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Abstract: This paper proposes an adaptive backstepping control strategy for a class
of uncertain non affine systems using self recurrent neural networks. To assure the
stable tracking of nonlinear non affine system, it is first converted to an affine like form
and subsequently a wavelet based adaptive backstepping controller is developed. Self
recurrent wavelet neural network (SRWNN) is used to approximate the uncertainties
present in the system as well as to compensate the highly dynamic nonlinearities
inserted by these uncertainties in the control terms. In addition robust control terms
are also designed to attenuate the approximation error due to SRWNN. Based on the
Lyapunov theory, the online adaptation laws and stability of the closed loop system
are verified. A numerical example is provided to verify the effectiveness of theoretical
development.
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1 Introduction

Over last few years, several efforts on the development of adaptive control strategies for
uncertain nonlinear systems have been cited in the literature. In these cases the common
assumption was that the system is affine in input [1, 2]. However the development of
control strategies is still an active area of research.

To deal with the non affine systems, two control strategies are cited in the literature.
One is based on the dynamic inversion satisfying the assumptions of Tikhonov theorem
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from the singular perturbation theory. Other is based on the conversion of non affine
system to an affine like form by applying a suitable transformation and designing the
controller for the later form by implicit function theorem [3]–[7].

Backstepping is a recursive design methodology where some appropriate functions
of state variables as pseudocontrol inputs for lower dimension subsystems of the overall
system are derived. Each backstepping stage results in a new pseudocontrol design,
expressed in terms of the pseudocontrol designs from preceding design stages. When
the procedure is terminated, a feedback design for the true control input results, which
achieves the original design objective by virtue of a final Lyapunov function, which is
formed by summing up the Lyapunov functions associated with each individual design
stage. Thus, the backstepping control approach is capable of keeping the robustness
properties with respect to the uncertainties [13]–[15]. Via adaptive backstepping this
methodology can be effectively extended to non linear systems with unmodelled dynamics
[1].

Based on the concept of transformation of non affine systems into affine like form,
some researchers have proposed adaptive backstepping based control schemes for non
affine uncertain systems [7].

Employment of neural network (NN) as an approximation tool in adaptive control
strategies has greatly relaxed the assumptions on linear parameterized nonlinearities and
thereby broadens the class of the uncertain nonlinear systems which can be effectively
dealt by adaptive controllers [8]. However there are certain difficulties associated with
NN based controller. The basis functions are generally not orthogonal or redundant;
i.e., the network representation is not unique and is probably not the most efficient one.
Furthermore, the convergence of neural networks may not be guaranteed. Even when it
exhibits a good convergence rate, the training procedure may still be trapped in some
local minima depending on the initial settings. Wavelet neural networks are feed-forward
neural networks using wavelets as activation function. Due to their space and frequency
localization properties, the learning capability of WNN is superior to conventional neural
networks. Training algorithms for WNN converge in smaller number of iterations than for
conventional neural networks. These WNN combines the capability of artificial neural
network for learning ability and capability of wavelet decomposition for identification
ability. Thus WNN based control systems can achieve better control performance than
NN based control systems [9, 10]. The feedforward structure of the conventional WNN
limits the applicability of these networks only to static environmental conditions. These
networks are not very effective under the frequently changing operating conditions and
dynamic properties as they can not adapt rapidly under such circumstances. To overcome
this problem, a feedback mechanism is inserted in conventional WNN giving rise to either
output recurrent WNN (ORWNN) or self recurrent WNN (SRWNN). These recurrent
networks combines the properties of recurrency with the convergence properties of WNN
to solve the complex control problems [11, 12].

This paper deals with the designing of a backstepping based adaptive tracking con-
troller for a class of uncertain non affine systems. SRWNN are used for approximating the
system uncertainty as well as to compensate the nonlinearities arising in the controller
terms due to these uncertainties.

For the class of the system under consideration the backstepping control terms contain
the system nonlinearities as well as their derivatives of various orders. Consideration of
these derivatives while deriving the controller terms results in numerically untraceable so-
lution, whereas if these derivatives are neglected, it results in approximate backstepping.
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In this work such derivative terms are approximated by using SRWNN, thereby reduc-
ing the mathematical complexities as well as improving the accuracy of the controller
strategy.

