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1 Introduction

Stability analysis for dynamic systems with parameter or functional uncertainties is one
of the fundamental issues in system and control theory. The applied researches employ
continuous and discrete models of dynamic objects whose states possess certain properties
with respect to a cone in the phase space (positivity, monotonicity, cooperativity, etc.).
For example, these properties can be determined very often by using a cone of nonnegative
vectors, a cone of symmetric nonnegatively definite matrices, an ellipsoidal cone, etc.
Many important advances have been achieved on the basis of the operator theory in
partially ordered spaces (see, e.g., [1–8]). In addition, classes of positive and monotone
systems arise in stability theory as systems of comparison [7, 9–11].

We study generalized classes of positive and monotone dynamic systems with respect
to a cone and give characterization for such systems by means of operator inequalities and
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inclusions. We formulate analogs of the Lyapunov theorem on the stability of equilibrium
states of nonlinear autonomous differential systems with respect to the first approxima-
tion using the notion of derivative of nonlinear operator with respect to a cone. Finally,
we propose general technique for comparison of a set of differential systems and formu-
late robust stability conditions for some families of nonlinear, pseudolinear and linear
systems in terms of the cone and operator inequalities.

2 Definitions and Auxiliary Facts

A convex closed set K of a real normed space E is called a wedge if αK + βK ⊆ K
∀α, β ≥ 0. A wedge K with edge K ∩ −K = {0} is a cone. A space with a wedge is

partially ordered: X
K

≤ Y ⇔ Y −X ∈ K. A solid cone contains nonempty sets of interior

points intK and boundary ∂K. A cone K is normal if 0
K

≤ X
K

≤ Y implies ‖X‖ ≤ ν‖Y ‖,
where ν is a universal constant. The least of these numbers ν is the normality constant
of K. If E = K − K, then the cone K is reproducing. A reproducing cone K is non-flat,
i.e. X = X+ −X− and X± ∈ K imply ‖X±‖ ≤ µ‖X‖, where µ is a universal constant.
The dual cone K∗ consists of linear nonnegative functionals. Moreover,

K = {X ∈ E : ϕ(X) ≥ 0, ∀ϕ ∈ K∗}, K∗ = {ϕ ∈ E∗ : ϕ(X) ≥ 0, ∀X ∈ K},

intK = {X ∈ K : ϕ(X) > 0, ∀ϕ 6= 0 ∈ K∗}, ∂K = {X ∈ K : ∃ϕ 6= 0 ∈ K∗, ϕ(X) = 0}.

A functional ϕ ∈ E∗ is uniformly positive if ϕ(X) ≥ γ‖X‖ for some γ > 0 and ∀X ∈ K.
A convex shell of X1, . . . , Xn ∈ E is defined by

Co{X1, . . . , Xn} =
{

X : X =

n
∑

i=1

αiXi,

n
∑

i=1

αi = 1, αi ≥ 0, i = 1, n
}

.

A set D ⊂ E is K–convex if X
K

≤ Y implies Co{X,Y } ⊆ D for X,Y ∈ D.
Let E(E1) be a Banach space with a cone K(K1). An operatorM : E → E1 is positive if

MK ⊆ K1. The operator is monotone if X
K

≤ Y ⇒ MX
K1

≤ MY . The operator inequality
M2 D M1 means that M2 − M1 is positive. A linear invertible operator M is positive
invertible if K1 ⊆ MK. Since (M−1)∗ = (M∗)−1, positive invertibility of M leads to
positive invertibility of M∗. If K1 is a normal reproducing cone and M1 E M E M2,
then positive invertibility of M1 and M2 yields positive invertibility of M , furthermore
M−1

2 E M−1 E M−1
1 [1]. An operator M : E → E is called positive-off-diagonal, if

X ∈ K and ϕ ∈ K∗ with ϕ(X) = 0 imply ϕ(MX) ≥ 0. Obviously, if M D αI for a
certain real α, where I is the identity operator, then M is positive-off-diagonal. The
inverse statement holds under certain additional conditions with α ≤ −νµ‖M‖, where ν
and µ are normality and non-flatness constants of M , respectively [4].

A linear operator of the form M = L−P , PK ⊆ K1 ⊆ LK, with a normal reproducing
cone K1 is positive invertible if and only if ρ(T ) < 1, where ρ(T ) is the spectral radius of
the operator pencil of T (λ) = P−λL. If K1 is solid, then ρ(T ) < 1⇔MK∩intK1 6= ∅ [7].

A linear bounded operator F ′(X) is called the Gâteaux derivative of a nonlinear
operator F (X) at X , if limε→0 ε

−1
[

F (X + εH)− F (X)
]

= F ′(X)H exists in the sense
of strong convergence. If this relation holds only for H ∈ K, then F ′ is the Gâteaux
derivative of F with respect to a cone K [13]. The Fréchet derivative F ′ with respect to
K is defined by F (X +H)−F (X) = F ′(X)H + o(‖H‖), H ∈ K. The Fréchet derivative
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is also the Gâteaux derivative. If the Gâteaux derivative is continuous in a neighborhood
of X , then it is the Fréchet derivative. We denote the Gâteaux and Fréchet derivatives
with respect to K and −K by F ′

+(X) and F ′
−(X), respectively. If F ′(X) exists, then

F ′
+(X) = F ′

−(X) = F ′(X).

3 Classes of Dynamic Systems in a Partially Ordered Space

Assume that a dynamic system S operates in a certain domain D of a Banach space E
and its states are defined by

Xt = E(Xτ , τ, t) ∈ E , τ ∈ Υ, t ∈ Υτ , (1)

where E is an operator of the transition from initial state Xτ to state Xt and such that

E(X, τ, τ) = X, E
(

E(X, τ, t), t, s
)

= E(X, τ, s), t ∈ Υτ , s ∈ Υt,

Υ ⊆ R1 is an ordered set of indices, Υτ = {t ∈ Υ : t ≥ τ}. The system is continuous,
discrete or hybrid subject to the structure of Υ. Note that E(·, τ, τ) ≡ I is the identity
operator. If E(Θ, τ, t) ≡ Θ, then Xt ≡ Θ is the equilibrium state of S. We shall consider
only the isolated equilibrium states of dynamic systems.

