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Abstract: In this paper we consider a nonlocal initial boundary value problem for

a parabolic integro-differential equation. We reformulate this problem as an abstract

functional differential equation in a Banach space with a nonlocal history condition.

We establish the existence, uniqueness and continuation of mild, strong and classical

solutions of the abstract functional differential equation under different conditions.

Keywords: functional differential equation; mild solution; classical solution; con-
tinuation of solution; semigroup of operator; nonlocal condition.

Mathematics Subject Classification (2000): 34G20, 47D06, 47H10, 34K06.

1 Introduction

Consider the following parabolic integro-differential equation in a bounded domain
Ω ⊂ R

n with sufficiently smooth boundary ∂Ω:

∂tw(t, x) +
∑

|α|≤2m aα(x)D
αw(t, x) = f1(t, x)

+
(∫

Ω f2(w(t, x))dx
) ∫ t

t−τ
k(t− s)f3(s, w(s, x))ds, 0 < t ≤ T, τ > 0, x ∈ Ω,

Dαw(t, x) = 0, t ≥ 0, x ∈ ∂Ω, |α| ≤ m− 1,

g(w0)(x) = φ(x), x ∈ Ω,



























(1.1)
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318 D. BAHUGUNA, R.K. SHUKLA AND S.SAXENA

where the sought-for real-valued function w is defined on [−τ, T ]×Ω, w0 is the restriction
of w on [−τ, 0] × Ω, for all multi-indices α, with |α| ≤ 2m, the functions aα(x) are
sufficiently smooth and are such that the corresponding partial differential operator is
strongly elliptic in Ω, fi, i = 1, 2, 3, are smooth real-valued functions defined on [0, T ]×Ω,
R, [−τ, T ] × R, respectively, for t ∈ [0, T ], k ∈ Lp(0, τ), 1 < p < ∞, g is a map from
C([−τ, 0];Lp(Ω)) into Lp(Ω) and φ ∈ Lp(Ω).

A few choices of the function g, for instance, are the following:

g(ψ)(x) =

∫ 0

−τ

k1(−s)ψ(s)(x)ds, x ∈ Ω, ψ ∈ C([−τ, 0];Lp(Ω)),

where k1 ∈ L1(0, τ) with
∫ τ

0 k1(s)ds 6= 0;

g(ψ)(x) =

r
∑

i=1

ciψ(ti)(x), x ∈ Ω, ψ ∈ C([−τ, 0];Lp(Ω)),

where −τ ≤ t1 < t2 < · · · < tr ≤ 0, C :=
∑r

i=1 ci 6= 0; and

g(ψ)(x) =

r
∑

i=1

ci

∫ ti

ti−εi

ψ(s)(x)ds, x ∈ Ω, ψ ∈ C([−τ, 0];Lp(Ω)),

where r and ci are as above and εi > 0, i = 1, 2, . . . , r.

Let X := Lp(Ω), 1 < p <∞. Let the linear operator A : D(A) ⊂ X → X be defined by

D(A) =W 2m,p(Ω) ∩Wm,p
0 (Ω), Au =

∑

|α|≤2m

aα(x)D
αu, u ∈ D(A).

Then −A is the infinitesimal generator of an analytic semigroup S(t), t ≥ 0, of bounded
linear operators in X (cf. Theorem 7.3.5 in [14]).

For t ≥ 0, let Ct := C([−τ, t];X) be the Banach space of all continuous functions from
[−τ, t] into X endowed with the supremum norm

‖ψ‖t := sup
−τ≤η≤t

‖ψ(η)‖X , u ∈ Ct,

where ‖.‖X is the norm in X . Define the nonlinear map F : [0, T ]×X × C0 → X by

F (t, u, ψ)(x) = f1(t, x)

+

(
∫

Ω

f2(u(x))dx

)
∫ 0

−τ

k(−θ)f3(t+ θ, ψ(θ))dθ, t ∈ [0, T ], u ∈ X, ψ ∈ C0.(1.2)

For u ∈ CT , let ut ∈ C0 be defined by ut(θ) = u(t + θ), θ ∈ [−τ, 0]. Then (1.1) can
be reformulated as the following functional differential equation with a nonlocal history
condition in the Banach space X = Lp(Ω):

u′(t) +Au(t) = F (t, u(t), ut), 0 < t ≤ T,
g(u0) = φ.

}

(1.3)

If we define Φ ∈ C0 given by Φ(θ) ≡ φ for all θ ∈ [−τ, 0] and H : C0 → C0 given
by H(χ)(θ) ≡ g(χ) for all θ ∈ [−τ, 0] and all χ ∈ C0, then the condition g(χ) = φ is
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equivalent to the condition H(χ) = Φ. Thus we may consider the following functional
differential equation with a more general nonlocal history condition:

u′(t) +Au(t) = F (t, u(t), ut), 0 < t ≤ T,
H(u0) = Φ,

}

(1.4)

which also includes the functional differential equation:

u′(t) +Au(t) = F (t, u(t), ut), 0 < t ≤ T,
u0 = Φ,

}

(1.5)

as a particular case.
The functional differential equation (1.5) has been extensively studied in literature.

We refer to Kartsatos [10, 11], Kartsatos and Liu [9], Kartsatos and Parrott [12, 13].
Amraoui and Rhali [3] have used integrated semigroups to study the existence and

uniqueness of integral solutions and other forms of solutions of the abstract Cauchy
problem u′(t) = Bu(t) + Lut, t > 0, where B is a nondensely defined linear operator in
a Banach space X and L is a bounded linear operator on X .

Recently, Bahuguna [4], Bahuguna, Dabas and Shukla [5], Bahuguna and Dabas [6],
Bahuguna and Muslim [7, 8], Agarwal and Bahuguna [1, 2] have linear as well as nonlinear
nonlocal history-valued evolution equations using the theory of semigroups and the theory
of accretive operators.

Let ψ ∈ C0 such that H(ψ) = Φ. The function u ∈ CT̃ , 0 < T̃ ≤ T , such that

u(t) =

{

ψ(t), t ∈ [−τ, 0],

S(t)ψ(0) +
∫ t

0
S(t− s)F (s, u(s), us)ds, t ∈ [0, T̃ ],

(1.6)

is called a mild solution of (1.4) on [−τ, T̃ ]. If a mild solution u of (1.4) on [−τ, T̃ ] is
such that u(t) ∈ D(A) for a.e. t ∈ [0, T̃ ], u is differentiable a.e. on [0, T̃ ] and

u′(t) +Au(t) = F (t, u(t), ut), a.e. on [0, T̃ ],

it is called a strong solution of (1.4) on [−τ, T̃ ]. If a mild solution u of (1.4) on [−τ, T̃ ] is
such that u ∈ C1((0, T̃ ];X), u(t) ∈ D(A) for t ∈ (0, T̃ ] and satisfies

u′(t) +Au(t) = F (t, u(t), ut), t ∈ (0, T̃ ],

then it is called a classical solution of (1.4) on [−τ, T̃ ].
We first establish the existence of a mild solution u ∈ CT̃ of (1.4) for some 0 < T̃ ≤ T

and its continuation to either on the whole of [−τ, T ] or show that there exists the
maximal interval [−τ, tmax), 0 < tmax ≤ T such that u is a mild solution of (1.4) on
every subinterval [−τ, T̃ ], 0 < T̃ < tmax, under the assumptions that there exists a
ψ ∈ C0 such that H(ψ) = Φ and −A is the infinitesimal generator of a C0-semigroup
S(t), t ≥ 0, of bounded linear operators in X . In the later case, since tmax ≤ T < ∞,
we obtain that

lim
t→tmax−

‖u(t)‖X = ∞.

Under the additional assumption of Lipschitz continuity on ψ on [−τ, 0], we show that the
mild solution u is a strong solution of (1.4) on the interval of existence and it is Lipschitz
continuous. Under further additional assumption that S(t) is analytic, we show that u
is a classical solution of (1.4) on the interval of existence. We also show that u is unique
if and only if ψ satisfying H(ψ) = Φ is unique.
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2 Local Existence of Mild Solutions

We first prove the following result establishing the local existence and uniqueness of a
mild solution of (1.4).

Theorem 2.1 Suppose that −A is the infinitesimal generator of a C0-semigroup
S(t), t ≥ 0 of bounded linear operators in X. Let H : C0 → C0 be such that there
exists a function ψ ∈ C0 such that H(ψ) = Φ. Let F : [0, T ] × X × C0 → X satisfy a
Lipschitz-like condition

‖F (t1, u1, φ1)− F (t2, u2, φ2)‖X ≤ LF (r)[|t1 − t2|+ ‖u1 − u2‖X + ‖φ1 − φ2‖C0
],

for all ti ∈ [0, T ], ui ∈ Br(X,ψ(0)), φi ∈ Br(C0, ψ) i = 1, 2, where LF : R+ → R
+ is a

nondecreasing function. Then there exists a mild solution u of (1.4) on [−τ, T0] for some
0 < T0 ≤ T . Here Br(Z, z0) := {z ∈ Z : ‖z − z0‖Z ≤ r} for any Banach space (Z, ‖.‖Z),
z0 ∈ Z and r > 0. Moreover, the mild solution u is unique if and only if ψ is unique.

Proof Let R > 0 be fixed. LetM ≥ 1 and ω ≥ 0 be such that ‖S(t)‖B(X) ≤Meωt for
t ≥ 0. Here B(X) is the space of all bounded linear operators on X . Choose 0 < T0 ≤ T
be such that

T0LF (R) ≤ 3/8,

sup
0≤t≤T0

‖(S(t)− I)ψ(0)‖X ≤ R/2,

T0M0 ≤ R/2,

where
M0 := T + 2‖ψ‖0 + 2MRLF (R)e

ωT + ‖F (0, ψ(0), ψ)‖X .

Define a map F : CT0
→ CT0

by

Fw(t) =

{

ψ(t), t ∈ [−τ, 0],

S(t)ψ(0) +
∫ t

0
S(t− s)F (s, w(s), ws)ds, t ∈ [0, T0],

w ∈ CT0
. (2.7)

Let ψ̃ ∈ CT be defined by

{

ψ̃(t) = ψ(t), t ∈ [−τ, 0],
ψ(0), t ∈ [0, T ].

Then from the choice of T0 it follows that F maps BR(CT0
, ψ̃) into itself. Here and

subsequently, any function in CT is also in CT̃ , 0 ≤ T̃ ≤ T , as its restriction on the

subinterval. Also, for wi ∈ BR(CT0
, ψ̃), i = 1, 2, we have

‖Fw1(t)−Fw2(t)‖X ≤ 2T0LF (R)‖w1 − w2‖T0
.

Since T0LF (R) ≤ 3/8, F is a strict contraction on BR(CT0
, ψ̃) and hence has a unique

fixed point u ∈ BR(CT0
, ψ̃). Clearly u is a mild solution of (1.4) on [−τ, T0]. It can be

shown that if ψ ∈ C0 satisfying H(ψ) = Φ is unique then the mild solution u ∈ CT0
is

unique. If there are two different ψ1 and ψ2 in C0 satisfying H(ψ1) = H(ψ2) = Φ, then
the corresponding mild solutions differ on [−τ, 0]. This completes the proof of Theorem
2.1. 2
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3 Continuation of Solutions

Theorem 3.1 Assume the hypotheses of Theorem 2.1. Then the local mild solution u of
(1.4) on [−τ, T0], 0 < T0 ≤ T , can be continued either on the whole interval [−τ, T ] or on
the maximal interval [−τ, tmax) of existence and since in the later case tmax ≤ T < ∞,
we have

lim
t→tmax−

‖u(t)‖X = ∞.

Proof Assume that T0 < T . Consider the functional differential equation

v′(t) +Av(t) = G(t, v(t), vt), 0 < t ≤ T − T0,

H̃(v0) = Φ̃,

}

(3.8)

where G : [0, T − T0]×X ×C([−τ, 0];X) → X is defined by G(t, u, χ) = F (t+ T0, u, χ),
H̃ : C0 → C0 given by H̃χ = χ for χ ∈ C0 and Φ̃(θ) = u(T0 + θ) for θ ∈ [−τ, 0]. Since all
the hypotheses of Theorem 2.1 are satisfied for problem (3.8), we have the existence of a
mild solution w ∈ CT1

, 0 < T1 ≤ T − T0 of (3.8). This mild solution w is unique as H̃ in
(3.8) is the identity map on C0. We define

ū(t) =

{

u(t), t ∈ [−τ, T0],
w(t − T0), t ∈ [T0, T0 + T1].

(3.9)

Then ū is a mild solution of (1.4) on [−τ, T0 +T1]. Continuing this way, we get the exis-
tence of a mild solution u either on the whole interval [−τ, T ] or on the maximal interval
[−τ, tmax) of existence. In the later case we may use the arguments similar to those in the
proof of Theorem 6.2.2 in [14] (pp. 193–194) to conclude that limt→tmax− ‖u(t)‖X = ∞.
This completes the proof of Theorem 3.1. 2

4 Regularity of Solutions

Theorem 4.1 Assume the hypotheses of Theorem 2.1. If, in addition, ψ is Lipschitz
continuous on [−τ, 0] and ψ(0) ∈ D(A), then u is Lipschitz continuous on every compact
subinterval of existence. If, in addition, X is reflexive, then u is a strong solution of
(1.4) on the interval of existence and this strong solution is a classical solution of (1.4)
provided S(t) is an analytic semigroup.

Proof We shall prove the result for the first case when the mild solution u exists on
the whole interval. The proof can be modified easily for the second case.

We need to show the Lipschitz continuity of u only on [0, T ]. In what follows, Ci’s
are positive constants depending only on R, T and ‖φ‖0. Let t ∈ [0, T ] and h ≥ 0. Then

‖u(t+ h)− u(t)‖X ≤ ‖(S(h)− I)S(t)ψ(0)‖X

+

∫ 0

−h

‖S(t− s)f(s+ h, u(s+ h), us+h)‖Xds

+

∫ t

0

‖s(t− s)[f(s+ h, u(s+ h), us+h)− f(s, u(s), us)]‖X ds

≤ C1

[

h+

∫ t

0

[‖u(s+ h)− u(s)‖X + ‖us+h − us‖C0
]ds

]

≤ 2C1

[

h+

∫ t

0

sup
−τ≤θ≤0

‖u(s+ h+ θ)− u(s+ θ)‖X

]

ds, (4.10)
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For the case when −τ ≤ t < 0 and 0 ≤ t+ h (clearly, t+ h ≤ h in this case), we have

‖u(t+ h)− u(t)‖X ≤ ‖(S(t+ h)− I)ψ(0)‖X + ‖ψ(t)− ψ(0)‖X

+

∫ h

0

‖S(t+ h− s)f(s, u(s), us)‖X ds

≤ C2h. (4.11)

Combining inequalities (4.10) and (4.11), we have for −τ ≤ t̄ ≤ t,

‖u(t̄+ h)− u(t̄)‖X ≤ C3

[

h+

∫ t

0

sup
−τ≤θ≤0

‖u(s+ h+ θ)− u(s+ θ)‖Xds

]

. (4.12)

Putting t̄ = t+ θ̄, −t− τ ≤ θ̄ ≤ 0, in (4.12), and taking supremum over θ̄ on [−τ, 0], we
get

sup
−τ≤θ≤0

‖u(t+ h+ θ)− u(t+ θ)‖X

≤ 2C3

[

h+

∫ t

0

sup
−τ≤θ≤0

‖u(s+ h+ θ)− u(s+ θ)‖Xds

]

. (4.13)

Applying Gronwall’s inequality in (4.13), we obtain

‖u(t+ h)− u(t)‖X ≤ sup
−τ≤θ≤0

‖u(t+ h+ θ)− u(t+ θ)‖X ≤ C4h.

Thus, u is Lipschitz continuous on [−τ, T ].
The function F̄ : [0, T ] → X given by F̄ (t) = F (t, u(t), ut), is Lipschitz continuous

and therefore differentiable a.e. on [0, T ] and F̄ ′ is in L1((0, T );X). Consider the Cauchy
problem

{

v′(t) +Av(t) = F̄ (t), t ∈ (0, T ],
v(0) = u(0),

(4.14)

By Corollary 2.10 on page 109 in Pazy [14], there exists a unique strong solution v of
(4.14) on [0, T ]. Clearly, v̄ defined by

v̄(t) =

{

u(t), t ∈ [−τ, 0],
v(t), t ∈ [0, T ],

is a strong solution of (1.4) on [−τ, T ]. But this strong solution is also a mild solution
of (1.4) and v̄ ∈ W(ψ, T ) := {Ψ ∈ CT : Ψ = ψ on [−τ, 0]}. By the uniqueness of such a
function in W(ψ, T ), we get v̄(t) = u(t) on [−τ, T ]. Thus u is a strong solution of (1.4).
If S(t) is analytic semigroup in X then we may use Corollary 3.3 on page 113 in Pazy
[14] to obtain that u is a classical solution of (1.4). Clearly, if ψ ∈ CT satisfying h(ψ) = Φ
on [−τ, 0] is unique on [−τ, 0], then u is unique. If there are two ψ and ψ̃ in CT satisfying
h(ψ) = h(ψ̃) = Φ on [−τ, 0], with ψ 6= ψ̃ on [−τ, 0], then W(ψ, T ) ∩ W(ψ̃, T ) = ∅ and
hence the corresponding solutions u and ũ of (1.4) belonging to W(ψ, T ) and W(ψ̃, T ),
respectively, are different. This completes the proof of Theorem 4.1. 2
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Abstract: We study an integral equation of the form x(t) = a(t)−
∫

t

0
C(t, s)g(x(s))ds

where C is convex and g has the sign of x. In earlier work we treated the case of

sup
∫

t

s
C2(u, s)du =: Γ < ∞. Here, we study the case of Γ = ∞ by looking at a new

equation formed from x′ + kx with k a positive constant. This enables us to define

a Liapunov functional which will give a bound on
∫

t

0
g2(x(s))ds and a parallel bound

on one of the resolvents in the linear case. Equations of this type have been used

since the early work of Volterra in a number of real-world problems.

Keywords: integral equations; Liapunov functionals; resolvents.

Mathematics Subject Classification (2000): 47G05, 34D20.

1 Introduction

We are concerned here with an integral equation

x(t) = a(t)−

∫ t

0

C(t, s)g(x(s))ds, (1)

where a : [0,∞) → < is continuous, while C is continuous for 0 ≤ s ≤ t < ∞, and
g : < → < is continuous with xg(x) > 0 if x 6= 0. Continuity of a, C, g will ensure the
existence of a solution. If the solution remains bounded, then it can be continued on
[0,∞). See [5; pp. 178-180], for example.

It is always assumed that the kernel, C(t, s), is convex in the sense that

C(t, s) ≥ 0, Cs(t, s) ≥ 0, Cst(t, s) ≤ 0, Ct(t, s) ≤ 0. (2)

Convolution problems of this type are seen in Levin [10] and Londen [11], for example.
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In the classical theory of integral equations we generally need to ask that the kernel
be very small in order to obtain global stability results. In 1928, Volterra [13] noticed
that a great many real world problems were being modeled by integral and integro-
differential equations with convex kernels which inherently suggested a fading memory.
He conjectured that there is a Liapunov functional for such kernels which would yield
much qualitative information about solutions and which would allow very large kernels.
Today we see problems in biology, nuclear reactors, viscoelasticity, and neural networks
being modeled using convex kernels.

In 1963, Levin followed Volterra’s idea and constructed such a Liapunov functional
for a convolution form of the integro-differential equation

x′ = −

∫ t

0

C(t, s)g(x(s))ds

with C convex and in 1992 [2] we constructed one for integral equations in the form of
(1). For the linear integral equation there is also a Liapunov functional for the resolvent

equation and we discussed this in some detail in [6] when sup0≤s≤t<∞

∫ t

s
C2(u, s)du =:

Γ < ∞. This paper seeks to extend some of that work to the case Γ = ∞. In the nonlinear
integral equation there is a severe technical problem in dealing with the derivative of the
Liapunov functional and the investigator must make some undesirable assumptions about
the nonlinearity. This paper offers an alternative to those assumptions. Here is some
detail concerning the two difficulties which we study.

Our Liapunov functional

V1(t) =

∫ t

0

Cs(t, s)

(
∫ t

s

g(x(u))du

)2

ds+ C(t, 0)

(
∫ t

0

g(x(u))du

)2

for (1) has a derivative satisfying

V ′
1(t) ≤ 2g(x)[a(t)− x(t)].

Owing to the absence of a chain rule, that differentiation is not simple so we want to
give the details. It would be a distraction to give them here, so we offer them in the
appendix.

In order to relate g(x) to a(t) we need to be able to separate that relation into

V ′
1 (t) ≤ |p(a(t))| − |q(x(t)|

for some functions p and q with q positive definite with respect to x or g(x) and p positive
definite with respect to a(t) so that

0 ≤ V1(t) ≤ V1(0) +

∫ t

0

|p(a(s))|ds−

∫ t

0

|q(x(s))|ds.

That separation has proved to be very cumbersome and investigators ([5; pp. 190-191],
[4], [14]) have resorted to ad hoc assumptions, as well as stringent conditions on g in
order to use Young’s inequality. A definite example will show the need for the theory
which is to follow.

Example 1.1 Consider the scalar equation

x(t) = a(t)−

∫ t

0

[1 + t− s]−1/4g(x(s))ds
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where g is an arbitrary continuous function satisfying xg(x) > 0 if x 6= 0. For a ∈
L2[0,∞) if x is a solution on [0,∞) then we know of no result or technique in the
literature that will yield g(x) ∈ Lp[0,∞). The Liapunov functional mentioned above will
yield the indicated derivative and we find no way to perform the required separation. The
difficulty will vanish using Theorem 3.1, (14). We will immediately find g(x) ∈ L2[0,∞)
without further restriction on g.

In the linear case, g(x) = x, we have

V ′
1(t) ≤ a2(t)− x2(t)

so that
∫ t

0

x2(s)ds ≤

∫ t

0

a2(s)ds,

a very useful relation. Moreover, it extends to the resolvent equation ([5; pp. 130-131])

R(t, s) = C(t, s)−

∫ t

s

C(t, u)R(u, s)du

as

V2(t) =

∫ t

s

Cv(t, v)

(
∫ t

s

R(u, s)du

)2

dv + C(t, s)

(
∫ t

s

R(u, s)du

)2

with a derivative satisfying

V ′
2(t) ≤ −R2(t, s) + C2(t, s)

as may be seen following the details in the appendix. This yields

∫ t

s

R2(u, s)du ≤

∫ t

s

C2(u, s)du

which is so useful in the variation of parameters formula

x(t) = a(t)−

∫ t

0

R(t, s)a(s)ds.

But we have a difficulty here also. If sup0≤s≤t<∞

∫ t

s
C2(u, s)du =: Γ < ∞ then we have

a very useful parallel property for R. On the other hand, if Γ = ∞ then the property
is lost and we are left with the obvious fact that if a ∈ L2 then x ∈ L2 so by default
∫ t

0
R(t, s)a(s)ds ∈ L2 and x − a ∈ L2, but we can not extract from that any essential

properties of R itself.

Example 1.2 We can continue Example 1.1 with g(x) = x and study x(t) =

a(t) −
∫ t

0
[1 + t − s]−1/4x(s)ds. The Liapunov functional of the appendix will yield

∫ t

0 x2(s)ds ≤
∫ t

0 a
2(s)ds and

∫ t

0 R(t, s)a(s)ds ∈ L2[0,∞) when a ∈ L2 without any in-
dependent property of R. Our second goal is to obtain basic properties of a resolvent
independent of a(t). That resolvent will not be R but it will serve in a parallel way to
R.



328 T.A. BURTON

Thus, we encounter fundamental problems in both the nonlinear and linear cases.
These two unsolved problems will drive this paper.

In an effort to avoid the difficulties just mentioned we consider the old technique of
differentiating (1) to obtain

x′(t) = a′(t)− C(t, t)x(t) −

∫ t

0

Ct(t, s)x(s)ds

which seems promising since for C(t, t) ≥ α > 0 we have a perturbation of the uniformly
asymptotically stable equation

x′ + C(t, t)x = 0.

However, that gain pales in comparison to our great loss in that Ct(t, s) is no longer
convex; hence, we would require some restrictions on the magnitude of Ct(t, s) in order
to use standard results on qualitative properties. To avoid all of those problems we
develop a strategy which yields very good results.

Moreover, there is an added benefit, uncommon in the theory of convex kernels. If
we can find a function f : [0,∞) → [0,∞) with

∫ t

0
ds
f(s) continuous for t ≥ 0,

|g(x)| ≤ f

(
∫ x

0

g(s)ds

)

, x ∈ <, f ∈↗, (3)

and
∫ ∞

0

ds

f(s)
= ∞, (4)

then we prove that the solution has certain integral properties.
The work is based on four Liapunov functionals, a differential inequality, and a strat-

egy for finding a strongly stable equation which has a solution of (1) as one of its solutions.

2 The Strategy

We will now employ a very simple device which seems to have been totally overlooked in
the literature until recently. It was introduced in Burton [5], further developed in Burton-
Haddock [7], and has significant applications in the existence of periodic solutions, a
project to be presented later.

A classic strategy is to differentiate (1), turning it into a differential equation

x′(t) = a′(t)− C(t, t)g(x)−

∫ t

0

Ct(t, s)g(x(s))ds. (5)

Among other techniques, we can then apply Liapunov’s direct method, as discussed in
Miller [12; p. 337]. While it sometimes is effective, it is usually a disaster since differen-
tiation tends to have a very non-smoothing effect. But under some general conditions, if
C(t, s) is convex and if k is a sufficiently large positive constant, then it is true that

D(t, s) := kC(t, s) + Ct(t, s) (6)

is convex. For example, it is readily verified that if r is a positive constant, then k = r+3
is a suitable constant for C(t, s) = [1 + t − s]−r (this pertains to Example 1.1), while
k = r + 1 is suitable for C(t, s) = e−r(t−s).
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If we form x′ + kx then we have

x′(t) = a′(t) + ka(t)− [kx+ C(t, t)g(x)]−

∫ t

0

D(t, s)g(x(s))ds. (7)

This is a one-parameter family of totally different equations having exactly one property
in common: a solution of (1) satisfies every one of those equations. If all solutions of (7)
satisfy a certain property, so does a solution of (1). Two things have happened. Since C is
convex, C(t, t) ≥ 0 and, hence, x′+kx+C(t, t)g(x) = 0 is uniformly asymptotically stable.
If a′(t)+ka(t) ∈ L2[0,∞) and C(t, t) ≥ α > 0, then Levin’s original Liapunov functional
will yield g(x(t)) ∈ L2[0,∞). In addition, if (3) and (4) hold and if a′ + ka ∈ L1[0,∞),
then we will obtain an L2 result for x.

