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Abstract: Some existence theorems are obtained for periodic and subharmonic so-
lutions to noncoercive first order Hamiltonian systems and to similar second order
Hamiltonian systems, when the Hamiltonian satisfies a superquadratic condition and
need not satisfy the global Ambrosetti–Rabinowitz condition. For the resolution, we
use minimax methods in critical point theory, especially a Local Linking Theorem
and a Generalized Mountain Pass Theorem.

Keywords: Hamiltonian systems; periodic solutions; subharmonics; critical points.

Mathematics Subject Classification (2000): 34C25, 34A34, 37J45, 35Q40.

1 Introduction

Consider the nonautonomous first order Hamiltonian systems

Jẋ− u∗A(t)u(x) + u∗G′(t, u(x)) = 0, (1.1)

where u : R2N −→ R
m (1 ≤ m ≤ 2N) is a linear operator, A is a continuous T−periodic

function (T > 0) from R into the space of symmetric (m×m)-matrices, G : R×R
m −→ R

is a continuous function, T− periodic in the first variable, differentiable with respect to
the second variable and its derivative G′(t, x) = ∂G

∂x (t, x) is continuous, and J is the
standard symplectic matrix:

J =

(

0 −I
I 0

)

.

When A(t) = 0 for all t ∈ R, m = 2N and u = idR2N , Rabinowitz has proved in [7] the
existence of periodic solutions for (1.1) under some suitable conditions, in particular the
following superquadratic condition:
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There exist two constants µ > 2 and r > 0 such that for all t ∈ R and x ∈ R
2N , |x| ≥ r

0 < µG(t, x) ≤ G′(t, x)x, (1.2)

where x.y denotes the standard inner product of x, y in R
2N and |.| denotes the corre-

sponding norm. Since then, condition (1.2) has been used extensively in the literature,
see [2–7,9,10]. If m = 2N , u = idR2N and G satisfies the superquadratic condition
(1.2), the existence of nontrivial periodic solutions for the Hamiltonian systems (1.1),
was studied by Li-Szulkin in [3] when A is a constant symmetric (2N × 2N) matrix, and
by Li-Willem when A(t) is a continuous periodic map from R into the space of symmetric
(2N × 2N) matrices, not necessary constant. In [10], the author has studied the same
problem as in [4] in the general case when u is not necessary the identity.

By remarking that the condition (1.2) does not cover some superquadratic nonlinear-
ity like

G(t, y) = |y|2 [ln(1 + |x|p)]q, p, q > 1, (1.3)

the author has studied, recently in [11], the existence of nontrivial periodic solution for
(1.1) when the function G satisfies some superquadratic conditions which cover the cases
as in (1.3). In particular, the author has assumed that the function G satisfies the two
following assumptions:

there exist constants 1 < α < 2 and a > 0 such that

|G′(t, y)| ≤ a(|y|α + 1), ∀(t, y) ∈ R× R
m; (1.4)

there exist constants β > 1
2−α , b > 0 and r > 0 such that

G′(t, y).y − 2G(t, y) ≥ b |y|β , ∀t ∈ R, ∀ |y| ≥ r. (1.5)

Consider the function G defined in R× R
m by

G(t, y) =

∣

∣

∣

∣

cos(
2π

T
t)

∣

∣

∣

∣

|y|α+1
+ |y|2 ln(1 + |y|2), (1.6)

where 3
2 < α < 2. A simple computation shows that G neither satisfies the condition

(1.2), nor (1.5). In section 3, we will extend the ranges of α and β and obtain the existence
of nontrivial T− periodic solutions of (1.1) under some superquadratic conditions covering
the cases as in (1.6). For the resolution, we shall use a Local Linking Theorem.

The existence of subharmonic solutions for (1.1), i.e. of distinct kT−periodic solutions
of (1.1), has been investigated in [2,6,9] when A(t) = 0 for all t ∈ R, m = 2N , u = idR2N

and G satisfies the condition (1.2). In section 4, we are interested in the existence of
infinitely many subharmonic solutions of the Hamiltonian systems (1.1) when A(t) = 0 for
all t ∈ R, u is not necessary the identity and the function G satisfies some superquadratic
conditions covering the cases as in (1.6). The main obstacle in obtaining such solutions
is the fact that any T−periodic solution is also kT−periodic. For the resolution, we shall
use the minimax methods in critical point theory, specially, a Generalized Mountain Pass
Theorem.

2 Preliminaries

We will recall here some basic results needed in the proof of our next results.
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2.1 Linking theorem [4]

Let X be a real Banach space with a direct sum decomposition

X = X1 ⊕X2.

Consider two sequences of subspaces

X1
0 ⊂ X1

1 ⊂ · · · ⊂ X1, X2
0 ⊂ X2

1 ⊂ · · · ⊂ X2

such that

Xj = ∪n∈NX
j
n, j = 1, 2.

For every multi-index α = (α1, α2) ∈ N
2 , we denote by Xα the space

X1
α1

⊕X2
α2
.

Let us recall that

α ≤ β ⇔ α1 ≤ β1, α2 ≤ β2.

A sequence (αn) ⊂ N
2 is admissible if, for every α ∈ N

2, there exists m ∈ N such that

n ≥ m ⇒ αn ≥ α.

For every function f : X −→ R, we denote by fα the function f restricted to the space
Xα.

Definition 2.1 Let f ∈ C1(X,R). The function f satisfies the (PS)∗ condition if
every sequence (xαn) such that (αn) is admissible and

xαn ∈ Xαn , sup
n∈N

f(xαn) < ∞, f ′
αn

(xαn) −→ 0,

possesses a subsequence which converges to a critical point of f .