Let Kt be a constant or time-varying set in E . If E(Kτ , τ, t) ⊆ Kt for t ∈ Υτ , then Kt

is an invariant set of system S. The system is positive with respect to an invariant cone
Kt. System S is monotone with respect to a cone Kt if

Xτ

Kτ

≤ Yτ ⇒ Xt = E(Xτ , τ, t)
Kt

≤ Yt = E(Yτ , τ, t) (2)

for any τ ∈ Υ and t ∈ Υτ . A positive (monotone) dynamic system S is defined by a
positive (monotone) operator E with respect to Kt. Denote the classes of monotone and
positive systems with respect to ±Kt by M and M±

0 , respectively.
Consider the sets

K+
t (Θ) =

{

X ∈ E : X
Kt

≥ Θ
}

, K−

t (Θ) =
{

X ∈ E : X
Kt

≤ Θ
}

,

where Θ ∈ E , Kt is a cone. For the class of systems with invariant sets K±

t (Θ), we use
the notation M±

0 (Θ). Denote the classes of systems which posses the property (2) with
Yτ ∈ K+

τ (Θ), Xτ ∈ K+
τ (Θ), Xτ ∈ K−

τ (Θ) and Yτ ∈ K−
τ (Θ) by M+

1 (Θ), M+
2 (Θ), M−

1 (Θ)
and M−

2 (Θ), respectively. It is obvious that

M ⊆ M±

1 (Θ) ⊆ M±

2 (Θ), M ⊆ M1(Θ) ⊆ M2(Θ),

where M1(Θ) = M+
1 (Θ)∩M−

1 (Θ), M2(Θ) = M+
2 (Θ)∩M−

2 (Θ). A system of M±

2 (Θ) is
monotone in K±

t (Θ). Every system of M+
2 (Θ), M−

2 (Θ) or M2(Θ) with the equilibrium
state Xt ≡ Θ belongs to M+

0 (Θ), M−

0 (Θ) or M0(Θ) = M+
0 (Θ) ∩M−

0 (Θ), respectively.
We describe the classes of systems S introduced above via the inclusions

E′
±(X, τ, t)Kτ ⊆ Kt, X ∈ D, τ ∈ Υ, t ∈ Υτ , (3)

where E′
±(X, τ, t) are the Gâteaux derivatives of E(X, τ, t) with respect to ±Kτ .

Lemma 3.1 Suppose that E(X, τ, t) is Gâteaux differentiable with respect to ±Kτ

in a Kτ -convex domain D for τ ∈ Υ, t ∈ Υτ . Then: (i) S ∈ M if and only if one
of the inclusions (3) holds; (ii) S ∈ M±

0 (Θ) if E(Θ, τ, t) − Θ ∈ ±Kt and (3) holds for
X ∈ K±

τ (Θ); (iii) S ∈ M±

2 (Θ) if and only if (3) holds for X ∈ K±
τ (Θ).
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Proof The necessity assertions (i)–(iii) are obtained by using the definitions of the
corresponding classes of systems S and the Gâteaux derivatives

lim
ε→0

ε−1
[

E(X + εH, τ, t)− E(X, τ, t)
]

= E′
±(X, τ, t)H, X ∈ D, H ∈ K±

τ .

The sufficiency assertions (i)–(iii) follow from the Lagrange type formula:

ϕ
(

E(X +H, τ, t)− E(X, τ, t)
)

= ϕ
(

E′
±(Z, τ, t)H

)

,

where ϕ ∈ E∗, Z = X + µH ∈ Co{X,X +H}, 0 < µ < 1, X and X +H are arbitrary
points of a certain convex set. For this purpose, we use only functionals ϕ ∈ ±K∗

t and
the property of Kτ–convexity of D. Moreover, Z = (1−µ)X +µ(X +H) ∈ D for X ∈ D
and H ∈ ±Kτ . 2

Consider the nonlinear differential system

Ẋ = F (X, t), t ≥ τ ≥ 0, (4)

where F is a continuous operator function that guarantees the existence and uniqueness
of the continuously differentiable solution X(t) = E(Xτ , τ, t) for any τ ≥ 0, Xτ ∈ D.
Let Kt be a cone in the phase space E . For example, the Lyapunov transformation
Kt = L(t)K of a given cone K is a cone also. In this case, we can study the solutions
(4) in the form X(t) = L(t)Z(t) by means of a constant cone K instead of Kt in a phase
space of the transformed system

Ż = L−1(t)F (L(t)Z, t) − L−1(t)L̇(t).

For t ≥ 0, we introduce the following conditions:

X
Kt

≥ Θ, ϕ ∈ K∗
t , ϕ(X −Θ) = 0 ⇒ ϕ (F (X, t)) ≥ 0, (5)

X
Kt

≤ Y, ϕ ∈ K∗
t , ϕ(X − Y ) = 0 ⇒ ϕ (F (X, t)− F (Y, t)) ≤ 0. (6)

Let F±

0 (Θ) denote the classes of operator functions F satisfying (5) with respect to
±Kt. Let F be a class of operator functions satisfying (6). We also define the classes
of operator functions F+

1 (Θ), F+
2 (Θ), F−

1 (Θ) and F−

2 (Θ), that possess property (6)
with Y ∈ K+

t (Θ), X ∈ K+
t (Θ), X ∈ K−

t (Θ) and Y ∈ K−

t (Θ), respectively. Denote
Fk(Θ) = F+

k (Θ) ∩ F−

k (Θ), k = 0, 1, 2. It is obvious that F ⊆ F±

1 (Θ) ⊆ F±

2 (Θ).

Lemma 3.2 [8] Let Kt be a solid cone possessing the extension property

0 ≤ τ < t ⇒ Kτ ⊆ Kt. (7)

Then: (i) system (4) is monotone with respect to Kt if F ∈ F ; (ii) system (4) belongs
to M±

0 (Θ) if F ∈ F±

0 (Θ); (iii) system (4) belongs to M±

0 (Θ) ∩M±

k (Θ) if F ∈ F±

k (Θ),
k = 1, 2; (iv) system (4) belongs to M±

k (Θ) if F (Θ, t) ∈ ±Kt and F ∈ F±

k (Θ), k = 1, 2.