We have used (5) to introduce a differential equation, but we have overwhelmed it
with the integral equation by taking k large. In the parallel work with Haddock [7]
the technique was different in that a very careful selection of an exact value for k was
made. An entirely different selection is made in the aforementioned work with periodic
solutions. But all three projects stem from the same idea.

What is, perhaps, more interesting is the fact that when g(x) = x, then Becker’s [1]
resolvent equation for (7) is

Zt(t, s) = −[k + C(t, t)]Z(t, s)−

∫ t

s

D(t, u)Z(u, s)du (8)

and a slight modification of Levin’s [9] Liapunov functional will yield

sup
0≤s≤t<∞

∫ t

s

Z2(u, s)du < ∞. (9)

This is a critical result in the variation of parameters formula

x(t) = Z(t, 0)x(0) +

∫ t

0

Z(t, s)[a′(s) + ka(s)]ds (10)

where x solves (1) if x(0) = a(0). These ideas will be developed in the coming sections.

3 The Nonlinear Problem

In 1963, Levin [9] considered a convolution form of

x′ = −

∫ t

0

D(t, s)g(x(s))ds (11)

with xg(x) > 0 for x 6= 0 and D convex. He constructed the Liapunov functional

V3(t) =

∫ x

0

g(s)ds+
1

2

∫ t

0

Ds(t, s)

(
∫ t

s

g(x(u))du

)2

ds

+
1

2
D(t, 0)

(
∫ t

0

g(x(u))du

)2

(12)

and found that V ′
3(t) ≤ 0 along a solution of (11). This means that

∫ x(t)

0

g(s)ds ≤ V3(t) ≤ V3(0) =

∫ x(0)

0

g(s)ds
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so that if
∫ ±∞

0
g(s)ds = ∞, then every solution of (11) is bounded.

We are going to use the same Liapunov functional on (7). In (16) below recall that
xg(x) > 0 if x 6= 0 and that C(t, t) ≥ 0.

Theorem 3.1 Suppose that D is convex,

D(t, s) ≥ 0, Ds(t, s) ≥ 0, Dst(t, s) ≤ 0, Dt(t, s) ≤ 0, (13)

that xg(x) > 0 if x 6= 0, and that V3 is defined in (12). Then along a solution of (7) we
have

V ′
3(t) ≤ g(x)[a′(t) + ka(t)]− g(x)[kx + C(t, t)g(x)]. (14)

If, in addition, |kx+ C(t, t)g(x)| ≥ µ|g(x)|, for some µ > 0, then a′ + ka ∈ L2[0,∞)
implies g(x(t)) ∈ L2[0,∞). In particular, any solution x in Example 1.1 satisfies g(x) ∈
L2[0,∞).

If (14) and (3) hold then along a solution of (7) we have

V ′
3 (t) ≤ f(V3(t))|a

′(t) + ka(t)|. (15)

If, in addition, (4) holds,
∫ ±∞

0
g(s)ds = ∞, and a′ + ka ∈ L1[0,∞), then every solution

of (7) is bounded and

∫ ∞

0

g(x(s))[kx(s) + C(s, s)g(x(s))]ds < ∞. (16)

Proof Along a solution of (7) we have

V ′
3(t) ≤ g(x)[a′(t) + ka(t)]− g(x)[kx+ C(t, t)g(x)] − g(x)

∫ t

0

D(t, s)g(x(s)ds

+ g(x)D(t, 0)

∫ t

0

g(x(u))du + g(x)

∫ t

0

Ds(t, s)

∫ t

s

g(x(u))duds.

Integrating the last term by parts yields

g(x)[D(t, s)

∫ t

s

g(x(u))du

∣

∣

∣

∣

t

0

+

∫ t

0

D(t, s)g(x(s))ds]

= g(x)[−D(t, 0)

∫ t

0

g(x(u))du +

∫ t

0

D(t, s)g(x(s))ds]

so that
V ′
3(t) ≤ g(x)[a′(t) + ka(t)]− g(x)[kx + C(t, t)g(x)].

Now, if |kx+ C(t, t)g(x)| ≥ µ|g(x)| then

V ′
3 (t) ≤ α[a′(t) + ka(t)]2 − βg2(x)

for some positive α and β, from which a′ + ka ∈ L2 implies g(x) ∈ L2.

Remark 3.1 The obvious and usual condition is that C(t, t) be greater than a pos-
itive constant, entirely consistent with the convexity. Indeed, in the convolution case
C(t) ≥ 0 and C′(t) ≤ 0 so if C(0) = 0 then C(t) ≡ 0. Even if this fails, in the next step
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we get x bounded. None of the ad hoc assumptions on g needed in Young’s inequality
found in earlier work (e.g., [4]) are needed.

Next, if (14) and (3) hold, then

V ′
3(t) ≤ f

(
∫ x

0

g(s)ds

)

|a′(t) + ka(t)| ≤ f(V3)|a
′(t) + ka(t)|

so
∫ V3(t)

V3(0)

du

f(u)
≤

∫ t

0

|a′(s) + ka(s)|ds.

If (4) holds and a′ + ka ∈ L1, then V3(t) is bounded and, hence, x(t) is bounded. This
means that g(x)[a′ + ka] ∈ L1 so from (14) we see that (16) follows. The proof is
complete.

These results raise questions for the linear case. For we then see that a′ + ka ∈ L1

yields x ∈ L2, but a′+ka ∈ L2 also yields x ∈ L2. Linear theory shows that x ∈ L1[0,∞)
is intimately related to uniform asymptotic stability. The next result shows that for
certain choices of g we approximate x ∈ L1[0,∞).

Theorem 3.2 Suppose that D is convex and that g(x) = x1/n where n is an odd

positive integer. If a′ + ka ∈ L1[0,∞), then
∫∞

0
|x(s)|

1+n

n ds < ∞.

Proof Note that there is a positive number p with

|g(x)| = |x1/n| =

(

|x1/n|(n+1)

)
1

n+1

= p

(
∫ x

0

s1/nds

)
1

n+1

.

Hence f(r) = p(r)
1

n+1 . We then have

V ′
3(t) ≤ p(V3(t))

1

n+1 |a′(t) + ka(t)|

and

1

p

∫ V3(t)

V3(0)

ds

s
1

n+1

=
1

p
s1−

1

n+1

∣

∣

∣

∣

V3(t)

V3(0)

so
1

p
V3(t)

n

n+1 ≤
1

p
V3(0)

n

n+1 +

∫ t

0

|a′(s) + ka(s)|ds.

Hence, V3(t) is bounded so x(t) is bounded and x(t)[a′(t) + ka(t)] ∈ L1[0,∞). But

V ′
3(t) ≤ |g(x)||a′(t) + ka(t)| − kxg(x)

with xg(x) = xx1/n = x1+ 1

n so
∫∞

0
|x(s)|

1+n

n ds < ∞.

Notice that V ′
3(t) ≤ −βg2(x) + α(a′(t) + ka(t))2 with a′ + ka ∈ L2 would yield

∫∞

0
x2/n(s)ds < ∞, an entirely different property. Suppose now that n > 2 and that

C(t, t) ≥ α > 0 so that both of our integral relations hold. Note that if |x(t)| ≥ 1

then |x(t)| ≤ |x|1+
1

n . If |x(t)| < 1 then |x(t)| ≤ |x(t)|2/n. Hence, we conclude that
∫∞

0 |x(s)|ds < ∞.
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4 The Linear Case

If g(x) = x then (7) becomes

x′(t) = a′(t) + ka(t)− [k + C(t, t)]x(t) −

∫ t

0

D(t, s)x(s)ds (17)

and Becker’s [1] resolvent equation is

Zt(t, s) = −[k + C(t, t)]Z(t, s)−

∫ t

s

D(t, u)Z(u, s)du, Z(s, s) = 1, (18)

(where Zt =
∂Z
∂t

) with variation of parameters formula

x(t) = Z(t, 0)x(0) +

∫ t

0

Z(t, s)[a′(s) + ka(s)]ds. (19)

The Grossman-Miller [8] resolvent equation is

Hs(t, s) = H(t, s)[k + C(s, s)] +

∫ t

s

H(t, u)D(u, s)du, H(t, t) = 1, (20)

and it is true that
H(t, s) = Z(t, s). (21)

With D convex, a Liapunov functional for (18) is

V4(t) = Z2(t, s) +

∫ t

s

Du(t, u)

(
∫ t

u

Z(v, s)dv

)2

du +D(t, s)

(
∫ t

s

Z(v, s)dv

)2

. (22)

Theorem 4.1 If D is convex and k > 0 then the derivative of V4 along a solution of
(18) satisfies

V ′
4 (t) ≤ −2[k + C(t, t)]Z2(t, s), and sup

0≤s≤t<∞

∫ t

s

Z2(u, s)du < ∞. (24)

Proof We have

V ′
4(t) ≤ −2[k + C(t, t)]Z2(t, s)− 2Z(t, s)

∫ t

s

D(t, u)Z(u, s)du

+ 2Z(t, s)D(t, s)

∫ t

s

Z(v, s)dv + 2Z(t, s)

∫ t

s

Du(t, u)

∫ t

u

Z(v, s)dvdu.

An integration of the last term by parts yields

2Z(t, s)

[

D(t, u)

∫ t

u

Z(v, s)dv

∣

∣

∣

∣

t

s

+

∫ t

s

D(t, u)Z(u, s)du

]

= 2Z(t, s)

[

−D(t, s)

∫ t

s

Z(v, s)dv +

∫ t

s

D(t, u)Z(u, s)du

]

.

Cancellation of terms yields the required conclusion.
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We then see that

Z2(t, s) ≤ V4(t) ≤ V4(s)− 2k

∫ t

s

Z2(u, s)du

with Z2(s, s) = 1 yielding

Z2(t, s) + 2k

∫ t

s

Z2(u, s)du ≤ 1. (25)

This is a significant difference from the integral equation resolvent which requires
∫ t

s
C2(u, s)du bounded in order to get the parallel conclusion for the resolvent. Notice

that
∫ t

0 Z
2(u, 0)du ≤ 1/(2k); as k → ∞, the integral tends to zero.

It is most direct to obtain x ∈ L2[0,∞) in the linear case from (1) with the Liapunov
functional

V1(t) =

∫ t

0

Cs(t, s)

(
∫ t

s

x(u)du

)

ds+ C(t, 0)

(
∫ t

0

x(u)du

)2

,

yielding
V ′
1(t) ≤ −x2(t) + a2(t).

We are coming to one of our central issues. From a ∈ L2 we obtain x ∈ L2 and,
hence, from (29) we have by default that

∫ t

0

R(t, s)a(s)ds ∈ L2 and x− a ∈ L2.

However, we have no independent property of R which can be used without a(t). We
seek integral properties on R alone and the following is a typical way in which we would
use them. Recall that in Section 1 we found that for C convex, then

∫ t

s

R2(u, s)ds ≤

∫ t

s

C2(u, s)du ≤ Γ ≤ +∞.

We just noted that a ∈ L2 yields x− a ∈ L2 by default. But Γ < ∞ yields x− a ∈ L2

by direct computation, not by default, and that is such a desirable property in other
contexts.

Proposition 4.1 If Γ < ∞ then a ∈ L1[0,∞) implies x− a ∈ L2[0,∞).

We will give a proof of a parallel result below, but it is sketched as follows.

(x(t) − a(t))2 =

(

−

∫ t

0

R(t, s)a(s)ds

)2

so integration, followed by the Schwarz inequality and interchange of the order of inte-
gration will yield the result.

Our focus here is on the case of Γ = +∞ and we attempt to obtain an integrability
property of a resolvent. The first step is to note that (25) did not require Γ < ∞.

Proposition 4.2 If (25) holds, then a′ + ka ∈ L1[0,∞) implies x ∈ L2[0,∞) and
x− Z(t, 0)x(0) ∈ L2[0,∞).
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Proof Let a′(t) + ka(t) =: p(t) and from (19) we have

(1/2)x2(t) ≤ Z2(t, 0)x2(0) +

(
∫ t

0

Z(t, s)p(s)ds

)2

.

The last term is in L1, not by default, but by the nonconvolution extension of the classical
theorem that the convolution of an L1−function with an L2−function is an L2−function.
Here are the details. We have

(1/2)

∫ t

0

x2(u)du ≤

∫ t

0

Z2(u, 0)x2(0)du +

∫ t

0

(
∫ u

0

Z(u, s)p(s)ds

)2

du

≤

∫ t

0

Z2(u, 0)x2(0)du +

∫ t

0

∫ u

0

|p(s)|ds

∫ u

0

Z2(u, s)|p(s)|dsdu

≤

∫ t

0

Z2(u, 0)x2(0)du +

∫ ∞

0

|p(s)|ds

∫ t

0

∫ t

s

Z2(u, s)du|p(s)|ds

≤

∫ t

0

Z2(u, 0)x2(0)du +

(
∫ ∞

0

|p(s)|ds

)2

(1/2k).

We will now see how this applies to R(t, s).

5 Relations Between Resolvents

If we begin with C convex and

x(t) = a(t)−

∫ t

0

C(t, s)x(s)ds, (26)

we have the resolvent equation

R(t, s) = C(t, s)−

∫ t

s

C(t, u)R(u, s)du (27)

and the variation of parameters formula

x(t) = a(t)−

∫ t

0

R(t, s)a(s)ds. (28)

For (26) there is the Liapunov functional

V1(t) =

∫ t

0

Cs(t, s)

(
∫ t

s

x(u)du

)2

ds+ C(t, 0)

(
∫ t

0

x(u)du

)2

(29)

and a calculation given in the appendix yields

V ′
1 (t) ≤ −x2(t) + a2(t) (30)

and
∫ t

0

x2(s)ds ≤

∫ t

0

a2(s)ds. (31)
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In a parallel manner we have a Liapunov functional for the resolvent equation given by

V2(t) =

∫ t

s

C2(t, u)

(
∫ t

u

R(v, s)dv

)2

du+ C(t, s)

∫ t

s

R(u, s)du

)2

(32)

and a calculation will yield

V ′
2(t) ≤ −R2(t, s) + C2(t, s) (33)

with
∫ t

s

R2(u, s)du ≤

∫ t

s

C2(u, s)du. (34)

We explored consequences of these relations in [6] for the case

sup
0≤s≤t<∞

∫ t

s

C2(u, s)du < ∞. (35)

Here, we look at the case where

sup
0≤s≤t<∞

∫ t

s

C2(u, s)du = ∞ (36)

so that V2 yields nothing about R. We find a substitute for

sup
0≤s≤t<∞

∫ t

s

R2(u, s)du < ∞ (37)

when (36) holds.

Theorem 5.1 If D is defined in (6), D convex, and if d
ds
C(s, s) is continuous, then

R(t, s) = Zs(t, s)− kZ(t, s). (38)

Proof From (17), (18), and (24) we see that for (1)

x(t) = a(t)−

∫ t

0

R(t, s)a(s)ds

and

x(t) = Z(t, 0)a(0) +

∫ t

0

Z(t, s)[a′(s) + ka(s)]ds

= Z(t, 0)a(0) + Z(t, s)a(s)

∣

∣

∣

∣

t

0

−

∫ t

0

Zs(t, s)a(s)ds+ k

∫ t

0

Z(t, s)a(s)ds

= Z(t, 0)a(0) + a(t)− Z(t, 0)a(0)−

∫ t

0

[Zs(t, s) + kZ(t, s)]a(s)ds

= a(t)−

∫ t

0

[Zs(t, s)− kZ(t, s)]a(s)ds.
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This means that for any a(t) with a′(t) continuous then
∫ t

0

R(t, s)a(s)ds =

∫ t

0

[Zs(t, s)− kZ(t, s)]a(s)ds. (39)

Looking back at the Grossman-Miller resolvent (20) and noting that H(t, s) = Z(t, s)
we see that if C(s, s) has a continuous derivative, then Hss = Zss is continuous. We
should also note from (27) that Rs is continuous. Thus, for any fixed t we can pick
a(s) = Zs(t, s)− kZ(t, s)−R(t, s) and have from (39) with t fixed that

∫ t

0

[Zs(t, s)− kZ(t, s)−R(t, s)]2ds = 0. (40)

Thus, the integrand is identically zero and (38) holds. This completes the proof.
The variation of parameters formula for (1) now becomes

x(t) = a(t)−

∫ t

0

[Zs(t, s)− Z(t, s)]a(s)ds. (41)

We have independent properties of Z, as well as Zs through (20) and through integration
by parts.

6 Appendix

In Section 1, we mentioned that our Liapunov functional

V1(t) =

∫ t

0

Cs(t, s)

(
∫ t

s

g(x(u))du

)2

ds+ C(t, 0)

(
∫ t

0

g(x(u))du

)2

has a derivative along a solution of (1) satisfying

V ′
1(t) ≤ 2g(x)[a(t)− x(t)].

Owing to the absence of a chain rule, that differentiation is not simple so we want to
give the details. Using Leibnitz’s rule we have

V ′
1(t) =

∫ t

0

Cst(t, s)

(
∫ t

s

g(x(u))du

)2

ds+ 2g(x)

∫ t

0

Cs(t, s)

∫ t

s

g(x(u))duds

+ Ct(t, 0)

(
∫ t

0

g(x(s))ds

)2

+ 2g(x)C(t, 0)

∫ t

0

g(x(s))ds.

We now integrate the third-to-last term by parts to obtain

2g(x)

[

C(t, s)

∫ t

s

g(x(u))du

∣

∣

∣

∣

t

0

+

∫ t

0

C(t, s)g(x(s))ds

]

= 2g(x)

[

−C(t, 0)

∫ t

0

g(x(u))du +

∫ t

0

C(t, s)g(x(s))ds

]

.

Cancel terms, use the sign conditions, and use (1) in the last step of the process to unite
the Liapunov functional and the equation obtaining

V ′
1(t) =

∫ t

0

Cst(t, s)

(
∫ t

s

g(x(u))du

)2

ds+ Ct(t, 0)

(
∫ t

0

g(x(s))ds

)2

+ 2g(x)[a(t)− x(t)] ≤ 2g(x)[a(t)− x(t)].
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Abstract: In this paper, we prove the existence of homoclinic orbits for the se-

cond order Hamiltonian system: q̈(t) + ∇V (t, q(t)) = f(t), where V ∈ C1(R ×

R
n,R), V (t, q) = −K(t, q) + W (t, q) is T -periodic in t, K satisfies the ”pinching”

condition b1|q|
2
≤ K(t, q) ≤ b2|q|

2 and W is superquadratic at the infinity and needs

not satisfy the global Ambrosetti-Rabinowitz condition. A homoclinic orbit is ob-

tained as the limit of 2kT -periodic solutions of a certain sequence of second order

differential equations.

Keywords: homoclinic orbit; Hamiltonian system; Mountain Pass Theorem.

Mathematics Subject Classification (2000): 34C37, 37J45, 70H05.

1 Introduction

Let us consider the second order Hamiltonian system

q̈(t) +∇V (t, q(t)) = f(t), (HS)

where V (t, x) = −K(t, x) + W (t, x),∇V (t, x) = (∂V/∂x)(t, x), K, W : R × R
n → R

are C1-maps, T -periodic with respect to t, T > 0 and f : R −→ R
n is continuous and

bounded. We will say that a solution q of (HS) is homoclinic (to 0) if q(t) −→ 0 as
t −→ ±∞. In addition, if q 6≡ 0 then q is called a nontrivial homoclinic solution.

The problem of finding subharmonic and homoclinic solutions for Hamiltonian sys-
tems has been the object of many works under different assumptions on the growth
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of W at infinity, see [1,3-5,8,12,13] and references therein. Most of them treat the su-

perquadratic case. They usually suppose K(t, x) =
1

2
(L(t)x, x) with L(t) is a symmetric

matrix valued function and W satisfies the global Ambrosetti-Rabinowitz condition, that
is, there exists µ > 2 such that

0 < µW (t, x) ≤ (∇W (t, x), x), ∀ (t, x) ∈ R× R
n\{0}.

Especially, in [13], Rabinowitz established the existence of homoclinic orbits for the
Hamiltonian system (HS) under the above assumptions and f ≡ 0. Recently, the authors
in [7] consider a more general case whereK is assumed to satisfy the ”pinching” condition
b1|x|2 ≤ K(t, x) ≤ b2|x|2 and the function f may be nonzero.

In this paper, we shall study the existence of homoclinic orbits for (HS) when W
satisfies the following superquadratic condition:

W (t, x)/|x|2 −→ +∞ as | x |→ ∞ uniformly in t ∈ R, (1)

and needs not satisfy the global Ambrosetti-Rabinowitz condition.

The superquadratic condition (1) was used in many recent works to study the exis-
tence of periodic and subharmonic solutions for Hamiltonian systems (see for example
[6,12]). Subsequently, this condition was applied among other conditions in [9,11] to look
for homoclinic orbits. Our approach is different from the last ones, in fact, similarly
to [13], a homoclinic orbit will be obtained as a limit, as k −→ ∞, of sequence qk of
subharmonics for second order differential equations. The sequence qk is obtained via
a standard version of the Mountain Pass Theorem (Theorem 2.2 in [14]). Part of the
difficulty in applying this theorem is in verifying the Palais-Smale condition. However,
as it’s shown in [2], a deformation lemma can be proved with the (C) condition, replacing
the usual Palais-Smale condition, and it turns out that the Mountain Pass Theorem still
holds true.

We make the following assumptions :
(H1) there exist a1, a2 > 0 such that

a1|x|
2 ≤ K(t, x) ≤ a2|x|

2, ∀ (t, x) ∈ R× R
n,

(H2) K(t, x) ≤ (x,∇K(t, x)) ≤ 2K(t, x), ∀ (t, x) ∈ R× R
n,

(H3) W (t, 0) ≡ 0 and ∇W (t, x) = o(|x|) as x −→ 0 uniformly in t,
(H4) there exist constants d1 > 0 and r > 2 such that

W (t, x) ≤ d1|x|
r , ∀ (t, x) ∈ R× R

n,

(H5) there exist constants d2 > 0, µ > 1, µ > r − 2 and β ∈ L1(R,R+) such that

(∇W (t, x), x) − 2W (t, x) ≥ d2|x|
µ − β(t), ∀ (t, x) ∈ R× R

n.

Here (., .) denotes the standard inner product in R
n and | . | is the induced norm.

For each k ∈ N, let Ek = W 1,2
2kT (R,R

n), the Hilbert space of 2kT -periodic functions
on R with values in R

n under the norm

||q||Ek
=

(

∫ kT

−kT

(|q̇(t)|2 + |q(t)|2)dt
)

1

2

.
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Furthermore, let L∞
2kT (R,R

n) denote the space of 2kT -periodic essentially bounded (mea-
surable) functions from R into R

n equipped with the norm

||q||L∞

2kT
= ess sup{|q(t)|; t ∈ [−kT, kT ]}.

The following result was proved by Rabinowitz in [13].

Proposition 1.1 There is a positive constant C such that for each k ∈ N, and q ∈ Ek

the following inequality holds:

||q||L∞

2kT
≤ C||q||Ek

. (2)

Set b1 := min{1, 2a1}, b2 := max{1, 2a2} and suppose that

(H6) 2d1 < b1, f ∈ L2(R,Rn) ∩ Lγ(R,Rn) and ||f ||L2 <
b1 − 2d1

2C
, where

1

γ
+

1

µ
= 1.

Our main result is the following :

Theorem 1.1 Suppose (H1) − (H6) and (1) are satisfied then the system (HS)
possesses a nontrivial homoclinic solution q ∈ W 1,2(R,Rn) such that q̇(t) −→ 0 as
t −→ ±∞.

Remark 1.1 Consider the functions

K(t, x) = (1 +
1

1 + x2
)x2, W (t, x) = h(t)|x|2 ln(1 + |x|2),

where h is positive, continuous and T -periodic function. A straightforward computation
shows that W satisfies the assumptions (H3)− (H5) of Theorem 1.1 but does not satisfy
the global Ambrosetti–Rabinowitz condition essentially. Moreover, K(t, x) satisfies the
assumptions (H1) and (H2) but can not be written in the form 1/2(L(t)x, x). Hence,
Theorem 1.1 extends the results in [7,13] mainly. Furthermore, contrary to [7,13], the
conditions of our result permit to W to change sign near the origin. Theorem 1.1 is also
related to those in [9,11,15], where K(t, x) has the form 1/2(L(t)x, x) without periodicity
assumption on V and f ≡ 0.

2 Proof of Theorem 1.1

For each k ∈ N, let L2
2kT (R,R

n) denote the Hilbert space of 2kT -periodic functions on

R with values in R
n under the norm ||q||L2

2kT

= (
∫ kT

−kT
|q(t)|2dt)1/2. Let fk : R −→ R

n

be the 2kT -periodic extension of the restriction of f to the interval [−kT, kT ] and ηk :
Ek −→ [0,+∞[ given by

ηk(q) =
(

∫ kT

−kT

[

|q̇(t)|2 + 2K(t, q(t))
]

dt
)1/2

.

By (H1) we get
b1||q||

2
Ek

≤ η2k(q) ≤ b2||q||
2
Ek

. (3)

Let Ik : Ek −→ R, be defined by

Ik(q) =

∫ kT

−kT

[1

2
|q̇(t)|2 − V (t, q(t))

]

dt+

∫ kT

−kT

(fk(t), q(t))dt

=
1

2
η2k(q)−

∫ kT

−kT

W (t, q(t))dt+

∫ kT

−kT

(fk(t), q(t))dt. (4)
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Then Ik ∈ C1(Ek,R) and it’s easy to show that

I ′k(q)v =

∫ kT

−kT

[

(q̇(t), v̇(t))− (∇V (t, q(t)), v(t))
]

dt+

∫ kT

−kT

(fk(t), v(t))dt.

By (H2), we get

I ′k(q)q ≤ η2k(q)−

∫ kT

−kT

(∇W (t, q(t)), q(t))dt +

∫ kT

−kT

(fk(t), q(t))dt. (5)

Moreover, it is well known that critical points of Ik are classical 2kT -periodic solutions
of the second order Hamiltonian system

q̈(t) +∇V (t, q(t)) = fk(t). (HSk)

Lemma 2.1 If V and f satisfy (H1)− (H6) and (1), then for all k ∈ N the system
(HSk) possesses a 2kT -periodic solution.

Proof It suffices to prove that the functional Ik satisfies all the assumptions of the
Mountain Pass Theorem (Theorem 2.2 in [14]) with the (C) condition replacing the usual
Palais-Smale condition. This will be done by a sequence of lemmas. 2

Lemma 2.2 Ik satisfies the (C) condition, i.e., for every constant c and sequence
{un} ⊂ Ek, {un} has a convergent subsequence if Ik(un) −→ c and (1+||un||)I ′k(un) −→ 0
as n −→ ∞.