Definition 2.2 The function f ∈ C1(X,R) has a local linking at 0, with respect to
(X1, X2) if, for some r > 0,

f(x) ≥ 0, x ∈ X1, ||x|| ≤ r,

f(x) ≤ 0, x ∈ X2, ||x|| ≤ r.

Remark 2.1 If f has a local linking at 0, then 0 is a critical point of f .

Theorem 2.1 Suppose that f ∈ C1(X,R) satisfies the following assumptions

a) f has a local linking at 0 and X1 6= {0},
b) f satisfies the (PS)∗ condition,

c) f maps bounded sets into bounded sets,

d) for every m ∈ N, f(x) −→ −∞ as ‖x‖ −→ +∞, x ∈ X1
m ⊕X2.

Then f has at least two critical points.
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2.2 Generalized Mountain Pass Theorem

Let X be a real Banach space. We shall say that f ∈ C1(X,R) satisfies the Cerami-
condition (C) if every sequence (xn) in X satisfying

(f(xn)) is bounded and ‖f ′(xn)‖ (1 + ‖xn‖) → 0 as n → ∞

possesses a convergent subsequence.

As shown in [1], a deformation lemma can be proved with the weaker condition (C)
replacing the used (PS) condition, and it turns out that the Generalized Mountain Pass
Theorem holds true under condition (C). We then have:

Theorem 2.2 Let X be a real Hilbert space with inner product < ., . >. Suppose
X = X1 ⊕ X2 and f ∈ C1(X,R) satisfies the Cerami-condition (C) and the following
conditions:
a) f(x) = 1

2 < P+x − P−x, x > +b(x), where P+ : E −→ E+ and P− : E −→ E− are
the orthogonal projections and b′ is compact,
b) there exist constants m, ρ > 0, such that

f(x) ≥ m, ∀x ∈ ∂Bρ ∩X1,

c) there exist e ∈ ∂B1 ∩X1 and constants r1, r2 > 0 such that

f(x) ≤ 0, ∀x ∈ ∂Q,

where
Q = {se/0 ≤ s ≤ r1} ⊕

{

x ∈ X2/ ‖x‖ ≤ r2
}

.

Then f possesses a critical value c ≥ m which can be characterized as

c = inf
h∈Γ

max
x∈Q

f(h(x)),

where
Γ =

{

h ∈ C(Q,E)/h = id on ∂Q
}

.

3 Existence of Periodic Solutions

Let u : R2N → R
m (1 ≤ m ≤ 2N) be a nontrivial linear operator with adjoint u∗, A be

a continuous T−periodic function (T > 0) from R into the space of symmetric (m×m)-
matrices and G : R × R

m → R, (t, y) → G(t, y) be a continuous function, T− periodic
in the first variable, differentiable with respect to the second variable and its derivative
G′(t, y) = ∂G

∂y (t, y) is continuous. Consider the noncoercive Hamiltonian systems

(HS) Jẋ− u∗A(t)u(x) + u∗G′(t, u(x)) = 0.

We are interested in the existence of nontrivial T−periodic solutions for (HS).
Consider the following assumptions

(G0) JKer u ⊂ Ker u.
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(G1) G(t, y) = o(|y|2) as |y| → 0, uniformly in t ∈ R.

(G2) lim
|y|→∞

G(t, y)

|y|2
= +∞, uniformly in t ∈ R.

(G3) There exist constants α > 1 and a > 0 such that

|G′(t, y)| ≤ a(|y|α + 1), ∀ t ∈ R, ∀y ∈ R
m.

(G4) There exist constants β > α, b > 0 and r > 0 such that

G′(t, y).y − 2G(t, y) ≥ b |y|β , ∀ t ∈ R, ∀ |y| ≥ r.

(G5) There exists a constant δ > 0 such that either

(i) G(t, y) ≥ 0, ∀t ∈ R, ∀ |y| ≤ δ,

or

G(t, y) ≤ 0, ∀t ∈ R, ∀ |y| ≤ δ.

Our first main result in this section is the following:

Theorem 3.1 Assume conditions (G0) − (G4) hold. If 0 is an eigenvalue of
J d

dt − u∗Au, assume also (G5). Then the system (HS) possesses at least one nontrivial
T−periodic solution.

Example 3.1 Let p, q > 1 be two real numbers. The function

G(t, y) = |y|2 [ln(1 + |x|p)]q

satisfies (G1)−(G5). The linear map u : RN ×R
N −→ R

N defined by u(p, q) = p satisfies
(G0). Let A(t) = IdN . Therefore for all T > 0, the corresponding Hamiltonian system
(HS) possesses at least a nontrivial T−periodic solution.

Remark 3.1 Observe that if x is a periodic solution of (HS) then y(t) = x(−t) is a
periodic solution of

Jẏ(t) + u∗A(−t)u(y)− u∗G′(−t, u(y)) = 0.

Hence, it is easy to see that we obtain the same result of Theorem 3.1 if we replace
assumptions (G2) and (G4) respectively by the following ones

lim
|y|→∞

G(t, y)

|y|2
= −∞, uniformly in t ∈ R.

There exist constants β > α, b > 0 and r > 0 such that

G′(t, y).y − 2G(t, y) ≤ −b |y|β , ∀ t ∈ R, ∀ |y| ≥ r.