Note that the cone inequality

F (X, t)
Kt

≥ α+(X, t) (X −Θ), X −Θ ∈ ∂Kt, t ≥ 0,
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where α±(X, t) are scalar functions, yields F ∈ F+
0 (Θ). Analogously, if

F (X, t)− F (Y, t)
Kt

≤ β(X,Y, t) (X − Y ), Y −X ∈ ∂Kt, t ≥ 0,

where β(X,Y, t) is a scalar function, then F ∈ F . If this condition holds for Y ∈ K+
t (Θ),

X ∈ K+
t (Θ), X ∈ K−

t (Θ) and Y ∈ K−

t (Θ), then F ∈ F+
1 (Θ), F ∈ F+

2 (Θ), F ∈ F−

1 (Θ)
and F ∈ F−

2 (Θ), respectively.
We can describe the classes of operator function F , F±

0 (Θ) and F±

2 (Θ) by means of
the following operator inequalities generated by Kt:

F ′
±(X, t) D β±(X, t)I, X ∈ D, t ≥ 0, (8)

where β±(X, t) are scalar function. These inequalities ensure that F ′
±(X, t) are positive-

off-diagonal with respect to Kt for X ∈ D and t ≥ 0. In view of Lemma 3.2, we have the
following characterization of the introduced classes of differential systems (4).

Lemma 3.3 Suppose that the operator F (X, t) is Gâteaux differentiable with respect
to ±Kt in the Kt-convex domain D for t ≥ 0. Then: (i) F ∈ F if one of the operator
inequalities (8) holds; (ii) F ∈ F±

0 (Θ) if F (Θ, t) ∈ ±Kt and (8) holds for X ∈ K±

t (Θ);
(iii) F ∈ F±

2 (Θ) if (8) holds for X ∈ K±

t (Θ).

Proof The assertions (i)–(iii) of Lemma 3.3 are obtained by using the Lagrange type
formula:

ϕ
(

F (X +H, t)− F (X, t)
)

= ϕ
(

F ′
±(Z, t)H

)

, H ∈ ±Kt, ϕ ∈ ±K∗
t ,

where Z = X + µH ∈ Co{X,X +H}, 0 < µ < 1. If F ′
±(Z, t)H is continuous, then

F (X +H, t)− F (X, t) =

∫ 1

0

F ′
±(X + µH, t)H dµ, H ∈ ±Kt.2

Let’s introduce some classes of operator functions which are used in the theory of
comparison systems. We write F ∈ F , if one can establish a correspondence between

solutions of (4) and solutions of the differential inequalities Ż
Kt

≤ F (Z, t) such that

Z(τ)
Kτ

≤ X(τ) ⇒ Z(t)
Kt

≤ X(t), t > τ ≥ 0.

In addition, if X(τ) ∈ K+
τ (Θ) (Z(τ) ∈ K+

τ (Θ)), then F ∈ F1(Θ) (F ∈ F2(Θ)). Similarly,
we introduce the classes F , F1(Θ) and F2(Θ) by using −Kt instead of Kt. It is obvious
that F ⊆ F1(Θ) ⊆ F2(Θ) and F ⊆ F1(Θ) ⊆ F2(Θ).

If F ∈ F ∪ F , then system (4) is monotone with respect to Kt. If F ∈ F and
F (Θ, t) ∈ Kt (F ∈ F and F (Θ, t) ∈ −Kt), then system (4) belongs to M+

0 (Θ) (M−

0 (Θ)).

Lemma 3.4 Under the conditions of Lemma 3.2, we have: (i) F ⊆ F ∩ F ;
(ii) F+

k (Θ) ∩ F+
0 (Θ) ⊆ Fk(Θ), F−

k (Θ) ∩ F−

0 (Θ) ⊆ Fk(Θ), k = 1, 2.

By analogy, we can introduce and study classes of difference systems in a Banach
space E with respect to a cone Kt ⊂ E (see [12]).
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4 Stability of Equilibrium States of Autonomous Systems

Definition 4.1 The equilibrium state Xt ≡ Θ of system S is stable in K+
t (Θ) if, for

any ε > 0 and τ ∈ Υ, there exists δ > 0 such that Xτ ∈ Sδ(τ) ⇒ Xt ∈ Sε(t) for t ∈ Υτ ,
where Sε(t) = {X ∈ K+

t (Θ) : ‖X − Θ‖ ≤ ε}. If, for a certain δ > 0, Xτ ∈ Sδ(τ) ⇒
‖Xt −Θ‖ → 0 as t → ∞, then the state Xt ≡ Θ is asymptotically stable in K+

t (Θ).

Lemma 4.1 [8] Let Kt be a normal reproducing cone. The state X ≡ Θ of sys-
tem S ∈ M1(Θ) is Lyapunov stable (asymptotically stable) if and only if it is stable
(asymptotically stable) in K+

t (Θ) and K−

t (Θ).

At first, we formulate known results for linear systems. Let K ⊂ E be a normal
reproducing cone. Positive system Ẋ = AX with a linear bounded operator A : E → E
is exponentially stable if and only if −A is positive invertible. If K ⊆ (γI − A)K for
γ ≥ 0, then the system is exponentially stable and positive with respect to K [14].
Moreover, the system is exponentially stable if K ⊂ −AK ∩ (γ0I − A)K for a certain
γ0 > [ρ2(A)− r2(A)]/[2r(A)], where ρ(A) = max{|λ| : λ ∈ σ(A)}, r(A) = min{|λ| : λ ∈
σ(A)} [15].

Now we formulate the asymptotic stability conditions for an isolated equilibrium state
of nonlinear autonomous system in terms of positive invertible operators.

Theorem 4.1 Let K be a normal reproducing cone. The state X ≡ Θ of system

Ẋ = F (X), F (Θ) = 0, t ≥ 0, (9)

is Lyapunov asymptotically stable if one of the following conditions holds:
(a) F ∈ F+

0 (Θ) ∪ F−

0 (Θ), there exists the Fréchet derivative F ′(Θ), and −F ′(Θ) is
positive invertible:

K ⊆ −F ′(Θ)K. (10)

(b) F ∈ F1(Θ), there exist the Fréchet derivatives F ′
±(Θ) with respect to ±K, and

−F ′
±(Θ) are positive invertible:

K ⊆ −F ′
+(Θ)K ∩ F ′

−(Θ)K. (11)

Proof (a) For X = Θ+H , system (9) is represented as follows:

Ḣ = F ′(Θ)H +R(Θ, H), R(Θ, H) = o(‖H‖), H ∈ E .

