Nonlinear Dynamics and Systems Theory, 11 (3) (2011) 319-336

Periodic and Subharmonic Solutions for a Class of Noncoercive Superquadratic Hamiltonian Systems

M. Timoumi*

Dpt of Mathematics. Faculty of Sciences. 5000 Monastir. Tunisia

Received: September 15, 2010; Revised: July 18, 2011

Abstract: Some existence theorems are obtained for periodic and subharmonic solutions to noncoercive first order Hamiltonian systems and to similar second order Hamiltonian systems, when the Hamiltonian satisfies a superquadratic condition and need not satisfy the global Ambrosetti–Rabinowitz condition. For the resolution, we use minimax methods in critical point theory, especially a Local Linking Theorem and a Generalized Mountain Pass Theorem.

Keywords: Hamiltonian systems; periodic solutions; subharmonics; critical points.

Mathematics Subject Classification (2000): 34C25, 34A34, 37J45, 35Q40.

1 Introduction

Consider the nonautonomous first order Hamiltonian systems

$$J\dot{x} - u^*A(t)u(x) + u^*G'(t, u(x)) = 0, \qquad (1.1)$$

where $u : \mathbb{R}^{2N} \longrightarrow \mathbb{R}^m$ $(1 \le m \le 2N)$ is a linear operator, A is a continuous T-periodic function (T > 0) from \mathbb{R} into the space of symmetric $(m \times m)$ -matrices, $G : \mathbb{R} \times \mathbb{R}^m \longrightarrow \mathbb{R}$ is a continuous function, T- periodic in the first variable, differentiable with respect to the second variable and its derivative $G'(t, x) = \frac{\partial G}{\partial x}(t, x)$ is continuous, and J is the standard symplectic matrix:

$$J = \left(\begin{array}{cc} 0 & -I \\ I & 0 \end{array}\right).$$

When A(t) = 0 for all $t \in \mathbb{R}$, m = 2N and $u = id_{\mathbb{R}^{2N}}$, Rabinowitz has proved in [7] the existence of periodic solutions for (1.1) under some suitable conditions, in particular the following superquadratic condition:

^{*} Corresponding author: mailto:m_timoumi@yahoo.com

^{© 2011} InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 319