324 M. TIMOUMI

Now consider the noncoercive second order Hamiltonian systems

(NS) ẍ− u∗A(t)u(x) + u∗W ′(t, u(x)) = 0

where u : RN −→ R
m, (1 ≤ m ≤ N) is a linear operator with adjoint u∗, A(t) is a

symmetric m×m matrix, continuous and T−periodic, W : R×R
m −→ R is a continuous

function T−periodic in the first variable and continuously differentiable with respect to
the second variable. Consider the following assumptions:

(W1) W (t, y) = o(|y|2) as |y| → 0, uniformly in t ∈ R.

(W2) lim
|y|→∞

W (t, y)

|y|2
= +∞, uniformly in t ∈ R.

(W3) There exist constants α > 1 and a > 0 such that

|W ′(t, y)| ≤ a(|y|α + 1), ∀ t ∈ R, ∀y ∈ R
m.

(W4) There exist constants β > α, b > 0 and r > 0 such that

W ′(t, y).y − 2W (t, y) ≥ b |y|β , ∀t ∈ R, ∀ |y| ≥ r.

(W5) There exists a constant δ > 0 such that either

(i) W (t, y) ≥ 0, ∀t ∈ R, ∀ |y| ≤ δ,

or

(ii) W (t, y) ≤ 0, ∀t ∈ R, ∀ |y| ≤ δ.

Our second main result in this section is the following:

Theorem 3.2 Assume conditions (W1) − (W4) hold. If 0 is an eigenvalue of

J d2

dt2 − u∗Au, assume also (W5). Then the system (NS) possesses at least one non-
trivial T−periodic solution.

3.1 Proof of Theorem 3.1

Let S1 = R/TZ and E = H
1
2 (S1,R2N ) be the Sobolev space of T−periodic functions

with inner product < ., . >H1/2 and norm ‖.‖
H

1
2
defined by

< x, y >
H

1
2
= x̂0.ŷ0 + π

∑

k∈Z

|k| x̂k.ŷk

and

‖x‖
H

1
2
=

(

|x̂0|2 + π
∑

k∈Z

|k| |x̂k|2
)

1
2

for x, y ∈ H
1
2 (S1,R2N ), where

x(t) ∼=
∑

k∈Z

exp(J
2kπt

T
)x̂k, x̂k ∈ R

2N ,
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and

y(t) ∼=
∑

k∈Z

exp(J
2kπt

T
)ŷk, ŷk ∈ R

2N .

Consider the closed subspace of H1/2(S1,R2N )

X =
{

x ∈ H
1
2 (S1,R2N)/x(t) ∈ (Ker u)⊥ a.e.

}

.

It is well known that the space X is compactly embedded in Ls(S1,R2N ) for every
s ∈ [1,∞[ (see [5]) and as a consequence there exists a constant γs > 0 such that

‖x‖Ls ≤ γs ‖x‖
H

1
2
, ∀x ∈ X. (3.1)

Define on X the bilinear form

B(x, y) = −1

2

∫ T

0

[Jẋ.y −A(t)u(x).u(y)]dt.

Let X+ (resp.X−) be the positive (resp. negative) space corresponding to the spectral
decomposition of B in X and X0 = kerB. Then X = X+ ⊕X− ⊕X0. In fact it is not
difficult to check that X+, X− and X0 are mutually orthogonal in L2(S1,R2N ). Denote
Q the quadratic form associated to B:

Q(x) = −1

2

∫ T

0

[Jẋ.x−A(t)u(x).u(x)]dt.

We prove (see [11]) that there exists a constant ν > 0 such that

Q(x) ≥ ν ‖x‖2 , ∀x ∈ X+, (3.2)

Q(x) ≤ −ν ‖x‖2 , ∀x ∈ X−. (3.3)

Now, since X0 is of finite dimension, there exists a constant a1 > 0 such that

‖x‖
H

1
2
≤ a1 ‖x‖L2 , ∀x ∈ X0. (3.4)

We deduce from (3.2), (3.3) and (3.4) that the following expression

‖x‖2 =
∥

∥x+ + x− + x0
∥

∥

2
= Q(x+)−Q(x−) +

∣

∣x0
∣

∣

2

L2 (3.5)

where xi ∈ X i, i = +,−, 0, is an equivalent norm on X , which will be considered in the
following. Therefore we deduce from (3.1) that for all s ∈ [1,∞[, there exists a constant
µs > 0 such that

‖x‖Ls ≤ µs ‖x‖ , ∀x ∈ X. (3.6)

If zero is not an eigenvalue of J d
dt − u∗Au, we take

X1 = X+, X2 = X−.

If zero is an eigenvalue of J d
dt − u∗Au, we take

X1 = X+ ⊕X0, X2 = X−, if G(t, y) ≤ 0 for |y| ≤ δ,
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X1 = X+, X2 = X− ⊕X0, if G(t, y) ≥ 0 for |y| ≤ δ.

In the following, we will assume that zero is an eigenvalue of J d
dt − u∗Au and

G(t, y) ≤ 0, for |y| ≤ δ. (3.7)

The other cases are similar.
Define a functional f in X by

f(x) = −1

2

∫ T

0

[Jẋ.x−A(t)u(x).u(x)]dt −
∫ T

0

G(t, u(x))dt.

It is easy to see that there exist two constants m,M > 0 such that

m|x| ≤ |u(x)| ≤ M |x|, ∀x ∈ (Ker u)⊥. (3.8)

Combine this with (G3)(ii), there are two constants c, d > 0 such that

|u∗G′(t, u(x))| ≤ c|x|β + d, ∀t ∈ R, ∀x ∈ (Ker u)⊥. (3.9)

Therefore, we conclude that f ∈ C1(X,R) and maps bounded sets into bounded sets.
Now, let us choose Hilbertian basis (en)n∈≥1 for X1 and (en)n≤−1 for X2. Define

X1
n = space(e1, ..., en), n ≥ 1

X2
n = space(e−1, ..., e−n), n ≥ 1

Xj =
⋃

n≥1

Xj
n, j = 1, 2.

