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PERSONAGE IN SCIENCE

Professor A.N. Golubentsev

(On the occasion of his 95th Birthday)

Ya.M. Grigorenko, V.B. Larin and A.A. Martynyuk ∗

S.P. Timoshenko Institute of Mechanics National Academy of Science of Ukraine,

Nesterov Str. 3, Kiev, 03057, Ukraine

March 29, 2011 marked the 95th Birthday of the well-known scientist in the area of
general mechanics, Professor A.N. Golubentsev who was born to the family of a railway
worker in Raskatikha railway station of Tomsk railway (Russia).

∗ Corresponding author: mailto:center@inmech.kiev.ua
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224 PROFESSOR A.N. GOLUBENTSEV

He started working at a very early age. He became a mechanic’s assistant at a loco-
motive depot in the Topki railway station of Tomsk railway when he was just 13. After
finishing a factory-and-workshop training course he entered the Kemerov Mining Sec-
ondary School. Later on, he graduated with distinction from Tomsk Industrial Institute.

In 1941 Golubentsev married Valentina Grigorievna Pozhidayeva and lived with her
until his death in 1971. The Golubentsev had two children — daughter Eleonora (1942
– 2008) and son Aleksander (1945 – 2008), granddaughter Helen and three grand grand-
children.

From 1933 to 1953, Golubentsev was employed at several enterprises of coil mining
industry in the former USSR. He was a master mechanic and a chief mechanic of coal
mining enterprises in Kuzbass (Russia) and Donbass (Ukraine).

In 1953 he defended his candidate thesis (Ph.D.) on the problems of electric drive of
a winder and in 1956 he received his doctoral degree (Habilitation Degree) defending his
thesis ”Dynamics of machines with elastic constraints”. From 1955 to 1958 Golubentsev
was the Head of the Department at Gostekhnika of USSR (Moscow) and then he became
a deputy chairman of the State Scientific and Technical Committee of the Council of
Ministers of Ukrainian SSR.

Starting from 1959, A.N. Golubentsev sank into scientific and scientific-organizational
activities at the Institute of Building Mechanics of the Academy of Sciences of UkrSSR
(now the S.P.Timoshenko Institute of Mechanics of the National Academy of Sciences
of Ukraine). When he was a deputy director of the Institute, he proposed a program
reorganizing areas of research conducted at the Institute. As a result, the Institute of
Structural Mechanics of AN of UkrSSR was renamed the ”Institute of Mechanics of AN
of UkrSSR” and the research fellows of the Institute became involved in modern analysis
of continuum mechanics, mechanics of composite materials and general mechanics with
the applications to rocket science and other applied areas. In view of the significance of
new investigations and due to Golubentsev’s efforts the research team of the Institute
was granted a BESM-2M computer which was the first one in the Ukrainian SSR. This
fact was of great importance for the fulfillment of current tasks of national economy and
the defense industry. In 1959 – 1965, Golubentsev chaired the Department of Motion
Dynamics and Stability of the Institute. He upheld the development of new perspective
areas, but he was not always supported by a number of scholars who adhered to the
traditional directions of investigations. In 1965, the Department of Motion Dynamics
and Stability was integrated into the Institute of Hydrodynamics of AN of UkrSSR at
which the problem of motion stability of ekranoplans, i.e. ram wing surface effect vehicles
serving for the military, was tackled at that time. Later on, Golubentsev, together with
the corresponding member of the Academy of Sciences of UkrSSR S.N. Kozhevnikov
founded the Sector of Mechanics of Machines at the Institute of Geotechnical Mechanics
of AN UkrSSR.

Golubentsev’s intense scientific research gave rise to the development of the theory of
transitional processes in machines with elastic links and yielded new significant results
on optimization of processes in the parameter space of the machines. These results have
been presented in a series of his monographs [1 – 4].

Golubentsev’s keen sense of responsibility for all the matters he dealt with, including
his analysis of the model of the socialist system at that time, motivated him to make an
attempt to improve the economy in the former USSR on a strictly mathematical basis.
It is clear that such an unveiled intention was fruitless, since many advocates of a more
conservative model of socialism did not share his enthusiasm.
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Nevertheless, these attempts resulted in development of a new direction in mathe-
matical economics — the econo-thermodynamics. The prime postulate of this theory
is the well-known statement of Karl Marx that the economic epochs do not differ by
what is produced but by how (i.e. with what means) it is produced. The theory of
econo-thermodynamics developed by Golubentsev is laid out in his monograph [5].

Alongside his research activity, Golubentsev spent much time nurturing his post-
graduate students. He produced a total of 18 people with Ph.D. and 2 people with
Habilitation degrees in the areas of mechanics of machines and theoretical mechanics.

Golubentsev’s merits were recognized with seven prestigious Government awards.
Golubentsev suddenly died on October 11, 1971 due to a heart failure.
He always upheld new ideas of important problems in mechanics and encouraged

young researchers striving to develop appropriate methods of their solutions. His talks
presented at seminars and conferences were always well-spoken, while sometimes irre-
spective of ranks and positions of the people he referred to. In these cases he was guided
by only his scientific conscious and wisdom.

Golubentsev was a good-hearted and benevolent person. He was a true patriot of
his country being totally dedicated to its service. He made a significant contribution
to the development of his country. His scientific discoveries will always belong to the
treasures of world science and remain in demand by young researches in mechanics and
mathematical economics.

The list of principle publications by A.N. Golubentsev:

1. A.N. Golubentsev. Start of Asynchronous Engine of a Winder. Kiev, GITTL
UkrSSR, 1959.

2. A.N. Golubentsev. Dynamics of Transient Processes in Machines with Many
Masses. Moscow, GNTI, 1959.

3. A.N. Golubentsev. Integral Methods in Dynamics. Kiev, Tekhnika, 1967.
4. A.N. Golubentsev. Generalized Input in Dynamics. Kiev, Tekhnika, 1971.
5. A.N. Golubentsev. Thermodynamics of Production Process. Kiev, Tekhnika, 1969.
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Weak Solutions for Boundary-Value Problems with

Nonlinear Fractional Differential Inclusions
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Abstract: This paper deals with the existence of solutions, under the Pettis inte-
grability assumption, for a class of boundary value problems for fractional differential
inclusions involving nonlinear integral conditions. Our results are based on the tech-
nique of measures of weak noncompactness and a fixed point theorem of Mönch type.

Keywords: boundary value problem; differential inclusion; Caputo fractional deriva-

tive; measure of weak noncompactness; Pettis integrals; weak solution.

Mathematics Subject Classification (2000): 26A33, 34A60, 34B15, 34G20.

1 Introduction

This note is concerned with the existence of solutions of the boundary value problem
with fractional order differential inclusions and nonlinear integral conditions of the form

cDαx(t) ∈ F (t, x(t)), for a.e. t ∈ J = [0, T ], 1 < α ≤ 2, (1)

x(0)− x′(0) =

∫ T

0

g(s, x(s))ds, (2)

x(T ) + x′(T ) =

∫ T

0

h(s, x(s))ds, (3)

∗ Corresponding author: mailto:John-Graef@utc.edu

c© 2011 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 227

mailto: John-Graef@utc.edu
http://e-ndst.kiev.ua


228 M. BENCHOHRA, J. R. GRAEF AND F.-Z. MOSTEFAI

where cDα, 1 < α ≤ 2, is the Caputo fractional derivative, F : J × E → P(E) is a
multivalued map, E is a Banach space with the norm ‖ · ‖, P(E) is the family of all
nonempty subsets of E, and g, h : J × E → E are given functions satisfying some
assumptions that will be specified later.

Differential equations of fractional order have recently proved to be valuable tools in
the modeling of many phenomena in various fields of science and engineering. Indeed,
we can find numerous applications in viscoelasticity, electrochemistry, control theory,
porous media, electromagnetism, etc. (see [18, 24, 30]). There has been a significant
development in the study of fractional differential equations and inclusions in recent
years; see the monographs of Kilbas et al. [21], Lakshmikantham et al. [23], Podlubny
[30], and the papers [2, 3, 11, 17, 28].

Boundary value problems with integral boundary conditions constitute a very in-
teresting and important class of problems. They include two, three, multi-point, and
nonlocal boundary value problems as special cases. Integral boundary conditions are
often encountered in various applications; it is worthwhile mentioning the applications of
those conditions in the study of population dynamics [13] and cellular systems [1]. More-
over, boundary value problems with integral boundary conditions have been studied by a
number of authors such as Arara and Benchohra [4], Benchohra et al. [10], Infante [20],
and the references therein.

In our investigation we apply the method associated with the technique of measures
of weak noncompactness and a fixed point theorem of Mönch type. This technique was
mainly initiated in the monograph of Banas̀ and Goebel [6] and subsequently developed
and used in many papers; see, for example, Banas̀ et al. [7], Guo et al. [19], Krzyska
and Kubiaczyk [22], Lakshmikantham and Leela [23], Mönch [25], O’Regan [26, 27],
Szufla [32], Szufla and Szukala [33], and the references therein. In [8, 12] Benchohra et
al. considered some classes of boundary value problems for fractional order differential
equations in Banach space by means of the strong measure of noncompactness. As far as
we know, they are very few results devoted to weak solutions of boundary value problems
for nonlinear fractional differential equations [9]. The present results complement and
extend those considered with the strong measure of noncompactness [8, 12].

2 Preliminaries

We will briefly recall some basic definitions and facts from multivalued analysis that we
will use in the sequel. Let E be the real Banach space with norm ‖ ·‖ and dual space E∗,
and let (E,w) = (E, σ(E,E∗)) denote the space E with its weak topology. Here, C(J,E)
is the Banach space of all continuous functions x : J → E with the usual supremum norm

‖x‖∞ = sup{‖x(t)‖ : t ∈ J}.

We let L1(J,E) denote the Banach space of functions x : J → E that are Lebesgue
integrable with norm

‖x‖L1 =

∫ T

0

‖x(t)‖dt,

and L∞(J,E) denote the Banach space of bounded measurable functions x : J → E

equipped with the norm

‖x‖L∞ = inf{c > 0 : ‖x(t)‖ ≤ c a.e. t ∈ J}.
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Also, AC1(J,E) will denote the space of functions x : J → E that are absolutely contin-
uous and whose first derivative, x′, is absolutely continuous.

Let (E, ‖ · ‖) be a Banach space and let Pcl(E) = {Y ∈ P (E) : Y is closed},
Pb(E) = {Y ∈ P (E) : Y is bounded}, Pcp(E) = {Y ∈ P (E) : Y is compact}, and
Pcp,cv(E) = {Y ∈ P (E) : Y is compact and convex}. A multivalued map F : E → P (E)
is convex (closed) valued if F (x) is convex (closed) for all x ∈ E. We say that F is
bounded on bounded sets if F (B) = ∪x∈BF (x) is bounded in E for all B ∈ Pb(E) (i.e.,
supx∈B{sup{‖y‖ : y ∈ F (x)}} < ∞). The mapping F is called upper semi-continuous
(u.s.c.) on E if for each x0 ∈ E, the set F (x0) is a nonempty closed subset of E, and for
each open set N of E containing F (x0), there exists an open neighborhood N0 of x0 such
that F (N0) ⊆ N . The mapping F has a fixed point if there is x ∈ E such that x ∈ F (x).

For more details on multivalued maps see the books of Aubin and Frankowska [5] and
Deimling [15]. We will need the following definitions in the sequel.

Definition 2.1 A function h : E → E is said to be weakly sequentially continuous if
h takes each weakly convergent sequence in E to a weakly convergent sequence in E (i.e.,
for any (xn)n in E with xn(t) → x(t) in (E,w) for each t ∈ J , we have h(xn(t)) → h(x(t))
in (E,w) for each t ∈ J).

Definition 2.2 A function F : Q→ Pcl,cv(Q) has a weakly sequentially closed graph
if for any sequence (xn, yn)

∞
1 ∈ Q ×Q, yn ∈ F (xn) for n ∈ {1, 2, ...} with xn(t) → x(t)

in (E,ω) for each t ∈ J and yn(t) → y(t) in (E,ω) for each t ∈ J , then y ∈ F (x).

Definition 2.3 [29] The function x : J → E is said to be Pettis integrable on
J if and only if there is an element xI ∈ E corresponding to each I ⊂ J such that
ϕ(xI) =

∫

I
ϕ(x(s))ds for all ϕ ∈ E∗ where the integral on the right is assumed to exist

in the sense of Lebesgue. By definition, xI =
∫

I
x(s)ds.

Let P (J,E) be the space of all E-valued Pettis integrable functions in the interval J .

Proposition 2.1 [16, 29] If x(·) is Pettis integrable and h(·) is a measurable and
essentially bounded real-valued function, then x(·)h(·) is Pettis integrable.

Definition 2.4 [14] Let E be a Banach space, ΩE be the bounded subsets of E, and
B1 be the unit ball in E. The De Blasi measure of weak noncompactness is the map
β : ΩE → [0,∞] defined by

β(X) = inf{ǫ > 0 : there exists a weakly compact subset Ω of E such that X ⊂ ǫB1+Ω}.

Properties: The De Blasi measure of noncompactness satisfies the following properties:

(a) A ⊂ B =⇒ β(A) ≤ β(B);

(b) β(A) = 0 ⇐⇒ A is relatively compact;

(c) β(A ∪B) = max{β(A), β(B)};

(d) β(A
ω
) = β(A), where A

ω
denotes the weak closure of A;

(e) β(A+B) ≤ β(A) + β(B);

(f) β(λA) = |λ|β(A);
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(g) β(conv(A)) = β(A);

(h) β(∪|λ|≤hλA) = hβ(A).

The following result follows directly from the Hahn–Banach theorem.

Proposition 2.2 Let E be a normed space with x0 6= 0. Then there exists ϕ ∈ E∗

with ‖ϕ‖ = 1 and ϕ(x0) = ‖x0‖.

For completeness, we recall the definitions of the Pettis-integral and the Caputo
derivative of fractional order.

Definition 2.5 ([31]) Let h : J → E be a function. The fractional Pettis integral of
the function h of order α ∈ IR+ is defined by

Iαh(t) =

∫ t

0

(t− s)α−1

Γ(α)
h(s)ds,

where the sign “
∫

” denotes the Pettis integral and Γ is the Gamma function.

Definition 2.6 ([21]) For a function h : I → E, the Caputo fractional-order deriva-
tive of h is defined by

cDαh(t) =
1

Γ(n− α)

∫ t

0

h(n)(s)ds

(t− s)1−n+α
,

where n = [α] + 1 and [α] denotes the integer part of α.

The following theorem will be used to prove our main result.

Theorem 2.1 Let E be a Banach space with Q a nonempty, bounded, closed, con-
vex, equicontinuous subset of C([0, T ], E). Suppose F : Q → Pcl,cv(Q) has a weakly
sequentially closed graph. If the implication

V = conv({0} ∪ F (V )) =⇒ V is relatively weakly compact (4)

holds for every subset V ⊂ Q, then the operator inclusion x ∈ F (x) has a solution in Q.

3 Existence of Solutions

Let us start by defining what we mean by a solution of the problem (1)–(3).

Definition 3.1 A function x ∈ AC1(J,E) is said to be a solution of (1)–(3), if there
exists a function υ ∈ L1(J,E) with υ(t) ∈ F (t, x(t)) for a.e. t ∈ J , such that

cDαx(t) = υ(t) a.e. t ∈ J, 1 < α ≤ 2,

and the function x satisfies the boundary conditions (2) and (3).

For any x ∈ C(J,E), we define the set

SF,x = {υ ∈ L1(J,E) : υ(t) ∈ F (t, x(t)) for a.e. t ∈ J}.

This is known as the set of selection functions.
For the existence of solutions to the problem (1)–(3), we need the following auxiliary

lemmas.
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Lemma 3.1 [34] Let α > 0; then the differential equation cDαh(t) = 0 has the
solutions h(t) = c0 + c1t+ c2t

2 + . . .+ cn−1t
n−1, where ci ∈ IR, i = 0, 1, 2, . . . , n− 1, and

n = [α] + 1.

