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1 Introduction

The study of fixed points of functions satisfying certain contractive conditions has been
at the center of vigorous research activity, for example see [1]–[5] and it has a wide range
of applications in different areas such as nonlinear and adaptive control systems, param-
eterize estimation problems, fractal image decoding, computing magnetostatic fields in a
nonlinear medium, and convergence of recurrent networks, see [6]–[10]. Recently, Huang
and Zhang [11] have replaced the real numbers by ordering Banach space and define cone
metric space. They have proved some fixed point theorems of contractive mappings on
cone metric spaces. The study of fixed point theorems in such spaces is followed by some
other mathematicians, see [12]–[16]. Choudhury [17] introduced mutually contractive
sequence of self maps and proved a fixed point theorem. The purpose of this paper is to
obtain a new common fixed point theorem by using a new contractive condition in cone
metric spaces. Our result generalizes and extends many known results in metric spaces.
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Consistent with Huang and Zhang [11], the following definitions and results will be
needed in the sequel.

Let E be a real Banach space. A subset P of E is called a cone if and only if:
(a) P is closed, nonempty and P 6= {θ};
(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P implies ax+ by ∈ P ;
(c) P ∩ (−P ) = {θ}.
Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y if

and only if y − x ∈ P . A cone P is called normal if there is a number K > 0 such that
for all x, y ∈ E,

θ ≤ x ≤ y implies ‖ x ‖≤ K ‖ y ‖.

The least positive number satisfying the above inequality is called the normal constant
of P , while x ≪ y stands for y − x ∈ intP (interior of P ).

Definition 1.1 [11] Let X be a nonempty set. Suppose that the mapping d : X ×
X → E satisfies:

(d1) θ ≤ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X ;
(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X .
Then d is called a cone metric on X and (X, d) is called a cone metric space.

The concept of a cone metric space is more general than that of a metric space.

Example 1.1 [11] Let E = R2, P = {(x, y) ∈ E|x, y ≥ 0} ⊂ R2, X = R and
d : X ×X → E such that d(x, y) = (|x − y|, α|x− y|), where α ≥ 0 is a constant. Then
(X, d) is a cone metric space.

Definition 1.2 [11] Let (X, d) be a cone metric space. We say that {xn} is:
(e) a Cauchy sequence if for every c ∈ E with θ ≪ c, there is an N such that for all

n,m > N, d(xn, xm) ≪ c;
(f) a Convergent sequence if for every c ∈ E with θ ≪ c, there is an N such that for

all n > N, d(xn, x) ≪ c for some fixed x ∈ X .

A cone metric space X is said to be complete if every Cauchy sequence in X is
convergent in X . It is know that {xn} converges to x ∈ X if and only if d(xn, x) → θ as
n → ∞. The limit of a convergent sequence is unique provided that P is a normal cone
with normal constant K[11].

Lemma 1.1 [11] Let (X, d) be a cone metric space, P be a normal cone with normal
constant K. Let {xn} be a sequence in X. Then, {xn} is a Cauchy sequence if and only
if d(xn, xm) → θ(n,m → ∞).

Lemma 1.2 [11] Let (X, d) be a cone metric space, P be a normal cone with normal
constant K. Let {xn} be a sequence in X. If {xn} converges to x and {xn} converges to
y, then x = y. That is the limit of {xn} is unique.

Definition 1.3 Let (X, d) be a cone metric space. A sequence {Ti}
∞

i=1 of self-
mappings on a complete cone metric space is said to be mutually contractive if for all
i, j = 1, 2, · · · , with i 6= j,

d(Tix, Tjy) ≤ kd(x, y) for all x, y ∈ X with x 6= y,

where k ∈ (0, 1) is a constant.
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2 Main Result

Theorem 2.1 Let (X, d) be a complete cone metric space. P be a normal cone with
normal constant K. {Ti}

∞

i=1 be a sequence of self-mappings on X such that
(1) Ti is continuous for all i, j = 1, 2, · · · ;
(2) {Ti}

∞

i=1 is mutually contractive;
(3) TiTj = TjTi for all i, j = 1, 2, · · · .
Then the sequence {Tn}n has a unique common fixed point in X.

Proof Let x0 be an arbitrary point in X . We construct a sequence {xn} ⊂ X as
follows:

x1 = T1x0, x2 = T2x1, · · · , xn = Tnxn−1, · · ·

Then the following cases may arise:.

Case I: If no terms of {xn} are equal. Then, using (2), we get:

d(xn, xn+1) = d(Tnxn−1, Tn+1xn) ≤ kd(xn−1, xn).

By repeated application of above inequalities, we get

d(xn, xn+1) = d(Tnxn−1, Tn+1xn) ≤ knd(x0, x1).