Proof Assume that {un} ⊂ Ek is a (C) sequence of Ik, that is, Ik(un) is bounded
and (1 + ||un||)||I ′k(un)|| −→ 0 as n −→ ∞. Then there exists Mk > 0 such that

Mk ≥ 2Ik(un)− I ′k(un)un

≥

∫ kT

−kT

[

(∇W (t, un(t)), un(t)) − 2W (t, un(t))
]

dt+

∫ kT

−kT

(fk(t), un(t))dt.

So, by (H5), we get

Mk ≥ d2

∫ kT

−kT

|un(t)|
µdt−

∫ kT

−kT

β(t)dt+

∫ kT

−kT

(fk(t), un(t))dt.

Then, by Hölder inequality

d2||un||
µ

Lµ
2kT

≤ Mk +

∫ kT

−kT

β(t)dt + ||fk||Lγ
2kT

||un||Lµ
2kT

,

where γ is the conjugate exponent of µ. Since µ > 1, there exists a constant Ck such
that

||un||Lµ
2kT

≤ Ck. (6)

On the other hand, by (3), (4) and (H4), one has

b1||un||
2
Ek

≤ 2Ik(un) + 2d1

∫ kT

−kT

|un(t)|
rdt− 2

∫ kT

−kT

(fk(t), un(t))dt

≤ 2Ik(un) + 2d1

∫ kT

−kT

|un(t)|
rdt+ 2Ck||fk||Lγ

2kT
. (7)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 10 (4) (2010) 339–348 343

If µ ≥ r, by Hölder inequality

∫ kT

−kT

|un(t)|
rdt ≤ (2kT )

µ−r

µ

(

∫ kT

−kT

|un(t)|
µdt

)
r

µ

.

Combining the above with (6) and (7), we obtain that ||un||Ek
is bounded.

If µ < r, by (2), we have

∫ kT

−kT

|un(t)|
rdt =

∫ kT

−kT

|un(t)|
r−µ|un(t)|

µdt

≤ ||un||
r−µ
L∞

2kT

∫ kT

−kT

|un(t)|
µdt

≤ Cr−µ||un||
r−µ
Ek

∫ kT

−kT

|un(t)|
µdt. (8)

Hence, by (6) and (8) there exists a constant C′
k such that

b1||un||
2
Ek

≤ 2Ik(un) + C′
k||un||

r−µ
Ek

+ 2 Ck||fk||Lγ
2kT

.

Since r − µ < 2 and Ik(un) is bounded, then ||un||Ek
will be bounded too.

In a similar way to Proposition B.35 in [14], we can prove that {un} has a convergent
subsequence. Hence Ik satisfies the (C) condition. 2

Lemma 2.3 The functional Ik satisfies the condition (I1) of the Mountain Pass
Theorem.

Proof Let q ∈ Ek, such that 0 < ||q||L∞

2kT
≤ 1. By (H4) we have

∫ kT

−kT

W (t, q(t))dt ≤ d1

∫ kT

−kT

|q(t)|2dt ≤ d1||q||
2
Ek

. (9)

Then, by (3), (4), (9) and (H6) it follows that

Ik(q) ≥
b1
2
||q||2Ek

− d1||q||
2
Ek

− ||fk||L2

2kT

||q||L2

2kT

≥
b1
2
||q||2Ek

− d1||q||
2
Ek

− ||f ||L2 ||q||Ek

≥
1

2
(b1 − 2d1 − 2C||f ||L2)||q||2Ek

+ C||f ||L2

(

||q||2Ek
−

||q||Ek

C

)

.

Set

ρ =
1

C
, α =

b1 − 2d1 − 2C||f ||L2

2C2
.

By (2), if ||q||Ek
= ρ, then 0 < ||q||L∞ ≤ 1 and Ik(q) ≥ α. 2

Lemma 2.4 Under the assumption (1), Ik satisfies the condition (I2) of the Moun-
tain Pass Theorem.
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Proof Let q ∈ E1, q 6≡ 0 such that q(T ) = q(−T ) = 0 and A >
b2||q||2E1

2||q||2
L2

2T

. By (1),

there exists B > 0 such that for all x ∈ R
n and t ∈ R, W (t, x) ≥ A|x|2 −B.

Hence, for all ζ ∈ R the following inequality holds :

I1(ζq) ≤
b2
2
ζ2||q||2E1

−Aζ2||q||2L2

2T

+ |ζ|||f1||L2

2T

||q||L2

2T

+ 2TB. (10)

Then by (10) and the choice of A there exists ζ ∈ R satisfying ||ζq||E1
> ρ and I1(ζq) < 0.

For k > 1, set e1(t) = ζq(t) and

ek(t) =

{

e1(t) for |t| ≤ T,
0 for T < |t| ≤ kT.

(11)

Then ek ∈ Ek, ||ek||Ek
= ||e1||E1

> ρ and Ik(ek) = I1(e1) < 0 for every k ∈ N. 2

For our setting, clearly Ik(0) = 0, so, by applying the Mountain Pass Theorem, Ik
possesses a critical value ck ≥ α. Hence, for every k ∈ N, there is qk ∈ Ek such that

Ik(qk) = ck, I ′k(qk) = 0. (12)

This completes the proof of Lemma 2.4.

Lemma 2.5 Let (qk)k∈N be the sequence given by (12). Then there exists a subse-
quence (qkj

)j∈N convergent to a certain function q0 in C1
loc(R,R

n).

Proof First of all we show that the sequences {ck}k∈N and {||qk||Ek
}k∈N are bounded.

For every k ∈ N, let gk : [0, 1] −→ Ek be a curve given by gk(s) = sek, where ek is defined
by (11). Then gk ∈ Γk and Ik(gk(s)) = I1(g1(s)) for all k ∈ N and s ∈ [0, 1]. Therefore,
by the Mountain Pass Theorem,

ck ≤ max
s∈[0,1]

I1(g1(s)) ≡ M0 (13)

independent of k ∈ N. As I ′k(qk) = 0, we receive from (4), (5) and (H5) that

2ck = 2Ik(qk)− I ′k(qk)qk

≥

∫ kT

−kT

[

(∇W (t, qk(t)), qk(t))− 2W (t, qk(t))
]

dt+

∫ kT

−kT

(fk(t), qk(t))dt

≥ d2

∫ kT

−kT

|qk(t)|
µdt−

∫ kT

−kT

β(t)dt+

∫ kT

−kT

(fk(t), qk(t))dt. (14)

By Hölder inequality, (13) and (14) we get

d2||qk||
µ

L
µ

2kT

≤ 2M0 + β0 + α0||qk||Lµ

2kT

,

where α0 = ||f ||Lγ

R

and β0 =

∫ +∞

−∞

β(t)dt. Since µ > 1 and all the constants in the above

inequality are independent of k, then there exists a constant L such that

||qk||Lµ

2kT

≤ L. (15)
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On the other hand, by (3), (4) and (H4), one has

b1||qk||
2
Ek

≤ 2M0 + 2d1

∫ kT

−kT

|qk(t)|
rdt− 2

∫ kT

−kT

(fk(t), qk(t))dt. (16)

If r ≥ µ, by (1), (15) and Hölder inequality we obtain

b1||qk||
2
Ek

≤ 2M0 + 2d1||qk||
r−µ
L∞

2kT

∫ kT

−kT

|qk(t)|
µdt− 2

∫ kT

−kT

(fk(t), qk(t))dt

≤ 2M0 + 2cLµ||qk||
r−µ
Ek

+ 2α0L. (17)

Since r − µ < 2 and all coefficients of (17) are independent of k, we see that there is
M1 > 0 independent of k such that

||qk||Ek
≤ M1. (18)

If r < µ, we have

∫ kT

−kT

|qk(t)|
rdt =

∫

{t∈[−kT,kT ];|qk(t)|≤1}

|qk(t)|
rdt+

∫

{t∈[−kT,kT ];|qk(t)|>1}

|qk(t)|
rdt

≤

∫

{t∈[−kT,kT ];|qk(t)|≤1}

|qk(t)|
2dt+

∫

{t∈[−kT,kT ];|qk(t)|>1}

|qk(t)|
µdt

≤

∫ kT

−kT

|qk(t)|
2dt+

∫ kT

−kT

|qk(t)|
µdt. (19)

By (16) and (19) we get

b1||qk||
2
Ek

≤ 2M0 + 2d1||qk||
2
Ek

+ 2d1L
µ + 2α0L.

Hence
(b1 − 2d1)||qk||

2
Ek

≤ 2M0 + 2d1L
µ + 2α0L.

Since b1 > 2d1, (18) remains true.
Now, we observe that the sequences {qk}k∈N, {q̇k}k∈N and {q̈k}k∈N are uniformly

bounded. By (2) and (18),
||qk||L∞

2kT
≤ CM1 ≡ M2 (20)

for every k ∈ N. Since qk satisfies (HSk), if t ∈ [−kT, kT ] we have

|q̈k(t)| ≤ |fk(t)|+ |∇V (t, qk(t))| ≤ sup
t∈R

|f(t)|+ |∇V (t, qk(t))|,

so, by (20), there exists M3 > 0 independent of k such that

||q̈k||L∞

2kT
≤ M3. (21)

From the Mean Value Theorem it follows that for every k ∈ N and t ∈ R there exists
τk ∈ [t− 1, t] such that

q̇k(τk) =

∫ t

t−1

q̇k(s)ds = qk(t)− qk(t− 1).
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Combining the above with (20) and (21) we obtain

|q̇k(t)| = |

∫ t

τk

q̈k(s)ds+ q̇k(τk)|

≤

∫ t

t−1

|q̈k(s)|ds+ |qk(t)− qk(t− 1)| ≤ M3 + 2M2 ≡ M4,

and hence for every k ∈ N

||q̇k||L∞

2kT
≤ M4. (22)

To finish the proof it is sufficient to note that the sequences {qk}k∈N and {q̇k}k∈N are
equicontinuous. Indeed, for every k ∈ N and t1, t2 ∈ R, we have by (22)

|qk(t1)− qk(t2)| = |

∫ t2

t1

q̇k(s)ds| ≤

∫ t2

t1

|q̇k(s)|ds ≤ M4|t1 − t2|,

and similarly, by (21), we have

|q̇k(t1)− q̇k(t2)| ≤ M3|t1 − t2|.

Applying now the Arzelà-Ascoli theorem, we receive the claim. 2

Lemma 2.6 Let q0 : R −→ R
n be the function given by Lemma 2.5. Then q0 is the

desired homoclinic solution of (HS).

Proof The proof of this lemma is based on the two following facts.
Fact 1 Let q : R −→ R

n be a continuous map. If q̇ : R −→ R
n is continuous at t0 then

lim
t−→t0

q(t)− q(t0)

t− t0
= q̇(t0).

Fact 2 Let q : R −→ R
n be a continuous map such that q̇ is locally square integrable.

Then, for all t ∈ R, we have

|q(t)| ≤
√
2
(

∫ t+ 1

2

t− 1

2

(|q(s)|2 + |q̇(s)|2)ds
)

1

2

. (23)

The proofs of these facts are elementary and can be found in [7, p 385].

First, we show that q0 is a solution of (HS). By Lemma 2.1 and Lemma 2.5, we have
qkj

−→ q0 in C1
loc(R,R

n), as j −→ ∞, and

q̈kj
(t) +∇V (t, qkj

(t)) = fkj
(t)

for every j ∈ N, and t ∈ [−kjT, kjT ]. Take a, b ∈ R with a < b. There exists j0 ∈ N such
that for all j > j0 and t ∈ [a, b], we have

q̈kj
(t) = −∇V (t, qkj

(t)) + f(t).

Hence, q̈kj
is continuous in [a, b] and q̈kj

(t) −→ −∇V (t, q0(t)) + f(t) uniformly on [a, b].
Fact 1 implies that q̈kj

is a classical derivative of q̇kj
in (a, b) for all j > j0. Moreover,

since q̇kj
−→ q̇0 uniformly on [a, b], we obtain

q̈0(t) = −∇V (t, q0(t)) + f(t)
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for every t ∈ (a, b). Since a and b are arbitrary, we conclude that q0 satisfies (HS).

Now we prove that q0(t) −→ 0, as |t| −→ ∞. First of all remark that for all l ∈ N

there exists j0 ∈ N such that for all j > j0, we have

∫ lT

−lT

(|qkj
(t)|2 + |q̇kj

(t)|2)dt ≤ ||qkj
||2Ekj

≤ M2
1 .

By Lemma 2.5, we get
∫ lT

−lT

(|q0(t)|
2 + |q̇0(t)|

2)dt ≤ M2
1 .

Letting l −→ ∞, we obtain
∞
∫

−∞

(|q0(t)|2 + |q̇0(t)|2)dt ≤ M2
1 , and so

∫

|t|≥r

(|q0(t)|
2 + |q̇0(t)|

2)dt −→ 0, (24)

as r −→ ∞. Combining (23) and (24), we receive our claim.
In the next step we show that q̇0(t) −→ 0, as |t| −→ ∞. To do this, applying (23),

we obtain

|q̇0(t)| ≤
√
2
(

∫ t+ 1

2

t− 1

2

(|q̇0(s)|
2 + |q̈0(s)|

2)ds
)

1

2

.

From (24), we get
∫ t+ 1

2

t− 1

2

|q̇0(s)|
2ds −→ 0,

as |t| −→ ∞. Hence, it suffices to prove that

∫ t+ 1

2

t− 1

2

|q̈0(s)|
2ds −→ 0, (25)

as |t| −→ ∞. Since q0 is a solution of (HS), we obtain

∫ t+ 1

2

t− 1

2

|q̈0(s)|
2ds =

∫ t+ 1

2

t− 1

2

|∇V (s, q0(s))|
2ds+

∫ t+ 1

2

t− 1

2

|f(s)|2ds

−2

∫ t+ 1

2

t− 1

2

(∇V (s, q0(s)), f(s))ds,

and then
∫ t+ 1

2

t− 1

2

|q̈0(s)|
2ds ≤

∫ t+ 1

2

t− 1

2

|∇V (s, q0(s))|
2ds+

∫ t+ 1

2

t− 1

2

|f(s)|2ds

+2
(

∫ t+ 1

2

t− 1

2

|∇V (s, q0(s)|
2ds

)
1

2

(

∫ t+ 1

2

t− 1

2

|f(s)|2ds
)

1

2

. (26)

By (H6), we have
∫ t+ 1

2

t− 1

2

|f(s)|2ds −→ 0, (27)
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as |t| −→ ∞. On the other hand, since ∇V (t, 0) = 0 for all t ∈ R and q0(t) −→ 0, as
|t| −→ ∞, (25) follows from (26) and (27).

Finally, it remains to show that q0 is nontrivial. Obviously, this will be the case when
f 6≡ 0, otherwise, using (H3), the proof is the same as in [13]. 2
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Abstract: In this paper we investigate the complete integrability of the system of

six coupled nonlinear ODEs, which arises in the ODE reduction of rotating stratified

Boussinesq equations. We use Painlevé test to investigate the complete integrability

of the system. And we conclude that the system is completely integrable only if the

Rayleigh number Ra = 0. The singular solution of the system admits the movable

pole type singularity in complex domain.
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1 Introduction

We undertake the Painlevé analysis of the system of six coupled nonlinear ODEs arising as
a reduction of rotating stratified Boussinesq equations. The rotating stratified Boussinesq
equations form a system of partial differential equations modelling the movement of
planetary atmosphere. In their study of instability in stratified fluids at large Richardson
number, Majda and Shefter [1] analyzed certain system of ODE reduction of stratified
Boussinesq equations. Srinivasan et al [2] gave the complete analysis of reduced system
of ODEs and discussed the stability of degenerate critical point. In their paper Desale
and Srinivasan [3] examine the same system in the light of the ARS (Ablowitz, Ramani
and Segur [4]) conjecture. Ablowitz, Ramani and Segur have conjectured that a system
of PDEs is completely integrable if all its ODE reductions are of Painlevé type. The
conjecture has been tested on large class of differential equations and has since been
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employed as a popular test of integrability. Whereas in the basin scale dynamics Maas
[5], has considered the flow of fluid contained in rectangular basin of dimension L×L×H ,
which is temperature stratified with the fixed zeroth order moments of mass and heat.
The container is assumed to be steady, uniformly rotating on an f -plane. With this
assumption Maas [5] reduces the rotating stratified Boussinesq equations to an interesting
six coupled system of ODEs. Further, Desale [6] has given the complete analysis of the
system and also tested the system for complete integrability by determining the four first
integrals and uses the Jacobi’s theorem. In their recent paper Desale and Sharma [7] have
reduced the rotating stratified Boussinesq equations into the system of six coupled ODEs
that are also in similar nature with the system which we are looking in this paper.

In this paper we have tested the system of six coupled nonlinear ODEs for its complete
integrability via Painlevé analysis. Here we state that our analysis follows similar kind of
techniques as used by Desale and Srinivasan in their paper [3]. But our system includes
additional terms due to the effects of rotation so that in calculations we are far apart
from Desale and Srinivasan [3].

This paper is organized as follows. Section 2 gives the ODE reduction of rotating
stratified Boussinesq equations. We implement the Painlevé test to determine the singu-
lar solution of the system in Section 3. In Section 4, we illustrate two systems that also
exhibit the similar kind of solutions. Finally, we conclude the results in Section 5.

2 Reduced System of Nonlinear ODEs

We now begin by describing the rotating stratified Boussinesq equations (see Majda [8],
p. 1)

Dv

Dt
+ f(ê3 × v) = −∇p+ ν(∆v) −

gρ̃

ρb
ê3,

divv = 0,
Dρ̃

Dt
= κ∆ρ̃,

(1)

where v denotes the velocity field, ρ is the density of fluid which is the sum of constant
reference density ρb and perturb density ρ̃, p is the pressure, g is the acceleration due
to gravity that points in −ê3 direction, f is the rotation frequency of earth, ν is the
coefficient of viscosity, κ the coefficient of heat conduction and D

Dt
= ∂

∂t
+ (v · ∇) is a

convective derivative. For more about rotating stratified Boussinesq equations one may
consult with Majda [8].

In the frame of reference of an uniformly stratified fluid contained in rotating rect-
angular box of dimension L × L ×H , which is temperature stratified with fixed zeroth
order moments of mass and heat (so that there is no net evaporation or precipitation,
nor any net river input or output, and neither a heating nor cooling). The container is
assumed to be in steady uniform rotation on an f -plane. Maas [5] reduces the system of
equations (1) into the following system of six coupled ODEs:

Pr−1 dw

dt
+ f ′ê3 ×w = ê3 × b− (w1, w2, rw3) + T̂T,

db

dt
+ b×w = −(b1, b2, µb3) +RaF.

(2)

In these equations, b = (b1, b2, b3) is the center of mass, w = (w1, w2, w3) is the basin’s
averaged angular momentum vector, T is the differential momentum, F are buoyancy
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fluxes, f ′ = f/2rh is the earth’s rotation, r = rv/rh is the friction (rv,h are the Rayleigh
damping coefficients), Ra is the Rayleigh number, Pr is the Prandtl number, µ the
diffusion coefficient and T̂ is the magnitude of the wind stress torque.

Neglecting diffusive and viscous terms, Maas [5] consider the dynamics of an ideal
rotating, uniformly stratified fluid in response to forcing. He assumes this to be due
solely to differential heating in the meridional (y) direction F = (0, 1, 0); the wind effect
is neglected i.e. T = 0. For Prandtl number, Pr, equal to one the system of equations (2)
reduces to the following ideal rotating, uniformly stratified system of six coupled ODEs

dw

dt
= −f ′ê3 ×w + ê3 × b,

db

dt
= −b×w +RaF.

(3)

In his paper Desale [6] has demonstrated the complete integrability of the system (3) for
Ra = 0. Our approach to discuss the integrability of above system is quite different than
Desale has used in his paper [6]. In the following section we deploy the Painlevé test for
complete integrability of the system (3).

3 Singular Solution of the System

We can write the system of six coupled ODEs (3) component-wise as:

ẇ1 = f ′w2 − b2, ẇ2 = −f ′w1 + b1, ẇ3 = 0,

ḃ1 = w2b3 − w3b2, ḃ2 = w3b1 − w1b3 +Ra, ḃ3 = w1b2 − w2b1.
(4)

Since ẇ3 = 0, hence we get w3 = constant = k1 say and consequently we have the system
of five ODEs

ẇ1 = f ′w2 − b2, ẇ2 = −f ′w1 + b1,

ḃ1 = w2b3 − k1b2, ḃ2 = k1b1 − w1b3 +Ra, ḃ3 = w1b2 − w2b1.
(5)

We are looking for the solution of system (5) in the form of power series as given below

w1(t) =

∞
∑

j=0

w1jτ
j+m1 , w2(t) =

∞
∑

j=0

w2jτ
j+m2 ,

b1(t) =

∞
∑

j=0

b1jτ
j+n1 , b2(t) =

∞
∑

j=0

b2jτ
j+n2 , b3(t) =

∞
∑

j=0

b3jτ
j+n3 ,

(6)

where τ = t − t0 and t0 is the arbitrary position of singularity. As per the Painlevé
algorithm there are three main steps in determination of singular solution. These steps
are:

1. Determination of dominant behavior.

2. Determination of resonances.

3. Examining the compatibility conditions at the resonances.

It is natural that the algorithm may stop at the first step, second step or third step.
For more details about this algorithm one may consult with Ablowitz et al [4]. The
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convergence of the series solution by use of this algorithm is guaranteed by Kichenassamy
and Littman [9, 10].

Now we proceed for implementation of algorithm so in the first step we determine
dominant behavior of the system (5). There are the several possible cases for dominant
balance but the system of ODEs (5) admits the singular solution only in the following
case of principle dominant balance

ẇ1 = −b2, ẇ2 = b1, ḃ1 = w2b3, ḃ2 = −w1b3, ḃ3 = w1b2 − w2b1. (7)

In the following subsection we determine exponents and leading order coefficients.

3.1 Determination of exponents

To determine the singular exponents m1, m2, n1, n2 &n3, which appear in (6), it is
sufficient to truncate the expansions up to the leading order and then substituting these
truncated expansions into (7) we obtain the following system of equations

m1w10τ
m1−1 = −b20τ

n2 , m2w20τ
m2−1 = b10τ

n1 ,
n1b10τ

n1−1 = w20b30τ
m2+n3 , n2b20τ

n2−1 = −w10b30τ
m1+n3 ,

n3b30τ
n3−1 =

(

w10b20τ
m1+n2 − w20b10τ

m2+n1

)

.
(8)

Equating the powers of τ so that equations (8) get satisfied we have the following linear
equations

m1 − 1 = n2, m2 − 1 = n1, n1 − 1 = m2 + n3,
n2 − 1 = m1 + n3, n3 − 1 = m1 + n2 = m2 + n1.

(9)

From equations (9) the exponents can be uniquely determined as given below.

m1 = m2 = −1, n1 = n2 = n3 = −2. (10)

Substituting the values of m1, m2, n1, n2 &n3 into equations (8) and then equating the
coefficients of like powers of τ on both sides of each equation, we get the following system
of equations to determine the leading order coefficients

w10 = b20, w20 = −b10,

b10 = − 1
2w20b30, b20 = 1

2w10b30,

b30 = − 1
2 (w10b20 − w20b10).

(11)

Solving these equations we find that there are two possible branches of leading order
involving one leading order coefficient to be an arbitrary constant. Suppose that w20 = k2
is an arbitrary constant. The possible branches of leading order are as given below

w10 = ±
√

−4− k22 , w20 = k2, b10 = −k2, b20 = ±
√

−4− k22 , b30 = 2. (12)

Here we notice that there are two possible branches of leading order. Hence, we will get
two different singular solutions in complex domain. The next step of Painlevé algorithm
is to determine the resonances. In the following section we proceed to determine the
resonances.
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3.2 Determination of resonances

As per the Painlevé algorithm this is the second step. Here we determine the resonances.
So we rewrite the equations (6) by substituting the values of exponents

w1(t) = w10τ
−1 +

∞
∑

j=1

w1jτ
j−1, w2(t) = w20τ

−1 +
∞
∑

j=1

w2jτ
j−1,

b1(t) = b10τ
−2 +

∞
∑

j=1

b1jτ
j−2, b2(t) = b20τ

−2 +

∞
∑

j=1

b2jτ
j−2,

b3(t) = b30τ
−2 +

∞
∑

j=1

b3jτ
j−2.

(13)

Substituting the above equations into the system (5) we obtained the following recursion
relations for determining the coefficients of different powers of τ in the equations (13),
which are valid for j ≥ 2,













j − 1 0 0 1 0
0 j − 1 −1 0 0
0 −b30 j − 2 0 −w20

b30 0 0 j − 2 w10

−b20 b10 w20 −w10 j − 2

























w1j

w2j

b1j
b2j
b3j













=













Aj

Bj

Cj

Dj

Ej













, (14)

where

Aj = f ′w2(j−1), Bj = −f ′w1(j−1), Cj = −k1b2(j−1) +

j−1
∑

k=1

w2kb3(j−k),

Dj = k1b1(j−1) −

j−1
∑

k=1

w1kb3(j−k), Ej =

j−1
∑

k=1

w1kb2(j−k) −

j−1
∑

k=1

w2kb1(j−k).

(15)

Now we denote by M(j) the matrix

M(j) =













j − 1 0 0 1 0
0 j − 1 −1 0 0
0 −b30 j − 2 0 −w20

b30 0 0 j − 2 w10

−b20 b10 w20 −w10 j − 2













. (16)

The above recursion relations (14) determine the unknown expansion coefficients uniquely
unless the determinant of matrixM(j) is zero. Those values of j at which the determinant
det(M(j)) vanishes are called resonances. Here we see that for both possible branches
of leading orders given in equations (12) the determinant of matrix M(j) is

det(M(j)) = (j + 1)j(j − 2)(j − 3)(j − 4). (17)

Hence, the resonances are
j = −1, 0, 2, 3, 4. (18)

Here j = −1 is a usual resonance and j = 0 is corresponding to the arbitrariness of w20

in leading order behavior.
For the next step in the algorithm we check the compatibility conditions at non

negative resonances given in equation (18).
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3.3 Compatibility conditions

In this section we check whether the compatibility conditions hold at positive resonances
which are determined in previous section. The recursion relations (14) will be valid if and
only if the vector appearing on the right hand side of (14) must be annihilated by every left
null vector of M(j) (when j is a resonance) resulting in a set of compatibility conditions
to be satisfied by the previously determined coefficients. When these conditions hold, the
j-th coefficient vector enters as an arbitrary coefficient vector in the expansion (13). On
the other hand if the compatibility condition fails at a resonant level, logarithms need
to be introduced in the expansion (see [9, 10] for details). We investigate this in each
case of possible branches of leading order coefficients given by (12) and we determine the
expansion coefficients in each case up to the last resonant level.
• Case 1: Consider the leading order coefficients

w10 =
√

−4− k21 , w20 = k2 (arbitrary constant),

b10 = −k2, b20 =
√

−4− k21 , b30 = 2.
(19)

• Compatibility condition at j = 1. Since the recursion relations (14) come into
force when j ≥ 2, hence, we have directly substituted equations (19) into (13) and then
into the equations (5). After simplifying we equate the like powers of τ on both sides
of the resulting expansion thereby obtaining the following system of linear equations for
w11, w21, b11, b21 and b31












0 0 0 1 0
0 0 −1 0 0
0 −2 −1 0 −k2
2 0 0 −1

√

−4− k22
−
√

−4− k22 −k2 k2 −
√

−4− k22 −1

























w11

w21

b11
b21
b31













=













f ′k2
−f ′

√

−4− k22
−k1

√

−4− k22
−k1k2

0













.