Lemma 3.2 [34] Let α > 0; then IαcDαh(t) = h(t)+ c0+ c1t+ c2t
2+ . . .+ cn−1t

n−1

for some ci ∈ IR, i = 0, 1, 2, . . . , n− 1, where n = [α] + 1.

As a consequence of Lemmas 3.1 and 3.2, we have the following result which will be
useful in the remainder of the paper.

Lemma 3.3 Let 1 < α ≤ 2 and let σ, σ1, σ2 : J → E be continuous. A function x

is a solution of the fractional integral equation

x(t) = P (t) +

∫ T

0

G(t, s)σ(s)ds (5)

with

P (t) =
(T + 1− t)

T + 2

∫ T

0

σ1(s)ds+
(t+ 1)

T + 2

∫ T

0

σ2(s)ds (6)

and

G(t, s) =











(t−s)α−1

Γ(α) − (1+t)(T−s)α−1

(T+2)Γ(α) − (1+t)(T−s)α−2

(T+2)Γ(α−1) , 0 ≤ s ≤ t,

− (1+t)(T−s)α−1

(T+2)Γ(α) − (1+t)(T−s)α−2

(T+2)Γ(α−1) , t ≤ s < T,

(7)

if and only if x is a solution of the fractional boundary value problem

cDαx(t) = σ(t), t ∈ J,

x(0)− x′(0) =

∫ T

0

σ1(s)ds, x(T ) + x′(T ) =

∫ T

0

σ2(s)ds.

Let

G̃ = sup

{

∫ T

0

|G(t, s)|ds, t ∈ J

}

.

We are now in a position to state and prove our existence result for the problem
(1)–(3). We first list the following hypotheses:

(H1) F : J × E → Pcp,cl,cv(E) has weakly sequentially closed graph.

(H2) For each t ∈ J , g(t, ·) and h(t, ·) are weakly sequentially continuous.

(H3) For each continuous x : J → E, there exists a scalarly measurable function υ : J →
E with υ(t) ∈ F (t, x(t)) a.e. on J and υ is Pettis integrable on J .

(H4) For each x ∈ C(J,E), g(·, x(·)) and h(·, x(·)) are Pettis integrable on J .

(H5) There exist p ∈ L∞(J, IR+) and a continuous nondecreasing function ψ : [0,∞) →
[0,∞) such that

‖F (t, x)‖ = sup{|υ| : υ ∈ F (t, x)} ≤ p(t)ψ(‖x‖).



232 M. BENCHOHRA, J. R. GRAEF AND F.-Z. MOSTEFAI

(H6) There exist φg ∈ L1(J, IR+) and a continuous nondecreasing function ψ∗ : [0,∞) →
[0,∞) such that

‖g(t, x)‖ ≤ φg(t)ψ
∗(‖x‖).

(H7) There exist φh ∈ L1(J, IR+) and a continuous nondecreasing function ψ̄ : [0,∞) →
[0,∞) such that

‖h(t, x)‖ ≤ φh(t)ψ̄(‖x‖).

(H8) there exists a number R > 0 such that

R

aψ∗(R) + bψ̄(R) + cG̃ψ(R)
> 1, (8)

where

a =
T + 1

T + 2

∫ T

0

φg(s)ds, b =
T + 1

T + 2

∫ T

0

φh(s)ds, and c = ‖p‖L∞.

(H9) For each bounded set Q ⊂ E and each t ∈ J ,

β(F (t, Q)) ≤ p(t)β(Q), (9)

β(g(t, Q)) ≤ φg(t)β(Q), (10)

β(h(t, Q)) ≤ φh(t)β(Q). (11)

Theorem 3.1 Let E be a Banach space. Assume that hypotheses (H1)–(H9) hold.
If

T + 1

T + 2

∫ T

0

[φg(s) + φh(s)]ds+ G̃‖p‖L∞ < 1, (12)

then the problem (1)–(3) has at least one solution.

Proof We transform the problem (1)–(3) into fixed point problem by considering the
multivalued operator N : C(J,E) → Pcl,cv(C(J,E)) defined by

N(y) =

{

h ∈ C(J,E) : h(t) = Px(t) +

∫ T

0

G(t, s)υ(s)ds, υ ∈ SF,x

}

, (13)

where

Px(t) =
T + 1− t

T + 2

∫ T

0

g(s, x(s))ds +
t+ 1

T + 2

∫ T

0

h(s, x(s))ds

and the function G(·, ·) is given by (7). Clearly, from Lemma 3.3, the fixed points of N
are solutions of the problem (1)–(3). We first show that (13) makes sense. To see this,
let x ∈ C(J,E); by (H3) there exists a Pettis integrable function υ : J → E such that
υ(t) ∈ F (t, x(t)) for a.e. t ∈ J . Since G(t, ·) ∈ L∞(J), then G(t, ·)υ(·) is Pettis integrable
and thus N is well defined.

Let R ∈ IR
∗
+, and consider the set

Q =

{

x ∈ C(J,E) : ‖x‖∞ ≤ R and ‖x(t1)− x(t2)‖ ≤
|t1 − t2|

T + 2
ψ∗(R)

∫ T

0

φg(s)ds

+
|t1 − t2|

T + 2
ψ̄(R)

∫ T

0

φh(s)ds+ ‖p‖L∞ψ(R)

∫ T

0

‖G(t2, s)−G(t1, s)‖ds for t1, t2 ∈ J

}

.
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Notice that Q is a closed, convex, bounded and equicontinuous subset of C(J,E). We
shall show that N satisfies the assumptions of Theorem 2.1.

Step 1: N(x) is convex for each x ∈ Q.

Indeed, if h1 and h2 belong to N(x), then there exists Pettis integrable functions
υ1(t), υ2(t) ∈ F (t, x(t)) such that, for all t ∈ J , we have:

hi(t) = Px(t) +

∫ T

0

G(t, s)υi(s)ds, i = 1, 2.

Let 0 ≤ λ ≤ 1; then, for each t ∈ J , we have:

(λh1 + (1− λ)h2)(t) = Py(t) +

∫ T

0

G(t, s)[λυ1(s)− (1− λ)υ2(s)]ds.

Since F has convex values, (λυ1+(1−λ)υ2)(t) ∈ F (t, x(t)), and we have λh1+(1−λ)h2 ∈
N(x).

Step 2: N maps Q into Q.

To see this, take u ∈ NQ. Then there exists x ∈ Q with u ∈ N(x) and there exists
a Pettis integrable function υ : J → E with υ(t) ∈ F (t, x(t)) for a.e. t ∈ J . Without
loss of generality, we assume u(s) 6= 0 for all s ∈ J . Then, there exists ϕs ∈ E∗ with
‖ϕs‖ = 1 and ϕs(u(s)) = ‖u(s)‖. Hence, for each fixed t ∈ J , we have:

‖u(t)‖ = ϕt(u(t))

= ϕt

(

Px(t) +

∫ T

0

G(t, s)υ(s)ds

)

≤ ϕt(Px(t)) + ϕt

(

∫ T

0

G(t, s)υ(s)ds

)

≤ ‖Px(t)‖ +

∫ T

0

‖G(t, s)‖ϕt(υ(s))ds

≤
T + 1

T + 2
ψ∗(‖x‖∞)

∫ T

0

φg(s)ds+
T + 1

T + 2
ψ̄(‖x‖∞)

∫ T

0

φh(s)ds

+ G̃ψ(‖x‖∞)‖p‖L∞ .

Therefore, by (H8),

‖u‖∞ ≤
T + 1

T + 2
ψ∗(R)

∫ T

0

φg(s)ds+
T + 1

T + 2
ψ̄(R)

∫ T

0

φh(s)ds+ G̃ψ(R)‖p‖L∞ ≤ R.
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Next suppose u ∈ NQ and t1, t2 ∈ J with t1 < t2 so that u(t2) − u(t1) 6= 0. Then,
there exist ϕ ∈ E∗ such that ‖u(t2)− u(t1)‖ = ϕ(u(t2)− u(t1)). Thus,

‖u(t2)− u(t1)‖ = ϕ

(

Px(t2)− Px(t1) +

∫ T

0

(G(t2, s)−G(t1, s))υ(s)ds

)

≤ ϕ(Px(t2)− Px(t1)) + ϕ

(

∫ T

0

(G(t2, s)−G(t1, s))υ(s)ds

)

≤ ‖Px(t2)− Px(t1)‖ +

∫ T

0

‖G(t2, s)−G(t1, s)‖‖υ(s)‖ds

≤
(t2 − t1)

T + 2
ψ∗(R)

∫ T

0

φg(s)ds+
(t2 − t1)

T + 2
ψ̄(R)

∫ T

0

φh(s)ds

+ ψ(R)‖p‖L∞

∫ T

0

‖G(t2, s)−G(t1, s)‖ds.

Therefore, u ∈ Q.

Step 3: N has a weakly sequentially closed graph.

Let (xn, yn)
∞
1 be a sequence in Q × Q with xn(t) → x(t) in (E,ω) for each t ∈ J ,

yn(t) → y(t) in (E,ω) for each t ∈ J , and yn ∈ N(xn) for n ∈ {1, 2, ...}. We shall show
that y ∈ Nx. By the relation yn ∈ N(xn), we mean that there exists υn ∈ SF,xn

such
that

yn(t) = Pxn
(t) +

∫ T

0

G(t, s)υn(s)ds.

We must show that there exists υ ∈ SF,x such that, for each t ∈ J ,

y(t) = Px(t) +

∫ T

0

G(t, s)υ(s)ds.

Since F (·, ·) has compact values, there exists a subsequence υnm
such that

υnm
(·) → υ(·) in (E,ω) as m→ ∞

and

υnm
(t) ∈ F (t, xn(t)) a.e. t ∈ J.

Since F (t, ·) has a weakly sequentially closed graph, υ ∈ F (t, x). The Lebesgue Domi-
nated Convergence Theorem for the Pettis integral then implies that for each ϕ ∈ E∗,

ϕ(yn(t)) = ϕ

(

Pxn
(t) +

∫ T

0

G(t, s)υn(s)ds

)

→ ϕ

(

Px(t) +

∫ T

0

G(t, s)υ(s)ds

)

i.e., yn(t) → Nx(t) in (E,ω). We can repeat this for each t ∈ J , so y(t) ∈ Nx(t).

Step 4: The implication (4) holds.

Now let V be a subset of Q such that V = conv(N(V ) ∪ {0}). Clearly, V (t) ⊂
conv(N(V )∪{0}) for all t ∈ J . Also, NV (t) ⊂ NQ(t), for each t ∈ J , and is bounded in
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P (E). By (H9) and the properties of the measure β, we have

β(NV (t)) = β

{

Px(t) +

∫ T

0

G(t, s)υ(s)ds : υ ∈ SF,x, x ∈ V, t ∈ J

}

≤ β {Px(t) : x ∈ V, t ∈ J}

+ β

{

∫ T

0

G(t, s)υ(s)ds : υ ∈ SF,x, x ∈ V, t ∈ J

}

≤ β

{

T + 1− t

T + 2

∫ T

0

g(s, x(s))ds +
t+ 1

T + 2

∫ T

0

h(s, x(s))ds : x ∈ V

}

+ β

{

∫ T

0

G(t, s)υ(s)ds : υ(t) ∈ F (t, x(t)), x ∈ V, t ∈ J

}

≤

∫ T

0

T + 1− t

T + 2
φg(s)β(V (s))ds +

∫ T

0

t+ 1

T + 2
φh(s)β(V (s))ds

+

∫ T

0

‖G(t, s)‖p(s)β(V (s))ds

≤
T + 1

T + 2

∫ T

0

φg(s)β(V (s))ds+
T + 1

T + 2

∫ T

0

φh(s)β(V (s))ds

+

∫ T

0

‖G(t, s)‖p(s)β(V (s))ds

for each t ∈ J . This means that

‖v‖∞ ≤ ‖v‖∞

[

T + 1

T + 2

∫ T

0

(φg(s) + φh(s))ds+ G̃

∫ T

0

p(s)ds

]

i.e.,

‖v‖∞

[

1−
T + 1

T + 2

∫ T

0

(φg(s) + φh(s))ds+ G̃‖p‖∞

]

≤ 0.

By (12) it follows that ‖v‖∞ = 0. Thus, V is weakly relatively compact. Applying
Theorem 2.1, we conclude that N has a fixed point that is a solution of the problem
(1)–(3). 2
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Abstract: Existence and comparison results of the linear and nonlinear Riemann–
Liouville fractional differential equations of order q, 0 < q < 1, are recalled and
modified where necessary. Generalized quasilinearization method is developed for
nonlinear fractional differential equations of order q, using upper and lower solutions.
Quadratic convergence to the unique solution is proved via weighted sequences.
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1 Introduction

Fractional differential equations have various applications in widespread fields of science,
such as in engineering [9], chemistry [10, 17, 18], physics [3, 4, 11], and others [12, 13].
In the majority of the literature existence results for Riemann–Liouville fractional differ-
ential equations are proven by a fixed point method. Initially we will recall existence by
lower and upper solution method, which is more comparable to our main results. Despite
there being a number of existence theorems for nonlinear fractional differential equations,
much as in the integer order case, this does not necessarily imply that calculating a solu-
tion explicitly will be routine, or even possible. Therefore, it may be necessary to employ
an iterative technique to numerically approximate a solution to a needed solution. In
this paper we construct such a method.

The iterative technique we manufacture is the method of quasilinearization for non-
linear Riemann–Liouville fractional differential equations of order q, 0 < q < 1. This
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method was first developed in [1, 2, 16], the method we construct is more closely related
to those found in [15], that is a generalized quasilinearization method via lower and upper
solutions. This particular method is much like the monotone method in that we construct
monotone sequences from lower and upper solutions of the original equation. Further,
each iterate is the solution of the linear fractional differential equation, but unlike in the
monotone method, these iterates are not of the form with constant coefficients. In the
case of the Riemann–Liouville fractional derivative, the variable coefficient case compli-
cates our method. Therefore, we will recall existence, comparison, and inequality results
for this case, including a generalized Gronwall type inequality, which will be paramount
to our main result. Further, we will present modifications to these results where pertinent
to our work.

Further, in the construction of the quasilinearization method we require a much
stronger hypothesis than the monotone iterative technique. We still require the exis-
tence of lower and upper solutions v, w such that v ≤ w, but specifically we require the
nonlinear function f(t, x) to be convex (or concave) in x. Though this requirement may
initially seem superfluous, with its application we are able to prove that the sequences
we construct converge quadratically. Therefore, the sequences we construct may be more
unwieldy, and the requirements more strict, than with the monotone method, but with
this method the convergence is far faster. Further, with the assumption that f is convex
automatically ensures that our solution is unique, which is not necessarily the case with
the monotone method.

We note that this method has been studied in [8], but the authors have considered
differential equations of the Caputo case. However the Caputo derivative only exists for
C1 functions. We do not make this assumption with the Riemann–Liouville derivative.
In fact, the functions we consider generally have a singularity at the left-most endpoint,
therefore they are only C0 on a half open interval, with a special Cp property we will define
below. One consequence of using the Riemann–Liouville derivative is that, in general,
the sequences we construct, {αn}, {βn} do not converge uniformly to the unique solution,
but the weighted sequences {tpαn}, {t

pβn} converge uniformly and quadratically to tpx,
where x is the unique solution of the original equation and p = 1− q.

Finally, we consider the case when f is not convex (nor concave), but there exists a
function φ such that f + φ is convex. We construct the quasilinearization for this case
and note that a function φ will always exist, therefore extending this method to any
nonlinear fractional differential equation, provided f is C2 in x. For more information on
the method of quasilinearization via lower and upper solutions as it relates to ordinary
differential equations, see [15].