The paper is organized as follows: Section 2 deals with the system preliminaries,
system description is given in Section 3. SRWNN based backstepping controller designing
aspects are discussed in Section 4. Effectiveness of the proposed strategy is illustrated
through an example in Section 5 while Section 6 concludes the paper.

2 System Preliminaries

2.0.1 Self recurrent wavelet neural network

Wavelet network is a type of building block for function approximation. The building
block is obtained by translating and dilating the mother wavelet function. SRWNN is
modified form of WNN composed of a self feedback wavelon layer as shown in Figure
1. Due to the self feedback layer the wavelon layer can store the past information of
the network, thereby capturing the dynamic response of the system. This modification
allows SRWNN to approximate dynamic nonlinearities with high degree of accuracy.
This makes SRWNN more suitable tool for the adaptive control strategies as compared
to conventional WNN.

Output of an n dimensional SRWNN with m wavelet nodes is

f =

m∑
i=1

αiϕi (θi, ϕ̄i, x, wi, ci) , (1)

where ϕi is the ith wavelet node given by

ϕi (θi, ϕ̄i, x, wi, ci) =

n∏
j=1

ϕij(θij , ϕ̄ij , x, wij , cij), (2)

where ϕij is the jth wavelon of ith wavelet node. x = [x1, x2, . . . , xn]T is the vector of
the states of the system and act as external input vector the SRWNN, whereas ϕ̄i =
[ϕ̄i1, ϕ̄i2, . . . , ϕ̄in] is the previous value vector of the wavelon constituting the ith wavelet
node This vector serves as the memory element and stores the previous information of the
network, and acts as the feedback input for the respective wavelon. θi = [θi1, θi2, . . . , θin]
is the weight vector of the feedback input. Whereas wi = [wi1, wi2, . . . , win] and ci =
[ci1, ci2, . . . , cin] are dilate and translate vectors respectively. The net input applied to
the wavelet network is given by zi = [x1 + θi1ϕ

′
i1, x2 + θi2ϕ

′
i2, . . . , xn + θinϕ

′
in]T .

Now (1) can be rewritten as

f = αTϕ (x, θ,ϕ̄,w, c) , (3)

where w = [w1, w2, ..., wm]
T ∈ Rmxn and c = [c1, c2,..., cm]

T ∈ Rmxn are dilation and

translation parameters respectively; α = [α1, α2, .., αm]
T ∈ Rm and θ = [θ1, θ2, .., θm]

T ∈
Rnxm are the output and feedback weights respectively. ϕ̄ = [ϕ̄1, ϕ̄2.., ϕ̄m]

T ∈ Rnxm is
the feedback input vector of SRWNN.

Let f∗ be the optimal function approximation using an ideal wavelet approximator
then

f = f∗ + ∆ = α∗Tϕ∗ + ∆, (4)
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where ϕ∗ = ϕ (x, θ∗,ϕ̄,w∗, c∗) and α∗, w∗, c∗, θ∗ are the optimal parameter vectors of
α,w, c, θ respectively and ∆ denotes the approximation error and is assumed to be
bounded by |∆| ≤ ∆∗, in which ∆∗ is a positive constant. Optimal parameter vectors
needed for the best approximation of the function are difficult to determine so define an
estimate function as

f̂ = α̂T ϕ̂, (5)

where ϕ̂ = ϕ
(
x, ŵ, ĉ, θ̂, ϕ̄

)
andα̂, ŵ, ĉ, θ̂ are the estimates of α∗, w∗, c∗, θ∗ respectively.

Define the estimation error as

f̃ = f − f̂ = f∗ − f̂ + ∆ = αT ϕ̃+ α̂T ϕ̃+ α̃T ϕ̂+ ∆, (6)

where α̃ = α∗−α̂, ϕ̃= ϕ∗−ϕ̂.
By properly selecting the number of nodes, the estimation error f̃ can be made

arbitrarily small on the compact set so that the bound
∥∥∥f̃∥∥∥ = f̃m holds for all x ∈ <.

