2+K3)

2
B−(K2+K3)

2 0

]

is negative definite, i.e. K1 > −(B + 1); 4K4[(B + 1) +K1] > (B −K2 −K3)
2.

In Figure 1, the synchronization of two chaotic systems (8) and (9) is presented. The
parameters were taken as: A = 0.4, B = 1.2, ω = 0.8, a = 0.05,K1 = 0.8,K2 = 0.2,K3 =
1,K4 = 1.

3.2 The forced pendulum

The equation of this system is given as follows [26]:

{

ẋ1 = x2,

ẋ2 = −ax2 − b sinx1 + ρ cos(ωt).
(11)
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Figure 1: The synchronization of the forced Brusselator systems (8) and (9).

After taking as a Hamiltonian energy function the scalar function H(x) = 1
2 (x

2
1+x2

2),
we obtain:

J(x) =

[

0 0
0 0

]

, I =

[

0 1
2

−1
2 0

]

, S =

[

0 1
2

1
2 −a

]

, F (x) =

[

0
−b sinx1 + ρ cos(ωt)

]

.

We choose y = [x1], then C =
[

1 0
]

, thus K =

[

K1

K2

]

. The system is in generalized

Hamiltonian canonical form:

ẋ = J(x)
∂H

∂x
+ (I + S)

∂H

∂x
+ F (x, t), (12)

and the receiver is

ξ̇ = J(x)
∂H

∂ξ
+ (I + S)

∂H

∂ξ
+ F (x, t) +K(x1 − ξ1). (13)

The synchronization error, corresponding to this receiver, is

ė =
(

J(x) + I − 1
2 (KC − CTKT )

)

∂H
∂e

+
(

S − 1
2 (KC + CTKT )

)

∂H
∂e

=

[

0 1+K2

2

− 1+K2

2 0

]

∂H
∂e

+

[

−K1
1−K2

2
1−K2

2 −a

]

∂H
∂e

. (14)
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The pair (C, S) is observable, and hence detectable. We could prescribe K1 and K2, in
order to ensure asymptotic stability of equation (12) and equation (13) to zero of the
synchronization error. By applying Theorem 2.2, we obtain

2

[

−K1
1−K2

2
1−K2

2 −a

]

is negative definite, i.e. K1 > 0; 4aK1 − (1−K2)
2 > 0.

In Figure 2, the synchronization of two chaotic systems (12) and (13) is presented.
The parameters were taken as: a = 0.2, b = 1, ρ = 1.5, ω = 0.4,K1 = 2,K2 = 2.

3.3 The 3D model

The model is described by the equation as follows [27]:







ẋ1 = x2,

ẋ2 = x3,

ẋ3 = −x2 − 1.2x3 − µx1 + x2
1 − 1.425x2

2 + 0.2x1x3 − 0.01x2
1x3.

(15)

After taking as a Hamiltonian energy function the scalar function H(x) = 1
2 (x

2
1+x2

2+x2
3),

we obtain:

J(x) =





0 0 0
0 0 0
0 0 0



 , I =





0 1
2

µ
2

− 1
2 0 1

−µ
2 −1 0



 , S =





0 1
2 −µ

2
1
2 0 0

−µ
2 0 −1.2



 ,

F (x) =





0
0

x2
1 − 1.425x2

2 + 0.2x1x3 − 0.01x2
1x3



 .

We choose y =





x1

x2

x3



, then C =





1 0 0
0 1 0
0 0 1



, thus K =





K1 K4 K7

K2 K5 K8

K3 K6 K9



.

The system is in generalized Hamiltonian canonical form:

ẋ = J(x)
∂H

∂x
+ (I + S)

∂H

∂x
+ F (x, t), (16)

and the receiver is

ξ̇ = J(x)
∂H

∂ξ
+ (I + S)

∂H

∂ξ
+ F (x, t) +K(x− ξ). (17)

The synchronization error, corresponding to this receiver, is

ė =
(

J(x) + I − 1
2 (KC − CTKT )

)

∂H
∂e

+
(

S − 1
2 (KC + CTKT )

)

∂H
∂e

=





0 1+K2−K4

2
µ+K3−K7

2

− 1+K2−K4

2 0 1− K8−K6

2

−µ+K3−K7

2 −1 + K8−K6

2 0





∂H
∂e

+





−K1
1−K2−K4

2 −µ+K3+K7

2
1−K2−K4

2 −K5
−K8−K6

2

−µ+K3+K7

2
−K8−K6

2 −1.2−K9





∂H
∂e

.

(18)
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Figure 2: The synchronization of the forced pendulum systems (12) and (13).

The pair (C, S) is observable, and hence detectable. We could prescribe K1, K2,
K3, K4, K5, K6,K7,K8,K9 in order to ensure asymptotic stability of equation (16) and
equation (17) to zero of the synchronization error. By applying Theorem 2.2, we obtain

2





−K1
1−K2−K4

2 −µ+K3+K7

2
1−K2−K4

2 −K5
−K8−K6

2

−µ+K3+K7

2
−K8−K6

2 −1.2−K9





is negative definite, i.e.

K1 > 0,
4K1K5 > (1−K2 −K4)

2,

(1.2 +K9)
[

4K1K5 − (1−K2 −K4)
2
]

−K1(K6 +K8)
2

−(1−K2 −K4)(µ+K3 +K7)(K6 +K8)−K5(µ+K3 +K7)
2 > 0.

In Figure 3, the synchronization of two chaotic systems (16) and (17) is presented.
The parameters were taken as: µ = 1.6,K1 = K4 = K5 = 1,K2 = 0,K3 = K6 = K8 =
1
2 ,K9 = 3,K7 = 0.

4 Conclusion

In this paper, we apply the generalized Hamiltonian system and observer approach and
obtain two chaotic systems: the “transmitter” and the “receiver” dynamics. Practically,
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Figure 3: The synchronization of the 3D model (16) and (17).
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two chaotic systems are the systems coupled unidirectionally. We study mainly the
condition with which the coupling coefficient matrix K is satisfied when the complete
synchronization of two coupled chaotic systems happens.
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