2 Preliminary Results

In this section we consider results regarding the Riemann-Liouville (R-L) differential
equations of order q, 0 < q < 1. Specifically we recall existence and comparison results
which will be used in our main result. In the next section we will apply these preliminary
results to developing quasilinearization method for R-L fractional differential equations
of order q. Note, for simplicity we only consider results on the interval J = (0, T ], where
T > 0. Further, we will let J0 = [0, T ], that is J0 = J̄ .

Definition 2.1 Let p = 1− q, a function φ(t) ∈ C(J,R) is a Cp function if tpφ(t) ∈
C(J0,R). The set of Cp functions is denoted Cp(J,R). Further, given a function φ(t) ∈
Cp(J,R) we call the function tpφ(t) the continuous extension of φ(t).
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Remark 2.1 By the definition of Cp continuity and the properties of continuous
functions it can be shown that the uniform limit of Cp functions is Cp, also Cp(J,R) has
a completeness property in that any uniformly Cauchy sequence of Cp functions converges
uniformly to a Cp function. Further Cp(J,R) is closed under continuous products, that
is, if x ∈ Cp(J,R) and y ∈ C(J0,R) then xy ∈ Cp(J,R).

Now we define the R-L integral and derivative of order q on the interval J .

Definition 2.2 Let φ ∈ Cp(J,R), then D
q
tφ(t) is the q-th R-L derivative of φ with

respect to t ∈ J defined as

D
q
tφ(t) =

1

Γ(p)

d

dt

∫ t

0

(t− s)−qφ(s)ds,

and I
q
t φ(t) is the q-th R-L integral of φ with respect to t ∈ J defined as

I
q
t φ(t) =

1

Γ(q)

∫ t

0

(t− s)q−1φ(s)ds.

Note that in cases where the initial value may be different, or ambiguous, we will write
out the definition explicitly. The next definition is related to the solution of linear R-L
fractional differential equation and is also of great importance in the study of the R-L
derivative.

Definition 2.3 TheMittag–Leffler function with parameters α, β ∈ R, denotedEα,β ,
is defined as

Eα,β(z) =

∞
∑

k=0

zk

Γ(αk + β)
,

which is entire for α, β > 0.

Remark 2.2 We note that the Cp weighted Mittag–Leffler function

tq−1Eq,q(λt
q) =

∞
∑

k=0

λktkq+q−1

Γ(kq + q)
,

where λ is a constant, converges uniformly on J . This can be shown by using the fact
that Eq,q is entire and noting that there exists an N > 0 such that nq+ q− 1 > 0 for all
n ≥ N . From here one can show that the sequence of partial sums of the above series is
uniformly Cauchy.

The next result gives us that the q-th R-L integral of a Cp continuous function is also
a Cp continuous function. This result will give us that the solutions of R-L differential
equations are also Cp continuous.

Lemma 2.1 Let f ∈ Cp(J,R), then I
q
t f(t) ∈ Cp(J,R), i.e. the q-th integral of a Cp

continuous function is Cp continuous.

Note the proof of this theorem for q ∈ R
+ can be found in [7]. Now we consider

results for the nonhomogeneous linear R-L differential equation

D
q
tx(t) = y(t)x(t) + z(t) (1)

with initial condition Γ(q)tpx(t)
∣

∣

t=0
= x0, where x0 is a constant, y ∈ C(J0,R), and

z ∈ Cp(J,R).
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Theorem 2.1 If y ∈ C(J0,R) and z ∈ Cp(J,R) then equation (1) has a unique
solution x ∈ Cp(J,R), given explicitly by

x(t) =

∞
∑

k=0

x0

Γ(q)
T k
y

[

tq−1
]

+ T k
y

[

I
q
t z(t)

]

,

which converges uniformly on J and where Ty is the operator defined by

Tyφ(t) = I
q
t y(t)φ(t).

Proof The proof of the homogeneous case, and that tpx(t) converges uniformly on
J0 can be found in [6], the refinement that x(t) converges uniformly on J can be found in
[5]. Note the nonhomogeneous case follows in exactly the same way as in [6]. Further in
[5] it was assumed that z ∈ Cp(J,R) such that Iqt z ∈ C(J0,R), here we have relaxed this
condition. The proof follows along the same lines as in [5] with appropriate modifications.
That is, using that z ∈ Cp, and the fact that Eq,q is entire, we can show the partial sums
of the series x are uniformly Cauchy on J . That x ∈ Cp(J,R) follows from applying
Remark 2.1 and Lemma 2.1. Note that if z(t) = 0 for all t ∈ J then we get that

x(t) =
x0

Γ(q)

∞
∑

k=0

T k
y

[

tq−1
]

.

In many cases we may have an explicit form of y that may prove too unwieldy to place
in a subscript. In this case we will use the following notation

E(y, f) =
∞
∑

k=0

T k
y

[

f
]

,

and since the case where f = tq−1 occurs so often we will define E with a single parameter
to be this case. That is E(y) = E(y, tq−1). Therefore the solution of (1) can be written
as

x(t) =
x0

Γ(q)
E(y) + E(y, Iqt z). (2)

Further, if y is identically a constant, say λ, it can be shown that (2) can be expressed
as

x(t) = x0tq−1Eq,q(λt
q) +

∫ t

0

(t− s)q−1Eq,q(λ(t− s)q)z(s) ds.

This is the result discussed in [14], hence Theorem 2.1 generalizes the constant coefficient
case, as expected.

Next we recall a comparison result we will utilize in our following results. Note this
result is similar to the well known comparison result found in literature, as in [14], but
we do not require the function to be Hölder continuous of order λ > q. We weaken this
requirement because in our main result we will construct sequences from the solutions
of linear R-L differential equations. As previously mentioned the solution to the linear
equation with constant coefficient can be rewritten as

x(t) =
x0

Γ(q)
tq−1 + x0

∞
∑

k=1

λktqk+q−1

Γ(qk + q)
+

∫ t

0

(t− s)q−1Eq,q(λ(t− s)q)f(s)ds,
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which is not Hölder continuous of any order due to the term containing tq−1. Therefore
we utilize the following result which weakens the Hölder continuity requirement, so that
we can incorporate it in our main results.

Lemma 2.2 Let m ∈ Cp(J,R) be such that for some t1 ∈ J we have m(t1) = 0 and
m(t) ≤ 0 for t ∈ (0, t1]. Then

D
q
tm(t)

∣

∣

t=t1
≥ 0.

The proof of this lemma can be found in [7], along with further discussion as to
why and how we weaken the Hölder continuous requirement of this known comparison
result. We use this Lemma in the proof of the later main comparison result which will
be paramount in the construction of the quasilinearization method. First we recall the
nonlinear R-L fractional differential equation.

D
q
tx = f(t, x), (3)

Γ(q)tpx(t)
∣

∣

t=0
= x0,

where f ∈ C(J0 × R,R). Note that a solution x ∈ Cp(J,R) of (3) also satisfies the
equivalent R-L integral equation

x(t) =
x0

Γ(q)
tq−1 +

1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s))ds. (4)

Thus if f ∈ C(J0 × R,R) then (3) is equivalent to (4). See [12, 14] for details. Now
we will recall a Peano type existence theorem for equation (3).

Theorem 2.2 Suppose f ∈ C(R0,R) and |f(t, x)| ≤ M on R0, where

R0 = {(t, x) : |tpx(t) − x0| ≤ η, t ∈ J0}.

Then the solution of (3) exists on J .

This result is presented in [14], and in [7] it was proven that the solution can be
extended to all of J , and the set R0 was modified for our succeeding results regarding
existence by method of upper and lower solutions. In the direction of this result we will
consider the following comparison result, which will in turn yield a general Gronwall type
inequality.

Theorem 2.3 Let f ∈ C(J0 × R,R) and let v, w ∈ Cp(J,R) be lower and upper
solutions of (3), i.e.

D
q
t v ≤ f(t, v),

Γ(q)tpv(t)
∣

∣

t=0
= v0 ≤ x0,

and

D
q
tw ≥ f(t, w),

Γ(q)tpw(t)
∣

∣

t=0
= w0 ≥ x0.

If f satisfies the following Lipschitz condition

f(t, x)− f(t, y) ≤ L(x− y), when x ≥ y,

where L > 0, then v(t) ≤ w(t) on J .
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The proof follows as in [14] with appropriate modifications, specifically we use Lemma 2.2
and do not require local Hölder continuity of order λ > q. Next we present a Gronwall
type inequality for R-L fractional differential equations. A similar result in terms of
fractional integral equations can be found in [6].

Theorem 2.4 Let v, z ∈ Cp(J,R) and y ∈ C(J0,R
+), and suppose that

D
q
t v ≤ y(t)v(t) + z(t).

Then

v(t) ≤
v0

Γ(q)
E(y) + E(y, Iqt z).

The proof follows directly from Theorem 2.1 and Theorem 2.3. That is, since y ≥ 0,
f(t, x) = yx + z satisfies the Lipschitz condition of Theorem 2.3 and letting x be the
solution of (1) with x0 = v0 we obtain v ≤ x. When y is identically a constant λ ≥ 0,
then we get the following Corollary.

Corollary 2.1 Let v, z ∈ Cp(J,R) and let λ ≥ 0 be a constant, and suppose that

D
q
t v ≤ λv(t) + z(t).

Then

v(t) ≤ v0tq−1Eq,q(λt
q) +

∫ t

0

(t− s)q−1Eq,q(λ(t− s)q)z(s) ds.

Now we will recall a result that gives us existence of a solution to (3) via lower and
upper solutions.

Theorem 2.5 Let v, w ∈ Cp(J,R) be lower and upper solutions of (3) such that
v(t) ≤ w(t) on J and let f ∈ C(Ω,R), where Ω is defined as

Ω = {(t, y) : tpv(t) ≤ y ≤ tpw(t), t ∈ J0}.

Then there exists a solution x ∈ Cp(J,R) of (3) such that v(t) ≤ x(t) ≤ w(t) on J .

The proof of this theorem can be found in [7]. We also note a final uniqueness result
which is comparable to the analogous result for ordinary differential equations. As one
might expect, if f satisfies the Lipschitz condition found in Theorem 2.3, then the solution
x of (3) is unique. Further this result is proved in much the same way as in the case
of ordinary differential equations, see [14] for more details. We mention this result here
since it will be necessary in the construction of the quasilinearization method.

3 Method of Quasilinearization

In this section we develop the method of quasilinearization via lower and upper solutions.
We consider three different cases, when the forcing function f is convex, concave in x,
and can be made convex by the addition function φ. We construct monotone sequences
such that the sequences of continuous extensions converge uniformly and monotonically
to the continuous extension of the unique solution x of (3). Further, the rate convergence
is quadratic.
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Theorem 3.1 Assume that

(A1) α0, β0 ∈ Cp(J,R) are lower and upper solutions of (3) respectively such that α0(t) ≤
β0(t) on J .

(A2) f ∈ C(Ω,R), fx(t, x) ≥ 0, fxx(t, x) ≥ 0 exist and are continuous on Ω, where

Ω = {(t, y) : α0(t) ≤ y ≤ β0(t), t ∈ J0}.

Then there exist monotone sequences {αn} and {βn} in Cp(J,R) such that tpαn, and tpβn

both converge uniformly and quadratically to tpx on J0, where x is the unique solution of
(3) on J .

Proof First, by (A2) we have that f and fx are nondecreasing in x on J0, Lipschitz
with respect to x on J0, and

f(t, x) ≥ f(t, y) + fx(t, y)(x − y)

for any (t, y) ∈ Ω. Further the function

g(t, x, y) = f(t, y) + fx(t, y)(x− y)

is linear in x on J0. Now we will construct the sequences {αn} and {βn}. Let αn+1 be
the unique solution of the Riemann–Liouville differential equation

D
q
tαn+1 = f(t, αn) + fx(t, αn)(αn+1 − αn), (5)

Γ(q)tpαn+1(t)
∣

∣

t=0
= x0,

for all n ≥ 0, and where α0 is the lower solution of (3) given in the hypothesis. Note that
the above equation is of the form (1), therefore it has a unique solution by Theorem 2.1
provided (t, αn) ∈ Ω, and therefore our sequence is well defined. Similarly, let βn+1 be
the unique solution of

D
q
tβn+1 = f(t, βn) + fx(t, αn)(βn+1 − βn), (6)

Γ(q)tpβn+1(t)
∣

∣

t=0
= x0.

Now we will show that αn ≤ βn for all n ≥ 0. To do this first note that by hypothesis
we have that α0 ≤ β0 on J , so letting this be our basis step, suppose that αk ≤ βk is
true up to some k ≥ 0. Then we have

D
q
tαk+1 = f(t, αk) + fx(t, αk)(αk+1 − αk),

and by the consequences of (A2) we have that

D
q
tβk+1 ≥ f(t, αk) + fx(t, αk)(βk+1 − αk),

which by Theorem 2.3 gives us that αk+1 ≤ βk+1 on J and thus by induction proves the
claim.

Now we wish to show that that {βn} is monotone. To do so consider that

D
q
tβ1 ≤ f(t, β0) + fx(t, β0)(β1 − β0) ≤ f(t, β1),
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which again, by Theorem 2.3 gives us that β1 ≤ β0 on J . Now suppose βk ≤ βk−1 up to
some k ≥ 1, then letting ω = βk+1 − βk, with ω0 = 0, by the consequences of (A2) and
that αn ≤ βn for all n ≥ 0, we obtain

D
q
tω ≤ [fx(t, βk)− fx(t, αk−1)](βk − βk−1) + fx(t, αk)ω ≤ fx(t, αk)ω.

This implies by Theorem 2.4 that

βk+1 − βk ≤
ω0

Γ(q)
E(fx(t, αk)) = 0,

thus proving, by induction, that {βn} is monotone. The proof that {αn} is monotone
follows by arguments similar to either of the previous induction proofs.

We now prove that
tpαn → tpx and tpβn → tpx,

uniformly on J0, and where x is the unique solution of (3). This result follows from an
application of the Arzelà–Ascoli Theorem since for all n ≥ 0 we have that

|tpαn| ≤ tp|αn − α0|+ tp|α0| ≤ tp|β0 − α0|+ tp|α0|,

implying that {tpαn} is uniformly bounded on J0. That this sequence is equicontinuous
is proved in a similar fashion to that found in [19]. We can prove a similar result for
{tpβn} as well. To show that both sequences converge to tpx, suppose that tpαn instead
converges uniformly to tpα, which gives us that αn converges to α pointwise on J . Now
consider the continuous extension of the integral form of αn+1,

tpαn+1 =
x0

Γ(q)
+

tp

Γ(q)

∫ t

0

(t− s)q−1
(

f(s, αn) + fx(s, αn)(αn+1 − αn)
)

ds.

Applying the convergence properties outlined above we can show that the limit α satisfies

α =
x0

Γ(q)
tq−1 +

1

Γ(q)

∫ t

0

(t− s)q−1f(s, α)ds

on J . Implying that α = x, since x is the unique solution of (3). We note that {tpβn}
satisfies an analogous property.