We will proceed by successive lemmas.

Lemma 3.1 The functional f satisfies the (PS)∗ condition.

Proof Consider a sequence (xαn) such that (αn) is admissible and

xαn ∈ Xαn , c = sup
n∈N

f(xαn) < ∞, f
′

αn
(xαn) → 0 as n → ∞. (3.10)

We claim that (xαn) is bounded. Suppose by contradiction that (xαn) is not bounded,
then going, if necessary, to a subsequence, we can assume that ‖xαn‖ → ∞ as n → ∞.
By (G4) and (3.8) there exists a constant c1 > 0 such that for all t ∈ R and for all
x ∈ (Ker u)⊥

G′(t, u(x)).u(x) − 2G(t, u(x)) ≥ b |x|β − c1. (3.11)

Therefore, by noting xαn = xn and fαn = fn, we have

−f
′

n(xn).xn + 2f(xn) =

∫ T

0

[G′(t, u(xn)).u(xn)− 2G(t, u(xn))]dt

≥ b

∫ T

0

|xn|β − c1T.
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Combining this with (3.6), we obtain

∫ T

0 |xn|β dt
‖xn‖

−→ 0, as n −→ ∞. (3.12)

Let xn = x+
n + x−

n + x0
n ∈ X+ ⊕X− ⊕X0. By (G3), Hölder’s inequality, (3.6) and (3.8),

we have

f ′
n(xn).x

+
n =

∥

∥x+
n

∥

∥

2 −
∫ T

0

G′(t, u(xn)).u(x
+
n )dt

≥
∥

∥x+
n

∥

∥

2 −
∫ T

0

|G′(t, u(xn))|
∣

∣u(x+
n )
∣

∣ dt

≥
∥

∥x+
n

∥

∥

2 − a

∫ T

0

(|u(xn)|α + 1)
∣

∣u(x+
n )
∣

∣ dt

≥
∥

∥x+
n

∥

∥

2 − a

∫ T

0

(Mα |xn|α + 1)M
∣

∣x+
n

∣

∣ dt

≥
∥

∥x+
n

∥

∥

2 − aMα+1[

∫ T

0

(|xn|α)
β
α dt]

α
β [

∫ T

0

∣

∣x+
n

∣

∣

β
β−α dt]

β−α
β − aM

∥

∥x+
n

∥

∥

L1

≥
∥

∥x+
n

∥

∥

2 − aMα+1µββ−α

∥

∥x+
n

∥

∥

α

Lβ

∥

∥x+
n

∥

∥− aMµ1

∥

∥x+
n

∥

∥

for all integer n ∈ N, which implies that
∥

∥x+
n

∥

∥ ≤ ‖f ′
n(xn)‖ + c2 ‖xn‖αLβ + c3, ∀n ∈ N, (3.13)

where c2, c3 are two constants. Since 1 < α < β, we deduce from (3.12) and (3.13) that

‖x+
n ‖

‖xn‖
−→ 0, as n −→ ∞. (3.14)

Similarly
‖x−

n ‖
‖xn‖

−→ 0, as n −→ ∞. (3.15)

By (G4) and (3.8), there exist two constants c4, c5 > 0 such that

G′(t, u(y)).u(y)− 2G(t, u(y)) ≥ c4 |y| − c5, ∀(t, y) ∈ R× (Ker u)⊥, (3.16)

which implies

2f(xn)− f ′
n(xn).xn =

∫ T

0

[G′(t, u(xn)).u(xn)− 2G(t, u(xn))]dt

≥
∫ T

0

[c4 |xn| − c5]dt

≥
∫ T

0

[c4
∣

∣x0
n

∣

∣− c4
∣

∣x+
n

∣

∣− c4
∣

∣x−
n

∣

∣− c5]dt. (3.17)

Moreover, it follows from the equivalence of the norms on the finite dimensional subspace
X0 that there exists a positive constant d such that

‖x‖ ≤ d ‖x‖L1 , ∀x ∈ X0. (3.18)
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Combining (3.6), (3.17) and (3.18) we obtain

2f(xn)− f ′
n(xn).xn ≥ c4

1

d

∥

∥x0
n

∥

∥− c4µ1

∥

∥x+
n

∥

∥− c4µ1

∥

∥x−
n

∥

∥− c5T. (3.19)

Therefore, by (3.14), (3.15) and (3.19), we have
∥

∥x0
n

∥

∥

‖xn‖
−→ 0 as n −→ ∞. (3.20)

We deduce from (3.14), (3.15) and (3.20) that

1 =
‖xn‖
‖xn‖

≤
∥

∥x0
n

∥

∥+ ‖x−
n ‖+ ‖x+

n ‖
‖xn‖

−→ 0 as n −→ ∞, (3.21)

which is a contradiction. So (xn) must be bounded. Since the space X is closed in the

reflexive space H
1
2 (S1,R2N ), then X is also reflexive and the sequence (xn) possesses a

subsequence (xnk
) weakly convergent to a point x. Note that

Q(x+
nk

− x+) = (f ′
nk
(xnk

)− f ′(x)).(x+
nk

− x+) (3.22)

+

∫ T

0

[G′(t, u(xnk
))−G′(t, u(x))].[u(x+

nk
)− u(x+)]dt

which implies that x+
nk

−→ x+ in X . Similarly, x−
nk

−→ x in X . It follows that xnk
−→ x

in X and f ′(x) = 0. So f satisfies the (PS)∗ condition. The proof of Lemma 3.1 is
complete.

