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1 Introduction

We are concerned with the following boundary value problem (BVP) on time scales
T :







y∆
n

(t) + λf(yσ(t))) = 0, t ∈ [a, b] ⊂ T,

y∆
i

(a) = 0, 0 ≤ i ≤ n− 2,
∑m
i=1 αiy

∆n−2

(ξi) = y∆
n−2

(σ(b))

(1.1)

where λ > 0 is a parameter, f ∈ C([0,∞), [0,∞)), n ≥ 3, m ≥ 1 are integers, a < ξ1 <
ξ2 < ... < ξm < b, αi ∈ (0,+∞) for 1 ≤ i ≤ m and

∑m
i=1 αi < 1.

We assume that D = σ(b)− a−∑m
i=1 αi(ξi − a) > 0 and σ(b) is right dense so that

σj(b) = σ(b) for j ≥ 1.
The study of dynamic equations on time scales goes back to its founder Stefan Hilger

[10]. Some preliminary definitions and theorems on time scales can be found in the
books [2, 3] which are excellent references for the calculus of time scales.
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Recently, existence results for positive solutions of second-order multi-point boundary
value problems was studied by some authors [9, 11–16].

A few papers can be found in the literature on higher-order multi-point boundary
value problems [4–7].

We were, in particular, motivated by [6, 7]. We study more general problem and we
present results which guarantee the existence of at least one or two positive solutions and
the nonexistence positive solutions. The methods discussed here are similar to earlier
work [1].

This paper is organized as follows. Section 2 introduces some notation and several
lemmas which play important roles in this paper. Section 3 gives nonexistence and
multiplicity results for positive solutions to the BVP (1.1). In this article, the main tool
is the following well-known Krasnosel’skii fixed point theorem in a cone [8].

Theorem 1.1 [8]. Let B be a Banach space, and let P ⊂ B be a cone in B. Assume
Ω1, Ω2 are open subsets of B with 0 ∈ Ω1, Ω̄1 ⊂ Ω2, and let

A : P ∩ (Ω̄2 \ Ω1) → P

be a completely continuous operator such that, either

(i) ‖Ay‖ ≤ ‖y‖, y ∈ P ∩ ∂Ω1, and ‖Ay‖ ≥ ‖y‖, y ∈ P ∩ ∂Ω2; or

(ii) ‖Ay‖ ≥ ‖y‖, y ∈ P ∩ ∂Ω1, and ‖Ay‖ ≤ ‖y‖, u ∈ P ∩ ∂Ω2.

Then A has at least one fixed point in P ∩ (Ω̄2 \ Ω1).

2 Preliminaries and Lemmas

Let G2(t, s) be the Green’s function for the boundary value problem







y∆
2

(t) = 0, t ∈ [a, b],
y(a) = 0,

∑m
i=1 αiy(ξi) = y(σ(b)).

(2.1)

Then

G2(t, s) =























(σ(b)−t)(σ(s)−a)−
∑

m
j=i

αj(ξj−t)(σ(s)−a)+
∑i−1

j=1 αj(ξj−a)(t−σ(s))

σ(b)−a−
∑

m
i=1 αi(ξi−a)

,

a ≤ t ≤ σ(b), ξi−1 ≤ σ(s) ≤ min{ξi, t}, i = 1,m+ 1,
(t−a)[σ(b)−σ(s)−

∑
m
j=i αj(ξj−σ(s))]

σ(b)−a−
∑

m
i=1 αi(ξi−a)

,

a ≤ t ≤ σ(b), max{ξi−1, t} ≤ σ(s) ≤ ξi, i = 1,m+ 1.

(2.2)

Lemma 2.1 There exist a number k ∈ (0, 1) and a continuous function ψ : [a, b] →
R

+ such that

G2(t, s) ≤ ψ(s), t ∈ [a, σ(b)], s ∈ [a, b],

and

G2(t, s) ≥ kψ(s), t ∈ [ξ1, σ(b)], s ∈ [a, b],
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where

ψ(s) = (σ(b)−σ(s))(σ(s)−a)
D ,

k = min2≤i≤m{ 1
σ(b)

∑m
j=i αj(σ(b) − ξj),

ξ1−a
σ(s)−a [1 −

∑m
j=i αj ]}. (2.3)

Proof Now, we will show that we may take ψ(s) = (σ(b)−σ(s))(σ(s)−a)
D .