Now we will prove that the sequences of continuous extensions {tpαn} and {tpβn}
converge quadratically. First we note that, since f is continuous on J0, there exists a
function F such that f(t, x) = F (t, tpx). Then we have that fxx(t, x) = t2pFxx(t, t

px).
Using this result, along with the mean value theorem we obtain

D
q
t (x− αn+1) = f(t, x)− f(t, αn)− fx(t, αn)(αn+1 − αn)

= fx(t, ξ)(x − αn)− fx(t, αn)(αn+1 − αn)

≤ fx(t, x)(x − αn)− fx(t, αn)(αn+1 − αn)

= [fx(t, x)− fx(t, αn)](x − αn) + fx(t, αn)(x− αn+1)

= fxx(t, η)(x− αn)
2 + fx(t, αn)(x− αn+1)

= Fxx(t, t
pη)t2p(x− αn)

2 + fx(t, αn)(x − αn+1)

≤ Nt2p(x− αn)
2 +M(x− αn+1).
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Here αn ≤ ξ, η ≤ x on J , and N and M are bounds of Fxx and fx respectively. Now by
Corollary 2.1 and Remark 2.2 we have that

tp(x− αn+1) ≤ tp
∫ t

0

(t− s)q−1Eq,q(M(t− s)q)Ns2p(x− αn)
2ds

≤ tpN
∥

∥tp(x − αn)
∥

∥

2

∫ t

0

(t− s)q−1Eq,q(M(t− s)q)ds

= tpN
∥

∥tp(x − αn)
∥

∥

2

∫ t

0

∞
∑

k=0

Mk(t− s)kq+q−1

Γ(qk + q)
ds

= tpN
∥

∥tp(x − αn)
∥

∥

2
∞
∑

k=0

Mktkq+q

Γ(qk + q + 1)

≤
tpN

M
Eq,1(Mtq)

∥

∥tp(x− αn)
∥

∥

2
.

Here ‖·‖ is the uniform norm on C(J0,R). Giving us that

∥

∥tp(x− αn+1)
∥

∥ ≤ K
∥

∥tp(x− αn)
∥

∥

2
,

where K = TpN
M

Eq,1(MT q).
Now, letting ρn = x− αn and ωn = βn − x, showing that {tpβn} converges quadrati-

cally follows with a similar argument, but in this case we get

D
q
tωn+1 ≤ Fxx(t, σ)t

2p[ωn + ρn]ωn + fx(t, αn)(ωn+1) ≤ (N/2)t2p(3ω2
n + ρ2n) +Mωn+1.

Then from Corollary 2.1 we get

tpωn+1 ≤
Ntp

2M
Eq,1(Mtq)

∥

∥t2p(3ω2
n + ρ2n)

∥

∥,

which finally implies that

∥

∥βn+1 − x
∥

∥ ≤
3K

2

∥

∥tp(βn − x)
∥

∥

2
+

K

2

∥

∥tp(x − αn)
∥

∥

2
.

This concludes the proof.
A natural query is whether the results of Theorem 3.1 will still hold if f is concave

as opposed to convex. The answer is affirmative, and we state the result below without
the details of the proof.

Theorem 3.2 Suppose (A1) of Theorem 3.1 holds. Further suppose that f ∈
C(Ω,R), fx(t, x) ≤ 0, fxx(t, x) ≤ 0 exist and are continuous on Ω. Then there exist
monotone sequences {αn} and {βn} in Cp(J,R) such that tpαn, and tpβn both converge
uniformly and quadratically to tpx on J0, where x is the unique solution of (3) on J .

We note that the proof of this theorem follows in the same lines as that of Theorem
3.1. The next case we consider is whether it is possible to construct the quasilinearization
method when f ∈ C0,2(Ω,R) is neither convex nor concave. As we will show, it is indeed
possible provided we can find a function φ ∈ C0,2(Ω,R) such that f + φ is convex. We
present this case as our final theorem.
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Theorem 3.3 Assume that

(B1) α0, β0 ∈ Cp(J,R) are lower and upper solutions of (3) respectively, such that α0 ≤
β0 on J .

(B2) f, φ ∈ C0,2(Ω,R), fxx + φxx ≥ 0 and φxx > 0 on Ω, where Ω is defined as in
Theorem 3.1.

Then there exist monotone sequences {αn} and {βn} in Cp(J,R) such that tpαn and tpβn

both converge uniformly and quadratically to tpx on J0, where x is the unique solution of
(3) on J .

Proof Firstly, by consequences of (B2) we have that f is Lipschitz with respect to
x. Further, since f + φ is convex we have that

F (t, x) ≥ F (t, y) + Fx(t, y)(x− y), (7)

where F (t, x) = f(t, x) + φ(t, x).

We construct the monotone sequences by letting αn+1 and βn+1 be the unique solu-
tions of the linear R-L fractional differential equations,

D
q
tαn+1 = f(t, αn) +

(

Fx(t, αn)− φx(t, βn)
)

(αn+1 − αn), (8)

Γ(q)tpαn+1(t)
∣

∣

t=0
= x0,

and

D
q
tβn+1 = f(t, βn) +

(

Fx(t, αn)− φx(t, βn)
)

(βn+1 − βn), (9)

Γ(q)tpβn+1(t)
∣

∣

t=0
= x0,

for all n ≥ 0 and for (t, αn), (t, βn) ∈ Ω. Now we wish to show that αn ≤ αn+1 ≤ βn+1 ≤
βn for all n ≥ 0. First we will show that α0 ≤ α1, to do so notice that

D
q
tα0 ≤ f(t, α0) +

(

Fx(t, α0)− φx(t, β0)
)

(α0 − α0).

Therefore by Theorem 2.3 we have that α0 ≤ α1 on J since α0
0 ≤ x0, and by a similar

argument we also have that β1 ≤ β0. Now we will show that α1 ≤ β1 on J . Note by
consequences of (B2), that is (7), that φx is increasing in x, and by the application of
the mean value theorem we can show that

D
q
tβ1 ≥ f(t, α0) + Fx(t, α0)(β0 − α0)− [φ(t, β0)− φ(t, α0)]

+
(

Fx(t, α0)− φx(t, β0)
)

(β1 − β0)

= f(t, α0) + Fx(α0)(β0 − α0)− φx(t, ξ)(β0 − α0)

+
(

Fx(t, α0)− φx(t, β0)
)

(β1 − β0)

≥ f(t, α0) +
(

Fx(t, α0)− φx(t, β0)
)

(β1 − α0),

where α0 ≤ ξ ≤ β0. Therefore by Theorem 2.3 we have α0 ≤ α1 ≤ β1 ≤ β0 on J . Letting
this be our basis step suppose αk−1 ≤ αk ≤ βk ≤ βk−1 on J up to some k ≥ 1, then by
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a similar process as when showing α1 ≤ β1 we have that,

D
q
tαk+1 ≥ f(t, αk) +

(

Fx(t, αk−1)− φx(t, βk−1)
)

(αk+1 − αk)

≥ f(t, αk−1)− [φ(t, αk)− φ(t, αk−1)] + Fx(t, αk−1)(αk − αk−1)

+
(

Fx(t, αk−1)− φx(t, βk−1)
)

(αk+1 − αk)

= f(t, αk−1)− φx(t, ξ)(αk − αk−1) + Fx(t, αk−1)(αk − αk−1)

+
(

Fx(t, αk−1)− φx(t, βk−1)
)

(αk+1 − αk)

≥ f(t, αk−1) +
(

Fx(t, αk−1)− φx(t, βk−1)
)

(αk+1 − αk−1).

Therefore by Theorem 2.3 we have that αk ≤ αk+1 on J , and by similar arguments we
can show that αk ≤ αk+1 ≤ βk+1 ≤ βk, which by induction implies that {αn} and {βn}
are monotone and αn ≤ βn for all n ≥ 0. That tpαn and tpβn converge uniformly to tpx,
where x is the unique solution of (3), is done in the same way as in Theorem 3.1. Now
we will show that the sequences of continuous extensions converge quadratically on J0.
To do so, first note, as in Theorem 3.1 that there exist functions G,Φ ∈ C0,2(Ω,R) such
that G(t, tpx) = F (t, x), and Φ(t, tpx) = φ(t, x), thus giving us that

Fxx(t, x) = t2pGxx(t, t
px) and φxx(t, x) = t2pΦxx(t, t

px).

Now letting ρn+1 = x− αn+1 and ωn+1 = βn+1 − x, we have that

D
q
t ρn+1 = f(t, x)− [f(t, αn) +

(

Fx(t, αn)− φx(t, βn)
)

(αn+1 − αn)]

= F (t, x)− F (t, αn)−
(

Fx(t, αn)− φx(t, βn)
)

(αn+1 − αn)

− [φ(t, x) − φ(t, αn)]

= Fx(t, ξ1)ρn −
(

Fx(t, αn)− φx(t, βn)
)

(αn+1 − αn))− φx(t, ξ2)ρn

≤ [Fx(t, x)− Fx(t, αn)]ρn + (Fx(t, αn)− φx(t, βn)
)

ρn+1

+ [φx(t, βn)− φx(t, αn)]ρn

≤ Fxx(t, η1)ρ
2
n + fx(t, αn)ρn+1 + φxx(t, η2)(ωn + ρn)ρn

= Gxx(t, t
pη1)t

2pρ2n + fx(t, αn)ρn+1 +Φxx(t, t
pη2)t

2p(ωn + ρn)ρn

≤ Nt2pρ2n +Mρn+1 + (L/2)t2p(3ρ2n + ω2
n),

Where αn ≤ ξ1, ξ2, η1 ≤ x, αn ≤ η2 ≤ x, and where N , M , and L are bounds on Gxx,
fx, and Φxx respectively. Then by Corollary 2.1 and Remark 2.2 we have that

tpρn+1 ≤ tp
∫ t

0

(t− s)q−1Eq,q(M(t− s)q)s2p
[

(N + 3L/2)ρ2n + (L/2)ω2
n

]

ds

≤
tp

M
Eq,1(Mtq)

[

(N + 3L/2)
∥

∥tpρn
∥

∥

2
+ (L/2)

∥

∥tpωn

∥

∥

2
]

.

Which finally gives us that

∥

∥tp(x − αn+1)
∥

∥ ≤
K

2
(2N + 3L)

∥

∥tp(x− αn)
∥

∥

2
+

KL

2

∥

∥tp(βn − x)
∥

∥

2
,

where K = Tp

M
Eq,1(MT q). Similarly, we can show that

∥

∥tp(βn+1 − x)
∥

∥ ≤
K

2
(3N + 2L)

∥

∥tp(βn − x)
∥

∥

2
+

KN

2

∥

∥tp(x− αn)
∥

∥

2
,
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which finishes the proof.
This final case greatly extends the potential of the quasilinearization method. This

is because for any function f ∈ C0,2(Ω,R) we can always find a function φ ∈ C0,2(Ω,R)
such that fxx + φxx ≥ 0, and φxx > 0. To show why this is true, suppose that f is not
convex, then we can choose A > 0 such that

min
Ω

{

fxx(t, x)
}

= −A < 0.

Then we need only choose φ(t, x) = At2px2, to satisfy (B2). Further, since we can always
find such a function we need not consider the case where f can be made concave by the
sum of another function.

Remark 3.1 If we use lower and upper solutions one can extend the method of
quasilinearization to forcing functions which are the sum of convex and concave functions
as in [15]. This generalization will include all our results as special cases. However,
this involves the study of linear fractional systems with variable coefficients. We will
investigate this result elsewhere.
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Abstract: The problem of almost disturbance decoupling for a class of nonlinear
systems is considered. The controlled systems consist of a chain of power integrators
perturbed by a lower-triangular vector field with nonlinear parametrization. By us-
ing the tool of adding a power integrator combined with the parameter separation
technique, under a set of growth conditions a smooth adaptive controller is explicitly
constructed to attenuate the influence of the disturbance on the output with an ar-
bitrary degree of accuracy. The designed adaptive controller is in its minimum-order
property, since the order of the dynamic compensator is equal to one. An illustrative
example is given to verify the effectiveness of the proposed approach.

Keywords: almost disturbance decoupling; smooth adaptive controller; adding a

power integrator; nonlinear parametrization; parameter separation.
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1 Introduction

One of the main objectives in control theory is to suppress unknown disturbances. It will
be ideal if the influence of disturbances on the output can be eliminated completely, or
in other words, the disturbances are decoupled from the output. Unfortunately, in most
practical situations it is impossible to achieve the exact disturbance decoupling. In this
case, it is reasonable to aim at almost disturbance decoupling (ADD), which means that
the influence of the disturbance on the output is attenuated to an arbitrary degree of
accuracy via feedback control design. More precisely, the problem of ADD can be stated
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as: given a system and a prescribed positive scalar, find a feedback control law such that
the resultant closed-loop system is stable and the gain between the exogenous input and
the regulated output is less than or equal to the prescribed positive number. The start
point of the problem of ADD on nonlinear systems is associated with the papers [1], [2]
in the late 1980s. The performance of the ADD in [2] is characterized in terms of the
L∞-induced norm from the disturbance to the outputs, and the solution of the problem
of ADD is explicitly constructed by applying singular perturbation methods. However,
a drawback of the result in [2] is that internal stability, which is crucial for a meaningful
application or a practical implementation, is not taken into account. Therefore, the
internal stability of the closed-loop systems cannot be guaranteed even in the absence
of the disturbance. This problem is solved later in [3]. By applying a recursive design
technique, a global solution to the ADD problem with internal stability was presented
for a chain of integrators perturbed by a lower triangular vector field. The result in
[3] was later generalized to a larger class of nonlinear minimum phase systems in [4].
These two results in [3] and [4] were further extended to a class of nonminimum-phase
nonlinear systems in [5]. The proposed approach in [5] required that the unstable part
of the zero-dynamics was not affected by the disturbance. Such a restriction was relaxed
in the results of [6] and [7]. The construction of control law in [7] is based on a recursive
Lyapunov-based design approach. In the case of systems with vector relative degree
[1, 1, · · · , 1], the ADD problem was tackled in [8] for a general minimum phase system
subject to parameter uncertainty and with a controlled output that may be affected by
the disturbance. In addition, the problem of ADD for general affine nonlinear systems
was addressed in [9] for the case of state feedback and the solution was converted into
the solution of the so-called Hamilton-Jacobi-Isaacs equation (HJIE). The global inverse
L2-gain design for a chain of integrators perturbed by lower triangular vector field was
reported in [10]. For a class of multi-input multi-output nonlinear systems, the ADD
problem was addressed in [11] for the systems with nested lower triangular structure, and
the controller was explicitly constructed by applying the backstepping design technique.

If only the output information is available for the feedback design, only a few results
are devoted to the ADD problem via output feedback in the existing literature. In [12],
the problem of ADD via output feedback for general affine nonlinear systems was con-
verted into the solution of Hamilton-Jacobi-Isaacs equation. In [13], a systematic design
procedure to output feedback controller with the function of ADD was given for a class
of systems with the nonlinear terms depending only on the output. For the nonlinear
systems in the so-called output feedback form, in [14] the polynomial gain disturbance
attenuation property was achieved via output feedback. For a class of nonlinear systems
satisfying linear growth conditions, in [15] a linear dynamic output compensator atten-
uating the influence of the disturbance on the output was explicitly constructed by the
feedback domination design. In the above-mentioned literature on the ADD problem,
most of the considered nonlinear systems are feedback (partial) linearizable and/or lin-
ear in control input. Recently, the ADD problem was addressed in [16] for a class of
inherently nonlinear systems. The class of the systems is in the form of a chain of power
integrators perturbed by a lower-triangular vector field. Different from some previous
results, the ADD problem is formulated in terms of L2 − L2p gain for the inherently
nonlinear systems, rather than the standard L2-gain. The controller was explicitly con-
structed by applying the so-called technique of adding a power integrator developed in
[17].

It is well-known that adaptive control is one of the effective ways to deal with control
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systems with parametric uncertainty [18]. When the ADD problem for nonlinear systems
with unknown parameters is investigated, a natural idea is to design an adaptive control
law to solve this problem. However, only a few results on adaptive regulation with almost
adaptive decoupling for nonlinear systems are available in the existing literature. In [19],
[20] and [21], adaptive controllers are designed to guarantee arbitrary disturbance atten-
uation on the output tracking error for smooth reference signals for uncertain systems
with output depending nonlinearities. In [19] and [20], the disturbance enters linearly in
the state space equation, while in [21] the disturbance enters nonlinearly. Very recently,
in [22] the ADD problem was discussed for power integrator lower triangular nonlin-
ear systems. The function of disturbance attenuation is characterized by L2m − L2mp

gain. The adaptive control law was explicitly constructed by employing the adaptive
adding a power integrator technique proposed in [23]. However, the result in [22] is only
applicable to the case where the unknown parameter enters linearly in the state space
equation. In this paper we will deal with the almost disturbance decoupling problem for
power integrator triangular systems with nonlinear parametrization. With the help of
the parameter separation technique proposed in [24], a constructive solution that solves
the ADD problem is derived by using the adaptive adding one power integrator. A key
feature of our proposed adaptive controller with the function of disturbance attenuation
is its minimum-order property, since the order of the dynamic compensator is equal to
one.