(20)
The system of linear equations (20) has a unique solution, hence w11, w21, b11, b21 and
b31 are uniquely determined and these are given below

w11 = 1
2 (f

′k2 − k1k2), w21 = 1
2 (−f ′ + k1)

√

−4− k22 ,

b11 = f ′
√

−4− k22 , b21 = f ′k2, b31 = 0.
(21)

• Compatibility condition at the resonance j = 2. Now substituting the values of
wij and bij for i = 1, 2, 3 and j = 0, 1 into the recursion relations (14) for j = 2, we get
the following set of linear equations













1 0 0 1 0
0 1 −1 0 0
0 −2 0 0 −k2
2 0 0 0

√

−4− k22
−
√

−4− k22 −k2 k2 −
√

−4− k22 0

























w12

w22

b12
b22
b32













=













A2

B2

C2

D2

E2













, (22)

where

A2 = f ′

2 (k1 − f ′)
√

−4− k22 , B2 = − f ′k2

2 (f ′ − k1), C2 = −f ′k1k2,

D2 = k1f
′
√

−4− k22 , E2 = (f ′−k1)
2 (f ′k22 − k22 − 4).

(23)

Since j = 2 is a resonance, the coefficient matrix to the left hand side of equation (22)
vanishes. Hence, we have infinitely many solutions to above system of linear equations
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with one arbitrary constant say b32 = k3. Solving the system (22) with the help of (23)
we get the following set of values of w12, w22, b12, b22 and b32.

w12 = 1
2 (f

′k1 − k3)
√

−4− k22 , w22 = k2

2 (f ′k1 − k3),

b12 = k2

2

[

(f ′)2 − k3
]

, b22 = 1
2

[

k3 − (f ′)2
]
√

−4− k22 , b32 = k3.
(24)

• Compatibility condition at the resonance j = 3. Now we check the compatibility
condition at the resonant level j = 3. At this resonance level we observe that recurrence
relations fail to collect the additional term Ra, which is one of the terms involved in the
equations (3) due to the effects of rotation. So we substitute the equations (13) into the
system of differential equations (5), then equating the like powers of τ with j = 3 we get
the following system of nonhomogeneous linear equations













2 0 0 1 0
0 2 −1 0 0
0 −2 1 0 −k2
2 0 0 1

√

−4− k22
−
√

−4− k22 −k2 k2 −
√

−4− k22 1

























w13

w23

b13
b23
b33













=













A3

B3

C3

D3

E3













, (25)

where

A3 = f ′w22, B2 = −f ′w12, C2 = w21b32 − k1b22,
D2 = k1b12 − w11b32 +Ra, E2 = w11b22 + w12b21 − w21b12 − w22b11.

(26)

After substituting the values of wij and bij for i = 1, 2, 3 and j = 0, 1, 2 in above equation
and simplifying we see that the rank of coefficient matrix is 4, whereas the rank of
augmented matrix is 5. This shows the inconsistency of the system (25). This is because
of the term Ra, the Rayleigh number. Hence, we reduce the augmented matrix to its
triangular form by use of elementary row transformation, which is given below





















2 0 0 1 0 f ′k2(−k3+f ′k1)
2

0 1 0 − 1
2k2

√

−4− k22
1
k1

f ′

4 (k3 − f ′k1)
√

−4− k22

0 0 1 − 1
k2

√

−4− k22
2
k2

0

0 0 0 0 1 0

0 0 0 0 0 Ra





















.

From the above triangular matrix we notice that the system (25) is consistent if and only
if Ra = 0. Hence, the compatibility condition at resonance level j = 3 will hold only if
Ra = 0. Now we assume that Ra = 0 (Note that with this assumption we have one more
term in equations (3) due to the effect of rotation), so that the linear equations (25)
can be solved and we see that there are infinitely many solutions with one independent
variable. We found that the variable b23 to be independent. We assign the arbitrary
value k4 to b23 that is to say b23 = k4. The solutions of system (25) are given below

w13 = −k4

2 + f ′k2

4 (−k3 + f ′k1), w23 =
(

k4

2k2

+ f ′k3

4 − (f ′)2k1

)

√

−4− k22 ,

b13 = k4

k2

√

−4− k22 , b23 = k4, b33 = 0.
(27)

• Compatibility condition at the resonance j = 4. At the resonant level j = 3
we notice that compatibility conditions hold only if Ra = 0 and there we assume that
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Ra = 0. Now we proceed to check the compatibility conditions at the resonance j = 4.
We substitute the equations (27), (24), (21) and (19) into the recurrence relations given
by (14) for j = 4; and then equating the like powers of τ with j = 3 we get the following
system of linear equations













3 0 0 1 0
0 3 −1 0 0
0 −2 2 0 −k2
2 0 0 2

√

−4− k22
−
√

−4− k22 −k2 k2 −
√

−4− k22 2

























w14

w24

b14
b24
b34













=













A4

B4

C4

D4

E4













, (28)

where

A4 = f ′

4k2

(

2k4 + f ′k2[k3 − f ′k1]
)

√

−4− k22 ,

B4 = − f ′

4

(

− 2k4 − f ′k2k3 + (f ′)2k1k2
)

,

C4 = −k1k4 +
k2k3

2 (−k3 + f ′k1),

D4 = 1
2k2

(

2k1k4 + k2k
2
3 − f ′k1k2k3

)
√

−4− k22 ,

E4 = 1
2k4
(

f ′k2 − k1k2
)

− 1
4k

2
2

(

(f ′)2 − k3
)(

− k3 + f ′k1
)

+ f ′k2

4

(

− 2k4 − f ′k2k3 + (f ′)2k1k2
)

+ 1
4 (4 + k22)

[

k4(f
′ + k1)− [(f ′)2 + k3](−k3 + f ′k1)

+ f ′

k2

(

2k4 + f ′k2k3 − [f ′]2k1k2
)

]

.

(29)

We see that the linear system (28) is consistent and admits infinitely many solutions with
one independent variable. Reducing the augmented matrix to its upper triangular form
we found the variable b24 to be an independent variable. Let b24 = k5 be an arbitrary
constant. Solving the system (28) with this independent variable we get the following
solutions

w14 = −k5

3 −
√

−4−k2

2

12k2

[

− (f ′)2k2k3 − 2f ′k4 + (f ′)3k1k2
]

,

w24 = −
k2k5

3
√

−4− k22
+

(f ′)2k2k3 + 2f ′k4 − (f ′)3k1k2
12

,

b14 =
k2k5
4 + k22

, b24 = k5,

b34 = −
4k5

3
√

−4− k22
−

(f ′)2k2k3 − 3k2k
2
3 + 2f ′k4 − (f ′)3k1k2 + 3f ′k1k2k3 − k1k4

6k1
.

(30)
• Compatibility condition for j ≥ 5. From the equation (16) we observe that the
matrix M(j) for j ≥ 5 is nonsingular matrix in this case of leading order coefficients
as given by equations (19). So the system (14) with (15) in this case of leading order
coefficients possesses unique solution. For the calculations of wij and bij for i = 1, 2, 3
and j ≥ 5, we substitute (30), (27), (24), (21) into the recursion relations (14) and
(15) for passing successively j = 5, 6, . . .. In this fashion we find all the coefficients are
uniquely determined for j ≥ 5.

As we notice the compatibility conditions hold provided that Ra = 0. Hence, the
system (4) passes the Painlevé test implying the complete integrability of the system.
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So we can write the general solution of the system (4). In that respect we substitute
all these coefficients into the Laurent’s series expansions as given in equations (13). The
general solution of system (4) in this case of leading order coefficients consists of five
arbitrary constants k1, k2, k3, k4, k5 and an arbitrary position of t0 singularity and the
required solution is as given below

w1(t) =
√

−4− k22τ
−1 + 1

2 (f
′k2 − k1k2) +

[

1
2 (f

′k1 − k3)
√

−4− k22
]

τ

+
[

− k4

2 + f ′k2

4 (−k3 + f ′k1)
]

τ2

+
[

− k5

3 −
√

−4−k2

2

12k2

(

− (f ′)2k2k3 − 2f ′k4 + (f ′)3k1k2
)]

τ3

+

∞
∑

j=5

w1jτ
j−1,

w2(t) = k2τ
−1 +

[

1
2 (−f ′ + k1)

√

−4− k22
]

+
[

k2

2 (f ′k1 − k3)
]

τ

+
[

(

k4

2k2

+ f ′k3

4 − (f ′)2k1

)

√

−4− k22
]

τ2

+
[

−
k2k5

3
√

−4− k22
+

(f ′)2k2k3 + 2f ′k4 − (f ′)3k1k2
12

]

τ3

+
∞
∑

j=5

w2jτ
j−1,

w3(t) = k1 (arbitrary constant),

b1(t) = −k2τ
−2 +

[

f ′
√

−4− k22
]

τ−1 + k2

2

[

(f ′)2 − k3
]

+
[

k4

k2

√

−4− k22
]

τ1

+
[ k2k5
4 + k22

]

τ2 +

∞
∑

j=5

b1jτ
j−2,

b2(t) =
√

−4− k21τ
−2 + f ′k2τ

−1 +
[

1
2

(

(k3 − (f ′)2
)
√

−4− k22
]

+ k4τ

+k5τ
2 +

∞
∑

j=5

b2jτ
j−2,

b3(t) = 2τ−2 + k3 +
[

− 4k5

3
√

−4−k2

2

−
(f ′)2k2k3 − 3k2k

2
3 + 2f ′k4 − (f ′)3k1k2 + 3f ′k1k2k3 − k1k4

6k1

]

τ2

+

∞
∑

j=1

b3jτ
j−2.

(31)

Equations (31) contain five arbitrary constants k1, k2, k3, k4, k5 and arbitrary position
of t0; these equations satisfy the system of differential equations (3) for Ra = 0. Hence, in
the present case of leading order coefficient, equations (31) represent the general solution
of (3). The convergence of such series solutions is guaranteed by Kichenassamy and
Littman [9, 10]. And it seems that the solution contains the movable pole type singularity.
Similar kind of steps are involved for another branch of leading order coefficients. In the
following subparagraphs we listed these calculations.
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• Case 2: Consider the leading order coefficients

w10 = −
√

−4− k22 , w20 = k2 (arbitrary constant),

b10 = −k2, b20 = −
√

−4− k22 , b30 = 2.
(32)

Using the same approach as in the previous case we have determined the expansion
coefficients of (13) for j = 1, j = 2, j = 3, and j = 4 which are listed below.

• Leading order coefficients at j = 1 :
As we notice already j = 1 is not a resonance and hence, in this branch of leading order
coefficients for j = 1 we can determine wij and bij uniquely for i = 1, 2, 3 j = 1 as
given below.

w11 =
f ′k2 − k1k2

2
, w21 =

f ′ − k1
2

√

−4− k22 ,

b11 = −f ′
√

−4− k22 , b21 = f ′k2, b31 = 0.
(33)

• At the resonance j = 2 : At this resonant level j = 2, we find that one of the
coefficients is independent. Let b32 be independent. Assign the value to b32 = k3 and
consequently other expansion coefficients for j = 2 are given below

w12 =
k3 − f ′k1

2

√

−4− k22 , w22 =
k2
2
(k1f

′ − k3),

b12 =
k2
2
[(f ′)2 − k3], b22 =

((f ′)2 − k3)

2

√

−4− k22 , b32 = k3.

(34)

• At the resonance j = 3 : As we noticed in previous case at this resonant level j = 3
is that system of linear equations (25) is inconsistent unless Ra = 0. Similarly in this
case we also notice that a system of linear equations is inconsistent unless Ra = 0. Again
assuming that Ra = 0, we determine the expansion coefficients with one independent
variable. Let b23 be independent. Assign b23 = k4 and other expansion coefficients for
j = 3 are given below

w13 =
1

4
[−2k4 + f ′k2(f

′k1 − k3)], w23 =

√

−4− k22
4

[−2k4
k2

− f ′k3 + (f ′)2k1
]

,

b13 =
−k4

√

−4− k22
k2

, b23 = k4, b33 = 0.

(35)

At the resonance j = 4 : Also, at this resonant level j = 4 we found that one of the
expansion coefficients is independent. Let b24 be independent and assign the arbitrary
value say b24 = k5. Other expansion coefficients are as listed below

w14 =
−k4
3

−

√

−4− k22
12k2

[

(f ′)2k2k3 + 2f ′k4 − (f ′)3k1k2
]

,

w24 =
k2k5

3
√

−4− k22
+

f ′

12
[2k4 + f ′k2k3 − (f ′)2k1k2],

b14 =
k2k5

√

−4− k22
,

b24 = k5,

b34 =
4k5

3
√

−4− k22
−

1

6k2

[

k2k3
(

(f ′)2 − 3k3
)

+ 2k4(f
′ − 3k1) + f ′k1k2(3k3 − f ′2)

]

.

(36)
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For j ≥ 5: Plugging the equations (36), (35), (34), (33) and (32) into the recursion
relations (14), we can uniquely determine the expansion coefficients wij and bij for j ≥ 5.
The general solution of system (4) in this case of leading order is as given below

w1(t) = −
√

−4− k22τ
−1 +

f ′k2 − k2k1
2

+

√

−4− k22
2

(k3 − f ′k1)τ

+

(

−
k4
2

+
f ′k2
4

[

− k3 + f ′k1
]

)

τ2

−

(

k5
3

+
f ′
√

−4− k22
12k1

[

f ′k2k3 + 2k4 − (f ′)2k2k1
]

)

τ3

+

∞
∑

j=5

w1jτ
j−1,

w2(t) = k2τ
−1 +

(

√

−4− k22
2

[

f ′ − k1
]

)

+
−k2k3 + f ′k1k2

2
τ

+

√

−4− k22
4

(

−2k4
k2

− k3f
′ + (f ′)2k1

)

τ2

+

(

k2k5

3
√

−4− k22
+

f ′

12

[

f ′k2k3 + 2k4 − (f ′)2k2k1
]

)

τ3 +

∞
∑

j=5

w1jτ
j−1,

w3(t) = k1,

b1(t) = −k2τ
−2 −

(

f ′
√

−4− k22

)

τ−1 −
k2k3 − (f ′)2k2

2
−

k4
√

−4− k22
k2

τ

+
k2k5

√

−4− k22
τ2 +

∞
∑

j=5

b1jτ
j−2,

b2(t) = −
√

−4− k22τ
−2 + f ′k2τ

−1 +

√

−4− k22
2

(

−k3 + (f ′)2
)

+ k4τ + k5τ
2

+

∞
∑

j=5

b2jτ
j−2,

b3(t) = 2τ−2 + k3 +
[ 4k5

3
√

−4− k22

−
(f ′)2k2k3 − 3k2k

2
3 + 2f ′k4 − (f ′)3k1k2 + 3f ′k1k2k3 − k1k4

6k1

]

τ2

+

∞
∑

j=1

b3jτ
j−2.

(37)

4 Examples

In this section we present two systems of ODEs that are in similar analog with our system
(3) for Ra = 0. Hence, these systems will have the singular solutions and these solutions
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will be in similar nature as we have obtained so far.
Now consider the equations for the motion under gravity of a rigid body about a fixed

point
dl

dt
= l× ω + c× g,

dg

dt
= g× ω; l = Iω.

(38)

In the above equations, l and ω are respectively the angular momentum and angular
velocity of the body, g is the gravitational acceleration with respective the moving frame.
The vector c is the center of mass and inertia tensor I are both constants. The explicit
details about the system (38) have been discussed by Andrew Hone [11]. This system
will be as similar to our system (3) for Ra = 0 and assigning the value f ′ = 0. So that
the singular solutions of a system (38) will be obtained in similar fashion as we discussed
above.

In their paper Julien et al [12] employ a multiscale expansion in both time and space.
Specifically, they define the Ekman number E ≡ ν/2Ωd2, where ν is kinematic viscosity,
d is typical length scale, and Ω ≡ Ωẑ (which is equivalent to f ê3 in our equations (1)) is
the rotation vector, and treat E as a small parameter. With these assumptions and in
the absence of stratification the incompressible Navier-Stokes equations then become

Du

Dt
+ Ω̂× u = −∇π + E∇2u+ f ,

∇ · u = 0,

(39)

where f is an unspecified body force and π is the pressure. Further Julien et all [12]
present their results for the specific case of rotating convection for which they took
f = (Ra/σ)E2T ẑ and (39) were supplemented with the energy equation

σ
DT

Dt
= E∇2T. (40)

In equation (40), T is the temperature, Ra is the Rayleigh number, and σ = ν/κ is the
Prandtl number; κ is the thermal diffusivity.

Here we observe that if we take E ≡ 0 and unspecified body forces to be equal to
zero, and going through the local analysis as Desale and Sharma [7] deploy it to a similar
equations. We can have a system of ODEs which is equivalent to system (3). Hence for
Ra = 0 the singular solutions in this case will be in similar nature with the solutions
which we have investigated in Section 3.

5 Conclusion

Now we conclude that the system of ODE reduction of rotating Stratified Boussinesq
Equations (3) is completely integrable (in the light of ARS conjecture). There are several
possible cases of principle dominant balance cases among these the system of ODEs (3)
admits the singular solution only in the case of (7). There are two possible branches of
leading orders and in both cases of leading orders system (3) passes the strong Painlevé
test only if the Rayleigh number Ra = 0. The general solutions are given by(31) and
(37). We found that these solutions are in complex domain and contain the movable
pole type singularity at t = t0. In Section 4 we illustrate the systems which also exhibit
similar kind of solutions so far we obtained in Section 3.
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Abstract: The use of linear matrix inequalities and Lyapunov functions is a pow-

erful and commonplace tool for Takagi–Sugeno fuzzy controlled system analysis and

synthesis. This paper shows how to split and handle the coupling terms arising from

the existence of different input matrices in the subsystems. Then, a method is pro-

posed which allows to synthesize, for a sufficient number of subsystems, the local

gains of a nonlinear parallel distributed controller. It is shown that the controller

gains depend on the values of the input matrices and of the membership functions,

and are thus able to relax classical stability conditions by embedding information on

the fuzzy premises.

Keywords: fuzzy control; stability; nonlinear control; linear matrix inequalities.
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1 Introduction

The Takagi–Sugeno fuzzy state-space model allows to describe a nonlinear system using a
set of fuzzy rules for which the consequents are a set of linear models, which are smoothly
connected by fuzzy membership functions [1]. An intuitive approach to the control of
T-S fuzzy systems consists of designing a fuzzy controller which shares the same fuzzy
sets with the fuzzy model in the premise parts. In this parallel distributed compensation
method (PDC), each control rule is distributively designed for the corresponding rule of
a T-S fuzzy model [2].
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Most works considering the design of controlled Takagi–Sugeno fuzzy systems lead
to express stability conditions and gain synthesis as a set of linear matrix inequalities
(LMIs) which can be solved via efficient semi-definite programming optimization software
[3]. These works can be extended for very complex systems such as time-delay nonlinear
systems modelling and control [6]. However, very few works will consider the relevance
of a nonlinear PDC controller. Original results dealing with the search for a common
quadratic Lyapunov functions (CQLF) are known to be quite conservative, and, as a
result, a number of methods have been proposed to relax standard stability conditions
[4, 7, 8, 9], and new tools such as piecewise quadratic Lyapunov functions or fuzzy
Lyapunov functions have been introduced (e.g. [10]). Extended results have allowed to
consider bounds and/or shapes of the premises’ membership functions considering PDC
[11, 12] or non PDC [13, 14, 15] controllers (see [24] for a summary of conservativeness
issues). An extension of these results to fuzzy nonlinear systems can be done using vector
norm approaches [5] with the drawback of adding more conservatism.

A main difficulty to the synthesis of fuzzy controlled systems lies in the combination of
closed-loop subsystems which does not result into a parallel distribution of the individual
closed-loop subsystems, because of additional coupling terms. These coupling terms
result from the linkage of the local subsystems to the other subsystems’ local controllers,
in particular when input matrices are not identical. Some works, e.g. [22, 23] allow to
handle subsystems with different matrices, and a descriptor formulation along with a non
quadratic Lyapunov function has been proposed [21] to decouple input and gain matrices.
The whole coupling term has also been represented explicitly by a product of matrices
involving a single uncertain matrix with a norm smaller than one, leading to a global
Riccati equation (e.g. [2]). Finding a global bounding matrix for the coupling term is
often not easy to work out, because these terms depend on the membership functions
and on the control gains themselves, which prevent the use of the method for control
synthesis. The exact cancelation of coupling terms has been tackled explicitly only for
large-scale systems [17].

In this paper, it is shown that the closed-loop T-S fuzzy system under PDC control is
the sum of distributed closed-loop fuzzy systems and of a coupling term. This coupling
term is rewritten as a sum of pairwise products involving input matrices and control gains.
A first method is proposed to design fuzzy control gains which attenuate the coupling
effect for any of the closed-loop subsystems, considering a common CQLF. This is done
by considering bounds on the coupling term, and, when a priori limitations are given
for control gains, the stability conditions are resumed to a set of independent Lyapunov
equations. As this method still presents high degrees of conservatism, it is shown that
when the number of subsystems is large enough, the coupling terms can be canceled by
proposing nonlinear control gains for the PDC control structure.

2 Analysis of Fuzzy Systems Under PDC Control

2.1 Closed-loop T-S fuzzy systems decomposition

The fuzzy model proposed by Takagi and Sugeno consists of a set of r fuzzy IF...THEN
rules for which the consequents are linear state-space models:

Plant Rule Ri: IF z1 IS Mi1 AND · · · AND zg IS Mig THEN ẋ = Aix+Biu;
where x(t), u(t) are respectively the state and input vectors, zi(t), Mij are the premise
variables and the corresponding fuzzy models.
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The final output of the fuzzy system is inferred as follows:

ẋ =
r

∑

i=1

µi

(

Aix+Biu
)

, (1)

where µi =
ωi∑
r

i=1
ωi

and ωi is the grade of membership function of the rule Ri.

For every subsystem Si, a local controller can be defined as u = Kix, where Ki is
a control gain. The rules which describe the fuzzy controller share the same premises
as the fuzzy models, hence distributing the local controllers into the global controllers
according to their systems’ weights. In general, the controllers are supposed to be linear,
but, in this study, it will be shown that nonlinear consequents might be preferred.

Controller Ci: IF z1 IS Mi1 AND · · · AND zg IS Mig THEN u = Kix, yielding:

u =
r

∑

i=1

µiKix. (2)

Lemma 2.1 Let the system ẋ =
∑r

i=1 µi(Aix + Biu) with PDC control u =
∑r

i=1 µiKix such that Ai + BiKi = Gi and
∑r

i=1 µi ≤ 1, µi ≥ 0. The closed-loop
system is:

ẋ =













r
∑

i=1

r
∑

j=1

µiµjGi+
r

∑

i=1

µiAi

(

1−
r

∑

j=1

µj

)

+
r

∑

i,j=1,j 6=i

µiµj(Bi−Bj)(Kj−Ki)













x. (3)

Proof One has

ẋ =
r

∑

i=1

µi

(

Aix+Bi

r
∑

j=1

µjKjx

)

=
r

∑

i=1

µi

(

Ai + µiBiKi +Bi

r
∑

j=1,j 6=i

µjKj

)

x.

ẋ =
r

∑

i=1













µ2
iGi + µiAi(1− µi) + µiBi

r
∑

j=1,j 6=i

µjKj













x.

Moreover,

r
∑

i=1

µiBi

r
∑

j=1,j 6=i

µjKj =

r
∑

i=1

r
∑

j=1,j 6=i

µiµj(Gi −Ai)

+
r

∑

i=1

µiBi

r
∑

j=1,j 6=i

µjKj −
r

∑

i=1

r
∑

j=1,j 6=i

µiµjBiKi.

In this equation, one can rearrange the two last sums into a sum of pairwise terms:

r
∑

i,j=1,j 6=i

µjBjµiKi + µiBiµjKj − µiµjBiKi − µjµiBjKj

=
r

∑

i,j=1,j 6=i

µiµj(Bi −Bj)(Kj −Ki).
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Hence,

r
∑

i=1

µiBi

r
∑

j=1,j 6=i

µjKj =

r
∑

i=1

r
∑

j=1,j 6=i

µiµj(Gi−Ai)+

r
∑

i,j=1,j 6=i

µiµj(Bi−Bj)(Kj −Ki).

One has now:

ẋ =













r
∑

i=1

(

µ2
iGi + µiAi(1− µi)

)

+
r

∑

i=1

r
∑

j=1,j 6=i

µiµj(Gi −Ai)

+
r

∑

i,j=1,j 6=i

µiµj(Bi −Bj)(Kj −Ki)













x.

As

r
∑

i=1

µ2
iGi +

r
∑

i=1

r
∑

j=1,j 6=i

µiµjGi =

r
∑

i=1

r
∑

j=1

µiµjGi, and

r
∑

i=1

µiAi(1− µi)−
r

∑

i=1

r
∑

j=1,j 6=i

µiµjAi =

r
∑

i=1

µiAi

(

1−
r

∑

j=1

µj

)

,

we demonstrate the final result:

ẋ =













r
∑

i=1

r
∑

j=1

µiµjGi +

r
∑

i=1

µiAi

(

1−
r

∑

j=1

µj

)

+

r
∑

i,j=1,j 6=i

µiµj(Bi −Bj)(Kj −Ki)













x.

2.2 Specific cases

Note that in the Lemma, the formula could also be valid for
∑r

i=1 µi ≤ 1. One can derive
more specific cases.

Polytopic systems: When
∑r

i=1 µi = 1, formula (3) is reduced to:

ẋ =









r
∑

i=1

µiGi +

r
∑

i,j=1,j 6=i

µiµj(Bi −Bj)(Kj −Ki)








x.

Two-subsystems: The coupling term is now µ1µ2(B1 − B2)(K2 −K1). In this case,
the deviation from the polytopic closed-loop system only depends on the difference
between gains K2 and K1, and this only degree of freedom is a limitation to the
cancellation of the coupling term and of the choice of the local controllers.