Upper bounds:

Case 1. Consider a ≤ σ(s) ≤ ξ1, σ(s) ≤ t. Then

G2(t, s) =
σ(b)−t−

∑m
j=1 αj(ξj−t)

D (σ(s) − a) =
σ(b)−

∑m
j=1 αjξj+t(

∑m
j=1 αj−1)

D (σ(s) − a).

Since
∑m

j=1 αj < 1, the maximum occurs when t = σ(s) and then

G2(t, s) ≤
σ(b)−σ(s)+

∑
m
j=1 αj(σ(s)−ξj)

D (σ(s) − a) ≤ (σ(b)−σ(s))(σ(s)−a)
D ,

since
∑m

j=1 αj(σ(s) − ξj) ≤ 0 for σ(s) ≤ ξ1 and ξj ∈ (a, b) with a < ξ1 < ξ2 < ... <
ξm−2 < b.

Case 2. For ξr−1 ≤ t ≤ ξr , 2 ≤ r ≤ m+ 1, ξi−1 ≤ σ(s) ≤ ξi, 2 ≤ i ≤ r, σ(s) ≤ t, we
have

G2(t, s) =
(σ(b)−t)(σ(s)−a)−

∑m
j=i

αj(ξj−t)(σ(s)−a)+
∑i−1

j=1 αj(ξj−a)(t−σ(s))

D

=
(σ(b)−t)(σ(s)−a)−

∑m
j=i αj(ξj−σ(s))(σ(s)−a)+

∑m
j=1 αj(t−σ(s))(σ(s)−a)+

∑i−1
j=1 αj(ξj−σ(s))(t−σ(s))

D

≤ σ(b)−t+
∑

m
j=1 αj(t−σ(s))

D (σ(s) − a)

≤ σ(b)−σ(s)
∑m

j=1 αj+t(
∑m

j=1 αj−1)

D (σ(s)− a)

since
∑m
j=i αj(σ(s)− ξj) ≤ 0 and

∑i−1
j=1 αj(ξj − σ(s)) ≤ 0 for ξi−1 ≤ σ(s) ≤ ξi, 2 ≤ i ≤

m+ 1.

Since
∑m

j=1 αj < 1, the maximum occurs when t = σ(s) so

G2(t, s) ≤
(σ(b)− σ(s))(σ(s) − a)

D
.

Case 3. For ξr−1 ≤ t ≤ ξr, 2 ≤ r ≤ m, ξi−1 ≤ σ(s) ≤ ξi, r ≤ i ≤ m, t ≤ σ(s), we
obtain

G2(t, s) =
(t−a)[σ(b)−σ(s)−

∑m
j=i

aj(ξj−σ(s))]

D ≤ (σ(b)−σ(s))(t−a)
D ≤ (σ(b)−σ(s))(σ(s)−a)

D ,
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since
∑m

j=i αj(ξj − σ(s)) ≥ 0 for ξi−1 ≤ σ(s) ≤ ξi, 2 ≤ i ≤ m.

Case 4. For ξm ≤ σ(s) ≤ σ(b), t ≤ σ(s), we clearly have

G2(t, s) ≤
(σ(b)− σ(s))(σ(s) − a)

D
.

Lower bounds: We shall show that we may take an arbitrary interval [ξ1, σ(b)] ⊂
(a, σ(b)]. We are looking for min{G2(t, s) : t ∈ [ξ1, σ(b)]} as a function of s of the same
form as the upper bound.

Case 1. Consider 0 ≤ σ(s) ≤ ξ1, σ(s) ≤ t, we get

G2(t, s) =
σ(b)−t−

∑m
j=1 αj(ξj−t)

D (σ(s) − a) =
σ(b)−

∑m
j=1 αjξj+t(

∑m
j=1 αj−1)

D (σ(s) − a).

Since
∑m

j=1 αj < 1, the minimum occurs when t = σ(b) and then

G2(t, s) ≥
σ(b)−

∑
m
j=1 αjξj+σ(b)(

∑
m
j=1 αj−1)

D (σ(s) − a)

> (σ(b)−σ(s))(σ(s)−a)
D

1
σ(b)

∑m
j=1 αj(σ(b)− ξj).