It should be pointed out that some other problems have been investigated for non-
linear systems. In [25], by using a constructed Lyapunov function, the conditions of
ultimate boundedness of solutions for a class of nonlinear systems were given. In [26],
an original practical criterion of global stability analysis of nonlinear polynomial systems
was proposed. In [27], as a generalization of Gronwalls inequality, generalized dynamic
inequalities were introduced to the time scales scene. Then, linear systems with linear
and nonlinear perturbations and their stability characteristics versus the unperturbed
system were investigated.

For simplicity, throughout this paper we use I[m,n] to denote the set
{m,m+ 1, · · · , n} for two integers m < n. For a group of scalars xi, i ∈ I[1, j], we

use x[j] to denote the vector
[

x1 x2 · · · xj
]T

. ‖·‖ is used to denote the Euclidean
norm of a vector.

2 Problem Formulation

We consider the following single-input single-output power integrator lower-triangular
system with an unknown parameter vector θ:







ẋi = xpi

i+1 + fi(x[i]) + gi(x[i])w + φi(x[i], θ), i ∈ I[1, n− 1],
ẋn = upn + fn(x[n]) + gn(x[n])w + φn(x[n], θ),
y = h(x1),

(1)

where u ∈ R, x = x[n] ∈ R
n, y ∈ R and w ∈ R

s are the control input, system state,
system output and disturbance signal, respectively; pi, i ∈ I[1, n], are positive integers
and fi(·), gi(·), i ∈ I[1, n], and h(·), are smooth functions with fi(0) = 0, i ∈ I[1, n], and
h(0) = 0; φi(·), i ∈ I[1, n] are continuous functions with φi(0, θ) = 0.

The objective of this paper is to design, under appropriate conditions, a smooth
adaptive controller such that the closed-loop system is globally stable in the sense of
Lyapunov, and the influence of the disturbance w(t) on the output y(t) is not greater
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than the prescribed level. To be specific, the following problem called the adaptive
regulation with almost disturbance decoupling will be dealt with in this paper. In [28],
some new results regarding the boundedness, stability and attractivity were provided
for a class of initial-boundary-value problems characterized by a quasi-linear third order
equation which may contain time-dependent coefficients.

Adaptive Regulation with Almost Disturbance Decoupling (ARADD):

Consider the power integrators with nonlinearly parameterized lower triangular struc-
ture (1). Given any real number γ > 0, find, if possible, a smooth adaptive controller

{

·

θ̂ = ψ(x[n], θ̂), ψ(0, 0) = 0,

u = u(x[n], θ̂), u(0, 0) = 0,
(2)

such that the closed-loop system (1) – (2) satisfies the following:
1) when w = 0, the closed-loop system is globally stable in the sense of Lyapunov,

and globally asymptotical regulation of the state is achieved, i.e., limt→∞ x[n](t) = 0.
2) for any disturbance w ∈ L2, the response of the closed-loop system starting from

the initial state x(0) = 0 is such that

∫ t

0

|y(s)|
2p1 ds ≤ γ2

∫ t

0

‖w(s)‖
2
ds, for any t ≥ 0.

In order to solve the ARADD problem, the following assumptions are needed.
Assumption A1: p1 ≥ p2 ≥ · · · ≥ pn are odd integers.
Assumption A2: For any i ∈ I[1, n],

∣

∣fi(x[i])
∣

∣ ≤ αi(x[i])

i
∑

j=1

|xj |
pi , (3)

where αi(·) is a nonnegative smooth function.
Assumption A3: For any i ∈ I[1, n],

∥

∥gi(x[i])
∥

∥ ≤ ϕi(x[i]), where ϕi(·) is known
bounding function that is nonnegative and smooth.

Assumption A4: For any i ∈ I[1, n],
∣

∣φi(x[i], θ)
∣

∣ ≤ βi(x[i], θ)
∑i

j=1 |xj |
pi , where

βi(·) is a nonnegative continuous function.
Before ending this section, we provide some useful lemmas. The first lemma is a slight

extension of the well-known Young’s inequality, and will be repeatedly used in the design
of the adaptive controller. The proof can be found in [17].

Lemma 2.1 For any positive integers m,n, and any real-valued function γ(x, y) > 0,
the following inequality holds:

|x|
m
|y|

n
≤

m

m+ n
γ(x, y) |x|

m+n
+

n

m+ n
γ−m/n(x, y) |y|

m+n
.

By applying the above lemma, one can easily obtain the following conclusion [16].
This result will also play a vital role in the adding a power integrator design.

Lemma 2.2 Let x, y and z, be real variables. Assume that g1 : R2 → R is a smooth
function. Then, for any positive integers m,n and real number N > 0, there exists a
nonnegative smooth function h1 : R3 → R such that the following relation holds:

|xm [(y + xg1(x, z))
n − (xg1(x, z))

n]| ≤
|x|

m+n

N
+ |y|

m+n
h1(x, y, z).
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The following lemma provides the parameter separation principle. It is this principle
that enables us to deal with nonlinear parameterization. A constructive proof of the
result can be found in [24].

Lemma 2.3 For any real-valued continuous function f(x, y), where x ∈ R
m, y ∈ R

n,
there are smooth scalar functions a(x) ≥ 1 and b(y) ≥ 1, such that |f(x, y)| ≤ a(x)b(y).

3 Global Adaptive Regulation

In this section we solve the problem of adaptive regulation with almost disturbance
decoupling for the power integrator lower triangular system (1). Using the adding a power
integrator technique as the design tool, we will explicitly construct a one-dimensional
adaptive controller that solves the problem of ARADD with the help of the parameter
separation technique provided in Lemma 2.3. Now we are ready to present the main
result.

Theorem 3.1 Under the condition of Assumptions A1 – A4, the ARADD problem
for system (1) is solvable by a one-dimensional smooth adaptive controller

{

·

Θ̂ = ψ(x[n], Θ̂), Θ̂ ∈ R, ψ(0, 0) = 0,

u = u(x[n], Θ̂), u(0, 0) = 0.
(4)

Proof The proof is based on a feedback domination design approach which combines
the technique of adding one power integrator [17, 23] with the parameter separation
method [24]. The conclusion is obtained by applying mathematical induction method.
Firstly, we need some preliminaries with the help of the parameter separation technique
given in Lemma 2.3.

By Lemma 2.3, there exist two smooth functions ci(θ) ≥ 1 and γi(x[i]) ≥ 1 satisfying

βi(x[i], θ) ≤ γi(x[i])ci(θ).

Since θ is a constant vector, ci(θ) is also a constant. Let Θ :=
∑n

i=1 ci(θ) be a new un-
known constant. Then Assumption A4 implies that there are smooth function γi(x[i]) ≥ 1
and an unknown constant Θ ≥ 1, such that

∣

∣φi(x[i], θ)
∣

∣ ≤ γi(x[i])Θ
∑i

j=1
|xj |

pi . (5)

Now we proceed to construct the smooth adaptive controller to solve the ARADD prob-
lem for the system (1).

Step 1: Define Θ̃ = Θ − Θ̂, where Θ̂(t) is the estimate of Θ to be designed later.
Consider the Lyapunov function

V1(x1, Θ̂) =
1

p1 + 1
xp1+1
1 +

1

2
Θ̃2.
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By (3), (5) and Lemma 2.1, there exist a smooth function ρ0(x1) ≥ 0, such that for any
β > 0

V̇1(x1, Θ̂) + y2p1 − β ‖w‖2

= xp1

1 (xp1

2 + f1(x1) + g1(x1)w + φ1(x1, θ))−
·

Θ̂Θ̃ + y2p1 − β ‖w‖
2

≤ xp1

1 x
p1

2 + x2p1

1 α1(x1) + |xp1

1 |ϕ1(x1) ‖w‖+ x2p1

1 γ1(x1)(Θ̃ + Θ̂)−
·

Θ̂Θ̃

+x2p1

1 ρ0(x1)− β ‖w‖2

≤ xp1

1 x
p1

2 + x2p1

1 α1(x1) +
x2p1

1 ϕ2
1(x1)

4β
+ x2p1

1 γ1(x1)Θ̂

+x2p1

1 ρ0(x1) + (Ψ1(x1, Θ̂)−
·

Θ̂)Θ̃

≤ xp1

1 x
p1

2 + x2p1

1 ρ1(x1, Θ̂) + (Ψ1(x1, Θ̂)−
·

Θ̂)Θ̃,

where

ρ1(x1, Θ̂) = α1(x1) + γ1(x1)

√

Θ̂2 + 1 +
ϕ2
1(x1)

4β
+ ρ0(x1) ≥ 0

and

Ψ1(x1, Θ̂) = x2p1

1 γ1(x1) ≥ 0.

It is easy to check that that the virtual controller

x∗2(x1, Θ̂) = −x1

[

n+ ρ1(x1, Θ̂)
]1/p1

(6)

satisfies

V̇1(x1, Θ̂) + y2p1 − β ‖w‖2 ≤ −nx2p1

1 + xp1

1 (xp1

2 − x∗p1

2 ) + (Ψ1(x1, Θ̂)−
·

Θ̂)
(

Θ̃ + η1

)

(7)

with η1 = 0. Moreover, the virtual control function x∗2(x1, Θ̂) is smooth due to the
smooth nonnegativeness of functions α1(x1),γ1(x1) and ϕ1(x1). In addition

∣

∣

∣
Ψ1(ξ1, Θ̂)

∣

∣

∣
≤ |x1|

2p1 ᾱ1(ξ1, Θ̂), ᾱ1(ξ1, Θ̂) = γ1(ξ1) ≥ 0. (8)

Step 2: Consider the (x1, x2)-subsystem of (1). For convenience, we let x∗1 = 0 in
the sequential discussion. The change of coordinate

ξ1 = x1, ξ2 = x2 − x∗2(ξ1, Θ̂)

transforms the (x1, x2)-subsystem of (1) into

ξ̇1 = δ1(ξ[2], Θ̂) + Φ1(ξ1, Θ̂, θ) +G1(ξ1)w − ω1(Θ̂)
·

Θ̂,

ξ̇2 = xp2

3 +∆2(ξ[2], Θ̂) + Φ2(ξ[2], Θ̂, θ) +G2(ξ[2])w − ω2(ξ1, Θ̂)
·

Θ̂,
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where
δ1(ξ[2], Θ̂) = (ξ2 + x∗2)

p1 + f1(ξ1),

∆2(ξ[2], Θ̂) = f2(ξ[2] + x∗[2])−
∂x∗

2

∂ξ1
δ1(ξ[2], Θ̂),

Φ1(ξ1, Θ̂, θ) = φ1(ξ1, θ),

Φ2(ξ[2], Θ̂, θ) = φ2(ξ[2] + x∗[2], θ)−
∂x∗

2

∂ξ1
Φ1(ξ1, Θ̂, θ),

G1(ξ1) = g1(ξ1),

G2(ξ[2]) = g2(ξ[2] + x∗[2])−
∂x∗

2

∂ξ1
G1(ξ1),

ω1(Θ̂) = 0,

ω2(ξ1, Θ̂) =
∂x∗

2

∂Θ̂
−

∂x∗

2

∂ξ1
ω1(Θ̂).

Under the condition of Assumption A4, it follows from the relation (5) that
∣

∣

∣
Φ1(ξ1, Θ̂, θ)

∣

∣

∣
≤ |x1|

p1 β̄1(ξ1, Θ̂)Θ, β̄1(ξ1, Θ̂) = γ1(ξ1) ≥ 0.

With this relation combined with (5), we have by applying Lemma 2.1

∣

∣

∣
Φ2(ξ[2], Θ̂, θ)

∣

∣

∣
≤

∣

∣

∣
φ2(ξ[2] + x∗[2], θ)

∣

∣

∣
+

∣

∣

∣

∣

∂x∗2
∂ξ1

Φ1(ξ1, θ)

∣

∣

∣

∣

≤ (|ξ1|
p2 + |ξ2 + x∗2|

p2) γ2(ξ[2] + x∗[2])Θ +

∣

∣

∣

∣

∂x∗2
∂ξ1

∣

∣

∣

∣

|x1|
p1 γ1(x1)Θ

≤ (|ξ1|
p2 + |ξ2|

p2)β̃2(ξ[2], Θ̂)Θ + |ξ1|
p1

∣

∣

∣

∣

∂x∗2
∂ξ1

∣

∣

∣

∣

γ1(ξ1)Θ

for a smooth function β̃2(·) ≥ 0. This inequality implies that
∣

∣

∣
Φ2(ξ[2], Θ̂, θ)

∣

∣

∣
≤ (|ξ1|

p2 + |ξ2|
p2)β̄2(ξ[2], Θ̂)Θ (9)

for a smooth function β̄2(·) ≥ 0, because p1 ≥ p2. By similar ways, it is easy to show
that the following two relations hold

∣

∣

∣
δ1(ξ[2], Θ̂)

∣

∣

∣
≤ (|ξ1|

p1 + |ξ2|
p1) τ̄1(ξ[2], Θ̂),

∣

∣

∣
∆2(ξ[2], Θ̂)

∣

∣

∣
≤ (|ξ1|

p2 + (|ξ2|
p2) τ̃2(ξ[2], Θ̂), (10)

for two nonnegative smooth functions τ̄1(ξ[2], Θ̂) and τ̃2(ξ[2], Θ̂). By Assumption A3, it
is known that there exist smooth nonnegative functions ϕ̃1(ξ1) and ϕ̃2(ξ[2]), satisfying

‖G1(ξ1)‖ ≤ ϕ1(ξ1) = ϕ̃1(ξ1),

∥

∥G2(ξ[2])
∥

∥ ≤

∥

∥

∥

∥

g2(ξ[2] + x∗[2])−
∂x∗2
∂ξ1

G1(ξ1)

∥

∥

∥

∥

≤ ϕ̃2(ξ[2]). (11)

Again using Lemma 2.1, we have from (9) and (10) that

∣

∣

∣
ξ2p1−p2

2 Φ2(ξ[2], Θ̂, θ)
∣

∣

∣
≤

[

ξ2p1

1

3(1 + Θ̂2)(1 + η21)
+ ξ2p1

2 ρ̄2(ξ[2], Θ̂)

]

Θ

≤
1

6
ξ2p1

1 + ξ2p1

2 ρ̄2(ξ[2], Θ̂)

√

Θ̂2 + 1 +

[

ξ2p1

1

3(1 + Θ̂2)(1 + η21)
+ ξ2p1

2 ρ̄2(ξ[2], Θ̂)

]

Θ̃,(12)
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∣

∣

∣
ξ2p1−p2

2 ∆2(ξ[2], Θ̂)
∣

∣

∣
≤

1

6
ξ2p1

1 + ξ2p1

2 ρ̌2(ξ[2], Θ̂), (13)

for some nonnegative smooth functions ρ̄2(ξ[2], Θ̂) and ρ̌2(ξ[2], Θ̂). By applying Lemma
2.2, it is easy to show from (6) that

∣

∣ξp1

1 ((ξ2 + x∗2)
p1 − x∗p1

2 )
∣

∣ ≤
ξ2p1

1

6
+ ξ2p1

2 ρ̃2(ξ[2], Θ̂), (14)

for some nonnegative smooth function ρ̃2(ξ[2], Θ̂). Now, consider the Lyapunov function