Common input matrix: Suppose that ∀i, Bi = B, and
∑r

i=1 µi = 1, then formula (3)
is reduced to:

ẋ =









r
∑

i=1

µiGi








x.

As a remark, one can say that, when the system exhibits a common input matrix, the
closed-loop system behavior is a polytope of closed-loop local systems, and, thus, the cou-
pling terms vanishes. The analysis of the whole closed-loop system can be handled easily.
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Proportional input matrices: Suppose that ∀i, Bi = αiB, where αi ∈ R, then the
closed-loop subsystem is

ẋ =









r
∑

i=1

µiGi +B

r
∑

i,j=1,j 6=i

µiµj(αi − αj)(Kj −Ki)








x.

This case arises often in Takagi-Sugeno modelling, and it can be seen that the coupling
term is strongly dependent of the membership functions and the gains amplitude.

2.3 Global stability verification

Theorem 2.1 [2] The system ẋ =
∑r

i=1 µi(Aix + Biu), under PDC control u =
∑r

i=1 µiKix, such that Ai + BiKi = Gi and Ai +BiKj = Gij , is stable if there exists a
common positive definite matrix P such that:

∀ i = 1, · · · , r, PGi +GT
i P ≺ 0,

∀ i < j, P (Gij +Gji) + (Gij +Gji)
T P ≺ 0.

(4)

Remark 2.1 Theorem (2.1) allows the determination of both the Lyapunov matrix
and the controller gain, using a change of variable Ni = KiP

−1, when being replaced
in the stability conditions, leads to a set of LMIs in Ni and in P , the PDC controller
being provided by Ki = NiP . The existence of a common quadratic Lyapunov function
is only a sufficient stability condition, and, moreover, the conditions of Theorem (2.1)
are independent of the membership functions, leading to conservative results. Coupling
terms are not accounted for, since any of local subsystems i under any local controller
u = Kjx, where j 6= i, should be performing, whereas it cannot be expected that a
system with a controller designed for another plant has necessarily a ”good” behavior.
Hence, the PDC controller is designed according to the ”worst” case among the pairs
{Plant i, Controller j}.

Corollary 2.1 Suppose that ∀i, j, Bi 6= Bj iff µiµj ≡ 0, then the closed-loop system
in Theorem (2.1) is stable if there exists a common positive definite matrix P such that:

∀i = 1, · · · , r, PGi +GT
i P ≺ 0.

This corollary shows that, when there exists a common input matrix, the closed-loop
systems are uncoupled. What is more interesting is that, within the coupling term, the
contributions involving different input matrices can be canceled when their corresponding
membership functions do not overlap, i.e. their product is identically zero.

3 Coupling Terms Attenuation

Theorem 3.1 [16] First, we consider the linear uncertain system for which ẋ =
A+

∑r
i=1 DiδiEi, ‖δi‖ ≤ 1 , and the elements of the time-varying matrices δi are Lebesgue

measurable. Then the positive-definite matrix P is a common Lyapunov matrix for this
system if there exists r positive scalars ηi such that:

PA+ATP +

r
∑

i=1

ηiPDiD
T
i P + η−1

i ET
i Ei ≺ 0,
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or, as a specific case:

PA+ATP +
r

∑

i=1

PDiD
T
i P + ET

i Ei ≺ 0. (5)

Remark 3.1 This Theorem was applied first by Tanaka et al. [2] and then by nu-
merous authors to the whole coupling term. Note that some authors [19, 18] introduce a
DδE component within the consequent part. Whereas this method provides for a rather
non-conservative solution, it is clear that finding individual uncertain matrices might be
a tedious task, because the rate of variation and thus the bounds of the uncertain matrix
depend on the control gains themselves. It can thus be applied to analyze an existing
solution (when the gains are fixed a priori) but not for gain synthesis considering mod-
els/controllers coupling. The following theorem proposes a different application of this
method to every individual component of the coupling term.

Theorem 3.2 Consider the system ẋ =
∑r

i=1 µi(Aix+Biu), under PDC controller:

ẋ =













r
∑

i=1

µiGi +
r

∑

i,j=1,j 6=i

µiµj(Bi −Bj)(Kj −Ki)













x.

Let us suppose that: ∀ i, there exists bi such that:
∑

Bi 6=Bj

µj(Bj −Bi) = biδi, where ‖δi‖ ≤ 1.

The matrices δi thus depend on membership functions µi and other input matrices µj

and Bj; as µj may vary with time, δi is a matrix which may vary with time or with the
state space x.

The closed-loop system is quadratically stable if:

∀ i = 1, · · · , r, PGi +GT
i P + Pbib

T
i P +KT

i Ki ≺ 0. (6)

This can be turned into:

∀ i = 1, · · · , r,





PGi +GT
i P Pbi KT

i

bTi P −I 0
Ki 0 −I



≺ 0. (7)

Proof

ẋ =













r
∑

i=1

µiGi +

r
∑

i,j=1,j 6=i

µiµj(Bi −Bj)(Kj −Ki)













x

=













r
∑

i=1

µi

r
∑

j=1,j 6=i

(Gi + µj(Bi −Bj)Ki)













x.

One has now:

r
∑

j=1,j 6=i

(Gi + µj(Bi − Bj)Ki) = Gi + biδiKi, and one can apply the

Theorem 3.1.
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Remark 3.2 Results involving a CQLF are known to be conservative. However,
other Lyapunov functions can be searched for the TS system represented with an explicit
coupling term, e.g. piecewise or fuzzy Lyapunov functions. However, this theorem wants
to show that, taking explicitly the coupling term into account, one may relax standard
or existing conditions for a given method.

Uncertain matrices δi do not depend anymore on the control gains but only on input
matrices and membership functions which are supposed to be known as a part of the
fuzzy model representation. Their determination is thus quite easy and the membership
functions are indeed embedded in the control synthesis. Of course, it is assumed that
such matrices exist. Note also that the corresponding i Riccati equations in (6) are
decoupled, i.e. the ith equation only depends on the ith control gain, the influence of the
other subsystems are merged into the matrix biδi. The following corollary is a simplified
condition of equation (7).

Corollary 3.1 Let us suppose that:

∀ i = 1, · · · , r, ∃Qi � 0, KT
i Ki −Qi ≺ 0.

Then, condition (7) can be expressed as:

∃P ≺ 0, ∀ i = 1, · · · , r, PGi +GT
i P +Q′

i ≺ 0, (8)

where Q′
i = Pbib

T
i P +Qi, with KT

i Ki −Qi ≺ 0, which can be turned into:

∀ i = 1, · · · , r,











(

PGi +GT
i P +Q′

i Pbi
bTi P −I

)

≺ 0,

KT
i Ki −Qi ≺ 0.

The Corollary simply reduces the search for a common Lyapunov matrix to a series of
r Lyapunov equations and thus r LMIs. This is really an improvement to other methods
because, now, control gains can nearly be selected independently without the need of
taking care of coupling terms, at the expense of gain limitation. The synthesis gains are
now completely uncoupled, the interdependence being lumped into the matrices bi; in
general, matrices bi can be obtained from simple membership functions analysis. The
following corollary focuses on the specific (and commonly encountered) case for which
input matrices are proportional, and shows that the computation of matrices bi is quite
direct.

Corollary 3.2 Suppose that the input matrices are proportional, i.e. ∀i, Bi = αiB,
where αi ∈ R, then the bounding matrices in Theorem 3.2 are given by:

bi = Bmax









r
∑

j=1,j 6=i

µiµj(αj − αi)








.

4 Coupling Terms Exact Compensation

In the previous section, a method has been proposed to choose control gains by balancing
the effect of coupling terms resulting from other subcontrollers. The problem is that a
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CQLF is still needed and that the coupling still exixsts, still yielding conservative solu-
tions. Of course, a high number of subsystems increases the size of the set of Lyapunov
equations but offers more degrees of freedom. It will be shown that, when these degrees of
freedom are numerous enough, they can be used to cancel explicitly the coupling terms.

Proposition 4.1 Let the system:

ẋ =









r
∑

i=1

µiGi +

r
∑

i,j=1,j 6=i

µiµj(Bi −Bj)(Kj −Ki)








x,

and let n = dim(x). Let us suppose also that rank[B1 · · ·Bn] = n and µiµj 6≡ 0. There

exists a nonlinear PDC controller K(µi), such that

r
∑

i,j=1,j 6=i

µiµj(Bi−Bj)(Kj−Ki) = 0

and ∃i, j,Ki 6= Kj, only if r > n+ 1.

Proof There exists of course a trivial solution Ki = K, ∀i. The system has a solution
different from this trivial solution, i.e. a true nonlinear PDC iff the system

r
∑

i,j=1,j 6=i

µiµj(Bi −Bj)(Kj −Ki) = 0

is compatible. The weight corresponding to control gain Ki is:

wi =

r
∑

j=1,j 6=i

µiµj(Bi −Bj).

One can notice that
∑r

i=1 wi = 0. Hence, there is a solution Ki 6≡ 0 only if r > n+ 1.
In this case, the nonlinear PDC gain is membership-function dependent and non

linear; one has to check that all the subsystems share a CQLF – or some other common
Lyapunov function – which can however be more complicated. The workout will be
shown in the example section.

5 Examples

5.1 Example 1

Let us take the following 3 systems:

A1 =

(

−1 2
0 −2

)

, B1 =

(

2
1

)

;

A2 =

(

−1 −1
1 0

)

, B2 =

(

0
1

)

;

A3 =

(

−2 1
1 −2

)

, B3 =

(

1
0

)

;

along with local gains: K1 = ( 2 1 ), K2 = ( −2 1 ), K3 = ( 2 0 ).
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In these examples, gains were fixed a priori. The grades of membership corresponding
to systems 1, 2 and 3 are: ω1 = z, ω2 = 1− z and ω3 = z where z ∈ [−1 · · ·1].
For every subsystem i, it is quite easy to compute the matrices bi such that

∑

Bi 6=Bj

µi(Bj −Bi) = biδi

since the upper bound depends on the fuzzy variable z. One finds: b1
T =

( 1 0.25 ), b2
T = ( 0.75 0.25 ), b3

T = ( 1 1 ).
The application of Theorem 3.2 allows to find a common positive definite matrix

P =

(

1.28 −0.37
−0.37 0.87

)

whereas it is impossible to find one by the classical method; it is

easy to check that the gainK2 is unable to stabilize matrixA1 and the converse forK1 and
A2. It is quite interesting to note that the result is quite tied to the value of the matrices
bi. When all other variables keep the same values, but bT2 = ( 1 1 ), then Theorem 3.2
is no more applicable because a positive definite CQLF cannot be found. Thus, Theorem
3.2 is able to relax stability conditions, depending strongly on the membership functions
and input matrices values. Yet, results may remain conservative with respect to other
methods, but, such methods as piecewise Lyapunov or fuzzy functions can also be applied
(with further insight) to the TS fuzzy system with coupling terms.

Suppose that, now, we add the following subsystem

A4 =

(

−1 0
0 −1

)

, B4 =

(

0
1

)

along with the grade of membership ω4 = (1− z)/2. It is possible, in this case, to find a
nonlinear PDC controller such that

r
∑

i,j=1,j 6=i

µiµj(Bi −Bj)(Kj −Ki) = 0.

Indeed, the solution of this system of equations is:

K1 =
(

k31 + (1− z)k41 k32 + (1− z)k42
)T

, K2 = K1,

K3 =
(

k31 k32
)T

, K4 =
(

k41 k42
)T

.

In this case, one only has to ensure that the local closed-loop controlled systems share
a CQLF. If Ai +BiKi(z) = Gi(z), one has to check that there exists a common positive
definite matrix P such that ∀ i = 1 · · · r, PGi(z) + Gi(z)

TP ≺ 0, which is easy to solve
since the closed-loop matrices are affine in z.

5.2 Example 2

Consider the model of a stirred tank reactor:

ĊA =
q

V
(CAf − CA)− k0CAe

− E

RT ,

Ṫ =
q

V
(Tf − T )−

∆Hk0
ρCp

CAe
− E

RT +
ρcCpc

ρCpV
qc(1− e

−
hA

ρcCpcqc )(Tcf − T ),
(9)
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where q,qc are the process and coolant flowrates, CA and CAf are the ouput and feed
concentrations, T , Tf , Tcf are the reactor, feed and coolant temperatures. V is the reactor
volume, ha a heat transfer coefficient, E/R an energy activation term, ∆H the heat of
reaction, ρc, ρ the liquid and coolant densities, and Cpc, Cp their specific heats. All values
can be found in [20]. The coolant flowrate qc is the control, CA is the measured variable,
and one supposes that CA ∈ [0.06 · · ·0.13], the operating points for C1

A = 0.06, C2
A =

0.1, C3
A = 0.13 have the following linear models:

A1 =





0 1 0
0 −16.67 −0.047
0 3133.33 7.42



 , B1 =





0
0

−0.99



 ,

A2 =





0 1 0
0 −10 −0.047
0 1800 7.33



 , B2 =





0
0

−0.88



 ,

A3 =





0 1 0
0 −7.69 −0.046
0 1338.46 7.19



 , B3 =





0
0

−0.82



 .

T 1 = 449.47, q1c = 89.03, T 2 = 438.54, q2c = 103.41, T 3 = 432.92, q3c = 110.03.

For Gaussian validity functions, the nominal T-S model is given by:





˙∫CA(t)dt

ĊA(t)

Ṫ (t)



 =

3
∑

i=1

µi(CA)













Ai





CA(t)
CA(t)− Ci

A

T (t)− T i



+Bi(qc(t)− qic)













,

where µi = ωi(CA)/
∑3

j=1(ωj(CA)), ωi = exp(− 1
2 (

CA−CAi

σi

)2), and σi = 0.01, i = 1, 2, 3

is a reasonable choice to represent with a good accuracy the nonlinear model (see [20]
for full details).

The state space is x = (
∫

cAdt, cA, T )
T , and the control gains have been chosen to

place the poles at λ = (−3.4205 + 1.8701i,−3.4205− 1.8701i,−5)T .

In this case the products µ1µ2 and µ2µ3 are bounded by 0.25 and µ1µ3 is bounded
by 10−5. Thus, it is easy to find bounds for b1, b2, b3. It is impossible to find a common
Lyapunov matrix P for the T-S system using Theorem (2.1), but it is possible to find
one using Theorem (3.2) with

P = 105.





10 −0.72 −0.23
−0.72 2.71 0.014
−0.23 0.014 0.0001



 .

The magnitude of elements of P is still important because of the small overlapping
between membership functions. Of course, this result only guaranties the convergence of
the Takagi–Sugeno fuzzy system and not that of the corresponding nonlinear system, for
which uncertainties should be lumped into the T-S fuzzy model as for example in [19].
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6 Conclusion

In this paper, the stability of a Takagi–Sugeno fuzzy system under the Parallel Dis-
tributed Compensation controller has been studied. This control strategy allocates the
same weight to a local controller as the one in the fuzzy combination of local submod-
els. The influence of the coupling between any local subsystem and any local controller
(different from the corresponding local controller designed from the local subsystem con-
sidered) in the closed-loop response has been highlighted, and it has been shown to be
effective when the input matrices of the subsystems are different. It has been subse-
quently shown that a controller synthesis based on an analysis of each local subsystem
controlled by any local compensator, would lead to conservative results. A new approach
has been proposed which, for every local subsystem, takes the coupling term coming from
other subsystems into account, and proposes to choose the gain in order to cope with the
effect of the coupling terms. This strategy allows to minimize the number of linear matrix
inequalities to be solved for controller synthesis and to take into account the shape of the
membership functions. Moreover, an exact compensation using a nonlinear PDC con-
troller has been proposed, which is tractable only if the number of subsystems is greater
than the model order plus one. Further investigation will be undertaken to generalize
the results for Lyapunov functions leading to less conservative results, i.e. piecewise and
fuzzy Lyapunov functions.
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Abstract: In this paper, a strongly damped semilinear integrodifferential equation

has been considered and reformulated as an abstract second order integrodifferential

equation in a Banach space. The local existence and uniqueness of a classical solution

is estabilished. The continuation of classical solution, the maximal interval of the

existence and the global existence of the classical solution have been also studied.

Finally an application of the established results is demonstrated.
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1 Introduction

Let Ω be a bounded domain in RN with sufficiently smooth boundary ∂Ω and Lu =
∑N

i,j=1
∂

∂xi

(

aij(x)
∂u
∂xj

)

be a symmetric second order strongly elliptic differential operator

in Ω. Consider the following initial boundary value problem for the strongly damped
partial integrodifferential equation,

∂2u(x, t)

∂t2
+ (aL+ bI)

(

∂u(x, t)

∂t

)

+ (cL+ dI)u(x, t) = h

(

x, t, u(x, t),
∂u(x, t)

∂t

)

+

∫ t

t0

k(t− s)g

(

x, s, u(x, s),
∂u(x, s)

∂s

)

ds,

(x, t) ∈ Ω× (t0, T ), 0 < T <∞, (1)
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with initial conditions

u(x, t0) = x0(x),
∂u(x, t0)

∂t
= x1(x), x ∈ Ω,

and the homogeneous Dirichlet boundary conditions, where a > 0, b, c, d are constants
and h and g are smooth nonlinear functions and k is a locally p-integrable function for
1 < p <∞.

Duvaut and Lions [5], Glowinski, Lions and Tremolieres [7] have studied particular
case of (1) in which L = −4 and k ≡ 0, in the context of the theory of viscoelastic
materials.

We may rewrite (1) with initial and homogeneous Dirichlet boundary conditions in
the abstract form as the following initial value problem in the Banach space H = L2(Ω),

d2u(t)

dt2
+A

(

du(t)

dt

)

+Bu(t)

= f

(

t, u(t),
du(t)

dt

)

+

∫ t

t0

k(t− s)g

(

s, u(s),
du(s)

ds

)

ds, t > t0,

u(t0) = x0, u′(t0) = x1. (2)

where operator A with domain D(A) = H2(Ω)
⋂

H1
0 (Ω) is given by

Au = aLu, u ∈ D(A),

and the operator B is such that D(A) = D(B) with B = (cL + dI) for some constants
c and d. The function f is defined from R+ × H × H into H given by f(t, u, v) =
h(t, u, v) − bv. We assume that −A generates an analytic semigroup T (t) in X . The
nonlinear maps f and g satisfy the assumptions (F) and (G), respectively, and the kernel
k satisfies (K) stated in the next section.

In this paper, we concentrate on the study of the abstract second order semilinear
integrodifferential equation

u′′(t) +Au′(t) = f(t, u(t), u′(t)) +

∫ t

t0

k(t− s)g(s, u(s), u′(s)) ds,

u(t0) = x0, u′(t0) = x1, (3)

as we can merge the term Bu in the function f so that the modified function f still
satisfies the assumption (F).

Sandefur [10] has studied the second order semilinear differential equation

u′′(t) +Au′(t) +Bu(t) = f(t, u(t)),

u(0) = φ, u′(0) = ψ, (4)

in a Banach space X under the assumptions that the linear operators A and B can be
decomposed as −A = A1 +A2 and B = A2A1, where each Ak generates a C0-semigroup
Tk(t), k = 1, 2 ; and the function f satisfies a locally Lipschitz condition. He has
established the local existence and uniqueness of a mild solution to (4), i.e., there exists
a continuous function u on [0, c] for some c > 0 such that u satisfies the integral equation,

u(t) = T1(t)φ +

∫ t

0

T1(t− τ)T2(τ)(ψ −A1φ)dτ

+

∫ t

0

∫ τ

0

T1(t− τ)T2(t− s)f(s, u(s))dsdτ,
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where φ ∈ D(A1). Aviles and Sandefur [1] have studied the well-posedness of (4) under
the similar conditions.

In [3] Bahuguna, Shukla and Singh have considered initial value problem (2) with the
kernel k ≡ 0 and t0 = 0 i.e.

d2u(t)

dt2
+A

(

du(t)

dt

)

+Bu(t) = f

(

t, u(t),
du(t)

dt

)

, t > 0,

u(0) = x0, u′(0) = x1.

in real Banach space and used the method of semidiscretization in time to prove the
existence, uniqueness and continuous dependence on initial data of a solution to this
initial value problem and discussed their application to the viscoelastic models involving
short and long memory effects.

Bahuguna [2] has considered the following special case of (3) with the kernel k ≡ 0,

u′′(t) +Au′(t) = f(t, u(t), u′(t)),

u(t0) = x0, u′(t) = x1, (5)

and established the existence, uniqueness, continuation of a solution to the maximal
interval of existence, and the global existence of a strong solution and a classical solution
for this special case. He has assumed that −A generates an analytic semigroup T (t) in
X and the nonlinear map f satisfies an assumption similar to the assumption (F).

Engler, Neubrander and Sandefur [6] have proved the local existence and uniqueness
of a mild solution to (5) under the assumptions that −A generates an analytic semigroup
T (t) in X and f satisfies a condition similar to the assumption (F), where a mild solution
on [t0, t1), for some t1 > t0, to (5) is the first component of a solution (u(t), v(t)) of the
integral equations

u(t) = x0 + (T (t− t0)− I)(−A)−1x1

+

∫ t

t0

(T (t− s)− I)(−A)−1f(s, u(s), v(s))ds, t0 ≤ t ≤ t1,

v(t) = T (t− t0)x1 +

∫ t

t0

T (t− s)f(s, u(s), v(s))ds, t0 ≤ t ≤ t1.

Bahuguna [2] has improved the results of [6] by showing that (5) has a unique local
classical solution, i.e., there exists a unique u ∈ C1([t0, t1);X) ∩ C2((t0, t1);X) and
satisfies (5) on [t0, t1) for some t1 > t0. Further, he has established the continuation of
this solution, the maximal interval of existence and the global existence.

In [4] Bahuguna and Shukla studied the Faedo-Galerkin approximation of solutions to
the initial value problem (3) in a Hilbert space. Pandey, Ujlayan and Bahuguna considerd
an abstract semilinear hyperbolic integrodifferential equation in [9] and used the theory
of resolvent operators to establish the existence and uniqueness of a mild solution under
local Lipschitz conditions on the nonlinear maps and an integrability condition on the
kernel. Under some additional conditions on the nonlinear maps they also proved the
existence of a classical solution.

In this paper we show that (3) has a unique local classical solution, i.e., there exists
a unique u ∈ C1([t0, t1);X) ∩ C2((t0, t1);X) satisfying (3) on [t0, t1) for some t1 > t0.
Further, we discuss the continuation of this solution, the maximal interval of existence and
the global existence. We achieve these objectives by extending the ideas and techniques
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used in the proofs of Theorems 6.3.1 and 6.3.3 in Pazy [8], concerning a semilinear
equation of the first order, to (3). For the global existence, we require a modified version
of Lemma 4.1, stated and proved at the end of the fourth section in [2]. Finally in the
last section we demonstrate an application of the results established in earlier sections.

2 Preliminaries and Assumptions

Let X be a Banach space and let −A generate the analytic semigroup T (t) in X . we
note that if −A is the infinitesimal generator of an analytic semigroup then −(A + αI)
is invertible and generates a bounded analytic semigroup for α > 0 large enough. This
allows us to reduce the general case, in which −A is the infinitesimal generator of an
analytic semigroup, to the case where the semigroup is bounded and the generator is
invertible. Hence, for convenience, without loss of generality, we assume that T (t) is
bounded, that is ‖T (t)‖ ≤M for t ≥ 0 and 0 ∈ ρ(−A), i.e., −A is invertible. Here ρ(−A)
is the resolvent set of −A. It follows that, for 0 ≤ α ≤ 1, Aα can be defined as a closed
linear invertible operator with its domain D(Aα) being dense in X . We denote by Xα

the Banach space D(Aα) equipped with the norm

‖x‖α = ‖Aαx‖,

which is equivalent to the graph norm of Aα. For 0 < α < β, we have Xβ ↪→ Xα and
the embedding is continuous.

We consider the problem

u′′(t) +Au′(t) = f(t, u(t), u′(t)) +

∫ t

t0

k(t− s)g(t, u(t), u′(t))ds, t > t0,

u(t0) = x0, u′(t0) = x1. (6)

On the kernel k we assume the following condition.
(K) The kernel k ∈ Lp

loc(0,∞) for some 1 < p < ∞ is locally Hölder continuous on
(0,∞) i.e.,

|k(t)− k(s)| ≤ Lk|t− s|µ for s, t ∈ (0,∞) and 0 < µ < 1.

The nonlinear functions f and g satisfy the following assumptions on an open subset U
of R+ ×X1 ×Xα.

Assumption (F): A function f is said to satisfy the assumption (F) if for every
(t, x, x̃) ∈ U there exists a neighborhood V ⊂ U and constant Lf ≥ 0, 0 < ϑ ≤ 1, such
that

‖f(t, x1, x̃1)− f(t, x2, x̃2)‖ ≤ Lf [|t1 − t2|
ϑ + ‖x1 − x2‖1 + ‖x̃1 − x̃2‖α], (7)

for all (ti, xi, x̃i) ∈ V .
Assumption (G): A function g is said to satisfy the assumption (G) if for every

(t, x, x̃) ∈ U there exists a neighborhood V ⊂ U and a nonnegative function Lg ∈
Lq
loc(0,∞) where 1 < q <∞, 1

p
+ 1

q
= 1 such that

‖g(t, x1, x̃1)− g(t, x2, x̃2)‖ ≤ Lg(t)[‖x1 − x2‖1 + ‖x̃1 − x̃2‖α], (8)

for all (t, xi, x̃i) ∈ V .
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Definition 2.1 By a local classical solution to (6) we mean a function u ∈
C1([t0, t1);X) ∩C2((t0, t1);X) satisfying (6) on [t0, t1) for some t1 > t0.

Definition 2.2 By a local mild solution to (6) we mean the first component of a
solution (u, v) to the pair of integral equations

u(t) = x0 + (T (t− t0)− I)(−A)−1x1 +

∫ t

t0

(T (t− s)− I)(−A)−1[f(s, u(s), v(s))

+

∫ s

t0

k(s− τ)g(τ, u(τ), v(τ))dτ ]ds, t0 ≤ t ≤ t1,

v(t) = T (t− t0)x1 +

∫ t

t0

T (t− s)[f(s, u(s), v(s))

+

∫ s

t0

k(s− τ)g(τ, u(τ), v(τ))dτ ]ds, t0 ≤ t ≤ t1, (9)

on [t0, t1) for some t1 > t0.

3 Local Existence of Solution

As we have already pointed out, without loss of generality, the semigroup generated by
−A, can be assumed to be bounded and A is invertible. Under these conditions imposed
on A we prove the following local existence and uniqueness theorem.