Lemma 3.2 The functional f satisfies the local linking condition at zero.

Proof By assumption (G3) and (3.8), there exists a constant b1 > 0 such that

|G(t, u(x))| ≤ b1(|x|α+1
+ |x|), ∀t ∈ R, ∀x ∈ (Ker u)⊥. (3.23)

Assumption (G1) and (3.8) imply that for any ǫ > 0, there exists a constant R > 0 such
that

|G(t, u(x))| ≤ ǫ |x|2 , ∀t ∈ R, ∀ |x| ≤ R. (3.24)

Combining (3.23) with (3.24), we obtain

|G(t, u(x))| ≤ (ǫ |x|2 +M1 |x|α+1
), ∀t ∈ R, ∀x ∈ (Keru)⊥ (3.25)

where M1 = b1(1 +Rα). Hence we obtain by (3.6)
∣

∣

∣

∣

∣

∫ T

0

G(t, u(x))dt

∣

∣

∣

∣

∣

≤ ǫµ2
2 ‖x‖2 +M1µ

α+1
α+1 ‖x‖

α+1
. (3.26)

So for all x ∈ X2 = X−

f(x) ≤ −‖x‖2 + ǫµ2
2 ‖x‖2 +M1µ

α+1
α+1 ‖x‖

α+1
. (3.27)

Since α > 1 and ǫ is arbitrary, we deduce that there exists a constant r > 0 small enough
such that

f(x) ≤ 0, ∀x ∈ X2, ‖x‖ ≤ r. (3.28)
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Now, let η > 0 be such that

∀ x ∈ (Ker u)⊥, |x| ≤ η ⇒ |u(x)| ≤ δ (3.29),

where δ is introduced in (G5). Since X0 is a finite dimensional space, there exists a
constant ρ > 0 such that

‖x‖∞ ≤ ρ ‖x‖ , ∀x ∈ X0. (3.30)

Let x = x0 + x+ ∈ X1 = X0 ⊕X+ such that ‖x‖ ≤ η
2ρ and set

I =
{

t ∈ [0, T ]/
∣

∣x+(t)
∣

∣ ≤ η

2

}

.

On I, we have by (3.30)

|x(t)| ≤
∣

∣x0(t)
∣

∣ +
∣

∣x+(t)
∣

∣ ≤
∥

∥x0
∥

∥

∞
+

η

2
≤ η,

hence, by (3.7) and (3.29)
∫ T

0

G(t, u(x))dt ≤ 0. (3.31)

On [0, T ] | I, we have also by (3.30)

|x(t)| ≤
∣

∣x0(t)
∣

∣ +
∣

∣x+(t)
∣

∣ ≤ ρ
∥

∥x0
∥

∥+
∣

∣x+(t)
∣

∣ ≤ η

2
+
∣

∣x+(t)
∣

∣ ≤ 2
∣

∣x+(t)
∣

∣ .

Hence, by (3.6) and (3.25), we obtain
∣

∣

∣

∣

∣

∫

[0,T ]|I

G(t, u(x))dt

∣

∣

∣

∣

∣

≤ 4ǫµ2
2

∥

∥x+
∥

∥

2
+ 2α+1M1µ

α+1
α+1

∥

∥x+
∥

∥

α+1
.

Therefore, we have

f(x) ≥
∥

∥x+
∥

∥

2 − 4ǫµ2
2

∥

∥x+
∥

∥

2 − 2α+1M1µ
α+1
α+1

∥

∥x+
∥

∥

α+1 −
∫

I

G(t, u(x))dt. (3.32)

Since α > 1, we deduce from (3.31) and (3.32), by taking ǫ small enough, that there
exists a constant 0 < r < η

2ρ such that

f(x) ≥ 0, ∀ x ∈ X1, ‖x‖ ≤ r. (3.33)

Properties (3.28) and (3.33) show that f satisfies the local linking condition at zero which
completes the proof of Lemma 3.2.

Lemma 3.3 For each m ∈ N, f(x) −→ −∞ as ‖x‖ −→ ∞, x ∈ X1
m ⊕X2.

Proof For x = x+ + x0 + x− ∈ X1
m ⊕X2, we have

f(x) =
∥

∥x+
∥

∥

2 −
∥

∥x−
∥

∥

2 −
∫ T

0

G(t, u(x+ + x0 + x−))dt. (3.34)

Since X1
m is of finite dimension, there exists a positive constant γ1 such that

∥

∥x+ + x0
∥

∥ ≤ γ1
∥

∥x+ + x0
∥

∥

L2 , ∀x = x+ + x0 ∈ X1
m. (3.35)
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On the other hand, by assumption (G2)(i) and (3.8), there exists a constant c6 > 0 such
that

−G(t, u(x)) ≤ −2γ1 |x|2 + c6, ∀ x ∈ (Ker u)⊥. (3.36)

Combining (3.34), (3.35) and (3.36), we obtain for x = x+ + x0 + x− ∈ X1
m ⊕X2

f(x) ≤
∥

∥x+
∥

∥

2 −
∥

∥x−
∥

∥

2 − 2γ1[
∥

∥x+
∥

∥

2

L2 +
∥

∥x−
∥

∥

2

L2 +
∥

∥x0
∥

∥

2

L2 ] + c6T

≤ −
∥

∥x−
∥

∥

2 −
∥

∥x+
∥

∥

2 − 2
∥

∥x0
∥

∥

2
+ c6T

which concludes the proof of Lemma 3.3.