In order to use the Lyapunov theorem on stability with respect to the first approximation,
we establish the asymptotic stability of the linear system

Ḣ = F ′(Θ)H. (12)

System (12) is positive with respect to K and −K. Indeed, using the relations

F (Θ + εH) = εF ′(Θ)H +R(Θ, εH),
R(Θ, εH)

ε‖H‖
→
ε→0

0,

and the fact that F ∈ F+
0 (Θ) ∪ F−

0 (Θ), we have

H ∈ ±K, ϕ ∈ ±K∗, ϕ(H) = 0 ⇒
ϕ(F ′(Θ)H)

‖H‖
+

ϕ(R(Θ, εH))

ε‖H‖
≥ 0.
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This implies that ϕ(F ′(Θ)H) ≥ 0, i.e. the positivity conditions of system (12) are
satisfied (see Lemma 3.2). In view of (10), system (12) is exponentially stable. Moreover,
the state X ≡ Θ of original system (9) is Lyapunov asymptotically stable.

(b) If F ∈ F1(Θ), then system (9) belongs to M1(Θ) and has the invariant sets
K±(Θ). For X = Θ+H ∈ K±(Θ), we have the systems

Ḣ = F ′
±(Θ)H +R±(Θ, H), R±(Θ, H) = o(‖H‖), H ∈ ±K.

According to Lemma 4.1, the asymptotic stability in K and −K of the zero state H ≡ 0
of the systems yields the Lyapunov asymptotic stability of the state X ≡ Θ of original
system (9). The linear systems Ḣ = F ′

±(Θ)H are positive with respect to K and −K and
exponentially stable (see above). Therefore, the state X ≡ Θ of system (9) is Lyapunov
asymptotically stable. 2

Note that, in the case of a solid cone K, conditions (10) and (11) are equivalent to
consistency of the corresponding systems of cone inequalities:

H
K

≥ 0, F ′(Θ)H
K

< 0, (13)

H−

K

≤ 0
K

≤ H+, F ′
+(Θ)H+

K

< 0
K

< F ′
−(Θ)H−. (14)

Conjecture 4.1 Let system (9) belong to M1(Θ) with respect to a normal solid cone
K and let the following cone inequalities be feasible:

X−

K

≤ Θ
K

≤ X+, F (X+)
K

< 0
K

< F (X−). (15)

Then the state X ≡ Θ of system (9) is Lyapunov asymptotically stable.

Consider the pseudolinear differential system

Ẋ = A(X)X, t ≥ 0, (16)

where A is a continuous operator function with the values A(X) that are assumed to be
linear bounded operators in E . The Gâteaux (Fréchet) derivatives and Gâteaux (Fréchet)
derivatives with respect to ±K of F (X) = A(X)X have the form

F ′(X) = A(X) +B(X), B(X)H = [A′(X)H ]X,

F ′
±(X) = A(X) +B±(X), B±(X)H = [A′

±(X)H ]X,

where A′(X) and A′
±(X) are the Gâteaux (Fréchet) derivatives of A(X), the values B(X)

and B±(X) are linear operators in E . Since F ′(0) = F ′
±(0) = A(0), we have the following

corollary of Theorem 4.1.

Corollary 4.1 Let one of the following off-diagonal positivity type constraints hold:

A(X) D α±(X)I, X ∈ ±∂K,

A(X) +B(X) D β(X)I, X ∈ ±K,

A(X) +B±(X) D β±(X)I, X ∈ D,

where K is a solid cone, α±(X), β(X) and β±(X) are scalar functions. Then the zero
state X ≡ 0 of system (9) is Lyapunov asymptotically stable if the following system of
cone inequalities is feasible:

H
K

≥ 0, A(0)H
K

< 0. (17)
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Similarly, we can formulate the asymptotic stability conditions of the isolated equilib-
rium states for some classes of autonomous nonlinear and pseudolinear difference system
(see [8]).

Example 4.1 Consider the pseudolinear system

ẋ = A(x)x, A(x) = diag{d− Cx}, x ∈ R
n, t ≥ 0, (18)

where d ∈ Rn is a vector, C is an invertible n× n matrix, diag{·} denotes the diagonal
n × n matrix generated by n vector components. This system is the Kolmogorov type
model describing the dynamics of growth and interaction of n populations. There are
two equilibrium states θ0 = 0 and θ1 = C−1d.

The diagonal matrix A(x) for any x ∈ Rn is positive-off-diagonal with respect to
the cones ±K, where K = Rn

+. Therefore, (18) is positive with respect to ±K and the

asymptotic stability condition (17) of the state x ≡ θ0 is reduced to the inequality d
K

< 0.
Fréchet derivative of the vector function F (x) = A(x)x has the form F ′(x) = A(x) +

B(x), where B(x) = −diag{x}C. The matrix F ′(x) is positive-off-diagonal for x− θ1 ∈
±∂K if B1 = diag{θ1}C is negative-off-diagonal. By virtue of Lemmas 3.2 and 3.3,
system (18) belongs to M±

0 (θ1). Moreover, according to Theorem 4.1, the state x ≡ θ1
of the system is asymptotically stable if B1 is a M -matrix, i.e. B−1

1 D 0 and B1 is
negative-off-diagonal.

5 Comparison Principle for a Set of Differential Systems

Consider a set of independent systems of the type (4):

Si : Ẋi = Fi(Xi, t), Xi ∈ Ei, t ≥ 0, i = 1, s. (19)

For simplicity, we denote X = (X1, . . . , Xs), F (X, t) = (F1(X1, t), . . . , Fs(Xs, t)), E =
E1 × · · · × Es and rewrite (19) as

Ẋ = F (X, t), X ∈ E , t ≥ 0. (20)

Let X be a space with a wedge Wt, and let W : E × [0,∞) → X be a continuous
operator function together with its partial derivatives and not everywhere positive with
respect to Wt.

Definition 5.1 Systems (19) are called comparable if W (X(t), t) ∈ Wt whenever
W (X(τ), τ) ∈ Wτ for t > τ ≥ 0. Simultaneously, W is the operator of comparison of
systems (19).

Theorem 5.1 Let Wt be a solid cone satisfying (7). Then systems (19) are compa-
rable if and only if

W (X, t) ∈ Wt, ϕ ∈ W∗
t , ϕ (W (X, t)) = 0 ⇒ ϕ (DtW (X, t)) ≥ 0, t ≥ 0, (21)

where Dt is the operator of differentiation along solutions of (20).