Theorem 3.1 Suppose that −A generates the analytic semigroup T (t) such that
‖T (t)‖ ≤ M and 0 ∈ ρ(−A). If the maps f and g satisfy assumptions (F) and (G),
respectively, and the kernel k satisfies (K) then (6) has a unique local classical solution.

Proof Fix (t0, x0, x1) in U and choose t′1 > t0 and δ > 0 such that (7), with some
fixed constant Lf > 0, 0 < ϑ ≤ 1 and (8) with the nonnegative function Lg(t) hold on
the set

V = {(t, x, x̃) ∈ U | t0 ≤ t ≤ t′1, ‖x− x0‖1 + ‖x̃− x1‖α ≤ δ}.

Let
Bf = max

t0≤t≤t′
1

‖f(t, x0, x1)‖,

Bg = max
t0≤t≤t′

1

‖g(t, x0, x1)‖

and

C(δ) = [Lf + ‖k‖Lp(t0,t′1)
‖Lg‖Lq(t0,t′1)

]δ +Bf +Bg‖k‖Lp(t0,t′1)
(t′1 − t0)

1

q .

Choose t1 > t0 such that

‖T (t− t0)x1 − x1‖+ ‖T (t− t0)A
αx1 −Aαx1‖ ≤

δ

3

and

t1 − t0 < min

{

t′1 − t0,
δ

3
(M + 1)−1C(δ)−1, [

δ

2
C−1

α (1− α)C(δ)−1]
1

1−α

}

,
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where Cα is a positive constant depending on α and satisfying

‖AαT (t)‖ ≤ Cαt
−α for t > 0. (10)

Let Y = C([t0, t1];X ×X). Then y ∈ Y is of the form y = (y1, y2), yi ∈ C([t0, t1];X),
i = 1, 2. Y , endowed with the supremum norm,

‖(y1, y2)‖Y = sup
t0≤t≤t1

[‖y1(t)‖+ ‖y2(t)‖]

is a Banach space. We define a map F on Y by Fy = F (y1, y2) := (ŷ1, ŷ2) with

ŷ1(t) = Ax0 − (T (t− t0)− I)x1 −

∫ t

t0

(T (t− s)− I)Fy(s)ds,

ŷ2(t) = T (t− t0)A
αx1 +

∫ t

t0

T (t− s)AαFy(s)ds, (11)

where

Fy(t) = f(t, A−1y1(t), A
−αy2(t)) +

∫ t

t0

k(t− τ)g(τ, A−1y1(τ), A
−αy2(τ))dτ,

for t ∈ [t0, t].
For every y ∈ Y , Fy(t0) = (Ax0, A

αx1), and the assumptions (F) and (G) on f and
g, respectively, and (K) on the kernel k imply that F : Y → Y . Let S be a nonempty
closed and bounded set given by

S = {y ∈ Y | y = (y1, y2), y1(t0) = Ax0, y2(t0) = Aαx1, ‖y1(t)−Ax0‖+‖y2(t)−A
αx1‖ ≤ δ}.

Let y = (y1, y2) be any element of S. We have from (11)

‖ŷ1(t)−Ax0‖ + ‖ŷ2(t)−Aαx1‖

≤ ‖(T (t− t0)− I)x1‖+

∫ t

t0

‖T (t− s)− I‖‖Fy(s)‖ds

+‖(T (t− t0)− I)Aαx1‖+

∫ t

t0

‖AαT (t− s)‖‖Fy(s)‖ds. (12)

To find the estimate for Fy(s), we add and subtract f(s, x0, x1) and g(s, x0, x1) and using
(F), (G) and (K), we get

‖Fy(s)‖ ≤ ‖f(s, A−1y1(s), A
−αy2(s))− f(s, x0, x1)‖+Bf

+

∫ s

t0

|k(s− τ)|[‖g(τ, A−1y1(τ), A
−αy2(τ)) − g(τ, x0, x1)‖ +Bg]dτ

≤ [Lf + ‖k‖Lp(t0,t′1)
‖Lg‖Lq(t0,t′1)

]δ +Bf +Bg‖k‖Lp(t0,t′1)
(t′1 − t0)

1

q

≤ C(δ). (13)

Using the estimate (13) and the fact that ‖T (t)‖ ≤ M together with (10) and (12), we
get

‖ŷ1(t)−Ax0‖+ ‖ŷ2(t)−Aαx1‖ ≤
δ

3
+ (M + 1)C(δ)(t − t0) +

CαC(δ)(t − t0)
1−α

1− α
≤ δ.
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Hence, F : S → S. Now, we show that F is a contraction on S. Let (y1, y2) and (z1, z2)
be any two points of S. From (11) we have

‖ŷ1(t)− ẑ1(t)‖+ ‖ŷ2(t)− ẑ2(t)‖ ≤

∫ t

t0

‖T (t− s)− I‖‖Fy(s)− Fz(s)‖ds

+

∫ t

t0

‖T (t− s)Aα‖‖Fy(s)− Fz(s)‖ds. (14)

Using (F), (G) and (K), we get

‖Fy(s)− Fz(s)‖

≤ ‖f(s, A−1y1(s), A
−αy2(s))− f(s, A−1z1(s), A

−αz2(s))‖

+

∫ s

t0

|a(s− τ |‖g(τ, A−1y1(τ), A
−αy2(τ)) − g(τ, A−1z1(τ), A

−αz2(τ))‖dτ

≤ [Lf + ‖k‖Lp(t0,t′1)
‖Lg‖Lq(t0,t′1)

]‖(y1, y2)− (z1, z2)‖Y

≤
C(δ)

δ
‖(y1, y2)− (z1, z2)‖Y . (15)

Using (15) in (14), we get

‖ŷ1(t)− ẑ1(t)‖ + ‖ŷ2(t)− ẑ2(t)‖

≤

[

(M + 1)C(δ)(t− t0)

δ
+
CαC(δ)(t− t0)

1−α

1− α

]

‖(y1, y2)− (z1, z2)‖Y

≤
2

3
‖(y1, y2)− (z1, z2)‖Y .

Taking supremum over [t0, t1], we have

‖(ŷ1, ŷ2)− (ẑ1, ẑ2)‖Y ≤
2

3
‖(y1, y2)− (z1, z2)‖Y .

Thus, F is a contraction on S. Therefore, it has a unique fixed point in S. Let ȳ =
(ȳ1, ȳ2) ∈ S be that fixed point of F . Then

ȳ1(t) = Ax0 − (T (t− t0)− I)x1 −

∫ t

t0

(T (t− s)− I)Fȳ(s)ds,

ȳ2(t) = T (t− t0)A
αx1 +

∫ t

t0

T (t− s)AαFȳ(s)ds, (16)

where

Fȳ(t) = f(t, A−1ȳ1(t), A
−αȳ2(t)) +

∫ t

t0

k(t− τ)g(τ, A−1ȳ1(τ), A
−αȳ2(τ))dτ.

We note that (u, v) = (A−1ȳ1, A
−αȳ2) is the unique solution of the integral equations

(9) on [t0, t1]. We can easily check that the assumption (F) and the continuity of ȳ1
and ȳ2 on [t0, t1] imply that the map t 7→ Fȳ(t) is continuous and hence bounded on
[t0, t1]. Let ‖Fȳ(t)‖ ≤ N for t0 ≤ t ≤ t1. We will now show that t 7→ Fȳ(t) is locally
Hölder continuous on (t0, t1]. For this we first show that ȳ1 and ȳ2 are locally Hölder
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continuous on (t0, t1]. From Theorem 2.6.13 in Pazy [8], for every 0 < β < 1 − α and
every 0 < h < 1, we have

‖(T (h)− I)AαT (t− s)‖ ≤ Cβh
β‖Aα+βT (t− s)‖ ≤ Chβ(t− s)−(α+β). (17)

Now

‖ȳ2(t+ h)− ȳ2(t)‖ ≤ ‖(T (h)− I)AαT (t− t0)x1‖+

∫ t

t0

‖(T (h)− I)AαT (t−s)Fȳ(s)‖ds

+

∫ t+h

t

‖AαT (t+ h− s)Fȳ(s)‖ds := I1 + I2 + I3 (respectively).

We use (17) to get

I1 ≤ C(t− t0)
−(α+β)hβ ≤M1h

β,

I2 ≤ NChβ
∫ t

t0

(t− s)−(α+β)ds =
NChβ(t− t0)

1−(α+β)

1− (α+ β)
≤M2h

β,

I3 ≤ NCα

∫ t+h

t

(t+ h− s)−α =
NCαh

1−α

1− α
≤M3h

β.

Here M1 depends on t and increases to infinity as t ↓ t0, while M2 and M3 can be
chosen independent of t. From the above estimates, it follows that there exists a positive
constant C such that for every t′0 > t0,

‖ȳ2(t)− ȳ2(s)‖ ≤ C|t− s|β , for t0 < t′0 ≤ t, s ≤ t1.

Similar result holds for ȳ1 (if we take α = 0 in the above consideration). For s, t ∈ (t0, t1]
with t > s we have

‖Fȳ(t)− Fȳ(s)‖ ≤ ‖f(t, A−1ȳ1(t), A
−αȳ2(t))− f(s, A−1ȳ1(s), A

−αȳ2(s))‖

+

∫ s

t0

|k(t− τ)− a(s− τ)|‖g(τ, A−1ȳ1(τ), A
−αȳ2(τ))‖dτ

+

∫ t

s

|k(t− τ)|‖g(τ, A−1ȳ1(τ), A
−αȳ2(τ))‖dτ.

Since k is Hölder continuous with the exponent µ, we have
∫ s

t0

|k(t− τ) − k(s− τ)|‖g(τ, A−1ȳ1(τ), A
−αȳ2(τ))‖dτ ≤ N(t1 − t0)|t− s|µ, (18)

and
∫ t

s

|k(t− τ)|‖g(τ, A−1ȳ1(τ), A
−αȳ2(τ))‖dτ ≤ Nk0(t1 − t0)

α|t− s|1−α, (19)

where k0 = maxt0≤t≤t1 |k(t)|. The local Hölder continuity of Fȳ(t) on (t0, t1] follows
from the assumption (F), and the local Hölder continuity of ȳ1 and ȳ2 on (t0, t1] and
from estimates (18) and (19).

Consider the inhomogeneous initial value problem

dv(t)

dt
+Av(t) = Fȳ(t), v(t0) = x1. (20)
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By the corollary 4.3.3 in [8], (20) has a unique solution v ∈ C1((t0, t1];X) given by

v(t) = T (t− t0)x1 +

∫ t

t0

T (t− s)Fȳ(s)ds, (21)

for t > t0. Each term on the right hand side belongs to D(A) and hence belongs to
D(Aα) since D(A) ⊂ D(Aα), 0 ≤ α ≤ 1. Operating on both sides of (21) with Aα, we
find that

Aαv(t) = T (t− t0)A
αx1 +

∫ t

t0

T (t− s)AαFȳ(s)ds. (22)

By (16), the right hand side of (22) equals to ȳ2(t) and therefore Aαv(t) = ȳ2(t), i.e.,

v(t) = A−αȳ2(t). Let u(t) = A−1ȳ1(t), then we have u(t) = x0 +
∫ t

t0
v(s)ds which yields

u(t) ∈ C1([t0, t1);X) ∩ C2((t0, t1);X). Thus, u satisfies (6) on [t0, t1). 2

4 Global Existence of Solutions

In this section we will prove, under additional growth conditions on the nonlinear map
f and g, the following global existence result.

Theorem 4.1 Let 0 ∈ D(−A) and −A be the infinitesimal generator of an analytic
semigroup T (t) such that ‖T (t)‖ ≤ M for t ≥ 0. Let f, g : [0,∞) × X1 × Xα 7→ X
satisfy the assumptions (F) and (G) respectively and let k satisfy (K). If there exist a
nondecreasing function af : [t0,∞) 7→ R+ and a nonnegative function ag ∈ Lq

loc(0,∞),
where q is the same as before, such that

‖f(t, x, x̃)‖ ≤ af (t)[1 + ‖x‖1 + ‖x̃‖α], for t ≥ t0, (x, x̃) ∈ X1 ×Xα,

‖g(t, x, x̃)‖ ≤ ag(t)[1 + ‖x‖1 + ‖x̃‖α], for t ≥ t0, (x, x̃) ∈ X1 ×Xα,

then for each (x0, x1) ∈ X1 ×Xα, (6) has a unique classical solution u which exists for
all t ≥ t0.

Proof Let [t0, T ) be the maximal interval of existence for the solution u to (6)
guaranteed by Theorem (3.1). It suffices to prove that [‖u(t)‖1+ ‖v(t)‖α] ≤ C on [t0, T )
for some fixed constant C ≥ 0 independent of t.

Now, since u(t) is a solution of (6) on [t0, T ), it is also a mild solution to (6) therefore
from (16), we have

Au(t) = Ax0 − (T (t− t0)− I)x1 −

∫ t

t0

(T (t− s)− I)F̄ (s)ds,

Aαu′(t) = T (t− t0)A
αx1 +

∫ t

t0

T (t− s)AαF̄ (s)ds, (23)

where

F̄ (t) = f(t, u(t), u′(t)) +

∫ t

t0

k(t− τ)g(τ, u(τ), u′(τ))dτ.
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From (23), we have

[1 + ‖u(η)‖1 + ‖u′(η)‖α] = [1 + ‖Au(η)‖+ ‖Aαu′(η)‖]

≤ 1 + ‖Ax0‖+ (M + 1)‖x1‖+ (M + 1)

∫ η

t0

‖F̄ (s)‖ds

+M‖x1‖α +

∫ η

t0

Cα(η − s)−α‖F̄ (s)‖ds. (24)

The assumptions on f , g and k imply that

‖F̄ (s)‖ ≤ ‖f(t, u(t), u′(t))‖ +

∫ s

t0

|k(s− τ)|‖g(τ, u(τ), u′(τ))‖dτ

≤ (af (T ) + ‖k‖Lp(t0,T )‖ag‖Lq(t0,T )) sup
t0≤τ≤s

[1 + ‖u(τ)‖1 + ‖u′(τ)‖α]. (25)

Using (25) in (24), we get

[1 + ‖u(η)‖1 + ‖u′(η)‖α] ≤ C1 + C2

∫ η

t0

sup
t0≤τ≤s

[1 + ‖u(τ)‖1 + ‖u′(τ)‖α]ds

C3

∫ η

t0

(η − s)−α sup
t0≤τ≤s

[1 + ‖u(τ)‖1 + ‖u′(τ)‖α]ds.

Hence, we have

sup
t0≤η≤t

[1 + ‖u(η)‖1 + ‖u′(η)‖α] ≤ C1 + C2

∫ t

t0

sup
t0≤τ≤s

[1 + ‖u(τ)‖1 + ‖u′(τ)‖α]ds

C3

∫ t

t0

(t− s)−α sup
t0≤τ≤s

[1 + ‖u(τ)‖1 + ‖u′(τ)‖α]ds.

Using Lemma 4.1 in [2], we obtain supt0≤η≤t[1 + ‖u(η)‖1 + ‖u′(η)‖α] ≤ C. 2

5 Example

Let Ω = (0, 1) and H = L2(Ω). Consider the following initial boundary value problem

∂2u(x, t)

∂t2
−

∂3u(x, t)

∂x2∂t
= F

(

x, t, u(x, t),
∂2u(x, t)

∂x2
,
∂u(x, t)

∂t

)

+

∫ t

t0

k(t− s)G

(

x, s, u(x, s),
∂u(x, s)

∂s

)

ds,

(x, t) ∈ Ω× (t0, T ), 0 < T <∞ (26)

with the initial conditions

u(x, t0) = x0(x),
∂u(x, t0)

∂t
= x1(x), x ∈ Ω,

and the boundary conditions

u(0, t) = u(1, t) = 0, t ∈ (t0, T ), 0 < T <∞
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F and G are sufficiently smooth nonlinear functions and k is a locally p-integrable func-
tion for 1 < p <∞.

We define the operator A with domain D(A) = H2(Ω)
⋂

H1
0 (Ω) as follows

Au = −
∂2u

∂x2
, u ∈ D(A).

Here clearly the operator A is self-adjoint with the compact resolvent and is the in-
finitesimal generator of an analytic semigroup T (t). Now we take α = 1/2, D(A1/2) is
the Banach space endowed with the norm

‖x‖1/2 = ‖A1/2x‖, x ∈ D(A1/2).

Using the above definition of the operator A the equation (26) can be reformulated
as the following abstract equation in H

u′′(t) +Au′(t) = f(t, u(t), u′(t)) +

∫ t

t0

k(t− s)g(s, u(s), u′(s)) ds,

u(t0) = x0, u′(t0) = x1, (27)

where u(t)(x) = u(x, t), the function f is defined from [t0, T ]×D(A) ×D(A1/2) into H
such that

f(t, u(t), u′(t))(x) = F

(

x, t, u(x, t),
∂2u(x, t)

∂x2
,
∂u(x, t)

∂t

)

and g is defined from [t0, T ]×D(A) ×D(A1/2) into H such that

g(t, u(t), u′(t))(x) = G

(

x, t, u(x, t),
∂u(x, t)

∂t

)

.

It can be varified that the assumptions in earlier sections for (27) are satisfied and hence
the existence of a unique classical solution is guarenteed.
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Abstract: In this paper, the generalized Hamiltonian system approach was applied

to the synchronization of chaotic systems. The synchronization is between the trans-

mitter and the receiver dynamics. The synchronization of several chaotic systems is
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1 Introduction

In the 17th century, the analysis of synchronization phenomena in the evolution of dy-
namical systems was a subject of active investigation [1]. Recently, the search for syn-
chronization has moved to chaotic systems. Synchronization of chaos refers to a process
wherein two (or many) chaotic systems adjust a given property of their motion to a
common behavior due to a coupling or to a forcing.

The first thing to be highlighted is that there is a great difference in the process
leading to synchronized states, depending upon the particular coupling configuration [1].
Namely, one should distinguish two main cases: unidirectional coupling and bidirectional
coupling. In the former case, one subsystem evolves freely and drives the evolution of
the other; in the latter case, both subsystems are coupled with each other.
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In the context of coupled chaotic elements, many different synchronization states have
been studied in the past 10 years: namely complete or identical synchronization [2]-[4],
phase [5, 6] and lag synchronization [7], generalized synchronization [8, 9], intermittent
lag synchronization [7, 10], imperfect phase synchronization [11], and almost synchro-
nization [12]. Complete synchronization was the first discovered and is the simplest form
of synchronization in chaotic systems. It consists in a perfect hooking of the chaotic
trajectories of two systems which is achieved by means of a coupling signal, in such a
way that they remain in step with each other in the course of time.

The phenomena of chaotic synchronization exists widely in laboratory experiments
and natural systems [13]-[22]. The natural continuation of the pioneering works was
to investigate synchronization phenomena in spatially extended or infinite dimensional
systems [13]-[16], to test synchronization in experiments or natural systems [17]-[22].
The synchronization has also been applied to encoding or masking where the chaotic
system is called the “transmitter”. Correspondingly for the decoding or unmasking,
the second chaotic system is called the “receiver”. The synchronization between the
“transmitter” and the “receiver” means that, under the assumption of no masked signal
transmission, the receiver state trajectory asymptotically tracks that of the transmitter.
In [23], the authors have studied the synchronization of two chaotic systems by the
generalized Hamiltonian system and observer approach. Furthermore, the method is
extended to the time-delay Chua’s oscillator [24].

The objective of this paper is to apply the generalized Hamiltonian system and ob-
server approach developed in [23] to the complete synchronization of two identical chaotic
systems coupled unidirectionally. The organization of the paper is as follows: In Section
2, we obtain the synchronization of chaotic systems by the generalized Hamiltonian sys-
tem and observer approach. In Section 3, we present several chaotic systems and study
their synchronization by this method, respectively. In Section 4, the conclusion is given.

2 The Synchronization of Chaotic Systems

A smooth system is given as follows:

ẋ = f(x, t), x = (x1, x2 . . . xn)
T ∈ Rn, (1)

where f ∈ Rn is smooth.

Equation (1) may be written in the generalized Hamiltonian system:

ẋ = J1(x)
∂H

∂x
+ S(x)

∂H

∂x
+ F1(x, t), (2)

where H(x) denotes a smooth energy function and is globally positive definite in Rn, and
the column gradient vector ∂H

∂x
of H(x) is assumed to exist everywhere; if the form of

quadratic energy function is H = 1
2x

TMx (M is a constant symmetric positive definite

matrix), ∂H
∂x

= Mx. J1(x)+JT
1 (x) = θ, S(x) = ST (x). The vector field J(x)∂H

∂x
exhibits

the conservative part of the system and it is also referred to as the workless part; and
S(x) depicts the working part of the system. F1(x, t) is a locally destabilizing vector
field. According to the form of H(x) and the different expression of J1(x), S(x), F1(x, t),
the form of the Generalized Hamiltonian system (2) is not unique.

In the context of observer design, we consider a special class of Generalized Hamilto-
nian system with liner output map y:
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{

ẋ = J(y)∂H
∂x

+ (I + S)∂H
∂x

+ F (y, t),
y = C ∂H

∂x
,

(3)

where J(x)+JT (x) = θ, I is a constant skew symmetric matrix, S is a constant symmetric
matrix, and F (x, t) is a locally destabilizing vector field. The vector variable y is referred
to as the system output, and the matrix C is a constant matrix. Equation (3) is called
the transmitter.

Let ξ and µ be the estimates of the state vector x and output y, respectively; and
∂H
∂ξ

= Mξ is naturally the gradient of the Hamiltonian energy function H(ξ)). A dynamic

nonlinear state observer for (3) is obtained as:

{

ξ̇ = J(y)∂H
∂ξ

+ (I + S)∂H
∂ξ

+ F (y, t) +K(y − η),

η = C ∂H
∂ξ

,
(4)

where K is a constant matrix, known as the observer gain. Equation(4) is called the
receiver.

In this paper, we study mainly the synchronization of the transmitter (3) and the re-
ceiver (4). Practically, it is the complete synchronization of two identical chaotic systems
coupled unidirectionally.

Let e(t) = x(t) − ξ(t), ey = y − η, then the state estimation error [23] are governed
by

{

ė =
(

J(y) + I − 1
2 (KC − CTKT )

)

∂H
∂e

+
(

S − 1
2 (KC + CTKT )

)

∂H
∂e

,
ey = C ∂H

∂e
ey ∈ Rm ,

(5)

where ∂H
∂e

= ∂H
∂x

− ∂H
∂ξ

= M(x− ξ) = Me.

In [1], the authors point out that the transmitter (3) synchronizes with the receiver
(4), if lim

t→∞
‖x(t)− ξ(t)‖ = 0 no matter which initial conditions x(0) and ξ(0) have. The

state estimation error e(t) = x(t) − ξ(t)represents the synchronization error. So we will
study the system (5) for the synchronization. In the following, two theorems about (5)
give the condition under which their synchronization happens. Let W = I + S.

Theorem 2.1 [23] The state x(t)of the nonlinear system (3) can be globally expo-
nentially asymptotically estimated by the state ξof the nonlinear observer (4), if the pair
of matrices (C,W )or the pair (C, S), is either observable or, at least, detectable.

An observability condition on either of the pairs (C,W ) or (C, S), is clearly a suffi-
cient but not necessary condition for asymptotic state reconstruction. A necessary and
sufficient condition for global asymptotic stability to zero of the estimation error is given
by the following theorem.

Theorem 2.2 [23] The state x(t)of the nonlinear system (3) can be globally expo-
nentially asymptotically estimated by the state ξof the nonlinear observer (4), if and only
if there exists a constant matrix K such that the symmetric matrix

[W −KC] + [W −KC]
T
= [S −KC] + [S −KC]

T
= 2

[

S −
1

2
(KC + CTKT )

]

(6)

is negative definite.
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3 Numerical Application

3.1 The forced Brusselator

The equation of this system is given as follows [25]:

{

ẋ1 = A− (B + 1)x1 + x2
1x2 + a cos(ωt),

ẋ2 = Bx1 − x2
1x2.

(7)

After taking as a Hamiltonian energy function the scalar function H(x) = 1
2 (x

2
1 + x2

2),
we obtain:

J(x)=

[

0 0
0 0

]

, I=

[

0 −B
2

B
2 0

]

, S=

[

−(B + 1) B
2

B
2 0

]

, F (x)=

[

A+ x2
1x2 + a cos(ωt)
−x2

1x2

]

.

We choose y =

[

x1

x2

]

, then C =

[

1 0
0 1

]

, thus K =

[

K1 K3

K2 K4

]

. The system is in

generalized Hamiltonian canonical form:

ẋ = J(x)
∂H

∂x
+ (I + S)

∂H

∂x
+ F (x, t), (8)

and the receiver is

ξ̇ = J(x)
∂H

∂ξ
+ (I + S)

∂H

∂ξ
+ F (x, t) +K(x− ξ), (9)

The synchronization error, corresponding to this receiver, is

ė =
(

J(x) + I − 1
2 (KC − CTKT )

)

∂H
∂e

+
(

S − 1
2 (KC + CTKT )

)

∂H
∂e

=

[

0 −B−K3+K2

2

−−B−K3+K2

2 0

]

∂H
∂e

+

[

−(B + 1)−K1
B−(K2+K3)

2
B−(K2+K3)

2 0

]

∂H
∂e

.

(10)
The pair (C, S) is observable, and hence detectable. We could prescribe K1,K2,K3

andK4, in order to ensure asymptotic stability of equation(8) and equation(9) to zero of
the synchronization error. By applying Theorem 2.2, we obtain

2

[

−(B + 1)−K1
B−(K2+K3)

2
B−(K2+K3)

2 0

]

is negative definite, i.e. K1 > −(B + 1); 4K4[(B + 1) +K1] > (B −K2 −K3)
2.

In Figure 1, the synchronization of two chaotic systems (8) and (9) is presented. The
parameters were taken as: A = 0.4, B = 1.2, ω = 0.8, a = 0.05, K1 = 0.8, K2 = 0.2, K3 =
1, K4 = 1.

3.2 The forced pendulum

The equation of this system is given as follows [26]:

{

ẋ1 = x2,
ẋ2 = −ax2 − b sinx1 + ρ cos(ωt).

(11)
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Figure 1: The synchronization of the forced Brusselator systems (8) and (9).

After taking as a Hamiltonian energy function the scalar function H(x) = 1
2 (x

2
1+x2

2),
we obtain:

J(x) =

[

0 0
0 0

]

, I =

[

0 1
2

−1
2 0

]

, S =

[

0 1
2

1
2 −a

]

, F (x) =

[

0
−b sinx1 + ρ cos(ωt)

]

.