We deduce from the previous lemmas that the functional f satisfies all the assump-
tions of the Local Linking Theorem and hence the functional f possesses at least two
distinct critical points on X . Therefore the Hamiltonian system (HS) has at least one
non trivial T−periodic solution.

3.2 Proof of Theorem 3.2

We consider only the case when 0 is an eigenvalue of − d2

dt2 + u∗Au and

W (t, y) ≤ 0, ∀t ∈ R, ∀|y| ≤ δ. (3.37)

The other cases are similar and simpler.
We shall apply the Local Linking Theorem to the functional

f(x) =
1

2

∫ T

0

[|ẋ|2 +A(t)u(x).u(x)]dt −
∫ T

0

W (t, u(x))dt

defined on the following closed subspace X of H1(S1,RN )

X = {x ∈ H1(S1,RN )/x(t) ∈ (Ker u)⊥a.e.}

where H1(S1,RN ) is the space of T− periodic absolutely continuous vector functions
from S1 into R

N whose first derivatives have square integrable norm. The inner product
on H1(S1,RN) is given by

< u, v >H1=

∫ T

0

[u(t).v(t) + u̇(t).v̇(t)]dt.

The functional f is continuously differentiable onX and maps bounded sets into bounded
sets. Moreover the critical points of f correspond to the T− periodic solutions of the
system (NS) (see [9]).

Let X+ (resp. X−) be the positive (resp. negative) space corresponding to the

spectral decomposition of − d2

dt2 +u∗Au in X and X0 = Ker(− d2

dt2 +u∗Au). Let X2 = X−

and X1 = X0 ⊕X+ and choose a Hilbertian basis (en)n≥0 for X1. Define

X1
n = span(e0, e1, ..., en), n ∈ N,

X2
n = X2, n ∈ N.

It is well known that X0, X2 are of finite dimensional.
As in the proof of Theorem 3.1, we prove by using assumptions (W3), (W4) that f
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satisfies the (PS)∗ condition and by using assumptions (W1), (W3) that f satisfies the
local linking at zero. Assumption (W2) implies that f satisfies assertion d) of the Local
Linking Theorem. Consequently the functional f satisfies all the Local Linking Theorem
assumptions and then it has at least two critical points. Therefore the system (NS)
possesses a nontrivial T− periodic solution.

4 Subharmonic Solutions

Let u, u∗ and G be defined as in Section 3, we are interested in the existence of infinitely
many subharmonic solutions of the Hamiltonian systems

(HS) Jẋ+ u∗G′(t, u(x)) = 0,

i.e. of distinct kT− periodic solutions of (HS).
Let α > 1 be as in (G3) and consider the following assumptions:
(G′

4) There exist constants β > α− 1, b > 0 and r > 0 such that

G′(t, y).y − 2G(t, y) ≥ b |y|β , ∀t ∈ R, ∀ |y| ≥ r.

(G′
5) G(t, y) ≥ 0, ∀(t, y) ∈ R× R

m.

Our main result in this section is

Theorem 4.1 Assume (G0) − (G3), (G′
4) and (G′

5) hold. Then the Hamiltonian
system (HS) possesses infinitely many subharmonic solutions.

Example 4.1 Let 3
2 ≤ α < 2 be a real number. The function

G(t, y) =

∣

∣

∣

∣

cos(
2π

T
t)

∣

∣

∣

∣

|y|α+1
+ |y|2 ln(1 + |y|2)

satisfies (G1) − (G3), (G
′
4) and (G′

5). The linear map u : RN × R
N −→ R

N defined
by u(p, q) = p satisfies (G0). Therefore the corresponding Hamiltonian system (HS)
possesses infinitely many subharmonic solutions.

Remark 4.1 We obtain the same result if we replace assumptions (G2), (G
′
4) and

(G′
5) respectively by

lim
|y|→∞

G(t, y)

|y|2
= −∞, uniformly in t ∈ R.

There exist constants β > α− 1, b > 0 and r > 0 such that

G′(t, y).y − 2G(t, y) ≤ −b |y|β , ∀t ∈ R, ∀ |y| ≥ r,

G(t, y) ≤ 0, ∀(t, y) ∈ R× R
m.

Proof of Theorem 4.1. Choose k ∈ N. By making the change of variables s = k−1t,
(HS) transforms to

(HSk) Jẏ + ku∗G′(ks, y(s)) = 0.



332 M. TIMOUMI

Hence, finding kT−periodic solutions of (HS) is equivalent to finding T−periodic solu-
tions of (HSk). Let X be the space introduced in section 3 and consider the functional
fk defined over X by

fk(y) = −1

2

∫ T

0

Jẏ.yds− k

∫ T

0

G(ks, u(y(s)))ds.

The assumptions of Theorem 4.1 imply that fk is continuously differentiable in X and
critical points of fk are T−periodic solutions of (HSk). Let X+, X− and X0 be re-
spectively the positive, negative and null subspaces of X corresponding to the spectral
decomposition of the quadratic form

Q(y) = −1

2

∫ T

0

Jẏ.yds.

Then X = X− ⊕X0 ⊕X+ and as in Section 3, we consider the equivalent norm on X
given by

‖y‖2 = Q(y+)−Q(y−) +
∣

∣y0
∣

∣

2
,

where y = y− + y0 + y+ ∈ X = X− ⊕X0 ⊕X+. Then we have

fk(y) =
∥

∥y+
∥

∥

2 −
∥

∥y−
∥

∥

2 − k

∫ T

0

G(ks, u(y))ds. (4.1)

We will apply the Generalized Mountain Pass Theorem to the functional fk over X with
X1 = X+ and X2 = X0 ⊕X−. We will proceed by successive lemmas.