V2(ξ[2], Θ̂) = V1(x1, Θ̂) +
ξ2p1−p2+1
2

2p1 − p2 + 1

which is positive definite and radially unbounded. With the relations (7), (12), (13) and
(14), a straightforward computation gives

V̇2(ξ[2], Θ̃) + y2p1 − 2β ‖w‖
2

≤ −nξ2p1

1 + ξp1

1 ((ξ2 + x∗2)
p1 − x∗p1

2 ) + (Ψ1(x1, Θ̂)−
·

Θ̂)
(

Θ̃ + η1

)

+ξ2p1−p2

2

(

xp2

3 +∆2(ξ[2], Θ̂) + Φ2(ξ[2], Θ̂, θ) +G2(ξ[2])w
)

−ξ2p1−p2

2 ω2(ξ1, Θ̂)
·

Θ̂− β ‖w‖
2

≤ −

(

n−
1

2

)

ξ2p1

1 + ξ2p1

2 ρ̃2(ξ[2], Θ̂) + (Ψ1(x1, Θ̂)−
·

Θ̂)
(

Θ̃ + η1

)

+ ξ2p1−p2

2 G2(ξ[2])w

+ξ2p1−p2

2 xp2

3 + ξ2p1

2 ρ̌2(ξ[2], Θ̂) + ξ2p1

2 ρ̄2(ξ[2], Θ̂)

√

Θ̂2 + 1− β ‖w‖2 (15)

+

[

ξ2p1

1

3(1 + Θ̂2)(1 + η21)
+ ξ2p1

2 ρ̄2(ξ[2], Θ̂)

]

Θ̃− ξ2p1−p2

2 ω2(ξ1, Θ̂)
·

Θ̂

= −

(

n−
1

2

)

ξ2p1

1 + ξ2p1−p2

2 xp2

3 + ξ2p1

2

[

ρ̃2(ξ[2], Θ̂) + ρ̄2(ξ[2], Θ̂)

√

Θ̂2 + 1 + ρ̌2(ξ[2], Θ̂)

]

+ξ2p1−p2

2 G2(ξ[2])w − β ‖w‖2 +

(

Ψ2(ξ[2], Θ̂)−
·

Θ̂

)

(

Θ̃ + η2(ξ[2], Θ̂)
)

+Π2(ξ[2], Θ̂),

where

Ψ2(ξ[2], Θ̂) = Ψ1(ξ1) +
ξ2p1

1

3(1 + Θ̂2)(1 + η21)
+ ξ2p1

2 ρ̄2(ξ[2], Θ̂),

η2(ξ[2], Θ̂) = η1 + ξ2p1−p2

2 ω2(ξ1, Θ̂),

Π2(ξ[2], Θ̂) = −Ψ2(ξ[2], Θ̂)ξ2p1−p2

2 ω2(ξ1, Θ̂)−

[

ξ2p1

1

3(1 + Θ̂2)(1 + η21)
+ ξ2p1

2 ρ̄2(ξ[2], Θ̂)

]

η1.

(16)
By applying Lemma 2.1 again, it is easy to derive from the relation (8) that

∣

∣

∣
Ψ2(ξ[2], Θ̂)

∣

∣

∣
≤ (ξ2p1

1 + ξ2p1

2 )ᾱ2(ξ[2], Θ̂) (17)
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for a smooth function ᾱ2(ξ[2], Θ̂) ≥ 0. By the completion of square, it is easily derived
from (11) that

∥

∥

∥
ξ2p1−p2

2 G2(ξ[2])w
∥

∥

∥
≤

∣

∣

∣
ξ2p1−p2

2

∣

∣

∣
ϕ̃2(ξ[2]) ‖w‖ ≤ ξ2p1

2

ξ2p1−2p2

2 ϕ̃2
2(ξ[2])

4β
+ β ‖w‖

2
.(18)

In view of the relation (17), by using Lemma 2.1 it is easily obtained from (16) that the
following relation holds

∣

∣

∣
Π2(ξ[2], Θ̂)

∣

∣

∣
(19)

≤ (ξ2p1

1 + ξ2p1

2 )ᾱ2(ξ[2], Θ̂)
∣

∣

∣
ξ2p1−p2

2 ω2(ξ1, Θ̂)
∣

∣

∣
+

1

6
ξ2p1

1 + ξ2p1

2 ρ̄2(ξ[2], Θ̂)
√

η21 + 1

≤
ξ2p1

1

2
+ ξ2p1

2 ρ̂2(ξ[2], Θ̂).

for a nonnegative smooth functions ρ̂2(·). With the relations (14) – (19) in mind, it
follows from (15) that

V̇2(ξ[2], Θ̂) ≤ −(n− 1)x2p1

1 +

(

Ψ2(ξ[2], Θ̂)−
·

Θ̂

)

(

Θ̃ + η2(ξ[2], Θ̂)
)

+ξ2p1

2 ρ2(ξ[2], Θ̂) + ξ2p1−p2

2

(

xp2

3 − x∗p2

3

)

+ ξ2p1−p2

2 x∗p2

3 ,

where

ρ2(ξ[2], Θ̂)= ρ̃2(ξ[2], Θ̂)+ρ̌2(ξ[2], Θ̂)+ρ̄2(ξ[2], Θ̂)

√

Θ̂2 + 1+ρ̂2(ξ[2], Θ̂)+
ξ2p1−2p2

2 ϕ̃2
2(ξ[2])

4β
≥0.

Choose

x∗3 = −ξ2

[

n− 1 + ρ2(ξ[2], Θ̂)
]1/p2

.

This smooth virtual controller will satisfy

V̇2(ξ[2], Θ̂) + y2p1 − 2β ‖w‖
2

≤ −(n− 1)(ξ2p1

1 + ξ2p1

2 ) + ξ2p1−p2

2

(

xp2

3 − x∗p2

3

)

+

(

Ψ2(ξ[2], Θ̂)−
·

Θ̂

)

(

Θ̃ + η2(ξ[2], Θ̂)
)

.

Inductive Step: Suppose for the system (1) with dimension k, there is a global change
of coordinates ξi = xi − x∗i (ξ[i−1], Θ̂), i ∈ I[1, k], transforming (1) into the system

ξ̇1 = δ1(ξ[2], Θ̂) + Φ1(ξ1, Θ̂, θ) +G1(ξ1)w − ω1(Θ̂)
·

Θ̂,

· · · (20)

ξ̇k−1 = δk−1(ξ[k], Θ̂) + Φk−1(ξ[k−1], Θ̂, θ) +Gk−1(ξ[k−1])w − ωk−1(ξ[k−2], Θ̂)
·

Θ̂,

ξ̇k = xpk

k+1 +∆k(ξ[k], Θ̂) + Φk(ξ[k], Θ̂, θ) +Gk(ξ[k])w − ωk(ξ[k−1], Θ̂)
·

Θ̂,

where

x∗i = −ξi−1

[

n− i+ 2 + ρi−1(ξ[i−1], Θ̂)
]1/pi−1

, i ∈ I[2, k], (21)
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∣

∣

∣
Φi(ξ[i], Θ̂, θ)

∣

∣

∣
≤ β̄i(ξ[i], Θ̂)Θ

i
∑

j=1

|ξj |
pi , i ∈ I[1, k], (22)

∣

∣

∣
δi(ξ[i+1], Θ̂, θ)

∣

∣

∣
≤ τ̄i(ξ[i+1], Θ̂)

i
∑

j=1

|ξj |
pi , i ∈ I[1, k − 1], (23)

∣

∣

∣
∆k(ξ[k], Θ̂, θ)

∣

∣

∣
≤ τ̃k(ξ[k], Θ̂)

k
∑

j=1

|ξj |
pk , (24)

∥

∥Gi(ξ[i])
∥

∥ ≤ ϕ̃i(ξ[i]), (25)

for some nonnegative smooth functions β̄i(·), ϕ̃i(·), i ∈ I[1, k], τ̃k(·), and ρi(·), τ̄i(·),
i ∈ I[1, k − 1]. Moreover, there is a virtual controller

x∗k+1(x[k], Θ̂) = −ξk

[

n− k + 1 + ρk(ξ[k], Θ̂)
]1/pk

, ρk(ξ[k], Θ̂) ≥ 0, (26)

such that the closed-loop system (20) – (26) satisfies

V̇k(ξ[k], Θ̂) + y2p1 − kβ ‖w‖2 ≤ −(n− k + 1)
k
∑

i=1

ξ2p1

i + ξ2p1−pk

k

(

xpk

k+1 − x∗pk

k+1

)

(27)

+

(

Ψk(ξ[k], Θ̂)−
·

Θ̂

)

(

Θ̃ + ηk(ξ[k], Θ̂)
)

,

where

Vk(ξ[k], Θ̂) =
1

2
Θ̃2 +

k
∑

i=1

ξ2p1−pi+1
i

2p1 − pi + 1
,

is a positive definite and proper Lyapunov function. Moreover,

∣

∣

∣
Ψk(ξ[k], Θ̂)

∣

∣

∣
≤ ᾱk(ξ[k], Θ̂)

k
∑

i=1

ξ2p1

i . (28)

Then, in the case when the dimension of system (1) is equal to k+1, introduce the trans-
formation ξk+1 = xk+1 − x∗k+1(ξ[k], Θ̂). This, together with (26), leads to the augmented
system

ξ̇1 = δ1(ξ[2], Θ̂) + Φ1(ξ1, Θ̂, θ) +G1(ξ1)− ω1(Θ̂)
·

Θ̂,

· · · (29)

ξ̇k = δk(ξ[k+1], Θ̂) + Φk(ξ[k], Θ̂, θ) +Gk(ξ[k])− ωk(ξ[k−1], Θ̂)
·

Θ̂,

ξ̇k+1 = x
pk+1

k+2 +∆k+1(ξ[k+1], Θ̂) + Φk+1(ξ[k+1], Θ̂, θ),

+Gk+1(ξ[k+1])w − ωk+1(ξ[k], Θ̂)
·

Θ̂,

where

ωk+1(ξ[k], Θ̂) = −

k
∑

i=1

∂x∗k+1

∂ξi
ωi(ξ[i−1], Θ̂) +

∂x∗k+1

∂Θ̂
,
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δk(ξ[k+1], Θ̂) = ∆k(ξ[k+1], Θ̂) + (ξk+1 + x∗k+1)
pk ,

∆k+1(ξ[k+1], Θ̂) = fk+1(ξ[k+1] + x∗[k+1])−

k
∑

i=1

∂x∗k+1

∂ξi
δi(ξ[i+1], Θ̂),

Φk+1(ξ[k+1], Θ̂, θ) = φk+1(ξ[k+1] + x∗[k+1], θ)−

k
∑

i=1

∂x∗k+1

∂ξi
Φi(ξ[i], Θ̂, θ),

Gk+1(ξ[k+1]) = gk+1(ξ[k])−

k
∑

i=1

∂x∗k+1

∂ξi
Gi(ξ[i]).

Under the condition of Assumption 4, the relation (5) holds. Combining this relation
with the inductive assumption (22) and (21), and applying Lemma 2.1, we have

∣

∣

∣
Φk+1(ξ[k+1], Θ̂, θ)

∣

∣

∣
≤

∣

∣

∣
φk+1(ξ[k+1] + x∗[k+1], θ)

∣

∣

∣
+

k
∑

i=1

∣

∣

∣

∣

∂x∗k+1

∂ξi

∣

∣

∣

∣

Φi(ξ[i], Θ̂, θ)

≤ γk+1(ξ[k+1] + x∗[k+1])Θ

k+1
∑

i=1

|ξi + x∗i |
pk+1

+
k
∑

i=1





∣

∣

∣

∣

∂x∗k+1

∂ξi

∣

∣

∣

∣

β̄i(ξ[i], Θ̂)Θ
i
∑

j=1

|ξj |
pi



 .

In view of the fact that and p1 ≥ p2 ≥ · · · ≥ pk+1, there exists a smooth function
β̄k+1(ξ[k+1], Θ̂) ≥ 0, such that

∣

∣

∣
Φk+1(ξ[k+1], Θ̂, θ)

∣

∣

∣
≤ Θβ̄k+1(ξ[k+1], Θ̂)

k+1
∑

i=1

|ξi|
pk+1 . (30)

Under the condition of Assumption A3, by applying the inductive assumption (25) and
the smoothness of x∗i , i ∈ I[1, k], it is known that there is a smooth function ϕ̃k+1(ξ[k+1])
to satisfy

∥

∥Gk+1(ξ[k+1])
∥

∥ ≤ ϕ̃k+1(ξ[k+1]). (31)

According to the inductive assumptions (24) and (21), we can obtain by using Lemma
2.1 again

∣

∣

∣
δk(ξ[k+1], Θ̂)

∣

∣

∣
≤

∣

∣

∣
∆k(ξ[k], Θ̂)

∣

∣

∣
+
∣

∣(ξk+1 + x∗k+1)
pk
∣

∣

≤ τ̃k(ξ[k], Θ̂)

k
∑

i=1

|ξi|
pk +

∣

∣(ξk+1 + x∗k+1)
pk
∣

∣ (32)

≤ τ̄k(ξ[k+1], Θ̂)

k+1
∑

i=1

|ξi|
pk
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for some smooth function τ̄k(ξ[k+1], Θ̂) ≥ 0. According to Assumption 2 and by the
relations (32) and (23), it can be derived that

∣

∣

∣
∆k+1(ξ[k+1], Θ̂)

∣

∣

∣
≤

∣

∣

∣

∣

∣

fk+1(ξ[k+1] + x∗[k+1])−
k
∑

i=1

∂x∗k+1

∂ξi
δi(ξ[i+1], Θ̂)

∣

∣

∣

∣

∣

≤ αk+1(ξ[k+1] + x∗[k+1])
k+1
∑

i=1

|ξi + x∗i |
pk+1 (33)

+

k
∑

i=1





∣

∣

∣

∣

∂x∗k+1

∂ξi

∣

∣

∣

∣

τ̄i(ξ[i+1], Θ̂)

i+1
∑

j=1

|ξj |
pi





≤ τ̃k+1(ξ[k+1], Θ̂)
k+1
∑

j=1

|ξj |
pk+1

for a smooth function τ̃k+1(ξ[k+1], Θ̂) ≥ 0. Again using Lemma 2.1, we have from (30)

∣

∣

∣
ξ
2p1−pk+1

k+1 Φk+1(ξ[k+1], Θ̂, θ)
∣

∣

∣

≤

[

∑k

i=1 ξ
2p1

i

3(1 + Θ̂2)(1 + η2k(x[k], Θ̂))
+ ξ2p1

k+1ρ̄k+1(ξ[k+1], Θ̂)

]

Θ

≤
1

6

k
∑

i=1

ξ2p1

i + ξ2p1

k+1ρ̄k+1(ξ[k+1], Θ̂)

√

Θ̂2 + 1 (34)

+

[

∑k

i=1 ξ
2p1

i

3(1 + Θ̂2)(1 + η2k(x[k], Θ̂))
+ ξ2p1

k+1ρ̄k+1(ξ[k+1], Θ̂)

]

Θ̃, (35)

∣

∣

∣
ξ2p1−p2

k+1 ∆k+1(ξ[k+1], Θ̂)
∣

∣

∣
≤

1

6

k
∑

i=1

ξ2p1

i + ξ2p1

k+1ρ̌k+1(ξ[k+1], Θ̂), (36)

for some nonnegative smooth functions ρ̄k+1(ξ[2], Θ̂) and ρ̌k+1(ξ[k+1], Θ̂). By applying
Lemma 2.2, it is easy to show that

∣

∣

∣
ξ2p1−pk

k (
(

ξk+1 + x∗k+1

)pk − x∗pk

k+1)
∣

∣

∣
≤

1

6
ξ2p1

k + ξ2p1

k+1ρ̃k+1(ξ[k+1], Θ̂), (37)

for some nonnegative smooth function ρ̃k+1(ξ[k+1], Θ̂). Now consider the Lyapunov func-
tion