Proof We construct an invariant set of (20) in the form It = {X ∈ E : W (X, t) ∈
Wt}. The operator of differentiation along solutions of the system is defined as

DtW (X, t) = W ′
X(X, t)F (X, t) +W ′

t (X, t),
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where W ′
t (X, t) is the strong time derivative and W ′

X(X, t) is the Gâteaux derivative.
Let X(t) satisfy (20), X(τ) ∈ Iτ and X(ξ) ∈ ∂Iξ for some ξ ≥ τ . Then

∫ t

ξ

DsW (X(s), s)ds = W (X(t), t)−W (X(ξ), ξ)

and ϕ(W (X(ξ), ξ)) = 0 for some ϕ 6= 0 ∈ W∗
ξ . For ε > 0 and Y ∈ intWξ, we define a

neighbourhood of It in the form Iε
t = {X ∈ E : Wε(X, t) ∈ Wt}, where

Wε(X, t) = W (X, t) + ε arctan(t− ξ)Y.

It is obvious that It ⊂ Iε
t , and Iε

t → It as ε → 0, t ≥ ξ. Since ϕ(Y ) > 0, according to
(21), for some δ > 0, we have

ϕ (DtWε(X(t), t)) = ϕ (DtW (X(t), t)) +
ε

1 + (t− ξ)2
ϕ(Y ) > 0, ξ ≤ t ≤ ξ + δ,

∫ ξ+δ

ξ

ϕ (DtWε(X(t), t)) dt = ϕ(Wε(X(ξ + δ), ξ + δ)) > 0.

It means that the trajectory X(t) at t = ξ cannot leave Iε
ξ , i.e. Wε(X(t), t) ∈ Wξ for

ξ ≤ t ≤ ξ + δ. Otherwise ϕ(Wε(X(ξ), ξ)) = 0 and ϕ(Wε(X(ξ + δ), ξ + δ)) < 0 for some
ϕ ∈ W∗

ξ and δ > 0. According to (7), we have X(t) ∈ Iε
t for ξ ≤ t ≤ ξ + δ. By virtue

of the closedness of Wt, we get Wε(X(t), t) → W (X(t), t) ∈ Wt as ε → 0, ξ ≤ t ≤ ξ + δ.
Thus, It is an invariant set of system (20).

The converse statement follows from the Lagrange type relation:

ϕ(W (X(ξ + δ), ξ + δ))− ϕ(W (X(ξ), ξ)) = δ ϕ(DζW (X(ζ), ζ)),

where ζ ∈ (ξ, ξ+ δ). If ϕ(W (X(ξ), ξ)) = 0 and X(ξ+ δ) ∈ Iξ+δ, then it is necessary that
the inequality ϕ(DξW (X(ξ), ξ)) ≥ 0 holds for sufficiently small δ > 0. 2

Note that (21) holds if

DtW (X, t)
Wt

≥ α(X, t)W (X, t), X ∈ ∂It, t ≥ 0,

where α(X, t) is a certain scalar function.

Now, we formulate known results of comparison for two and three systems with the
zero equilibrium states. In some cases, these results can be established as corollaries of
Theorem 5.1. In phase spaces of the comparison systems, we shall use normal reproducing
cones with bounded normality constants. Consider the following cases.

Case 1. Let s = 2, F1(Θ, t) ≡ 0, F2(Ω, t) ≡ 0 and W (X, t)=X2 − V (X1, t), where
V : E1 × [0,∞) → E2 is a continuous and everywhere positive operator function with
respect to a normal reproducing cone Kt ⊂ E2. If

DtV (X1, t)
Kt

≤ F2(V (X1, t), t), F2 ∈ F2(Ω), t ≥ 0, (22)

then S2 is an upper comparison system for system S1 in the sense that:

Ω
Kτ

≤ V (X1(τ), τ)
Kτ

≤ X2(τ) ⇒ Ω
Kt

≤ V (X1(t), t)
Kt

≤ X2(t), t > τ ≥ 0.
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Thus, systems (19) are comparable with the operator of comparison W .
We assume that an operator V has the following additional properties:

V (Θ, t) ≡ Ω, ‖V (X, t)− Ω‖ ≥ v(X) > 0, X 6= Θ, v(Θ) = 0, t ≥ 0, (23)

where v is a continuous function such that ‖X −Θ‖ ≤ ‖Y −Θ‖ whenever v(X) ≤ v(Y ).

Theorem 5.2 Let an everywhere positive operator V satisfy (22) and (23). Then the
solution X1 ≡ Θ of S1 is Lyapunov stable (asymptotically stable) if the solution X2 ≡ Ω
of S2 is stable (asymptotically stable) in K+

t (Ω).

Case 2. Let s = 3, F1(Ω, t) ≡ F3(Ω, t) ≡ 0, F2(Θ, t) ≡ 0, E1 = E3 and W (X, t) =
[V (X2, t) − X1, X3 − V (X2, t)], where V : E2 × [0,∞) → E1 is a continuous operator
function and Kt ⊂ E1 is a normal reproducing cone. If

F1(V (X2, t), t)
Kt

≤ DtV (X2, t)
Kt

≤ F3(V (X2, t), t), F1 ∈ F1(Ω), F3 ∈ F1(Ω), (24)

then, for X1(τ) ∈ K−
τ (Ω) and X3(τ) ∈ K+

τ (Ω), we have

X1(τ)
Kτ

≤ V (X2(τ), τ)
Kτ

≤ X3(τ) ⇒ X1(t)
Kt

≤ V (X2(t), t)
Kt

≤ X3(t), t > τ ≥ 0. (25)

It means that three systems (19) are comparable with the operator of comparison W
and cone Wt = Kt × Kt. Then S1 (S3) is a lower (upper) comparison system for S2.

Theorem 5.3 Let V satisfy (23) and (24). Then the solution X2 ≡ Θ of system S2

is Lyapunov stable (asymptotically stable) if the solution X1 ≡ Ω of S1 and the solution
X3 ≡ Ω of S3 are stable (asymptotically stable) in K−

t (Ω) and K+
t (Ω), respectively.