Lemma 4.1 The functional fk satisfies the Cerami’s condition (C).

Proof Let (yn) be a sequence such that (fk(yn)) is bounded from above and
‖f ′

k(yn)‖ (1 + ‖yn‖) −→ 0 as n −→ ∞. We claim that (yn) is a bounded se-
quence in X . For otherwise, going if necessary to a subsequence, we can assume that
‖yn‖ −→ ∞ as n −→ ∞.

By (G′
4) and (3.8), there is a constant c > 0 such that

G′(ks, u(y)).u(y)− 2G(ks, u(y)) ≥ b |y|β − c, ∀(t, y) ∈ R× R
m (4.2)

which implies with that

2fk(yn)− f ′
k(yn).yn = k

∫ T

0

[G′(ks, u(yn)).u(yn)− 2G(ks, u(yn))]ds

≥ k[b

∫ T

0

|yn|β ds− cT ].

Hence for a given k ∈ N, we get

∫ T

0

|yn|β ds ≤ c1 (4.3)

for all integer n and some positive constant c1 > 0.
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Now, let yn = y−n + y0n + y+n ∈ X− ⊕X0 ⊕X+ and set

p =
2β + 1

2α− 1
> 1 and q =

p

p− 1
=

2β + 1

2β + 1− α
. (4.4)

It follows from Höder’s inequality, (3.1) and (4.3) that

∫ T

0

|yn|α
∣

∣y+n
∣

∣ ds =

∫ T

0

|yn|
β
p |yn|α−

β
p
∣

∣y+n
∣

∣ ds

≤ [

∫ T

0

(|yn|
β
p )pds]

1
p [

∫ T

0

(|yn|α−
β
p
∣

∣y+n
∣

∣)qds]
1
q

≤ [

∫ T

0

(|yn|β)ds]
1
p [

∫ T

0

(|yn|α−
β
p )2qds]

1
2q [

∫ T

0

∣

∣y+n
∣

∣

2q
ds]

1
2q

≤ [

∫ T

0

|yn|β ds]
1
p ‖yn‖

β+α
2β+1

L
β+α

β+1−α

∥

∥y+n
∥

∥

L2q

≤ c
1
p

1 γ
β+α
2β+1

β+α
β+1−α

γ2q ‖yn‖
β+α
2β+1

∥

∥y+n
∥

∥ (4.5)

for all integer n. By (G3), (3.1), (3.8), (4.3) and (4.5), we have

f ′
k(yn).y

+
n =

∥

∥y+n
∥

∥

2 − k

∫ T

0

G′(ks, u(yn)).u(y
+
n )ds

≥
∥

∥y+n
∥

∥

2 − k

∫ T

0

|G′(ks, u(yn))|
∣

∣u(y+n )
∣

∣ ds

≥
∥

∥y+n
∥

∥

2 − ka

∫ T

0

(|u(yn))|α + 1)
∣

∣u(y+n )
∣

∣ ds

≥
∥

∥y+n
∥

∥

2 − kaMα+1

∫ T

0

(|yn|α
∣

∣y+n
∣

∣ ds− kaM

∫ T

0

∣

∣y+n
∣

∣ ds

≥
∥

∥y+n
∥

∥

2 − kaMα+1c
1
p

1 γ
β+α
2β+1

β+α
β+1−α

γ2q(‖yn‖
β+α
2β+1

∥

∥y+n
∥

∥− kaMγ1
∥

∥y+n
∥

∥

for all integer n. Noting that β+α
2β+1 < 1, one sees

‖y+n ‖
‖yn‖

−→ 0 as n −→ ∞. (4.6)

Similarly for y−n , we have
‖y−n ‖
‖yn‖

−→ 0 as n −→ ∞. (4.7)

On the other hand, since X0 is of finite dimension, there exists a constant γ > 0 such
that

‖y‖ ≤ γ2 ‖y‖L2 , ∀y ∈ X0. (4.8)

Therefore by Hölder’s inequality, (3.1) and (4.8) we have

1

γ2

∥

∥y0m
∥

∥

2 ≤
∫ T

0

∣

∣y0m
∣

∣

2
ds ≤

∫ T

0

|yn|
β

β+1 |yn|
β+2

β+1 ds
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≤ [

∫ T

0

|yn|β ds]
1

β+1 [

∫ T

0

|yn|
β+2

β ds]
β

β+1

≤ (c1)
1

β+1 (γ β+2

β
)

β+2

β+1 ‖yn‖
β+2

β+1 . (4.9)

Since β+2
β+1 < 2, we deduce from (4.9)

∥

∥y0n
∥

∥

‖yn‖
−→ 0 as n −→ ∞. (4.10)

Hence by (4.6), (4.7) and (4.10) we have

1 =
‖yn‖
‖yn‖

≤
∥

∥y0n
∥

∥+ ‖y−n ‖+ ‖y+n ‖
‖yn‖

−→ 0 as n −→ ∞, (4.11)

which is a contradiction. Therefore (yn) must be bounded. Then by a standard argument,
(yn) has a convergent subsequence, which shows that fk satisfies the Cerami’s condition.