Vk+1(ξ[k+1], Θ̂) = Vk(ξ[k], Θ̂) +
ξ
2p1−pk+1+1
k+1

2p1 − pk+1 + 1
.
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With the relations (35), (36) and (37) and the inductive assumption (27), it is derived
that the time derivative of Vk+1 along the trajectories of system (29) satisfies

V̇k+1 + y2p1 − (k + 1)β ‖w‖2

≤ −(n− k + 1)

k
∑

i=1

ξ2p1

i + ξ2p1−pk

k

(

xpk

k+1 − x∗pk

k+1

)

+

(

Ψk(ξ[k], Θ̂)−
·

Θ̂

)

(

Θ̃ + ηk(ξ[k], Θ̂)
)

+ ξ
2p1−pk+1

k+1

(

x
pk+1

k+2 +∆k+1(ξ[k+1], Θ̂) + Φk+1(ξ[k+1], Θ̂, θ

+ Gk+1(ξ[k+1])w − ωk+1(ξ[k], Θ̂)
·

Θ̂

)

− β ‖w‖2

≤ −(n− k + 1)

k
∑

i=1

ξ2p1

i +
1

2

k
∑

i=1

ξ2p1

i +

(

Ψk(ξ[k], Θ̂)−
·

Θ̂

)

(

Θ̃ + ηk(ξ[k], Θ̂)
)

+ ξ
2p1−pk+1

k+1 x
pk+1

k+2 + ξ2p1

k+1

[

ρ̄k+1(ξ[k+1], Θ̂)

√

Θ̂2 + 1 + ρ̌k+1(ξ[k+1], Θ̂)

+ ρ̃k+1(ξ[k+1], Θ̂)
]

− ξ
2p1−pk+1

k+1 ωk+1(ξ[k], Θ̂)
·

Θ̂

+

[

∑k

i=1 ξ
2p1

i

3(1 + Θ̂2)(1 + η2k(ξ[k], Θ̂))
+ ξ2p1

k+1ρ̄k+1(ξ[k+1], Θ̂)

]

Θ̃

+ ξ
2p1−pk+1

k+1 Gk+1(ξ[k+1])w − β ‖w‖
2

= −(n− k +
1

2
)

k
∑

i=1

ξ2p1

i + ξ2p1

k+1

[

ρ̄k+1(ξ[k+1], Θ̂)

√

Θ̂2 + 1 + ρ̌k+1(ξ[k+1], Θ̂) (38)

+ ρ̃k+1(ξ[k+1], Θ̂)
]

+ ξ2p1−p2

2 Gk+1(ξ[k+1])w − β ‖w‖
2
+ ξ

2p1−pk+1

k+1 x
pk+1

k+2 (39)

+

(

Ψk+1(ξ[k+1], Θ̂)−
·

Θ̂

)

(

Θ̃ + ηk+1(ξ[k+1], Θ̂)
)

+Πk+1(ξ[k+1], Θ̂),

where

Ψk+1(ξ[k+1], Θ̂) = Ψk(ξ[k], Θ̂) +

∑k

i=1 ξ
2p1

i

3(1 + Θ̂2)(1 + η2k(x[k], Θ̂))
+ ξ2p1

k+1ρ̄k+1(ξ[k+1], Θ̂),

ηk+1(ξ[k+1], Θ̂) = ηk(ξ[k], Θ̂) + ξ
2p1−pk+1

k+1 ωk+1(ξ[k], Θ̂)

Πk+1(ξ[k+1], Θ̂) = −Ψk+1(ξ[k+1], Θ̂)ξ
2p1−pk+1

k+1 ωk+1(ξ[k], Θ̂) (40)

−

[

∑k

i=1 ξ
2p1

i

3(1 + Θ̂2)(1 + η2k(ξ[k+1], Θ̂))
+ ξ2p1

k+1ρ̄k+1(ξ[k+1], Θ̂)

]

ηk(ξ[k+1], Θ̂).

By using Lemma 2.1, it is easily derived from (28) that the following relation holds

∣

∣

∣
Ψk+1(ξ[k+1], Θ̂)

∣

∣

∣
≤ ᾱk+1(ξ[k+1], Θ̂)

k+1
∑

i=1

|ξi|
2p1 (41)



266 Y. M. FU, M. Z. HOU, J. HU AND L. NIU

for a smooth function ᾱk+1(ξ[k+1], Θ̂) ≥ 0. In view of relation (41), we have

Πk+1(ξ[k+1], Θ̂)

≤ ᾱk+1(·)
∣

∣

∣
ξ
2p1−pk+1

k+1 ωk+1(·)
∣

∣

∣

k+1
∑

i=1

|ξi|
2p1 +

1

6

∑k

i=1
ξ2p1

i (42)

+ ξ2p1

k+1ρ̄k+1(·)
√

η2k(·) + 1 ≤
1

2

k
∑

i=1

ξ2p1

i + ξ2p1

k+1ρ̂k+1(ξ[k+1], Θ̂)

for a smooth function ρ̂k+1(·). On the other hand, it follows from (31) that
∥

∥

∥
ξ2p1−p2

2 Gk+1(ξ[k+1])w
∥

∥

∥
≤

∣

∣

∣
ξ2p1−p2

2

∣

∣

∣
ϕ̃k+1(ξ[k+1]) ‖w‖

≤ ξ2p1

2

ξ2p1−2p2

2 ϕ̃2
k+1(ξ[k+1])

4β
+ β ‖w‖2 . (43)

By substituting (42) and (43) into (39), it is clear that the following virtual controller

x∗k+2(ξ[k+1], Θ̂) = −ξk+1

[

n− k + ρk+1(ξ[k+1], Θ̂)
]

1

pk+1

with

ρk+1(·) = ρ̄k+1(·)

√

Θ̂2 + 1 + ρ̌k+1(·) + ρ̃k+1(·) + ρ̂k+1(·) +
ξ2p1−2p2

2 ϕ̃2
k+1(ξ[k+1])

4β
,

renders

V̇k+1(ξ[k+1], Θ̂) ≤ −(n− k)

k+1
∑

i=1

|ξi|
2p1 + ξ

2p1−pk+1

k+1

[

x
pk+1

k+2 − x
∗pk+1

k+2

]

+

(

Ψk+1(ξ[k+1], Θ̂)−
·

Θ̂

)

(

Θ̃ + ηk+1(ξ[k+1], Θ̂)
)

.

The aforementioned inductive argument shows that (27) holds for k = n. In fact, in the
n-th step, one can construct explicitly a global change of coordinates (ξ1, ξ2, · · · , ξn), a
positive-definite and proper Lyapunov function Vn(ξ[n], Θ̃) and a smooth controller

u∗(ξ[n], Θ̂) = −ξn

[

1 + ρn(ξ[n], Θ̂)
]1/pn

for some smooth functions ρn(·) ≥ 0 and Ψk+1(ξ[k+1], Θ̂), such that

V̇n(ξ[n], Θ̃) + y2p1 − nβ ‖w‖
2

≤ −

n
∑

i=1

ξ2p1

i + ξ2p1−pn

n (upn − u∗pn)

+

(

Ψn(ξ[n], Θ̂)−
·

Θ̂

)

(

Θ̃ + ηn(ξ[n], Θ̂)
)

.

Therefore, the one-dimensional smooth adaptive controller

{

·

Θ̂ = Ψn(ξ[n], Θ̂),

u = u∗(ξ[n], Θ̂),
(44)
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is such that

V̇n(ξ[n], Θ̂) + y2p1 − nβ ‖w‖2 ≤ −
n
∑

i=1

ξ2p1

i . (45)

Set β = γ2/n, we have

V̇n(ξ[n], Θ̂) + y2p1 − γ2 ‖w‖
2
≤ −

n
∑

i=1

ξ2p1

i . (46)

When w = 0, it is derived that

V̇n(ξ[n], Θ̂) ≤ −
n
∑

i=1

ξ2p1

i . (47)

According to the classical Lyapunov stability theory, it is known that the closed-loop
system is global stable at the equilibrium (ξ[n], Θ̂) = (0, 0). Since the Lyapunov function

Vn(ξ[n], Θ̂) is positive definite and proper, it follows from (47) and La Salle’s invariance
principle that all the bounded trajectories of the closed-loop system approach the largest

invariant set contained in
{

(ξ[n], Θ̂) : V̇n = 0
}

. Hence, limt→∞ ξ[n](t) = 0. This, com-

bined with (21) with k = n, implies limt→∞ x[n](t) = 0. Moreover, note that Vn(·) is
positive definite with Vn(0) = 0. It follows from (46) that

∫ t

0

|y(s)|2p1 ds ≤ γ2
∫ t

0

‖w‖2 ds, ∀t ≥ 0, when x(0) = 0.

This completes the proof of the theorem.

The proof of Theorem 3.1 is constructive, thus the design procedure of the adaptive
controller solving the ARADD problem is actually given. When w = 0 and fi(xi) = 0,
i ∈ I[1, n], it is easy to check that Theorem 3.1 recovers the global stabilization results
obtained in [24]. In addition, for the case of linearly parameterized systems we have the
following corollary from Theorem 3.1.

Corollary 3.1 Consider the power integrator triangular system (1) in which
φi(x[i], θ) = φi(x[i])θ. If Assumptions A1–A3 hold and

φi(x[i]) ≤ γi(x[i])
∑i

j=1
|xj |

pi , i ∈ I[1, n],

then the ARADD problem is solvable by the one-dimensional smooth adaptive controller
(4).

According to the result in [22], for linearly parameterized system (1) with s-
dimensional unknown parameter θ, the designed adaptive controller is s-dimensional.
However, the results presented in this paper indicate that the global adaptive regu-
lation with almost disturbance decoupling for systems (1) is achievable by a smooth
one-dimensional adaptive controller, no matter how big the number of unknown param-
eters is. This shows the minimum-order property of the proposed adaptive controller
controller.
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4 An Illustrative Example

Consider the following high-order planar nonlinear system











ẋ1 = x32 +
θx3

1

1+(σx2)
2 + w,

ẋ2 = u3,
y = x1,

,

where θ and σ are the unknown parameters and w is the disturbance. For this system,
one has

p1 = p2 = 3, f1 = f2 = 0, g1 = 1, g2 = 0, φ1 (x) =
θx31

1 + (σx2)
2 .

By letting

α1 = α2 = 0, ϕ1 = 1, ϕ2 = 0, β1 = |θ| ,

it is easy to check that Assumptions A1-A4 are satisfied since

|φ1 (x)| =

∣

∣

∣

∣

∣

θx31

1 + (σx2)
2

∣

∣

∣

∣

∣

≤ |θ| |x1|
3
.

In addition, it is easily obtained that Θ = |θ| and γ1 = 1.
Define V1 = 1

4x
4
1 +

1
2 Θ̃

2. Then one has

V̇1 = x31ẋ1 + Θ̃ ˙̃Θ

= x31

(

x32 +
θx31

1 + (σx2)
2 + w

)

− Θ̃
˙̂
Θ

≤ x31x
3
2 + x61

(

Θ̂ + Θ̃
)

+ |x1|
3
|w| − Θ̃

˙̂
Θ

≤ x31x
3
2 + x61

(

Θ̂ + Θ̃
)

+
x61
4β

+ βw2 − Θ̃
˙̂
Θ

≤ x31x
3
2 + x61

(√

1 + Θ̂2 +
1

4β
+ 1

)

− x61 + β |w|
2
+
(

x61 −
˙̂
Θ
)

Θ̃.

Let ρ1 =
√

1 + Θ̂2 + 1
4β + 1, Ψ1 = x61, ρ0 = 1. Then one can obtian

V̇1 + y6 − βw2 ≤ x31x
3
2 + x61ρ1 +

(

Ψ1 −
˙̂
Θ
)

Θ̃.

By choosing x∗2 = −x1 (2 + ρ1)
1/3 , one can further obtain

V̇1 + y6 − βw2 ≤ −2x61 + x31
(

x22 − x∗22
)

+
(

Ψ1 −
˙̂
Θ
)

Θ̃.

Define ξ2 = x2 − x∗2. Then it is derived that

ξ̇2 = ẋ2 − ẋ∗2 = u3 −
∂x∗2
∂x1

ẋ1 −
∂x∗2

∂Θ̂

˙̂
Θ = u3 +∆2 +Φ2 +G2w − ω2

˙̂
Θ,
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where

∆2 = −
∂x∗2
∂x1

(ξ2 + x∗2)
3
, Φ2 = −

∂x∗2
∂x1

θx31

1 + (σx2)
2 , G2 = −

∂x∗2
∂x1

, ω2 = −
∂x∗2

∂Θ̂
.

By defining V2 = V1 +
1
4ξ

4
2 , one has

V̇2 + y6 − 2βw2

= V̇1 + y6 − βw2 − βw2 + ξ32 ξ̇2

≤ −2x61 + x31
(

x32 − x∗32
)

+
(

Ψ1 −
˙̂
Θ
)

Θ̃− βw2

+ ξ32u
3 + ξ32∆2 + ξ32Φ2 + ξ32G2w − ξ32ω2

˙̂
Θ

≤ −2x61 +
∣

∣x31
(

x32 − x∗32
)
∣

∣+
(

Ψ1 −
˙̂
Θ
)

Θ̃− βw2

+ ξ32u
3 +

∣

∣ξ32∆2

∣

∣+
∣

∣ξ32Φ2

∣

∣+
∣

∣ξ32G2w
∣

∣+
∣

∣

∣
ξ32ω2

˙̂
Θ
∣

∣

∣
.

Simple computations yield

|∆2| =

∣

∣

∣

∣

∂x∗2
∂x1

(ξ2 + x∗2)
3

∣

∣

∣

∣

=

∣

∣

∣

∣

∂x∗2
∂x1

∣

∣

∣

∣

∣

∣ξ32 + x∗32 + 3ξ22x
∗

2 + 3ξ2x
∗2
2

∣

∣

≤

∣

∣

∣

∣

∂x∗2
∂x1

∣

∣

∣

∣

(

|ξ2|
3 + |x∗2|

3 + 3 |ξ2|
2 |x∗2|+ 3 |ξ2| |x

∗

2|
2
)

≤

∣

∣

∣

∣

∂x∗2
∂x1

∣

∣

∣

∣

(

4 |ξ2|
3
+ 4 |x∗2|

3
)

≤ 4 (2 + ρ1)

∣

∣

∣

∣

∂x∗2
∂x1

∣

∣

∣

∣

(

|ξ2|
3 + |x1|

3
)

,

|Φ2| =

∣

∣

∣

∣

∂x∗2
∂x1

∣

∣

∣

∣

∣

∣

∣

∣

∣

θx31

1 + (σx2)
2

∣

∣

∣

∣

∣

≤ |x1|
3

∣

∣

∣

∣

∂x∗2
∂x1

∣

∣

∣

∣

Θ,

∣

∣∆2ξ
3
2

∣

∣ ≤ 4 (2 + ρ1)

∣

∣

∣

∣

∂x∗2
∂x1

∣

∣

∣

∣

(

|ξ2|
3
+ |x1|

3
)

|ξ2|
3

≤ 4 (2 + ρ1)

∣

∣

∣

∣

∂x∗2
∂x1

∣

∣

∣

∣

ξ62 + 4 (2 + ρ1)

∣

∣

∣

∣

∂x∗2
∂x1

∣

∣

∣

∣

|x1|
3 |ξ2|

3

≤ ρ̌2ξ
6
2 +

1

6
x61,

with

ρ̌2 = 4 (2 + ρ1)

∣

∣

∣

∣

∂x∗2
∂x1

∣

∣

∣

∣

+ 24 (2 + ρ1)
2

(

∂x∗2
∂x1

)2

,
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∣

∣Φ2ξ
3
2

∣

∣ ≤ |ξ2|
3
|x1|

3

∣

∣

∣

∣

∂x∗2
∂x1

∣

∣

∣

∣

Θ

≤





x61

3
(

1 + Θ̂2
) +

3

4

(

∂x∗2
∂x1

)2
(

1 + Θ̂2
)

ξ62



Θ

≤

(

x61
6

+ ρ̄2

√

1 + Θ̂2ξ62

)

+





x61

3
(

1 + Θ̂2
) + ρ̄2ξ

6
2



 Θ̃,

with

ρ̄2 =
3

4

(

∂x∗2
∂x1

)2
(

1 + Θ̂2
)

,

∣

∣x31
(

x32 − x∗32
)
∣

∣

=
∣

∣

∣
x31

[

(ξ2 + x∗2)
3 − x∗32

]∣

∣

∣

≤ |x1|
3
|ξ2|

(

5

2
ξ22 +

9

2
x∗22

)

=
5

2
|x1|

3
|ξ2|

3
+

9

2
|x1|

5
|ξ2| (2 + ρ1)

2/3

=
1

6
x61 + ρ̃2ξ

6
2 ,

with

ρ̃2 =
75

4
+

15

64
95 (2 + ρ1)

4
,

∣

∣ξ32G2w
∣

∣ =

∣

∣

∣

∣

ξ32
∂x∗2
∂x1

∣

∣

∣

∣

|w| ≤
1

4β

(

∂x∗2
∂x1

)2

ξ62 + βw2.