Case 2. For ξr−1 ≤ t ≤ ξr , 2 ≤ r ≤ m+ 1, ξi−1 ≤ σ(s) ≤ ξi, 2 ≤ i ≤ r, σ(s) ≤ t, we
have

G2(t, s)

=
(σ(b)−t)(σ(s)−a)−

∑
m
j=i αj(ξj−σ(s))(σ(s)−a)+

∑
m
j=1 αj(t−σ(s))(σ(s)−a)+

∑i−1
j=1 αj(ξj−σ(s))(t−σ(s))

D

= 1
D [t[(

∑m
j=1 αj − 1)(σ(s) − a) +

∑i−1
j=1 αj(ξj − σ(s))] + [σ(b)− σ(s)

∑m
j=1 αj

−∑m
j=i αj(ξj − σ(s))](σ(s) − a)− σ(s)

∑i−1
j=1 αj(ξj − σ(s))].

Since (
∑m

j=1 αj − 1)(σ(s) − a) +
∑i−1

j=1 αj(ξj − σ(s)) < 0, the minimum occurs when
t = σ(b), then

G2(t, s) ≥
−

∑m
j=i

αj(ξj−σ(b))(σ(s)−a)+
∑i−1

j=1 αj(ξj−a)(σ(b)−σ(s))

D

≥ 1
D

∑m
j=i αj(σ(b)− ξj)(σ(s)− a)

> (σ(b)−σ(s))(σ(s)−a)
D

1
σ(b)

∑m
j=i αj(σ(b)− ξj).

Case 3. For ξr−1 ≤ t ≤ ξr, 2 ≤ r ≤ m, ξi−1 ≤ σ(s) ≤ ξi, r ≤ i ≤ m, t ≤ σ(s), we
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obtain

G2(t, s) =
(t−a)[σ(b)−σ(s)−

∑m
j=i

αj(ξj−σ(s))]

D

=
(t−a)[(σ(b)−σ(s))(1−

∑
m
j=i

αj)−
∑

m
j=i

αj(ξj−σ(b))]

D

≥ (t−a)(σ(b)−σ(s))
D [1−∑m

j=i αj ]

≥ (ξ1−a)(σ(b)−σ(s))
D [1−∑m

j=i αj ]

= (σ(s)−a)(σ(b)−σ(s))
D

ξ1−a
σ(s)−a [1−

∑m
j=i αj ].

Case 4. For ξm ≤ σ(s) ≤ σ(b), t ≤ σ(s), we have

G2(t, s) =
(t−a)(σ(b)−σ(s))

D ≥ (ξ1−a)(σ(b)−σ(s))
D = (σ(s)−a)(σ(b)−σ(s))

D
ξ1−a
σ(s)−a .

Thus we can take

k = min2≤i≤m{ 1
σ(b)

∑m
j=i αj(σ(b) − ξj),

ξ1−a
σ(s)−a [1−

∑m
j=i αj ]}. 2

Lemma 2.2 If y satisfies the boundary conditions

{

y∆
i

(a) = 0, 0 ≤ i ≤ n− 2,
∑m
i=1 αiy

∆n−2

(ξi) = y∆
n−2

(σ(b))

and

y∆
n

(t) ≤ 0, t ∈ [a, b],

then

y∆
n−2

(t) ≥ 0.

Proof Let P (t) = y∆
n−2

(t), t ∈ [a, σ(b)]. Then we have

P∆2

(t) ≤ 0, t ∈ [a, b]

P (a) = 0 and
∑m
i=1 αiP (ξi) = P (σ(b)).

It must be true that P (σ(b)) ≥ 0. To see this, assume to the contrary that P (σ(b)) < 0.
Since P (a) = 0 and P (t) is concave downward, we have

P (t) ≥ t− a

σ(b)− a
P (σ(b)), t ∈ [a, σ(b)].
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Therefore,

∑m
i=1 αiP (ξi)− P (σ(b)) ≥

∑m
i=1 αi

ξi−a
σ(b)−aP (σ(b)) − P (σ(b))

>
∑m

i=1 αiP (σ(b)) − P (σ(b))

> P (σ(b)) − P (σ(b)) = 0,

which is a contradiction.

Now, P (a) = 0, P (σ(b)) ≥ 0, and P (t) is concave downward, so we have

P (t) = y∆
n−2

(t) ≥ 0, t ∈ [a, σ(b)].