Using Taylor expansion linearization technique to transform the nonlinear function
into a partially linear form as a step towards the derivation of online tuning laws for the
wavelet parameters to achieve the favorable estimation of system dynamics [1]

ϕ̃=AT w̃ +BT c̃+ CT θ̃ + h, (7)

where w̃ = w∗− ŵ, c̃ = c∗− ĉ, θ̃ = θ∗− θ̂ and h are the vectors of higher order terms and

A =
[
dϕ1

dw ,
dϕ2

dw , ...,
dϕm

dw

]∣∣∣
w=ŵ

,

B =
[
dϕ1

dc ,
dϕ2

dc , ...,
dϕm

dc

]∣∣∣
c=ĉ

,

C =
[
dϕ1

dθ ,
dϕ2

dθ , ...,
dϕm

dθ

]∣∣∣
θ=θ̂

,

with
dϕ̂i

dw =
[
0, ..., 0, dϕ̂i

dw1i
, dϕ̂i

dw2i
, ..., dϕ̂i

dwni
, 0...0

]T
,

dϕ̂i

dc =
[
0, ..., 0, dϕ̂i

dc1i
, dϕ̂i

dc2i
, ..., dϕ̂i

dcni
, 0...0

]T
,

dϕ̂i

dθ =
[
0, ..., 0, dϕ̂i

dθ1i
, dϕ̂i

dθ2i
, ..., dϕ̂i

dθni
, 0...0

]T
.

Substituting (7) into (6), we have

f̃ =
(
α̃T
(
ϕ̂−AT

1 ŵ −BT1 ĉ− CT θ̂
)

+ w̃TAα̂+ c̃TBα̂+ θ̃TCα̂+ ε
)
, (8)

where ε is the uncertain term.

3 System Description

Consider a non affine system of the form

ẋ1 = x2 + φ1(x, u),
ẋ2 = x3 + φ2(x, u),
...
ẋn = φn(x, u),
y = x1,

(9)
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Figure 1: Self recurrent wavelet network.

where x = [x1, x2, ..., xn]
T
, u, y are state variable, control input and output respectively.

φ = [φ1, φ2, ..., φn]
T

: <n+1 → <n are smooth unknown, nonlinear functions of state
variables and input.

Applying the transformation the system (9) can be converted to an affine like form
and can be rewritten as [7]

ẋ1 = x2 + φ1(x, u),
ẋ2 = x3 + φ2(x, u),
...,
ẋn = φn(x, u) = u+ (φn(x, u)− u) = u+ f(x, u),
y = x1.

(10)

The objective is to formulate a state feedback control law to achieve the desired track-
ing performance. The control law is formulated using the transformed system (10). Let

ȳd = [yd, ẏd, . . . ,
n−1
yd ]T be the vector of desired tracking trajectory. Following assumptions

are taken for the systems under consideration.

Assumption 3.1 1. Desired trajectory yd (t) is assumed to be smooth, continu-
ous Cn and available for measurement.

2. The nonlinear function φn(x, u) satisfies:
∣∣ ∂
∂uφn(x, u)

∣∣ ≥ β ≥ 0, which ensures the
controllability of the system.

In the next section the SRWNN based adaptive control strategy for (10) is discussed.
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4 SRWNN Based Adaptive Backstepping Controller Design

Define the state tracking error vector e(t) as e(t) = [x1 − yd, x2 − ẏd, . . . , xn −
n−1
y ]T . So

the error system of (10) becomes

ė1 = e2 + φ1(x, u), (11)

ė2 = e3 + φ2(x, u), (12)

...

ėn = u+ f(x, u)− n
yd . (13)

Considering subsystem (11), let e2d be the desired value of the e2 required to stabilize

(11), e2d = −k1e1 − φ̂1 + e2dr, where k1 > 0, φ̂1 is the SRWNN approximation of φ1.
e2dr is the robust term used to attenuate the uncertainties introduced by the SRWNN.
The online tuning laws for the wavelet parameters are:

˙̂α1 = − ˙̃α1 = β11e1(ϕ̂1 −AT1 ŵ1 −BT1 ĉ1 − CT1 θ̂1),
˙̂w1 = − ˙̃w1 = β12e1Aα̂1,
˙̂c1 = − ˙̃c1 = β13e1B1α̂1,
˙̂
θ1 = − ˙̃

θ1 = β14e1C1α̂1.