Proof Since Kt is reproducing and non-flat, we have

V (X2(τ), τ) − Ω = U+ − U−, ‖U±‖ ≤ γ ‖V (X2(τ), τ) − Ω‖, U± ∈ Kτ ,

where γ > 0 is a universal constant. Let X1(t) and X3(t) be the solutions of systems
S1 and S3 with the initial conditions X1(τ) = Ω− U− ∈ K−

τ (Ω) and X3(τ) = Ω + U+ ∈
K+

τ (Ω), respectively. Then X1(t) ∈ K−

t (Ω), X3(t) ∈ K+
t (Ω) and

‖X1(τ) − Ω‖ ≤ γ ‖V (X2(τ), τ) − Ω‖, ‖X3(τ)− Ω‖ ≤ γ ‖V (X2(τ), τ) − Ω‖.

By virtue of (25) and the normality of Kt, we get

‖V (X2(t), t)− Ω‖ ≤ α‖X1(t)− Ω‖+ β‖X3(t)− Ω‖, t ≥ τ.

where α > 0 and β > 0 depend on the normality constant of Kt.
It follows from (23) and the continuity of V (X, t) that, for any ε > 0, there exists

δ0 > 0 such that ‖X2(t)−Θ‖ ≤ ε whenever ‖V (X2(t), t)− Ω‖ ≤ δ0 for t ≥ τ .
Now we use the stability properties of the solution X1 ≡ Ω of S1 and the solution

X3 ≡ Ω of S3 in K−

t (Ω) and K+
t (Ω), respectively. We choose δ± > 0 so that the

inequalities ‖X1(τ)−Ω‖ ≤ δ− and ‖X3(τ)−Ω‖ ≤ δ+ yield the corresponding inequalities
‖X1(t)− Ω‖ ≤ δ0/(2α) and ‖X3(t)− Ω‖ ≤ δ0/(2β) for t ≥ τ.

Finally, we choose δ > 0 so that

‖X2(τ) −Θ‖ ≤ δ ⇒ ‖V (X2(τ), τ) − Ω‖ ≤ min{δ−, δ+}/γ.
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Then, according to the arguments presented above, we get ‖X2(t) − Θ‖ ≤ ε for t > τ ,
i.e., the solution X2 ≡ Θ of system S2 is Lyapunov stable. In this case, X2(t) → Θ if
X1(t) → Ω and X3(t) → Ω as t → ∞. 2

The proofs of Theorems 5.2 and 5.3 are analogous.

Case 3. Let s ≥ 2. The arrangement problems for systems (19) can be formulated
in the form of a general comparison problem using the block operator

W (X, t) =
[

V2(X2, t)− V1(X1, t), . . . , Vs(Xs, t)− Vs−1(Xs−1, t)
]

.

If Si are comparable with Wt = Kt × · · · × Kt, where Kt is a wedge in X1, then

V1(X1(t), t)
Kt

≤ · · ·
Kt

≤ Vs(Xs(t), t), t > τ ≥ 0,

provided that this ordering takes place at an arbitrary initial time t = τ . In particular, if
Vi(Xi, t) = ‖Xi‖Ei

, then the solutions of comparable systems (19) are ordered by norms:

‖X1(τ)‖E1
≤ · · · ≤ ‖Xs(τ)‖Es

⇒ ‖X1(t)‖E1
≤ · · · ≤ ‖Xs(t)‖Es

, t > τ ≥ 0.

Example 5.1 Consider a set of pseudolinear systems

ẋi = Ai(xi, t)xi, xi ∈ C
ni , t ≥ 0, i = 1, s, (26)

where Ai(xi, t) are continuous ni × ni matrices. We specify an operator of comparison
of the systems with respect to the cone W = R

s−1
+ :

W (X, t) =
[

x∗
2Q2x2 − x∗

1Q1x1, . . . , x∗
sQsxs − x∗

s−1Qs−1xs−1

]

,

where Qi(t) = Q∗
i (t) > 0 are Hermitian positive definite matrices. Then

DtW (X, t) =
[

x∗
2H2x2 − x∗

1H1x1, . . . , x∗
sHsxs − x∗

s−1Hs−1xs−1

]

,

where Hi(xi, t) = A∗
i (xi, t)Qi(t)+Qi(t)Ai(xi, t)+ Q̇i(t), i = 1, s. Using Theorem 5.1 and

the two-sided estimations

[λmin(Hi − λQi)− α]x∗
iQixi ≤ x∗

i (Hi − αQi)xi ≤ [λmax(Hi − λQi)− α]x∗
iQixi,

one can establish that the solutions of (26) are ordered in the form x1(t)
∗Q1(t)x1(t) ≤

· · · ≤ xs(t)
∗Qs(t)xs(t), t ≥ τ ≥ 0, if the following relations hold:

λmax(Hi − λQi) ≤ λmin(Hi+1 − λQi+1), i = 1, s− 1.

In particular, in the case Qi ≡ I, the inequalities λmax(A
∗
i +Ai) ≤ λmin(A

∗
i+1+Ai+1), i =

1, s− 1, ensure the ordering of systems (26) with respect to the Hermitian norm. Here,
for matrix pencils and Hermitian matrices, λmax(·) and λmin(·) denote the maximum and
minimum eigenvalues, respectively.

6 Robust Stability Analysis of Differential Systems

Consider the family of differential systems

Ẋ = F (X, t), F (Θ, t) ≡ 0, t ≥ 0, (27)
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F (X, t)
Kt

≤ F (X, t)
Kt

≤ F (X, t), X ∈ E , t ≥ 0, (28)

under the conditions of existence and uniqueness of solutionsX(t), t > τ ≥ 0, in a Banach
space E contained a normal reproducing cone Kt with a bounded normality constant. We
isolate the extreme systems

Ẋ = F (X, t), F (Θ, t) ≡ 0, t ≥ 0, (29)

Ẋ = F (X, t), F (Θ, t) ≡ 0, t ≥ 0. (30)

If F ∈ F1(Θ) and F ∈ F1(Θ), then, for X(τ) ∈ K−
τ (Θ), X(τ) ∈ K+

τ (Θ), we have

X(τ)
Kτ

≤ X(τ)
Kτ

≤ X(τ) ⇒ X(t)
Kt

≤ X(t)
Kt

≤ X(t), t > τ ≥ 0.