This completes the proof of the lemma. 2

Let B be the Banach space defined by

B = {y : y∆
n

is continuous on [a, b], y∆
i

(a) = 0 0 ≤ i ≤ n− 3},

with the norm ‖y‖ = maxt∈[a,σ(b)] |y∆
n−2

(t)| and let

P = {y ∈ B : y∆
n−2

(t) ≥ 0, min
t∈[ξ1,σ(b)]

y∆
n−2

(t) ≥ k‖y‖ },

where k is as in (2.3).

Solving the BVP (1.1) is equivalent to finding fixed points of the operator Lλ : B → B
defined by

Lλy(t) = λ
∫ σ(b)

a
Gn(t, s)f(y

σ(s))∆s, t ∈ [a, σ(b)]. (2.4)

It can be verified that

G2(t, s) = G∆n−2

n (t, s). (2.5)

From (2.5), it follows that

(Lλy)
∆n−2

(t) = λ
∫ σ(b)

a
G2(t, s)f(y

σ(s))∆s. (2.6)

Solving the BVP (1.1) in B is equivalent to finding fixed points of the operator L∆n−2

λ

defined by (2.6).

Lemma 2.3 The operator Lλ is completely continuous such that Lλ(P) ⊂ P .
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Proof From the continuity ofG2(t, s) and f(t) it follows that the operator Lλ defined
by (2.4) is completely continuous in B. By Lemma 2.1, Lemma 2.2, and definition of P ,
we get LλP ⊂ P . 2

3 Existence of Positive Solutions

Now we are ready to establish a few sufficient conditions for the existence of at least
one or two positive solutions and the nonexistence of positive solutions of (1.1).

Now we define

l0 = lim
‖u‖→0

f(u)

‖u‖ , l∞ = lim
‖u‖→∞

f(u)

‖u‖ .

Theorem 3.1 For each λ, satisfying

1

kl∞
∫

σ(b)
a

ψ(s)∆s
< λ < 1

l0
∫

σ(b)
a

ψ(s)∆s
, (3.1)

there exists at least one positive solution of (1.1).

Proof Let λ be given as in (3.1). Now, let ǫ > 0 be chosen such that

1

k(l∞ − ǫ)
∫ σ(b)

a
ψ(s)∆s

≤ λ ≤ 1

(l0 + ǫ)
∫ σ(b)

a
ψ(s)∆s

.

Now, turning to l0, there exists an p > 0 such that f(y) ≤ (l0 + ǫ)‖y‖ for 0 < ‖y‖ ≤ p.
So, for y ∈ P with ‖y‖ = p, we have from the fact that 0 ≤ G2(t, s) ≤ ψ(s) for
t ∈ [a, σ(b)], s ∈ [a, b],

(Lλy)
∆n−2

(t) = λ
∫ σ(b)

a
G2(t, s)f(y

σ(s))∆s

≤ λ
∫ σ(b)

a
ψ(s)f(yσ(s))∆s

≤ λ(l0 + ǫ)
∫ σ(b)

a ψ(s)∆s‖y‖

≤ ‖y‖ = p.

Next, considering l∞, there exists q̂ > 0 such that f(y) ≥ (l∞ − ǫ)‖y‖ for ‖y‖ ≥ q̂.
Let q = max{2p, q̂}. Then for y ∈ P with ‖y‖ = q, and t ∈ [ξ1, σ(b)] we get

(Lλy)
∆n−2

(t) = λ
∫ σ(b)

a
G2(t, s)f(y

σ(s))∆s

≥ λk
∫ σ(b)

a
ψ(s)∆s(l∞ − ǫ)‖y‖

≥ ‖y‖ = q.
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By Theorem 1.1, Lλ has a fixed point y such that p ≤ ‖y‖ ≤ q. The proof is complete.
2

Theorem 3.2 For each λ satisfying

1

kl0
∫

σ(b)
a

ψ(s)∆s
< λ < 1

l∞
∫

σ(b)
a

ψ(s)∆s
, (3.2)

there exists at least one positive solution of (1.1).

Proof Let λ be given as in (3.2), and choose let ǫ > 0 such that

1

k(l0 − ǫ)
∫ σ(b)

a
ψ(s)∆s

≤ λ ≤ 1

(l∞ + ǫ)
∫ σ(b)

a
ψ(s)∆s

.