(14)

And the robust control term is defined as

e2dr = − (ρ21 + 1)e1
2ρ21

, (15)

where ρ1 is the prescribed attenuation, β11, β12, β13 and β14 are the positive learning
rates. Similarly the pseudo controller design for recursive ith subsystem is given by

e(i+1)d = (−δi − ki(ei − eid)− (ei−1 − e(i−1)d) + e(i+1)dr), (16)

where ki > 0 and δi is the approximation of φi − ėid. The term ėid contains the higher
order derivatives of previous pseudo controller terms which in turn consist of state vari-
ables, input and their derivatives. Presence of all such terms makes it highly dynamic
in nature and hence SRWNN is the most appropriate tool for the approximation if such
highly dynamic nonlinear term. e(i+1)dr is the robust term used to attenuate the uncer-
tainties introduced by the SRWNN. The online tuning laws for the wavelet parameters
are:

˙̂αi = − ˙̃αi = βi1(ei − eid)(ϕ̂i −ATi ŵi −BTi ĉi − CTi θ̂i),
˙̂wi = − ˙̃wi = βi2(ei − eid)Aiα̂i,
˙̂ci = − ˙̃ci = βi3(ei − eid)Biα̂i,
˙̂
θi = − ˙̃

θi = βi4(ei − eid)Ciα̂i.

(17)

And the robust control term is defined as

eidr = − (ρ2i + 1)(ei − eid)
2ρ2i

, (18)

where ρi is the prescribed attenuation, βi1, βi2, βi3 and βi4 are the positive learning
rates. Proceeding in the same manner the control law for the overall system is defined
as

u = (−δn − kn(en − end)− (en−1 − e(n−1)d) + ur +
n
yd), (19)
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where kn > 0 and δn is the approximation of f − ėnd. ur is the robust term used to
attenuate the uncertainties introduced by the SRWNN. The online tuning laws for the
wavelet parameters are:

˙̂αn = − ˙̃αn = βn1(en − end)(ϕ̂n −ATn ŵn −BTn ĉn − CTn θ̂n),
˙̂wn = − ˙̃wn = βn2(en − end)Anα̂n,
˙̂cn = − ˙̃cn = βn3(en − end)Bnα̂n,
˙̂
θn = − ˙̃

θn = βn4(en − end)Cnα̂n.

(20)

And the robust control term is defined as

ur = − (ρ2n + 1)(en − end)
2ρ2n

, (21)

where ρn is the prescribed attenuation, βn1, βn2, βn3 and βn4 are the positive learning
rates.

5 Simulation Results

Simulation is performed to verify the effectiveness of proposed SRWNN based backstep-
ping control strategy. Consider a system of the form

ẋ1 = x2 + 0.1x21,

ẋ2 = u3

3 + sinu+ ux21 + 0.5x41,
y = x1.

(22)
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Figure 2: System output and tracking error.
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Figure 3: States of the system and control signal.

System belongs to the class of uncertain non affine systems defined by (9) with n = 2.
The proposed controller strategy is applied to this system with an objective to solve the
tracking problem of system.

The desired trajectory is taken as yd = 0.5 sin t + 0.1 cos t2 + 0.3. Initial conditions

are taken as [0.3, 0.3]
T

. Attenuation level for the robust control terms is taken as 0.01.
Controller parameters are taken as k1 = 10, k2 = 10. Two self recurrent wavelet networks
with Mexican hat as the mother wavelet are used for approximating the unknown system
dynamics. Wavelet parameters for these wavelet networks are tuned online using the
proposed adaptation laws, initial conditions for all the wavelet parameters are set to
zero. Simulation results are shown in Figure 2 and Figure 3. As observed from the
figures, system response tracks the desired trajectory rapidly.

6 Conclusion

A SRWNN based adaptive backstepping control strategy is proposed for solving the
tracking control problem for a class of non affine systems with unknown system dynamics.
Self recurrent adaptive wavelet networks are used for approximating the unknown system
dynamics of the system. Adaptation laws are developed for online tuning of the wavelet
parameters. The theoretical analysis is validated by the simulation results.
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