In this case, (29) ((30)) is a lower (upper) comparison system for any system (27), (28).
Assumed that V (X, t) ≡ X and Θ = Ω in Theorem 5.3, we have the following result.

Theorem 6.1 Let F ∈ F1(Θ) and F ∈ F1(Θ). Then the solution X ≡ Θ of any
system (27), (28) is Lyapunov stable (asymptotically stable), if the solution X ≡ Θ of
(29) and the solution X ≡ Θ of (30) are stable (asymptotically stable) in K−

t (Θ) and
K+

t (Θ), respectively.

Now, we consider instead of (28) the conditions

F (X, t)
Kt

≤ F (X, t)
Kt

≤ F (X, t), X ∈ K+
t (Θ), t ≥ 0, (31)

F (X, t)
Kt

≤ F (X, t)
Kt

≤ F (X, t), X ∈ K−

t (Θ), t ≥ 0. (32)

Theorem 6.2 Let Kt be a normal solid cone satisfying (7). If (31) holds with F ∈
F+

0 (Θ) and F ∈ F+
2 (Θ), then stability (asymptotic stability) in K+

t (Θ) of the solution
X ≡ Θ of (30) involves stability (asymptotic stability) in K+

t (Θ) of the solution X ≡ Θ of
any system (27), (31). By analogy, if (32) holds with F ∈ F−

2 (Θ) and F ∈ F−

0 (Θ), then
stability (asymptotic stability) in K−

t (Θ) of the solution X ≡ Θ of (29) involves stability
(asymptotic stability) in K−

t (Θ) of the solution X ≡ Θ of any system (27), (32).

Note that under the conditions of Theorem 6.2, we have Θ
Kt

≤ X(t)
Kt

≤ X(t) and

X(t)
Kt

≤ X(t)
Kt

≤ Θ for t > τ ≥ 0 as soon as these inequalities hold at t = τ (see Section
3). If (31) holds, then F ∈ F+

0 (Θ) implies F ∈ F+
0 (Θ). Similarly, if (32) holds, then

F ∈ F−

0 (Θ) implies F ∈ F−

0 (Θ).

Consider the pseudolinear system

Ẋ = A(X, t)X, t ≥ 0, (33)

with the isolated equilibrium state X ≡ Θ under one of the following conditions:

A(X, t) E A(X, t) E A(X, t), X
Kt

≥ Θ
Kt

≥ 0, t ≥ 0, (34)

A(X, t) E A(X, t) E A(X, t), X
Kt

≤ Θ
Kt

≤ 0, t ≥ 0. (35)
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The values of continuous operator functions A(X, t), A(X, t) and A(X, t) are linear
bounded operators in E . If X ≡ Θ is an equilibrium state of the system, then either
Θ = 0 or Θ 6= 0 and Θ ∈ kerA(Θ, t) at t ≥ 0. The extreme systems

Ẋ = A(X, t)X, t ≥ 0, (36)

Ẋ = A(X, t)X, t ≥ 0, (37)

have the equilibrium states X ≡ Θ and X ≡ Θ, respectively. So, we formulate the
corollaries of Theorem 6.2 and Lemma 3.3 using the following constraints:

A(X, t) +B+(X, t) D β
+
(X, t)I, X ∈ K+

t (Θ), t ≥ 0, (38)

A(X, t) +B+(X, t) D β+(X, t)I, X ∈ K+
t (Θ), t ≥ 0, (39)

A(X, t) +B−(X, t) D β
−
(X, t)I, X ∈ K−

t (Θ), t ≥ 0, (40)

A(X, t) +B−(X, t) D β−(X, t)I, X ∈ K−

t (Θ), t ≥ 0, (41)

whereB±(X, t)H = [A′

±(X, t)H ]X , B±(X, t)H = [A
′

±(X, t)H ]X , A′

±(X, t) and A
′

±(X, t)

are the Gâteaux (Fréchet) derivatives with respect to ±Kt, β
±
(X, t) and β±(X, t) are

scalar functions.

Corollary 6.1 Let Kt be a normal solid cone satisfying (7). If (38) and (39) hold,
then stability (asymptotic stability) in K+

t (Θ) of the solution X ≡ Θ of (37) involves
stability (asymptotic stability) in K+

t (Θ) of the solution X ≡ Θ of any system (33), (34).
By analogy, if (40) and (41) hold, then stability (asymptotic stability) in K−

t (Θ) of the
solution X ≡ Θ of (36) involves stability (asymptotic stability) in K−

t (Θ) of the solution
X ≡ Θ of any system (33), (35).

Note that in Corollary 6.1, we can use the constraints

A(X, t) D α+(X, t)I, A(X, t)Θ
Kt

≥ 0, X −Θ ∈ ∂Kt, t ≥ 0, (42)

A(X, t) D α−(X, t)I, A(X, t)Θ
Kt

≤ 0, Θ−X ∈ ∂Kt, t ≥ 0, (43)

instead of (38) and (41), respectively.

Example 6.1 Consider the family of pseudolinear systems

ẋ = A(x, t)x, A(x, t) E A(x, t) E A(x), x ∈ R
n
+, t ≥ 0, (44)

where A(x, t) = A0(t) +
∑n

j=1 xjAj(t), A(x) = A0 +
∑n

j=1 xjAj , Ai(t) E Ai, Ai(t) =

‖a
(i)
ks (t)‖

n
k,s=1 and Ai = ‖a

(i)
ks ‖

n
k,s=1 are n × n matrices, i = 0, n. Here K = Rn

+ is a cone
of nonnegative vectors and E denotes the elementwise matrix inequality.

The Gâteaux (Fréchet) derivative of F (x, t) = A(x, t)x has the form

F ′(x, t) = A(x, t) +B(x, t), B(x, t) = [(∂A/∂x1)x, . . . , (∂A/∂xn)x] ,

So, for F (x, t) = A(x, t)x and F (x) = A(x)x, we have

F ′(x, t) = F ′

±(x, t) = A0(t) +
∑n

j=1 xjBj(t), Bj(t) = ‖a
(j)
ks (t) + a

(s)
kj (t)‖

n
k,s=1,

F
′
(x) = F

′

±(x) = A0 +
∑n

j=1 xjBj , Bj = ‖a
(j)
ks + a

(s)
kj ‖

n
k,s=1.
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Then conditions (38) and (42) with Θ = 0 are reduced to the form

a
(0)
ks (t) ≥ 0, a

(j)
ks (t) + a

(s)
kj (t) ≥ 0, k 6= s, t ≥ 0, j = 1, n;

a
(i)
ks (t) ≥ 0, k 6= s, t ≥ 0, i = 0, n,

respectively. If one of these conditions holds and in addition

A
−1

0 E 0, a
(0)
ks ≥ 0, a

(j)
ks + a

(s)
kj ≥ 0, k 6= s, j = 1, n,

then according to Corollary 6.1 the zero equilibrium state of any system (44) is asymp-
totically stable in K (see also assertion (a) of Theorem 4.1 and Corollary 4.1).