Beginning with l0, there exists an p > 0 such that f(y) ≥ (l0 − ǫ)‖y‖ for 0 < ‖y‖ ≤ p.
So, for y ∈ P with ‖y‖ = p, and t ∈ [ξ1, σ(b)] we have

(Lλy)
∆n−2

(t) = λ
∫ σ(b)

a
G2(t, s)f(y

σ(s))∆s

≥ λk
∫ σ(b)

a
ψ(s)f(yσ(s))∆s

≥ λk(l0 − ǫ)
∫ σ(b)

a
ψ(s)∆s‖y‖

≥ ‖y‖ = p.

It remains to consider l∞. There exists q̂ > 0 such that f(y) ≤ (l∞+ǫ)‖y‖ for ‖y‖ ≥ q̂.
There are two cases:

For case (a), suppose N > 0 is such that f(y) ≤ N, for all 0 ≤ y < ∞. Let q =

max{2p, λN
∫ σ(b)

a
ψ(s)∆s}. Then y ∈ P and ‖y‖ = q, we have

(Lλy)
∆n−2

(t) = λ
∫ σ(b)

a G2(t, s)f(y
σ(s))∆s

≤ λN
∫ σ(b)

a ψ(s)∆s

≤ ‖y‖ = q.

For case (b), let g(h) := max{f(y) : 0 ≤ y∆
n−2 ≤ h}. The function g is nondecreasing

and limh→∞ g(h) = ∞. Choose q = max{2p, q̂} so that g(q) ≥ g(h) for 0 ≤ h ≤ q. For
y ∈ P and ‖y‖ = q, we have

(Lλy)
∆n−2

(t) = λ
∫ σ(b)

a G2(t, s)f(y
σ(s))∆s

≤ λg(q)
∫ σ(b)

a ψ(s)∆s
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≤ λ(l∞ + ǫ)q
∫ σ(b)

a
ψ(s)∆s

≤ ‖y‖ = q.

By Theorem 1.1, Lλ has a fixed point y such that p ≤ ‖y‖ ≤ q. The proof is complete.
2

In the rest of the paper we assume that f(y) > 0 on R
+. Set

A =

∫ σ(b)

a

ψ(s)∆s.

Theorem 3.3 If either l0 = ∞ or l∞ = ∞, then for all 0 < λ ≤ λ0, where

λ0 := 1
A supr>0

r
max0<‖u‖≤r f(u)

, (3.3)

(1.1) has at least one positive solution.

(b) If either l0 = 0 or l∞ = 0, then for all λ ≥ λ0, where

λ0 :=
1

A
inf
r>0

r

min0<‖u‖≤r f(u)
,

(1.1) has at least one positive solution.

Proof We now prove the part (a) of Theorem 3.3. By (3.3), there exists r > 0 such
that

λ0 =
1

A
sup
r>0

r

max0<‖u‖≤r f(u)
.

If ‖y‖ = r, it follows that

‖Lλy‖ = max
t∈[a,σ(b)]

|(Lλy)∆
n−2

(t)| ≤ λ0

∫ σ(b)

a

G2(t, s)f(y
σ(s))∆s ≤ r.

So for all 0 < λ ≤ λ0 we have

‖Lλy‖ ≤ ‖y‖.

Fix λ ≤ λ0. Choose R > 0 sufficiently large so that

λRk
∫ σ(b)

a ψ(s)∆s ≥ 1. (3.4)

Since l0 = ∞, there is p > 0 such that
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f(y)

‖y‖ ≥ R

for t ∈ [a, σ(b)], 0 < ‖y‖ ≤ p. Hence we have that

f(y) ≥ R‖y‖

for t ∈ [a, σ(b)], 0 < ‖y‖ ≤ p. For y ∈ P , ‖y‖ = p and t ∈ [ξ1, σ(b)], we get

(Lλy)
∆n−2

(t) ≥ λRk
∫ σ(b)

a
ψ(s)∆s‖y‖ ≥ ‖y‖ = p

by (3.4). By Theorem 1.1, Lλ has a fixed point y such that min{p, r} ≤ ‖y‖ ≤ max{p, r}.
Next, we use the assumption that l∞ = ∞. Since l∞ = ∞ there is a q > 0 such that

f(y)