So for n > m, we have

d(xn, xm) ≤ d(xn, xn−1) + · · ·+ d(xm+1, xm)

≤ (kn−1 + · · ·+ km)d(x0, x1) ≤
km

1− k
d(x0, x1)

We get ‖d(xn, xm)‖ ≤ km

1−k
K‖d(x0, x1)‖. This implies d(xn, xm) → θ(n,m → ∞).

Hence xn is a Cauchy sequence by Lemma 1.1. By the completeness of X , there is
x∗ ∈ X such that xn → x∗(n → ∞). Now, we prove that x∗ is a fixed point of Ti.

Since two consecutive terms of {xn} are unequal, for an arbitrary integer i > 0 and
c ≫ θ, we can find n such that x∗ 6= xn−1, n > i,

d(x∗, xn) < c, and d(x∗, xn−1) < c.

Then, we get

d(x∗, Tix
∗) ≤ d(x∗, xn) + d(xn, Tix

∗)

= d(x∗, xn) + d(Tnxn−1, Tix
∗)

≤ d(x∗, xn) + kd(xn−1, x
∗).

Thus, ‖d(x∗, Tix
∗)‖ ≤ K(‖d(x∗, xn)‖+ k‖d(xn−1, x

∗)‖) → 0 since c ≫ θ is arbitrary.
Hence ‖d(x∗, Tix

∗)‖ = 0. This implies x∗ = Tix
∗. So, x∗ is a fixed point of Ti.

Case II: If xi = xi−1 for some positive integer i. Then xi−1 = Tixi−1. Let x
∗ = xi−1,

that is, x∗ = Tix
∗, x∗ 6= Tjx

∗ and further assume that x∗ 6= T n
j x

∗ for all n = 1, 2, · · · .
Thus, we get

d(x∗, T 2
j x

∗) = d(Tix
∗, Tj(Tjx

∗)) ≤ kd(x∗, Tjx
∗).
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Similarly,
d(x∗, T 3

j x
∗) ≤ k2d(x∗, Tjx

∗).

Consequently,

d(x∗, T n
j x

∗) ≤ kn−1d(x∗, Tjx
∗) for all n = 2, 3, · · · .

We get ‖d(x∗, T n
j x

∗)‖ ≤ kn−1K‖d(x∗, Tjx
∗)‖. This implies d(x∗, T n

j x
∗) → θ as n →

∞, that is
T n
j x

∗ → x∗ as n → ∞.

Since Ti is continuous, we get

Tj(T
n
j x

∗) = T n+1

j x∗ → Tjx
∗ as n → ∞.

In the view of Lemma 1.2, we have x∗ = Tjx
∗, j = 1, 2, · · · . This is a contradiction,

so x∗ = T l
jx

∗ for some l.
Let l be the smallest integer with this property. Then, we get

x∗ 6= Tm
j x∗ for some m = 1, 2, · · · , l − 1.

Thus,

d(x∗, T l−1

j x∗) = d(Tix
∗, Tj(T

l−2

j x∗)) ≤ kd(x∗, T l−2

j x∗)

= kd(Tix
∗, Tj(T

l−3

j x∗)) ≤ k2d(x∗, T l−3

j x∗) ≤ · · · ≤ kl−2d(x∗, Tjx
∗),

hence x∗, Tjx
∗, T 2

j x
∗, · · · , T k−1

j x∗ are all distinct. Therefore,

d(x∗, Tjx
∗) = d(T l

jx
∗, Tj(Tix

∗)) = d(Tj(T
l−1

j x∗), Ti(Tjx
∗))

≤ kd(T l−1

j x∗, Tjx
∗) = kd(Tj(T

l−2

j x∗), Ti(Tjx
∗))

≤ k2d(T l−2

j x∗, Tjx
∗) ≤ · · · ≤ kl−2d(T 2

j x
∗, Tjx

∗)

= kl−2d(T 2
j (Tix

∗), Tjx
∗) = kl−2d(Ti(T

2
j x

∗), Tjx
∗)

≤ kl−1d(T 2
j x

∗, x∗) = kl−1d(Tj(Tjx
∗), Tix

∗) ≤ kld(Tjx
∗, x∗).

Hence ‖d(x∗, Tjx
∗)‖ = 0 and x∗ = Tjx

∗ for all j = 1, 2, · · · .
To show uniqueness, assume y∗ is another common fixed point of Ti, then

d(x∗, y∗) = d(Ti(x
∗), Tj(y

∗)) ≤ kd(x∗, y∗).

Hence ‖d(x∗, y∗)‖ = 0 and x∗ = y∗, that is, x∗ is a unique common fixed point of the
sequence {Tn}n. 2

Remark 2.1 Let us remark that in Theorem 2.1, setting E = R,P = [0,+∞), ‖x‖ =
|x|, x ∈ E, we get the well know result in complete metric space.
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