We choose y = [x1], then C =
[

1 0
]

, thus K =

[

K1

K2

]

. The system is in generalized

Hamiltonian canonical form:

ẋ = J(x)
∂H

∂x
+ (I + S)

∂H

∂x
+ F (x, t), (12)

and the receiver is

ξ̇ = J(x)
∂H

∂ξ
+ (I + S)

∂H

∂ξ
+ F (x, t) +K(x1 − ξ1). (13)

The synchronization error, corresponding to this receiver, is

ė =
(

J(x) + I − 1
2 (KC − CTKT )

)

∂H
∂e

+
(

S − 1
2 (KC + CTKT )

)

∂H
∂e

=

[

0 1+K2

2

− 1+K2

2 0

]

∂H
∂e

+

[

−K1
1−K2

2
1−K2

2 −a

]

∂H
∂e

. (14)
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The pair (C, S) is observable, and hence detectable. We could prescribe K1 and K2, in
order to ensure asymptotic stability of equation (12) and equation (13) to zero of the
synchronization error. By applying Theorem 2.2, we obtain

2

[

−K1
1−K2

2
1−K2

2 −a

]

is negative definite, i.e. K1 > 0; 4aK1 − (1−K2)
2 > 0.

In Figure 2, the synchronization of two chaotic systems (12) and (13) is presented.
The parameters were taken as: a = 0.2, b = 1, ρ = 1.5, ω = 0.4, K1 = 2, K2 = 2.

3.3 The 3D model

The model is described by the equation as follows [27]:







ẋ1 = x2,
ẋ2 = x3,
ẋ3 = −x2 − 1.2x3 − µx1 + x2

1 − 1.425x2
2 + 0.2x1x3 − 0.01x2

1x3.
(15)

After taking as a Hamiltonian energy function the scalar function H(x) = 1
2 (x

2
1+x2

2+x2
3),

we obtain:

J(x) =





0 0 0
0 0 0
0 0 0



 , I =





0 1
2

µ
2

− 1
2 0 1

−µ
2 −1 0



 , S =





0 1
2 −µ

2
1
2 0 0

−µ
2 0 −1.2



 ,

F (x) =





0
0

x2
1 − 1.425x2

2 + 0.2x1x3 − 0.01x2
1x3



 .

We choose y =





x1

x2

x3



, then C =





1 0 0
0 1 0
0 0 1



, thus K =





K1 K4 K7

K2 K5 K8

K3 K6 K9



.

The system is in generalized Hamiltonian canonical form:

ẋ = J(x)
∂H

∂x
+ (I + S)

∂H

∂x
+ F (x, t), (16)

and the receiver is

ξ̇ = J(x)
∂H

∂ξ
+ (I + S)

∂H

∂ξ
+ F (x, t) +K(x− ξ). (17)

The synchronization error, corresponding to this receiver, is

ė =
(

J(x) + I − 1
2 (KC − CTKT )

)

∂H
∂e

+
(

S − 1
2 (KC + CTKT )

)

∂H
∂e

=





0 1+K2−K4

2
µ+K3−K7

2

− 1+K2−K4

2 0 1− K8−K6

2

−µ+K3−K7

2 −1 + K8−K6

2 0





∂H
∂e

+





−K1
1−K2−K4

2 −µ+K3+K7

2
1−K2−K4

2 −K5
−K8−K6

2

−µ+K3+K7

2
−K8−K6

2 −1.2−K9





∂H
∂e

.

(18)
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Figure 2: The synchronization of the forced pendulum systems (12) and (13).

The pair (C, S) is observable, and hence detectable. We could prescribe K1, K2,
K3, K4, K5, K6, K7, K8, K9 in order to ensure asymptotic stability of equation (16) and
equation (17) to zero of the synchronization error. By applying Theorem 2.2, we obtain

2





−K1
1−K2−K4

2 −µ+K3+K7

2
1−K2−K4

2 −K5
−K8−K6

2

−µ+K3+K7

2
−K8−K6

2 −1.2−K9





is negative definite, i.e.

K1 > 0,
4K1K5 > (1−K2 −K4)

2,
(1.2 +K9)

[

4K1K5 − (1−K2 −K4)
2
]

−K1(K6 +K8)
2

−(1−K2 −K4)(µ+K3 +K7)(K6 +K8)−K5(µ+K3 +K7)
2 > 0.

In Figure 3, the synchronization of two chaotic systems (16) and (17) is presented.
The parameters were taken as: µ = 1.6, K1 = K4 = K5 = 1, K2 = 0, K3 = K6 = K8 =
1
2 ,K9 = 3, K7 = 0.

4 Conclusion

In this paper, we apply the generalized Hamiltonian system and observer approach and
obtain two chaotic systems: the “transmitter” and the “receiver” dynamics. Practically,
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Figure 3: The synchronization of the 3D model (16) and (17).
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two chaotic systems are the systems coupled unidirectionally. We study mainly the
condition with which the coupling coefficient matrix K is satisfied when the complete
synchronization of two coupled chaotic systems happens.
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1 Introduction

The theory of time scale was introduced by Stefan Hilger [10] in order to unify continuous
and discrete cases and was intensively developed in many papers (see [1, 4] and references
therein). Recently the theory of dynamic systems on time scale have received special
attention from many authors, some of them focused their interest on the stability theory
for such systems [2, 3, 13].

Proposed in [11] the Hopfield-type neural networks and their generalizations [7, 8] is
a special but important case of general differential systems. It derives from biological
models in practical investigations and has extensive applications in many different fields
such as parallel computation, signal processing, pattern recognition, optimization and
associative memories (see [5, 8, 14]).

However, as the theory of dynamic systems on time scale is widely studied the
corresponding theory of neural systems is still at an initial stage of its development.
In [6], the authors got some stability results for delayed bidirectional associative memory
neural networks on time scales. Also in [12], some criteria of stability and existence
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of periodic solutions for delayed bidirectional associative memory neural networks with
impulses on time scales were obtained.

Motivated by the above we consider a neural network on time scale the dynamics of
which is described by the equation of the type

x∆(t) = −Bx(t) + Ts(x(t)) + u, t ∈ Tτ , (1)

whose solution x(t; t0, x0) for t = t0 takes the value x0, i.e.

x(t0; t0, x0) = x0, t0 ∈ Tτ , x0 ∈ R
n, (2)

where T is an arbitrary time scale, supT = +∞, Tτ = {t ∈ T : t ≥ τ}, τ ∈ T. In
system (1) x∆(t) is a ∆-derivative on time scale T, x = (x1, x2, . . . , xn)

T ∈ R
n, xi is

the activation of the i-th neuron, T = {tij} ∈ R
n×n, the components tij describe the

interaction between the i-th and j-th neurons, s : Rn → R
n, s(x) = (s1(x1), s2(x2), . . . ,

sn(xn))
T, the activation function si describes response of the i-th neuron, B ∈ R

n×n,
B = diag {bi}, bi > 0 represents the rate with which the i-th neuron shell resets its
potential to the resting state in isolation when it is disconnected from the network and
the external inputs, i = 1, 2, . . . , n, n corresponds to the number of neurons in layers,
u ∈ R

n is a constant external input vector. All needed notations on time scales according
to [4] will be given in Section 2.

System (1) is general and unifies two well known neural models. If T = R then
x∆ = d/dt and the initial problem (1), (2) is equivalent to the initial problem for a
continuous Hopfield type neural network [11]

dx(t)

dt
= −Bx(t) + Ts(x(t)) + u, t ≥ τ, (3)

x(t0; t0, x0) = x0, t0 ≥ τ, x0 ∈ R
n.

If T = N then x∆(k) = x(k+1)− x(k) = ∆x(k), Tτ = {τ, τ +1, τ +2, . . . } and the
initial problem (1)–(2) is equivalent to the initial problem for a discrete Hopfield type
neural network [9]

∆x(k) = −Bx(k) + Ts(x(k)) + u, k ∈ Tτ , (4)

x(k0; k0, x0) = x0, k0 ∈ Tτ , x0 ∈ R
n.

Dynamics of continuous system (3) and discrete systems (4) and their generalizations
are widely studied by many authors [7, 8, 9, 11, 15, 17], but there are no stability results
for system (1) on time scales. Our purpose in the paper is by using the direct Lyapunov
method to study the stability of equilibrium of (1).

The outline of the paper is as follows. In Section 2 we shall give some notations and
basic definitions concerning the calculus on time scale and some required assertions. In
Section 3 we shall present some new sufficient conditions ensuring the asymptotic and
exponential stability of the equilibrium of system (1). Also we shall offer the criteria of
regressivity of function f(x) = −Bx+Ts(x)+u. In Section 4 we shall give one example
to illustrate our results obtained in the previous sections.

2 Notations and Preliminaries

In this section all facts concerning time scale calculus are given according to book [4].
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Definition 2.1 An arbitrary nonempty closed subset of the set of real numbers R

with the topology and ordering inherited from R is referred to as a time scale and denoted
by T.

Definition 2.2

• The forward and backward jump operators σ : T → T and ρ : T → T are respec-
tively defined by σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}.

• If σ(t) = t, ρ(t) = t, σ(t) > t, and ρ(t) < t, then the element t ∈ T is called
right-dense, left-dense, right-scattered, and left-scattered, respectively. Here it is
assumed that inf ∅ = supT (i.e. σ(t) = t, if T contains the maximal elements t)
and sup∅ = inf T (i.e. ρ(t) = t, if T contains the minimal elements t).

• In addition to the set T, the set Tk is defined as follows

T
k =

{

T\(ρ(supT), supT], if supT <∞,

T, if supT = ∞.

• The distance from an arbitrary element t ∈ T to its follower is called the graininess
of the time scale T and is given by the formula

µ(t) = σ(t) − t.

If T = R, then σ(t) = ρ(t) = t and µ(t) = 0, if T = Z, then σ(t) = t+1, ρ(t) = t−1
and µ(t) = 1.

Definition 2.3

• The function f : T → R is called ∆-differentiable at a point t ∈ T
k if there exists

γ ∈ R such that for any ε > 0 there exists a W -neighborhood of t satisfying

| [f(σ(t))− f(s)]− γ[σ(t)− s]| < ε|σ(t)− s|

for all s ∈W . In this case we shall write f∆(t) = γ.

• if the function f : T → R is ∆-differentiable for any t ∈ T
k, then f is called

∆-differentiable on T
k.

Theorem 2.1 Assume that the functions f, g : T → R are ∆-differentiable at t ∈ T
k.

Then the following assertions are valid:

(1) the sum f + g is ∆-differentiable at t and (f + g)∆(t) = f∆(t) + g∆(t);

(2) for any α ∈ R, the function αf(t) is ∆-differentiable at t and αf∆(t) = αf∆(t);

(3) the product fg is ∆-differentiable at t and

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t));

(4) f(σ(t)) = f(t) + µ(t)f∆(t).

Note that, if T = R, then f∆ = f ′, which is the Euler derivative of f, and if T = Z,
then f∆(t) = ∆f(t) = f(t+ 1)− f(t), which is the forward difference of f(t).
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Definition 2.4

• A function f : T → R is called rd-continuous provided it is continuous at right-
dence points in T and its left-sided limit exists (finite) at left-dence points in T.
The set of all rd-continuous functions f : T → R is denoted by Crd = Crd(T) =
Crd(T,R).

• A function f : T → R is called regressive, if 1 + µ(t)f(t) 6= 0 for all t ∈ T
k and

positive regressive, if 1 + µ(t)f(t) > 0 for all t ∈ T
k.

• A function f : T× R
n → R

n is called regressive, if the mapping I + µ(t)f(t, ·) is
invertible at each t ∈ T

k. Here I : Rn → R
n is identity mapping.

• The set of all regressive and rd-continuous functions f : T → R is denoted by R.

We define the function

βk(t) =

{

µ−1(t) log |1 + µ(t)k(t)|, if µ(t) > 0,

k(t), if µ(t) = 0,

where k ∈ R, t ∈ [t0,+∞)T. Here and bellow [a,+∞)T = {t ∈ T : a ≤ t < +∞},
a ∈ T.

Definition 2.5 We recall that the function ψ : R+ → R+ belongs to the class K, if
it is continuous, strictly increasing on R+ and ψ(0) = 0.

Definition 2.6 We recall that the matrix A ∈ R
n×n is called M -matrix if its all

non-diagonal elements are non-positive and all principle minors are positive.

Definition 2.7 We recall that the mapping H : Rn → R
n is called a homeomor-

phism of Rn onto itself, if H is continuous, bijective, H is onto itself and the inverse
mapping H−1 is also continuous.

For convenience, we introduce some notations. We denote by ‖x‖ a vector norm of
vector x ∈ R

n defined by ‖x‖ = (
∑n

i=1 x
2
i )

1/2, ‖A‖ denotes a matrix norm of matrix
A = {aij} ∈ R

n×n defined by ‖A‖ = (λM (ATA))1/2, λm(A), λM (A) are minimal and
maximal eigenvalues of matrix A respectively. In addition A−1 denotes the inverse of A,
|A| denotes absolute-value matrix given by |A| = {|aij |}.

We assume on system (1) as follows.

S1. The vector-function f(x) = −Bx+ Ts(x) + u is regressive.

S2. There exist positive constants Mi > 0, i = 1, 2, . . . , n, such that |si(r)| ≤ Mi for
all r ∈ R.

S3. There exist positive constants li > 0, i = 1, 2, . . . , n, such that |si(r) − si(v)| ≤
li|r − v| for all r, v ∈ R.

S4. 0 < µ(t) ∈ M for all t ∈ Tτ , where M ⊂ R is a compact set.
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Note that under conditions S1–S3 there exists a unique solution of problem (1), (2)
on [t0,+∞)T for all initial data (t0, x0) ∈ Tτ × R

n [4].

We denote by r0 =
(

∑n
i=1(

∑n
j=1Mj |Tij |+ |ui|)

2/b2i

)1/2

and Λ = diag{li} ∈ R
n×n.

Similar to Theorem 3.1 from [16] and Theorem 1 from [17] we can easily obtain the
following assertion.

Theorem 2.2 If for system (1) conditions S1–S3 are satisfied then there exists an
equilibrium state x = x∗ of system (1) and moreover, ‖x∗‖ ≤ r0. Besides, if the matrix
BΛ−1 − |T | is an M -matrix, this equilibrium state is unique.

Definition 2.8 The equilibrium state x = x∗ of the system (1) is:

(1) uniformly stable if for all ε > 0 there exists δ = δ(ε) > 0, such that ‖x0−x∗‖ < δ
implies ‖x(t; t0, x0)− x∗‖ < ε for all t ∈ [t0,+∞)T, t0 ∈ Tτ ;

(2) uniformly asymptotically stable if it is uniformly stable and there exists ∆ > 0 such
that ‖x0 − x∗‖ < ∆ implies limt→+∞ ‖x(t; t0, x0)− x∗‖ = 0 for all t0 ∈ Tτ ;

(3) exponentially stable if there exist β > 0 and λ > 0 such that for all t0 ∈ Tτ

there exists N = N(t0) > 0 such that ‖x0 − x∗‖ < β implies ‖x(t; t0, x0)− x∗‖ ≤
Ne−λ(t−t0)‖x0 − x∗‖ for all t ∈ Tτ ;

(4) uniformly exponentially stable if it is exponentially stable and N does not depend
on t0.

Let x∗ be the equilibrium state of system (1). We perform the change of variables
y(t) = x(t)− x∗ and rewrite the initial problem (1), (2) as

y△(t) = −By(t) + Tg(y(t)), t ∈ Tτ , (5)

y(t0; t0, y0) = y0, t0 ∈ Tτ , y0 ∈ R
n, (6)

where y ∈ R
n, g : R

n → R
n, g(y) = (g1(y1), g2(y2), . . . , gn(yn))

T, g(y) = s(y + x∗) −
s(x∗).

If for system (1) assumptions S1–S3 are valid, then for system (5) the following as-
sertions hold true.

G1. The vector-function g̃1(y) = −By + Tg(y) is regressive.

G2. For all r ∈ R |gi(r)| ≤ 2Mi, i = 1, 2, . . . , n.

G3. For all r, v ∈ R |gi(r) − gi(v)| ≤ li|r − v|, i = 1, 2, . . . , n.

Note that under conditions G1–G3 there exists a unique solution of problem (5), (6)
on [t0,+∞)T for all initial data (t0, x0) ∈ Tτ × R

n [4].
Futher we shall need the following result.

Lemma 2.1 Assume that gi ∈ C2(R), gi(0) = 0, i = 1, 2, . . . , n, and constants
Ki > 0, i = 1, 2, . . . , n, exist so that |g′′i (u)| ≤ Ki for all u ∈ R. Then the vector-
function g(y) can be represented as g(y) = Hy+ g̃2(y), where H = diag{g′i(0)} ∈ R

n×n,
g̃2 : R

n → R
n and the estimate

‖g̃2(y)‖ ≤ K‖y‖2, (7)

holds true, where K = maxi{Ki}/2.

Proof Decomposing the functions gi(yi) by the Maclaurin formula we easily prove
the Lemma.
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3 Main Results

In this section we consider stability of a neural network on time scale. Let x∗ be the
equilibrium state of system (1). Designate by b = min{bi}, b = max{bi}, L = max{li}.

Theorem 3.1 For system (1) assume that assumptions S1–S4 are valid and there
exists a constant µ∗ ∈ M such that µ(t) ≤ µ∗ for all t ∈ Tτ . If the inequality

2b− 2L‖T ‖− µ∗(b + L‖T ‖)2 > 0,

is satisfied, the equilibrium state x = x∗ of system (1) is uniformly asymptotically stable.

Proof It is clear that the behavior of solution x(t) of system (1) in the neighborhood
of the equilibrium state x∗ is equivalent to the behavior of solution y(t) of system
(5) in the neighborhood of zero. For the proof we shall apply the Lyapunov function
V (y) = yTy. If y(t) is ∆-differentiable in the point t ∈ T

k, for the derivative of function
V (y(t)) we have the expression

V ∆(y(t)) = (yT(t) y(t))∆ = yT(t) y∆(t) + [yT(t)]∆y(σ(t))

= yT(t) y∆(t) + [yT(t)]∆[y(t) + µ(t)y∆(t)].

For the derivative of function V along solutions of system (5) we get

V ∆(y(t))|(5) = 2yT(t) y∆(t) + µ(t)[y∆(t)]Ty∆(t)

= 2yT(t)[−By(t) + Tg(y(t))] + µ(t)‖ −By(t) + Tg(y(t))‖2

≤ −2λm(B)‖y(t)‖2 + 2‖y(t)‖ ‖T ‖ ‖g(y(t))‖+ µ∗(‖B‖ ‖y(t)‖+ ‖T ‖ ‖g(y(t))‖)2

= −2b ‖y(t)‖2 + 2‖T ‖ ‖y(t)‖ ‖y(t)‖+ µ∗(b ‖y(t)‖+ ‖T ‖ ‖g(y(t))‖)2.

Using obvious estimation ‖g(y(t))‖ ≤ L ‖y(t)‖ as a result we have

V ∆(y(t))|(f−11) ≤ −2 b‖y(t)‖2 + 2L‖T ‖ ‖y(t)‖2 + µ∗
(

b ‖y(t)‖+ L‖T ‖ ‖y(t)‖
)2

= −
(

2b− 2L‖T ‖ − µ∗(b+ L‖T ‖)2
)

‖y(t)‖2.

Hence it follows that all conditions of Corollary 4.2 from the paper [3] are satisfied.
Therefore, the equilibrium state y = 0 of system (5) is uniformly asymptotically stable.
This is equivalent to the uniform asymptotic stability of the equilibrium state x = x∗ of
system (1).

Theorem 3.2 Let the following conditions be satisfied:

(1) for system (1) on time scale T assumptions S1–S4 are valid;

(2) functions si ∈ C2(R) and there exist constants Ki > 0 such that |s′′i (r)| ≤ Ki for
all r ∈ R, i = 1, 2, . . . , n;

(3) there exists a constant µ∗ ∈ M such that µ(t) ≤ µ∗ for all t ∈ Tτ ;

(4) there exists a positive definite symmetric matrix P ∈ R
n×n such that the inequality

λM (PB1 + BT
1 P ) + µ∗‖P‖‖B1‖2 < 0 holds true, where B1 = −B + TH, H =

diag{s′i(0)} ∈ R
n×n.
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Then the equilibrium state x = x∗ of system (1) is uniformly asymptotically stable.

Proof We apply the function V (y) = yTPy. For the derivative of function V along
solutions of system (5) we have

V ∆(y(t))|(5) = yT(t)Py∆(t) + [yT(t)]∆Py(σ(t)) = yT(t)Py∆(t) + [yT(t)]∆Py(t)

+ µ(t)[y∆(t)]TPy∆(t) = yT(t)P
[

B1y(t) + T g̃2(y(t))
]

+
[

B1y(t) + T g̃2(y(t))
]T
Py(t)

+ µ(t)
[

B1y(t) + T g̃2(y(t))
]T
P
[

B1y(t) + T g̃2(y(t))
]

≤ yT(t)
[

PB1 +BT
1 P

]

y(t)

+ 2yT(t)PT g̃2(y(t)) + µ(t)‖P‖ ‖B1y(t) + T g̃2(y(t))‖
2 ≤

(

λM (PB1 +BT
1 P )

+ µ(t)‖P‖ ‖B1‖
2
)

‖y(t)‖2 + 2‖P‖ ‖T ‖ ‖g̃2(y(t))‖ ‖y(t)‖+ µ(t)‖P‖ ‖g̃2(y(t))‖
2‖T ‖2

+ 2µ(t)‖P‖ ‖B1‖ ‖T ‖ ‖g̃2(y(t))‖ ‖y(t)‖.

Using inequality (7) and condition (3) of Theorem 3.2 we get

V ∆(y(t))|(5) ≤
(

λM (PB1 +BT
1 P ) + µ∗‖P‖ ‖B1‖

2
)

‖y(t)‖2 + 2K‖P‖ ‖T ‖ ‖y(t)‖3

+ 2µ∗K‖P‖ ‖B1‖ ‖T ‖ ‖y(t)‖
3 + µ∗K2‖P‖ ‖T ‖2‖y(t)‖4.

Designate

ψ(‖y‖) = a‖y‖2,

a = −
(

λM (PB1 +BT
1 P ) + µ∗‖B1‖‖P‖

2
)

> 0,

m(ψ) = 2a−
1
3K‖P‖‖T ‖ (1 + µ∗‖B1‖)ψ

1
3 + µ∗a−2K2‖P‖‖T ‖2ψ.

For the derivative of function V along solutions of system (5) we obtain the inequality

V ∆(y(t))|(5) ≤ −ψ(‖y‖) +m(ψ(‖y‖)).

Since the function ψ ∈ K-class, lim
ψ→0

m(ψ) = 0, all conditions of Corollary 4.2 from

[3] are satisfied and therefore, the equilibrium state y = 0 of system (5) is uniformly
asymptotically stable. This is equivalent to the uniform asymptotic stability of the
equilibrium state x = x∗ of system (1).

Theorem 3.3 Let the following conditions be satisfied

(1) for system (1) assumptions S1-S3 hold true.

(2) functions si ∈ C2(R) and there exist constants Ki > 0 such that |s′′i (r)| ≤ Ki for
all r ∈ R, i = 1, 2, . . . , n.

(3) there exist a positive definite symmetric matrix P ∈ R
n×n and a constant M > 0

such that |1 + µ(t)A(t)| ≥ M for all t ∈ Tτ , where B1 = −B + TH, H =
diag{s′i(0)} ∈ R

n×n, A(t) = λM (PB1 +BT
1 P ) + µ(t)‖P‖ ‖B1‖2.

Then, if

(a) lim sup
t→∞

βA(t) = q < 0, the equilibrium state x = x∗ of system (1) is exponentially

stable;
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(b) sup {βA(t) : t ∈ Tτ} = q < 0, the equilibrium state x = x∗ of system (1) is
uniformly exponentially stable.

Proof We shall apply function V (y) = yTPy and for the derivative of function V
along solutions of system (5) we shall use the expression obtained in the previous theorem

V ∆(y(t))|(5) ≤
(

λM (PB1 +BT
1 P ) + µ(t)‖P‖ ‖B1‖

2
)

‖y(t)‖2

+ 2‖P‖ ‖T ‖ ‖g̃2(y(t))‖ ‖y(t)‖+ 2µ(t)‖P‖ ‖B1‖ ‖T ‖ ‖g̃2(y(t))‖ ‖y(t)‖

+ µ(t)‖P‖ ‖g̃2(y(t))‖
2‖T ‖2 ≤

(

λM (PB1 +BT
1 P ) + µ(t)‖P‖ ‖B1‖

2
)

‖y(t)‖2

+
(

2K‖P‖ ‖T ‖ ‖y(t)‖+ 2µ(t)K‖P‖ ‖B1‖ ‖T ‖ ‖y(t)‖

+ µ(t)K2‖P‖ ‖T ‖2|y(t)‖2
)

‖y(t)‖2 = A(t)‖y(t)‖2 +Φ(t, V (y)),

where Φ(t, V ) =
[

2K‖P‖ ‖T ‖(1+ µ(t)‖B1‖)
√
V + µ(t)K2‖P‖ ‖T ‖2V

]

V .
Consider the set T = {t ∈ Tτ : µ(t) 6= 0}. If there exists sup T < +∞ then there

exists t1 ∈ Tτ such that µ(t) = 0 for all t ∈ [t1,+∞)T. If the set T is not bounded, the
condition lim sup

t→∞
βA(t) = q < 0 implies that there exists a sufficiently large t2 ∈ Tτ ∩T

such that for all t ∈ [t2,+∞)T ∩ T inequality βA(t) < 0 holds true. This yields that for
all t ∈ [t2,+∞)T ∩ T the inequality

log
∣

∣1 + µ(t)(λM (PB1 +BT
1 P ) + µ(t)‖P‖‖B1‖

2)
∣

∣ < 0

is true. Then

µ(t)(λM (PB1 +BT
1 P ) + µ(t)‖P‖ ‖B1‖

2)− 1 < 1,

‖P‖ ‖B1‖
2µ2(t) + λM (PB1 +BT

1 P )µ(t)− 2 ≤ 0.

Since D = λM (PB1+B
T
1 P )

2+8‖P‖‖B1‖2 ≥ 0, we obtain the estimate µ(t) ≤ µ1 for all
t ∈ [t2,+∞) ∩ T , where µ1 = (−λM (PB1 + BT

1 P ) +
√
D)/2‖P‖‖B1‖2 ≥ 0. Hence, one

can conclude that µ(t) ≤ µ1 for all t ∈ [t3,+∞)T, t3 = max{t1, t2}. If t ∈ [τ, ρ(t3)] ∩ T

then µ(t) ≤ t3. This implies the estimate µ(t) ≤ µ∗ = max{µ1, t3} for all t ∈ Tτ . Since

Φ(t, V )

V
= 2K‖P‖ ‖T ‖(1+ µ(t)‖B1‖)

√
V + µ(t)K2‖P‖ ‖T ‖2V

≤ 2K‖P‖ ‖T ‖(1+ µ∗‖B1‖)
√
V + µ∗K2‖P‖ ‖T ‖2V,

we get Φ(t, V )/V → 0 for V → 0 uniformly in t. According to Theorem 2 from the
paper [13] we conclude that the equilibrium state y = 0 of system (5) is exponentially
stable. This is equivalent to the exponential stability of the equilibrium state x = x∗ of
system (1).