Consider the parameter family of autonomous pseudolinear systems

Ẋ = A(X, p)X, A(X, p) =

s
∑

i=1

piAi(X), X ∈ E , t ≥ 0, (45)

where p = [p1, . . . , ps]
⊤ ∈ Rs

+ is a vector of nonnegative scalar parameters. The values
of operator functions Ai(X) and A(X, p) are linear bounded operators in E .

Corollary 6.2 Let all the operators Ai(X) satisfy one of the off-diagonal positivity
type constraints of Corollary 4.1 with a normal solid cone K, and the system of cone

inequalities H
K

≥ 0 and Ai(0)H
K

< 0 for i = 1, s is feasible. Then the zero solution X ≡ 0
of any system (45) for p ∈ Rs

+ is Lyapunov asymptotically stable.

Consider the family of linear differential systems

Ẋ = A(t)X, A(t) E A(t) E A(t), t ≥ 0, (46)

where the inequality E between linear operators is generated by a normal reproducing
cone Kt. In (46), we isolate the extreme systems:

Ẋ = A(t)X, (47)

Ẋ = A(t)X. (48)

Theorem 6.3 Any system (46) is positive with respect to Kt if

eA(θ)δKτ ⊆ Kt, t ≥ θ ≥ τ ≥ 0, t− τ ≥ δ ≥ 0. (49)

Moreover, if system (48) is asymptotically stable, then any positive system (46) is asymp-
totically stable.

Proof Note that Kt in (49) with δ = 0 satisfies (7). The evolutional and exponential
operators of system (46) are connected by [16]

E(t, τ) = lim
n→∞

[

eA(ϑn)hn . . . eA(ϑ1)hn

]

, eA(ϑ)h = lim
n→∞

[E(ϑ, ϑ− h/n)]
n
,

where ϑk ∈ [tk, tk+1], tk = τ + khn, hn = (t − τ)/n, k = 0, n, t ≥ τ , ϑ ≥ 0, h ≥ 0.
Therefore, (49) ensures positivity of (46). In the case of a constant cone, the inverse
statement holds also. If A(t)Kt ⊆ Kt and (7) hold, then

eA(ϑ)hKτ =

∞
∑

k=0

(hk/k!)Ak(ϑ)Kτ ⊆ Kt, τ ≤ ϑ ≤ t, 0 ≤ h ≤ t− τ.
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Let A(t) = A1(t) +A2(t) and eAs(ϑ)hKτ ⊆ Kt, s = 1, 2. Then

eA(ϑ)h = lim
n→∞

2−n
[

eA1(ϑ)
h

n eA2(ϑ)
h

n + eA2(ϑ)
h

n eA1(ϑ)
h

n

]n

, eA(ϑ)hKτ ⊆ Kt,

and consequently E(t, τ)Kτ ⊆ Kt. Assuming that A1(t) = A(t) and A2(t) = A(t)−A(t),
we have the positivity of any system (46) with respect to Kt.

Let X(t) and X(t) be the solutions of (46) and (48) with initial conditions X(τ) = Xτ

and X(τ) = Xτ , respectively. Since 0
Kτ

≤ Xτ

Kτ

≤ Xτ implies 0
Kt

≤ X(t)
Kt

≤ X(t), t ≥ τ ≥ 0,
and Kt is normal, the asymptotic stability of system (48) ensures the asymptotic stability
in ±Kt of any positive system (46). Moreover, if Kt is reproducing, then any system (46)
is Lyapunov asymptotically stable. 2

Remark 6.1 Note that any system (46) is positive with respect to Kt if the operator
inequality A(t) D α(t)I holds for some scalar function α(t) (see Corollary 6.1 and the
notation below). This inequality ensures (49) subject to (7). Indeed,

eA(ϑ)δ = eα(ϑ)δ e[A(ϑ)−α(ϑ)I]δ, eA(ϑ)δKτ =

∞
∑

k=0

(δk/k!)[A(ϑ)− α(ϑ)I]k Kτ ⊆ Kϑ ⊆ Kt.

Example 6.2 Consider the family of linear systems

ẋ = A(t)x, A(t) E A(t) E A, A
−1

E 0, x ∈ R
n, t ≥ 0, (50)

where A(t) is a matrix function with nonnegative off-diagonal entries, −A is anM -matrix
and E denotes the elementwise matrix inequality. The system ẋ = A(t)x is positive with
respect to the cone Rn

+, and the system ẋ = Ax is asymptotically stable. Thus, any
system (50) is asymptotically stable and positive with respect to R

n
+.

Example 6.3 Consider the family of linear systems in a matrix space Cn×n

Ẋ = M(t)X, M(t) E M(t) E M(t), X ∈ C
n×n, t ≥ 0, (51)

where M(t)X = A∗(t)X +XA(t), M(t)X = A∗(t)X +XA(t) +
s
∑

i=1

B∗(t)XB(t),

E is an operator inequality generated by the cone of Hermitian positive semidefinite
matrices Kn. Since eM(ϑ)δX = eA

∗(ϑ)δXeA(ϑ)δ, the Lyapunov equation

Ẋ = A∗(t)X +XA(t)

and any system (51) are positive with respect to Kn. If the system

Ẋ = A∗(t)X +XA(t) +

s
∑

i=1

B∗(t)XB(t) (52)

is asymptotically stable, then any system (51) is positive and asymptotically stable. Au-
tonomous system of the type (52) is asymptotically stable, if the linear matrix inequality

A∗X +XA+

s
∑

i=1

B∗XB < 0

has a solution X = X∗ > 0.
Note that the matrix differential equation (52) is known as the second-moment equa-

tion for the Itô stochastic system. This equation is positive and monotone with respect
to Kn.
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