‖y‖ ≥ R

for ‖y‖ ≥ q and R is chosen so that (3.4) holds. It follows that

f(y) ≥ R‖y‖

for ‖y‖ ≥ q.
For y ∈ P , ‖y‖ = q and t ∈ [ξ1, σ(b)], we have

(Lλy)
∆n−2

(t) = λ
∫ σ(b)

a G2(t, s)f(y
σ(s))∆s

≥ λRk
∫ σ(b)

a ψ(s)∆s‖y‖

≥ q = ‖y‖

by (3.4). By Theorem 3.1, then Lλ has a fixed point y such that min{q, r} ≤ ‖y‖ ≤
max{q, r}. This completes the proof of part (a). Part (b) holds in an analogous way. 2

Theorem 3.4 a) If l0 = l∞ = ∞, then there is a λ0 > 0 such that for all 0 < λ ≤ λ0,
(1.1) has two positive solutions.
b) If l0 = l∞ = 0, then there is a λ0 > 0 such that for all λ ≥ λ0, (1.1) has two positive
solutions.

Now, we give a nonexistence result as follows.

Theorem 3.5 (a) If there is a constant c > 0 such that f(y) ≥ c‖y‖, then there is a
λ0 > 0 such that (1.1) has no positive solutions for λ ≥ λ0.
(b) If there is a constant c > 0 such that f(y) ≤ c‖y‖, then there is a λ0 > 0 such that
(1.1) has no positive solutions for 0 < λ ≤ λ0.

Proof We now prove the part (a) of this theorem. Assume there is a constant c > 0
such that f(y) ≥ c‖y‖. Assume y(t) is a solution of the BVP (1.1). We will show that
for λ sufficiently large this leads to a contradiction. We have for t ∈ [ξ1, σ(b)],
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y∆
n−2

(t) = λ
∫ σ(b)

a
G2(t, s)f(y

σ(s))∆s ≥ ckλ0
∫ σ(b)

a
ψ(s)∆s‖y‖.

If we pick λ0 sufficiently large so that ckλ0
∫ σ(b)

a ψ(s)∆s > 1 for all λ ≥ λ0, then we have

y∆
n−2

> ‖y‖ which is a contradiction. The proof of part (b) is similar. 2

Example 3.1 We illustrate Theorem 3.2 with specific time scale T = { 1
2n : n ∈

N0} ∪ {0} ∪ [1, 5].
Consider the system:







y∆
n

(t) + λf(yσ(t)) = 0, t ∈ [0, 1/2] ⊂ T,

y∆
i

(0) = 0, 0 ≤ i ≤ n− 2,
1/3y(1/4) + 1/5y(1/8)+ 1/10y(1/64) = y(5),

(3.5)

where f = 1 +
√
y, α1 = 1/3, α2 = 1/5, α3 = 1/10, a = 0, b = 1/2, ξ1 = 1/4, ξ2 =

1/8, ξ3 = 1/64, n ≥ 3.

Since f = 1 +
√
y, we have

l0 = ∞ l∞ = 0.

We get ψ(s) = 4096
1967s(1−2s),

∫ 1

0 ψ(s)∆s =
4096
41307 . Therefore the assumptions of Theorem

3.2 are satisfied. By Theorem 3.2, for all λ ∈ (0,∞), (3.5) has at least one positive
solution.

Example 3.2 We illustrate Theorem 3.3 with specific time scale T = {n3 : n ∈
N} ∪ [7/3, 5].

Consider the system:







y∆
3

(t) + λf(yσ(t)) = 0, t ∈ [1, 2],
y(1) = y∆(1) = 0,

1/2y(4/3) + 1/3y(5/3) = y(7/3),

(3.6)

where f = ey, α1 = 1/2, α2 = 1/3, a = 1, b = 2, ξ1 = 4/3, ξ2 = 5/3.

Hence l∞ = ∞. Since

A =

∫ 7/3

1

ψ(s)∆s =
60

153
, sup

r>0

r

max0<‖y‖≤r ey
= sup

r>0

r

er
=

1

e
,

we have

λ0 =
1

A
sup
r>0

r

max0<‖y‖≤r f(y)
=

153

60
e−1.

So, by Theorem 3.3, for all λ ∈ (0, 15360 e
−1], (3.6) has one positive solution.
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