Lemma 4.2 There exist constants m > 0 and α > 0 such that

fk(y) ≥ m, ∀y ∈ ∂Bρ ∩X1. (4.12)

Proof As in (3.26), for all ǫ > 0, there exists a constant M1 > 0 such that

∣

∣

∣

∣

∣

∫ T

0

G(ks, u(y))ds

∣

∣

∣

∣

∣

≤ ǫγ2
2 ‖y‖2 +M1γ

α+1
α+1 ‖y‖

α+1
, ∀y ∈ X. (4.13)

Now for all x ∈ X1 = X+, we have by (4.13)

fk(y) =
1

2
‖y‖2 − k

∫ T

0

G(ks, u(y))ds

≥ 1

2
‖y‖2 − kǫC2 ‖y‖2 − kCα+1M1 ‖y‖α+1

,

where C = sup(1, γ2, γα+1). So letting ǫ = 1
4kC2 and ρ = 1

8 (kM1C
α+1)−

1
α−1 , we have

fk(y) ≥
1

4
ρ2 − kM1(Cρ)α+1 =

1

8
ρ2 = m > 0 (4.15)

for y ∈ X1 with ‖y‖ = ρ.

Lemma 4.3 There exist e ∈ X1 and two constants r1, r2 > 0 such that

(4.16) fk(y) ≤ 0, ∀y ∈ ∂Q,

where

Q = {se/0 ≤ s ≤ r1} ⊕
{

y ∈ X2/ ‖y‖ ≤ r2
}

.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 11 (3) (2011) 319–336 335

Proof Let e ∈ X1 with ‖e‖ = 1. By (G2) and (3.8), there exists a constant M2 > 0
such that

G(ks, u(y)) ≥ γ2 |y|2 −M2, ∀t ∈ R, ∀y ∈ (Ker u)⊥, (4.17)

where γ is the constant given by (4.8). It follows from (4.8) and (4.17) that for all s > 0
and y ∈ X2 = X0 ⊕X−

fk(se+ y) =
1

2
s2 − 1

2

∥

∥y−
∥

∥

2 − k

∫ T

0

G(ks, u(se+ y))ds

≤ 1

2
(s2 −

∥

∥y−
∥

∥

2
)− kγ2 ‖se+ y‖2L2 + kM2T

≤ 1

2
(s2 −

∥

∥y−
∥

∥

2
)− kγ2(s2 ‖e‖2L2 + ‖−‖2L2 + ‖y0‖2L2) + kM2T

≤ 1

2
s2 − ks2 − 1

2

∥

∥y−
∥

∥

2 − ‖y0‖2L2 + kM2T. (4.18)

Let

r1 =

√
2kM2T

2k − 1
, r2 =

√

2kM2T ,

it is clear from (4.18) that

fk(se+ y) ≤ 0 either s ≥ r1 or ‖y‖ ≥ r2. (4.19)

Let
Q = {se/0 ≤ s ≤ r1} ⊕

{

y ∈ X2/ ‖y‖ ≤ r2
}

. (4.20)

Then we have ∂Q = Q1 ∪Q2 ∪Q3, where

Q1 =
{

y ∈ X0 ⊕X−/ ‖y‖ ≤ r2
}

, Q2 = r1e⊕
{

y ∈ X0 ⊕X−/ ‖y‖ ≤ r2
}

,

Q3 = {se/0 ≤ s ≤ r1} ⊕
{

y ∈ X0 ⊕X−/ ‖y‖ = r2
}

.

By (4.19), one has
fk(y) ≤ 0, ∀y ∈ Q2 ∪Q3.

It follows from (G5)(i) that fk(y) ≤ 0 for all y ∈ X0 ⊕X−, which implies that

fk(y) ≤ 0, ∀y ∈ Q1.

Hence we obtain (4.16). The proof of Lemma 4.3 is complete.

By Lemma 4.1-3, we conclude that the functional fk satisfies all the assumptions of
the Generalized Mountain Pass Theorem. Therefore for a given k ∈ N, there exists a
critical point yk ∈ X of fk such that fk(yk) > 0.
Finally, we claim that the system (HS) has infinitely many subharmonic solutions. Note
that y1(ks) satisfies (HSk), in fact

d

ds
(y1(ks)) = k

dy1
ds

(ks) = kJu∗G′(ks, y1(ks)).

If yk(s) = y1(ks), it is easy to check that

ck = fk(yk) = kf1(y1) = kc1. (4.21)
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Since c1 = f1(y1) > 0, one has that ck −→ +∞ as k −→ ∞. Noting that

ck ≤ sup
y∈Q

fk(y) = sup
y∈Q

[
1

2
(s2 −

∥

∥y−
∥

∥

2
)− k

∫ T

0

G(ks, u(y)ds] ≤ 1

2
r21 ≤ M2T, (4.22)

where Q is defined as in (4.20). Combining (4.21) with (4.22) yields a contradiction as
k −→ ∞. Therefore the sequence (ck) of critical values is bounded and there is a k1 ∈ N

such that yk(s) 6= y1(ks) for all k ≥ k1.
Now, consider the T−periodic functionG1(t, x) = k1G(k1t, x). By the same technicals

as in the previous steps, we prove that the following Hamiltonian system

J
dz

ds
+ jG

′

1(js, u(z)) = 0 (3.23)

possesses a sequence of nonzero T−periodic solutions (zj) such that there exists an integer
k2 satisfying zj(s) 6= z1(js) for all j ≥ k2. Moreover, from the form of (3.23) and the
corresponding variational problem we have

zj(s) = yjk1
(s) and yjk1

(s) 6= y1(jk1s) for all j ≥ k2.

By repeating this reasoning infinitely, we obtain a sequence x1(t) = y1(t), xk1
(t) =

yk1
( t
k1
), xk1k2

(t) = yk1k2
( t
k1k2

), ... of distincts nonzero solutions of the system (HS) with
xl is lT− periodic. The proof of Theorem 4.1 is complete.
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