Now we shall prove the second part of the theorem. Condition sup{βA : t ∈ Tτ} =
q < 0 for t ∈ T implies

log|1 + µ(t)(λM (PB1 +BT
1 P ) + µ(t)‖P‖‖B1‖

2)| ≤ µ(t)q < 0

for all t ∈ T . Hence, we get

µ(t) ≤
−λM (PB1 +BT

1 P ) +
√
D

2‖P‖‖B1‖2
= µ∗, µ∗ ≥ 0, t ∈ T .
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That is that µ(t) ≤ µ∗ for all t ∈ Tτ . Then, similar to the above, we have Φ(t, V )/V → 0
for V → 0 uniformly in t.

Therefore, all conditions of Theorem 2 from the paper [13] are satisfied and the
equilibrium state y = 0 of system (5) is uniformly exponentially stable. This is equivalent
to the uniform exponential stability of the equilibrium state x = x∗ of system (1).

Remark 3.1 Consider the scale T = N (µ(t) ≡ 1). In this case system of equa-
tions (1) is equivalent to system (4) and the condition of uniform asymptotic stability
of the equilibrium state of system (1) established in Theorem 3.1 for µ∗ = 1 becomes

2b− 2L‖T ‖− (b + L‖T ‖)2 > 0.

This result coincides completely with the below result for discrete system (4).

Theorem 3.4 For neural discrete system (4) let assumptions S2, S3 be satisfied.
Then the equilibrium state x = x∗ of system (4) is uniformly asymptotically stable,
provided that

2b− 2L‖T ‖− (b + L‖T ‖)2 > 0.

Proof Consider function y(k) = x(k)− x∗ and rewrite equations (4) as

y(k + 1) = (−B + I)y(k) + Tg(x(k)), k ∈ Tτ , (8)

where I is an identity n× n -matrix and for the first difference of function V (y) = yTy
we get the estimate

∆V (y(k))|(8) = yT(k + 1)y(k + 1)− yT(k)y(k)

= [(−B + I)y(k) + Tg(y(k))]T[(−B + I)y(k) + Tg(y(k))]− yT(k)y(k)

= yT(k)BTBy(k)− 2yT(k)BTy(k)− 2y(k)TBTg(y(k))

+ 2yT(k)Tg(y(k)) +GT(y(k))TTTg(y(k))

≤ ‖B‖2‖y(k)‖2 − 2λm(B)‖y(k)‖2 + 2L‖B‖ ‖T ‖ ‖y(k)‖2

+ 2L‖T ‖ ‖y(k)‖2 + ‖T ‖2‖g(y(k))‖2

≤
[

b
2
− 2b+ 2Lb‖T ‖+ 2L‖T ‖+ ‖T ‖2L2

]

‖(y(k))‖2

= −
[

2b− 2L‖T ‖− (b + L‖T ‖)2
]

‖(y(k))‖2.

This yields the assertion of the theorem.

The regressivity of function f(x) = −Bx+Ts(x)+u is one of conditions for existence
of solution of problem (1), (2). Here we give some sufficient regressivity conditions for
the function f(x).

Theorem 3.5 Let assumption S3 be fulfilled. If for every fixed t ∈ T the matrix
(I − µ(t)B)Λ−1 − µ(t)|T | is an M -matrix, the function f(x) = −Bx + Ts(x) + u is
regressive.

Proof We fix t ∈ T and consider the mapping R : Rn → R
n given by the formula

R(x) = x+ µ(t)f(t, x) = (I − µ(t)B)x + µ(t)Ts(x) + µ(t)u.
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Designate by ˜B = (I − µ(t)B), ˜T = µ(t)T and ũ = µ(t)u. Then we get

R(x) = ˜Bx+ ˜Ts(x) + ũ.

Since the matrix ˜BΛ−1 − | ˜T | is an M -matrix, the mapping R : R
n → R

n is a homeo-
morphism [17]. Hence follows the reversibility of the mapping R(x) which is equivalent
to the reversibility of the operator I + µ(t)f(t, ·) : Rn → R

n.

4 Example

On the time scale P1,γ =
⋃∞
j=0[j(1 + γ), j(1 + γ) + 1], γ > 0, we consider a neural

network
x∆1 (t) = −b1x1(t) + t11s(x2(t)) + t12s(x2(t)) + u1,

x∆2 (t) = −b2x1(t) + t21s(x1(t)) + t22s(x2(t)) + u2,
(9)

where x1, x2 ∈ R, u1, u2 ∈ R, b1 = b2 = 1, T =
(

0.1 −0.5
0.5 0.1

)

, s(u) = tanhu.
For the time scale P1,γ the granularity function

µ(t) =

{

0, t ∈
⋃∞
j=0 [j(1 + γ), j(1 + γ) + 1) ,

γ, t ∈
⋃∞
j=0 {j(1 + γ) + 1} .

We take matrix P = diag{0.5, 0.5} and write out all the functions and constants men-
tioned in the conditions of Theorem 3.3

M1 =M2 = L1 = L2 = 1, A(t) = −0.9 + 0.53 γ,

K1 = K2 = 8
∣

∣

∣
e

2+
√

3

2 − e−
2+

√

3

2

∣

∣

∣

/(

e
2+

√

3

2 + e−
2+

√

3

2

)3

,

βA(t) =















γ−1 log |1 + γ(−0.9 + 0.53 γ)|, t ∈
∞
⋃

j=0

{j(1 + γ) + 1} ,

−0.9 + 0.53 γ, t ∈
∞
⋃

j=0

[j(1 + γ), j(1 + γ) + 1) .

The regressivity condition has the form of the inequalities

{

1− 1.1 γ > 0,

(1− 1.1γ)2 − 0.25 γ2 > 0,

which yields γ < 0.625. Since 1 + γ(−0.9 + 0.53 γ) ≥ 1 + γ0(−0.9 + 0.53 γ0), γ0 =
0.9/(2 · 0.53) for any γ, we can take for the constant M the following value: M =
1 + γ0(−0.9 + 0.53 γ0) = 0.61.

For γ < 1.69 the system of inequalities

{

M ≤ |1 + γ(−0.9 + 0.53 γ)| < 1,

−0.9 + 0.53 γ < 0

is satisfied. This implies that supt βA(t) = max{γ−1 log |1 + γ(−0.9 + 0.53 γ)|,−0.9 +
0.53} < 0. Since the matrix BΛ−1−|T | =

(

0.9 −0.5
−0.5 0.9

)

is anM -matrix, for 0 < γ < 0.625
system (9) possesses a unique equilibrium state for any u1, u2 ∈ R and this equilibrium
state is uniformly exponentially stable.
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Figure 1: Dependence of the function x(t) on time t obtained by numerical solution of system

of equations (9).

We shall consider a model example for this problem. We take the following values
of the constants: u1 = 2, u2 = −1, γ = 0.5. The result of numerical solution of system
(9) is shown in Figure 1. It is seen from the figure, for arbitrary chosen initial con-
ditions (1,−0.5), (1.5,−1.5), (2.5,−1.5), (3,−0.5), (2.5, 0.5), (1.5, 0.5) the function x(t)
approaches asymptotically with time t to the equilibrium state (x∗1, x

∗
2)

T= (2.35,−0.56)T.
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Abstract: In this paper equilibrium states for pre-image pressure are considered.

We study the ergodic decomposition of Cheng–Newhouse metric pre-image entropy.

Moreover, for a topological dynamical system (X,T ) with finite topological pre-image

entropy and upper semi-continuous metric pre-image entropy function h
{pre,•}(T ), we

obtain a way to describe a kind of continuous dependence of equilibrium states, and

show that all functions with unique equilibrium state is dense in C(X). Last, we also

discuss the uniformity of equilibrium states for pre-image pressure.
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1 Introduction

Entropies are fundamental to our current understanding of dynamical systems, and topo-
logical pressure is a generalization to topological entropy for a dynamical system (see [1]
and [2]). Recently, the pre-image structure of maps has become deeply characterized via
entropies and pressures, and several important pre-image entropy and pressure invariants
have been introduced (see [3, 4, 5, 6, 7]).

In [3], F. Zeng, K. Yan and G. Zhang studied the topological pre-image pressure of
topological dynamical systems, and proved a variational principle for it. They considered
a compact metric space X and a continuous map T : X → X . The pre-image pressure
is defined as a real-valued continuous convex function Ppre(T, •) on C(X), where C(X)
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denotes the Banach space of all real-valued continuous functions onX with the supremum
norm. They showed that Ppre(T, f) = supµ∈M(X,T )(hpre,µ(T ) + µ(f)), where M(X,T )

denotes the collection of all T -invariant probability measures on X , µ(f) =
∫

X
fdµ

and hpre,µ(T ) the pre-image entropy of µ with respect to T (see [3, 4] for definition).
An µ ∈ M(X,T ) such that hpre,µ(T ) + µ(f) attains its supremum is called equilibrium
state. For each f ∈ C(X), there exist tangent functionals to Ppre(T, •) at f , whereas there
may be no equilibrium states for f . If Tf (X,T ) denotes the set of tangent functionals to
Ppre(T, •) at f andMf (X,T ) the set of equilibrium states for f then one hasMf (X,T ) ⊂
Tf (X,T ) ⊂ M(X,T ) and Tf (X,T ) = Mf (X,T ) if and only if the pre-image entropy
function h{pre,·}(T ) is upper semi-continuous at the members of Tf (X,T )(see § 2 for
definitions and [3] for some results).

The purpose of this note is to consider equilibrium states for pre-image pressure of
the topological dynamical system (X,T ) with finite pre-image entropy. In Section 2,
we concentrate on the ergodic decomposition of measure pre-image entropy, and review
some definitions and some basic properties.

In Section 3, we consider a kind of continuous dependence of the equilibrium states
Mf (X,T ) on the function f .

In Section 4, we discuss uniqueness and uniformity of equilibrium states for pre-
image pressure. We obtained the collection of continuous functions which has unique
equilibrium state relative to pre-image pressure and is a dense Gδ-set of C(X). We also
show that for any finite collection of ergodic measures, we can find some continuous
function such that they contain its equilibrium states set.

2 Preliminaries

In this section, we will recall some definitions and give some useful lemmas.
For a given topological dynamical system (X,T ) (where X is a compact metric space

and T is a continuous map from X to itself), denote by B(X) the collection of all Borel
subsets. A partition of X is a finite disjoint collection of Borel subsets of X whose
union is X . For finite partitions α, β, we set α ∨ β = {A ∩ B : A ∈ α,B ∈ β} and
T−1α = {T−1(A) : A ∈ α}. If 0 ≤ j ≤ n are positive integers, we let αn

j =
∨n

i=j T
−iα

and αn = αn−1
0 . Set B− =

⋂∞
n=0 T

−nB(X), then B− is a T -invariant sub-σ algebra. We
call B− the infinite past σ-algebra related to B(X).

Denote byM(X) the set of all Borel probability measures onX , M(X,T ) ⊂ M(X) is
the set of T -invariant measures, andMe(X,T ) ⊂ M(X,T ) is the set of ergodic measures.
Then both M(X) and M(X,T ) are convex, compact metric spaces endowed with the
weak∗-topology (see Chapter 6 in [1]).

Given partitions α, β of X , µ ∈ M(X) and a σ-algebra A ⊂ B(X), define

Hµ(α|A) :=
∑

A∈α

∫

X

−E(1A|A) logE(1A|A)dµ,

Hµ(α|β ∨A) := Hµ(α ∨ β|A) −Hµ(β|A),

where E(1A|A) is the expectation of 1A with respect to A. It is well-known that Hµ(α|A)
increases with respect to α and decreases with respect to A.

When µ ∈ M(X,T ) and A is a T -invariant measurable sub-σ-algebra of X , it is not
hard to see that an = Hµ(α

n|A) is a non-negative sub-additive sequence for a given
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partition α, i.e. an+m ≤ an + am for all positive integers n and m. It is well known that

lim
n→∞

an
n

= inf
n≥1

an
n
.

The conditional entropy of α with respect to A is then defined by

hµ(T, α|A) := lim
n→∞

1

n
Hµ(α

n|A) = inf
n≥1

1

n
Hµ(α

n|A).

Moreover, the metric conditional entropy of (X,T ) with respect to A is defined by

hµ(T,X |A) = sup
α

hµ(T, α|A).

Note that if N is a trivial σ-algebra, we recover the metric entropy, and we write
hµ(T, α|N ) and hµ(T,X |N ) simple as hµ(T, α) and hµ(T ).

Particularly, if A is the infinite past σ-algebra B−, we define the measure-theoretic
(or metric) pre-image entropy of α with respect to (X,T ) by

hpre,µ(T, α) := hµ(T, α|B
−) = lim

n→∞

1

n
Hµ(α

n|B−).

Moreover, we define the metric pre-image entropy of (X,T ) by

hpre,µ(T ) := sup
α

hpre,µ(T, α).

In [4], Cheng-Newhouse have shown that the quantity hpre,µ(T ) satisfied power and
product rules analogous to the standard metric entropy, that the map µ → hpre,µ(T ) was
affine, and that there was an analog of the Shannon-Breiman-McMillan theorem for the
metric pre-image entropy. In [5], Wen-Chiao Cheng obtained a method for calculating
the metric pre-image entropy, which is similar to the Kolmogorov-Sinai theorem for the
metric entropy.

Now we discuss the ergodic decomposition of metric pre-image entropy. Given a
partition α of X , put α− =

∨∞
n=1 T

−nα and αT =
∨+∞

n=−∞ T−nα. The following lemma
is a classical result in ergodic theory (see for example [8]).

Lemma 2.1 (Pinsker formula) Let α, β be two partitions of X. Then

hµ(T, α ∨ β) = hµ(T, β) +Hµ(α|β
T ∨ α−).

Lemma 2.2 (Ergodic decomposition of metric entropy, [1, Theorem 8.4]) Let (X,T )
be a topological dynamical system and α be a partition of X. If µ ∈ M(X,T ) and
µ =

∫

Me(X,T ) mdτ(m) is the ergodic decomposition of µ, then we have:

hµ(T, α) =

∫

Me(X,T )

hm(T, α)dτ(m).

Lemma 2.3 ([5, Lemma 4.13]) Let (X,T ) be a topological dynamical system, µ ∈
M(X,T ) and α be a partition of X. Then

hpre,µ(T, α) = Hµ(α|α
− ∨ B−).
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Theorem 2.1 (Ergodic decomposition of metric pre-image entropy). Let (X,T )
be a topological dynamical system, µ ∈ M(X,T ) and α be a partition of X. If
µ =

∫

Me(X,T ) mdτ(m) is the ergodic decomposition of µ, then

hpre,µ(T, α) =

∫

Me(X,T )

hpre,m(T, α)dτ(m),

and

hpre,µ(T ) =

∫

Me(X,T )

hpre,m(T )dτ(m).

Proof Take an increasing sequence of finite Borel partitions βj ofX with diam(βj) →
0. Then using the Pinsker formula, the ergodic decomposition of metric entropy, Lemma
2.3 and dominated convergence theorem, we have

hpre,µ(T, α) = Hµ(α|α
− ∨ B−) = lim

k→∞
Hµ(α|α

− ∨ T−kB(X))

= lim
k→∞

lim
j→∞

Hµ(α|α
− ∨ (T−kβj)

T )

= lim
k→∞

lim
j→∞

[hµ(T, α ∨ T−kβj)− hµ(T, T
−kβj)]

= lim
k→∞

lim
j→∞

∫

Me(X,T )

[hm(T, α ∨ T−kβj)− hm(T, T−kβj)]dτ(m)

= lim
k→∞

lim
j→∞

∫

Me(X,T )

Hm(α|α− ∨ (T−kβj)
T )dτ(m)

=

∫

Me(X,T )

lim
k→∞

lim
j→∞

Hm(α|α− ∨ (T−kβj)
T )dτ(m)

=

∫

Me(X,T )

hpre,m(T, α)dτ(m).

Moreover, we can get

hpre,µ(T ) = lim
j→∞

hpre,µ(T, βj) = lim
j→∞

∫

Me(X,T )

hpre,m(T, βj)dτ(m)

=

∫

Me(X,T )

lim
j→∞

hpre,m(T, βj)dτ(m)

=

∫

Me(X,T )

hpre,m(T )dτ(m).

Theorem 2.1 is proved. 2

Following the idea of topological pressure (see [1]), F.Zeng etc. defined a new notion
of pre-image pressure, which extends Cheng-Newhouse pre-image entropy [4]. For a given
topological dynamical system (X,T ), the pre-image pressure of T is a map Ppre(T, •) :
C(X) → R which is convex, Lipschitz continuous, increasing, with Ppre(T, 0) = hpre(T )
(see [3] for definition).
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Given f ∈ C(X). A member µ ∈ M(X,T ) is called an equilibrium state for f if
Ppre(T, f) = hpre,µ(T ) + µ(f). By the variational principle (Theorem 3.1 in [3])this is
equivalent to requiring

hpre,µ(T ) + µ(f) = sup{hpre,m(T ) +m(f) : m ∈ M(X,T )}.

Let Mf (X,T ) denote the collection of all equilibrium states for f . Note that this set
could be empty (see Example 5.1 in [3]).

A tangent functional to Ppre(T, •) at f is a finite signed Borel measure µ on X such
that

Ppre(T, f + g)− Ppre(T, f) ≥ µ(g), ∀ g ∈ C(X).

Let Tf (X,T ) denote the collection of all tangent functionals to Ppre(T, •) at f . An
application of the Hahn-Banach theorem gives Tf (X,T ) 6= ∅. It is easy to see that
µ ∈ Tf (X,T ) if and only if

Ppre(T, f)− µ(f) = inf{Ppre(T, h)− µ(f) : h ∈ C(X)}.

Also we have Tf (X,T ) ⊂ M(X,T ) (see [3] for details).

Proposition 2.1 The following holds.
(1) Mf(X,T ) is convex;
(2) if the pre-image entropy map hpre,•(T ) is upper semi-continuous then Mf (X,T )

is compact and non-empty;
(3) the extreme points of Mf(X,T ) are precisely the ergodic members of Mf(X,T );
(4) If µ ∈ Mf (X,T ) and µ =

∫

Me(X,T )
mdτ(m) is the ergodic decomposition of µ,

then for τ-a.e. m ∈ Me(X,T ), m ∈ Mf (X,T ).

Proof (1)-(3) can see Theorem 5.1 in [3].
(4) This follows from the following two facts: (i) hpre,m(T ) + m(f) ≤ Ppre(T, f)

for each m ∈ Me(X,T ); (ii)
∫

Me(X,T )[hpre,m(T ) + m(f)]dτ(m) = hpre,µ(T ) + µ(f) =

Ppre(T, f) by Theorem 2.1. 2

Proposition 2.2 Let (X,T ) be a topological dynamical system with hpre(T ) < ∞
and f ∈ C(X). Then the following holds.

(1) Mf(X,T ) ⊂ Tf (X,T ) ⊂ M(X,T );

(2) Tf (X,T ) =
⋂∞

n=1 {µ ∈ M(X,T ) : hpre,µ(T ) + µ(f) > Ppre(T, f)− 1/n};
(3) Mf(X,T ) = Tf (X,T ) if and only if hpre,•(T ) is upper semi-continuous at the

members of Tf (X,T ).

Proof Theorem 5.2 in [3]. 2

3 Continuous Dependence of Equilibrium State

Let (X,T ) be a topological dynamical system. Throughout the following sections, we
assume the topological pre-image entropy hpre(T ) < ∞, and the metric pre-image entropy
function h{pre,•}(T ) : M(X,T ) → R is upper semi-continuous.

In this section, we prove a theorem to describe a kind of continuous dependence of
the set Mf(X,T ) on the function f ∈ C(X).
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Theorem 3.1 Consider f, gn ∈ C(X) and tn ∈ (−1, 1) such that tn → 0 and
||gn||∞ → 0. Let µn ∈ M(1+tn)f+gn(X,T )), n > 0. Then the following holds.

(1) If {µn}n≥1 converges weakly to some µ ∈ M(X,T ) (i.e. µn(h) → µ(h) for all
h ∈ C(X)), then µ ∈ Mf(X,T );

(2) If Mf (X,T ) = {µ}, then limn→∞ µn = µ.

Proof (1) Observe that

Ppre(T, (1 + tn)f + gn)

= sup
µ∈M(X,T )

(hpre,µ(T ) + µ((1 + tn)f + gn))

= sup
µ∈M(X,T )

((1 + tn)(hpre,µ(T ) + µ(f))− tnhpre,µ(T ) + µ(gn))

≥ (1 + tn)Ppre(T, f)− |tn|hpre(T )− ||gn||∞

(1)

Since the metric pre-image entropy function hpre,•(T ) is upper semi-continuous,

hpre,µ(T ) + µ(f)

≥ lim sup
n→∞

hpre,µn
(T ) + lim sup

n→∞
µn(f)

≥ lim sup
n→∞

(hpre,µn
(T ) + µn((1 + tn)f + gn)− µn(tnf + gn))

≥ lim sup
n→∞

(Ppre(T, (1 + tn)f + gn)− |tnµn(f)| − ||gn||∞)

≥ lim sup
n→∞

((1 + tn)Ppre(T, f)− |tn|hpre(T )− |tnµn(f)| − 2||gn||∞) (by (1))

≥ Ppre(T, f)− lim sup
n→∞

|tnµn(f)|

≥ Ppre(T, f)− lim sup
n→∞

|tn|µn(|f |)

= Ppre(T, f) (Since lim sup
n→∞

µn(|f |) = µ(|f |) < ∞).

Therefore, µ ∈ Mf (X,T ).
(2) If ω is a limit point of {µn}n≥1, then ω = µ by (1). It follows that µn → µ as

n → ∞. 2

4 Uniqueness and Uniformity of Equilibrium State

In this section, we study uniqueness and uniformity of equilibrium state for pre-image
pressure. First, we have the following lemma.

Lemma 4.1 For a given topological dynamical system (X,T ), there is a dense subset
C(X) such that each function in this set has a unique equilibrium state for pre-image
pressure.

Proof It follows directly from (3) in Proposition 2.2 and the fact that a convex
continuous function on a separable Banach space has a unique tangent functional at a
dense set of points (can see [9, page 450] or [10, Appendix A.3.6]). 2

Denote by 2M(X,T ) the hyperspace of compact metric space M(X,T ). Define Φ :
C(X) → 2M(X,T ) by

Φ(f) = Mf (X,T ), ∀ f ∈ C(X).
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Lemma 4.2 Φ is upper semi-continuous.

Proof If fn ∈ C(X) with fn → f ∈ C(X) and µn ∈ Mfn(X,T ) with µn → µ for
some µ ∈ M(X,T ), then for each n we have

hpre,µn
(T ) + µn(fn) = Ppre(T, fn).

Letting n → ∞, then by the continuity of pre-image pressure function Ppre(T, •) (see [3,
Lemma 4.1 (3)]) and the upper semi-continuity of hpre,•(T ), we have

hpre,µ(T ) + µ(f) ≥ Ppre(T, f).

Using the variational principle of pre-image pressure, µ ∈ Mf (X,T ). 2

Theorem 4.1 Let (X,T ) be a topological dynamical system. Then the following
holds.

(1) f ∈ C(X) has a unique equilibrium state relative to pre-image pressure if and
only if Φ is continuous at f ;

(2) C ⊂ C(X) is a dense Gδ set, where each f ∈ C has unique equilibrium state for
pre-image pressure.

Proof (1) It follows directly from Lemma 4.2 that Φ is continuous at f whenever
Mf (X,T ) has only one element.

Now we let Φ be continuous at f . By Lemma 4.1, there is a sequence fn ∈ C(X)
such that fn → f and each Mfn(X,T ) is a single point set. Since Φ is continuous at f ,
Mf (X,T ) also has only one element.

(2) It follows directly from Lemma 4.1, Lemma 4.2 and (1) above. 2

Now we discuss uniformity of equilibrium states for pre-image pressure. Set

Mpre(X,T ) =
⋃

f∈C(X)

Mf (X,T ),

which denote the set of all equilibrium states for pre-image pressure.

Lemma 4.3 Given f ∈ C(X). Then for any µ ∈ M(X,T ) and ε > 0, there is
f ′ ∈ C(X) and µ′ ∈ Mf ′(X,T ) such that

||µ− µ′|| = sup
g∈C(X),||g||=1

|µ(g)− µ′(g)| ≤ ε,

and

||f − f ′|| ≤
1

ε
[Ppre(T, f)− hpre,µ(T )− µ(f)].

Proof The proof follows the arguments of the proof of [10, Theorem 3.16]. First we
have Ppre(T, •) : C(X) → R is convex and continuous (see [3, Lemma 4.1 (3) and (4)]).
Since µ(g) ≤ Ppre(T, g) for all g ∈ C(X), it follows from [10, Appendix A.3.6] that there
is f ′ ∈ C(X) and µ′ ∈ Tf ′(X,T ) = Mf ′(X,T ) such that ||µ− µ′|| ≤ ε, and

||f − f ′|| ≤
1

ε
[Ppre(T, f)− µ(f)− inf{Ppre(T, g)− µ(g) : g ∈ C(X)}]

=
1

ε
[Ppre(T, f)− µ(f)− hpre,µ(T )] (By [3, T heorem 4.2]).

The lemma is proved. 2
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Theorem 4.2 The following holds.
(1) The set Mpre(X,T ) is dense in M(X,T );
(2) For any finite collection of ergodic measures {µ1, µ2, · · · , µn}, there is a f ∈ C(X)

such that {µ1, µ2, · · · , µn} ⊂ Mf (X,T ).

Proof (1) It follows directly from Lemma 4.3.
(2) Use (1), we know that there is f ∈ C(X) and µ ∈ Mf (X,T ) such that

||µ−
1

n
(µ1 + µ2 + · · ·+ µn)|| <

1

n
.

Let µ =
∫

Me(X,T )
mdτ(m) be the ergodic decomposition of µ. Then we have

||τ −
1

n
(δµ1

+ δµ2
+ · · ·+ δµn

)|| <
1

n
,

(see [10, Appendix A.5.5]), and therefore τ({µ1}) > 0, · · · , τ({µn}) > 0. Thus
{µ1, µ2, · · · , µn} ⊂ Mf (X,T ) by (4) in Proposition 2.1. 2
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