As a result, one has

V̇2 + y6 − 2βw2

≤−
3

2
x61 +

[

ρ̃2 + ρ̌2 + ρ̄2

√

1 + Θ̂2 +
1

4β

(

∂x∗2
∂x1

)2
]

ξ62

+

∣

∣

∣

∣

ξ32
∂x∗2

∂Θ̂

˙̂
Θ

∣

∣

∣

∣

+ u3ξ32 +
(

Ψ2 −
˙̂
Θ
)

Θ̃,

with

Ψ2 = x61 +
x61

3
(

1 + Θ̂2
) + ρ̄2ξ

6
2 .
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Choose
˙̂
Θ = Ψ2. Then one has

∣

∣

∣

∣

ξ32
∂x∗2

∂Θ̂

˙̂
Θ

∣

∣

∣

∣

=
∣

∣ξ32
∣

∣

∣

∣

∣

∣

∂x∗2

∂Θ̂

∣

∣

∣

∣



x61 +
x61

3
(

1 + Θ̂2
) + ρ̄2ξ

6
2





≤

(

4

3

∣

∣

∣

∣

∂x∗2

∂Θ̂

∣

∣

∣

∣

|x1|
3

)

|x1|
3 |ξ2|

3 + ρ̄2

∣

∣

∣

∣

∂x∗2

∂Θ̂

∣

∣

∣

∣

|ξ2|
3 |ξ2|

6

≤
1

2

(

4

3

∣

∣

∣

∣

∂x∗2

∂Θ̂

∣

∣

∣

∣

|x1|
3

)2

ξ62 +
1

2
x61 +

1

4
ρ̄2

[

(

∂x∗2

∂Θ̂

)2

+ 1

]

(

ξ62 + 1
)

ξ62

≤ ρ̂2ξ
6
2 +

1

2
x61

with

ρ̂2 =
8

9

(

∂x∗2

∂Θ̂

)2

x61 +
1

4
ρ̄2

[

(

∂x∗2

∂Θ̂

)2

+ 1

]

(

ξ62 + 1
)

.

Sequentially,

V̇2 + y6 − 2βw2 ≤ −x61 +

[

ρ̃2 + ρ̌2 + ρ̄2

√

1 + Θ̂2 + ρ̂+
1

4β

(

∂x∗2
∂x1

)2
]

ξ62 + u3ξ32 .

Choose u = −ξ2 [1 + ρ2]
1/3 with ρ2 = ρ̃2 + ρ̌2 + ρ̄2

√

1 + Θ̂2 + ρ̂+ 1
4β

(

∂x∗

2

∂x1

)2

. Then it

is easily derived that V̇2 + y6 − 2βw2 ≤ −x61 − ξ62 .

Figure 1: Disturbance signal and output response.
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Figure 2: State response.

With the previous derivation, one can obtain the following control law

u = −ξ2 [1 + ρ2]
1/3 ,

ρ2 = ρ̃2 + ρ̌2 + ρ̄2

√

1 + Θ̂2 + ρ̂+
1

4β

(

∂x∗2
∂x1

)2

,

ρ̂2 =
8

9

(

∂x∗2

∂Θ̂

)2

x61 +
1

4
ρ̄2

[

(

∂x∗2

∂Θ̂

)2

+ 1

]

(

ξ62 + 1
)

,

ρ̄2 =
3

4

(

∂x∗2
∂x1

)2
(

1 + Θ̂2
)

,

ρ̌2 = 4 (2 + ρ1)

∣

∣

∣

∣

∂x∗2
∂x1

∣

∣

∣

∣

+ 24 (2 + ρ1)
2

(

∂x∗2
∂x1

)2

,

ρ̃2 =
75

4
+

15

64
95 (2 + ρ1)

4
,

ρ1 =

√

1 + Θ̂2 +
1

4β
+ 1,

x∗2 = −x1 (2 + ρ1)
1/3

,

∂x∗2
∂x1

= − (2 + ρ1)
1/3

,

∂x∗2

∂Θ̂
= −

x1
3

(2 + ρ1)
−2/3

(

1 + Θ̂2
)

−1/2

Θ̂,

˙̂
Θ = x61 +

x61

3
(

1 + Θ̂2
) + ρ̄2ξ

6
2 .
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Figures 1 and 2 give the simulation results of the resulstant closed-loop system under
the obtained control law.

5 Conclusion

For the class of power integrator lower triangular systems with nonlinear parametrization,
we formulated the problem of adaptive regulation with almost disturbance decoupling.
Under a set of growth conditions, an explicit design of the adaptive smooth controller
solving the ADD problem was provided. A significant feature of the obtained adaptive
dynamical compensator is its minimum-order property. The results of this paper exploit
a new application of the parameter separation technique proposed recently in [24].
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Abstract: The absence of negative feedback in Boolean networks tends to result
in systems with relatively short orbits. We present a construction of N-dimensional
Boolean networks that use only AND, OR, COPY gates and nevertheless have an
exponentially large orbit (of size cN for arbitrary c < 2). The construction is based
on pseudorandom number generation algorithms. A previously obtained nontrivial
upper bound on the orbit length under certain limitations on the number of outputs
per node is shown to be optimal.
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1 Introduction

The concept of a Boolean network was originally proposed in the late 1960’s by Stu-
art Kauffman to model gene regulatory behavior at the cell level [13]. This type of
modeling can sometimes capture the general dynamics of continuous systems in a sim-
plified framework without the choice of specific nonlinearities or parameter values; see
for instance [1]. Boolean networks are used in several other disciplines such as electrical
engineering, computer science, and control theory, and analogous definitions are known
under various names such as sequential dynamical systems [16] or Boolean difference
equations [6].

An N -dimensional Boolean dynamical system or Boolean network (Π, g) consists of N
variables s1, . . . , sN , each of which can have value 0 or 1 at any given time step t. The
variables are updated according to si(t+ 1) = gi(s1(t), . . . , sN (t)).
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Usually, individual update functions gi depend only on very few of the variables. Let
us say that sj is an input of si and sj sends output to gi if there are two Boolean vectors
s, s∗ that differ only in variable sj for which gi(s) 6= gi(s

∗). The input-output relation
defines a digraph on the set of Boolean variables that is called the connectivity of the
Boolean network. We call a Boolean network (Π, g) a K, M network if each of its update
functions takes at most K inputs and each variable has at most M outputs.

A key problem in the study of Boolean networks is how the dynamics depends on
the updating functions and the connectivity. This problem has been largely studied
for so-called random Boolean networks (RBNs) where both the updating functions and
the network connectivity are randomly drawn from a specified network distribution.
This allows to make estimates on quantities such as the number of orbits and their
length [2, 7, 14, 22]. Such estimates can be either obtained from simulation studies or
analytically.

1.1 Cooperative Boolean networks

An important topic in the study of dynamical systems is the role of negative feedback.
This notion is usually defined in terms of negative feedback loops that contain an odd
number of negative interactions. Monotone systems are systems that contain only posi-
tive feedback loops. Here we study cooperative systems, that are systems in which there
are no negative interactions between any two variables. In the context of networks with
at most K = 2 inputs per variable, cooperativity is equivalent to the use of only the
following update functions: constants, COPY, AND, OR. No negations are allowed [11].

Comparative simulation studies show that Boolean networks with no or only few
negative feedback loops tend to have relatively shorter orbits [26]. The question naturally
arises whether the assumption of cooperativity imposes nontrivial provable upper bounds
on the length of orbits in Boolean networks. This question seems especially interesting
for cooperative K = 2 Boolean networks, since K = 2 random Boolean networks tend to
have much shorter orbits than RBNs drawn from distributions where K > 2 [2, 7, 14].

Since the state space of an N -dimensional Boolean network has size 2N , a bound on
the attractor length should be considered “nontrivial” if it scales like o(2N ). In [15, 20],
a simple example of a K = 2, M = 2 Boolean network is constructed with N variables
and an orbit of length 2N−1 − 1, which comprises exactly half of the state space. In
contrast, the orbits of cooperative Boolean systems cannot comprise a fixed fraction of
the state space [4, 11, 25], which already gives an upper bound that scales like o(2N ).
Upper bounds on orbit length that scale like O(cN ) for some c < 2 were derived in [12] for
K = 2, M = 2 cooperative networks under the assumption that at least a fixed positive
fraction of update functions take exactly two inputs (see Theorem 3.1 below).

Theorem 1 of the preprint [12] shows that for any constant 1 < c < 2 and all suf-
ficiently large N there exists an N -dimensional K = 2, M = 2 cooperative Boolean
network with at least one orbit of length ≥ cN . This shows that some such additional
assumptions are needed for nontrivial upper bounds of type O(cN ) on orbit length. Our
main theorem here, Theorem 2.1, consists of a simplified proof of a similar result with
a mild additional assumption as described below. Theorem 3.2 of Section 3 provides
variations on Theorem 2.1 and shows, among other things, that one of the upper bounds
on orbit length that was derived in [12] is sharp.
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1.2 Additive Lagged-Fubini Generators

An additive lagged-Fubini generator (ALFG) is an algorithm to produce ‘pseudorandom’
numbers. It is the basis for some of the most widely used random number generators
such as the Mersenne twister [19]. In its Boolean version, the ALFG consists simply of
a sequence of Boolean values xi satisfying the formula

xi = xi−p + xi−q mod 2, (1)

for all i, where 0 < q < p are fixed numbers. For particular choices of p and q, it has
been shown that xi can be periodic with maximal period 2p − 1 [17]. The sufficient and
necessary condition for producing this orbit length is that the polynomial xp + xq + 1 is
primitive modulo 2 [8]. Many such pairs (p, q) are known, including ones with values as
large as p = 6972593 and q = 3037958. It is an open but widely believed conjecture that
there are infinitely many such pairs, see for instance [8]. For a list of all admissible pairs
(p, q) with p ≤ 1000, see [27].

In [15, 20], the authors build a Boolean network which is easily seen to be equivalent
to an ALFG, using a single loop of length p, and a single internal connection between
two nodes q variables apart, as in Figure 1a. All update functions are equal to the simple
copy function f(a) = a, except for one with two inputs, f(a, b) = a + b mod 2 = a

XOR b. The authors of these papers also point out that this reversible update function
(Table 1) can be replaced by three canalyzing ones (see Section 3 for the definition of
canalyzing functions). Yet even such an implementation would contain negations and its
main feedback loop is negative. In particular, this network is not cooperative.

p'0

sqq

l

X
0

S
0

A
B

D

T

a. b.

p

C
s

s s

s

Figure 1: a. The original additive lagged-Fibonacci generator. A solid arrow represents a
direct connection, and a dotted arrow is a chain of connected variables. For the purposes of
our results, the variables are grouped into blocks of size ℓ such as shown for X0, and additional
nodes are added outside the main loop so that the total number of nodes is divisible by ℓ (see
the dotted line joining xs and xs′). b. The cooperative network associated to a., where every
variable corresponds to L different Boolean nodes. The inputs of the Boolean circuit T are
A = S

⌊q/ℓ⌋−m−1, B = S
⌊q/ℓ⌋−m, C = S

⌊p/ℓ⌋−m−1, D = S
⌊p/ℓ⌋−m.
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2 Cooperative Boolean Networks with an Exponentially Long Orbit

Let us state the version of Theorem 1 of [12] that we are going to prove here.

Theorem 2.1 Assume that there exist infinitely many positive integers p > q such
that (1) defines an AFLG with maximal period 2p − 1. Let 1 < c < 2 be an arbitrary
constant. Then for infinitely many N there exists an N -dimensional K = 2, M = 2
cooperative Boolean network with at least one orbit of length ≥ cN . In this network the
only update functions are si ∨ sj, si ∧ sj, and the copy function f(si) = si.

Proof We start with an ALFG with maximal period 2p − 1 as in Figure 1a, with
sufficiently large delays (p, q). In the Boolean setting we have the following equation:

s0(t+ 1) = sq(t) XOR sp(t) = s0(t− q) XOR s0(t− p). (2)

This network will be referred to as the AFLG network. It has an orbit with length
2p − 1 and two negative feedback loops as shown in Figure 1a.

For a given c < 2 we construct a Boolean network with N variables that uses only
update functions AND, OR, COPY and has an orbit of length ≥ cN states. Its dynamics
closely mimics the one of the AFLG network. The idea is to group the variables s0, . . . sp
into blocks of ℓ adjacent variables each, as in Figure 1b. The new network has as variables
Boolean vectors S0, S1, . . ., each with an even number L of bits. The values of L and ℓ will
be chosen as in Lemma 2.2 below. Importantly, the values of each Si are not arbitrary
but chosen from the image of an injective function Γ : {0, 1}ℓ → {0, 1}L, i.e. they are
thought of as coded sequences of ℓ bits. Additionally, the values of Γ(s) are required to
have exactly L/2 nonzero entries. Such a function Γ exists as long as 2ℓ ≤

(

L
L/2

)

, which

will be ensured by Lemma 2.2. In order to guarantee that the nodes in the ALFG can
be divided in groups of ℓ, we introduce some additional nodes as in Figure 1a, which are
however not part of the loop (see the legend of Figure 1 for details).

Notice that after ℓ time steps, the ALFG network has rotated the values of each group
of ℓ variables into the next – except for the group s0, . . . sℓ−1, whose values have been
determined by a more complicated algorithm. The idea is that one time step in the new
network will represent ℓ time steps in the ALFG. More precisely, each variable Si(t) is
coding for the variablesXi(ℓt) = (siℓ(ℓt), . . . , siℓ+ℓ−1(ℓt)) at time ℓt, or Si(t) = Γ(Xi(ℓt)).

In order to achieve this, we set Si(t + 1) = Si−1(t) for i > 0. As for the updating
function of S0, it is defined as the encoding Γ of s0, . . . , sℓ after iterating the ALFG for ℓ
time steps. S0(t+1) is therefore a function G of the variables Si encoding sq−ℓ+1, . . . , sq
and sp−ℓ+1, . . . , sp. In other words, given the argumentsA,B,C, andD, one can compute
S0 at the next time step by first decoding them into their corresponding sequences of
ℓ-vectors using the function Γ−1, and assigning these values to the variables in ALFG,
then iterating ALFG ℓ times, and finally encoding the resulting sequence X0 using the
function Γ.

The following technical lemma shows that this encoding function G can be imple-
mented as a Boolean circuit (labeled T in Figure 1b) with only binary AND- and OR-
and unary COPY gates and no negations. Such a Boolean circuit can be incorporated
into our network without violating cooperativity or the commitment to build a K = 2,
M = 2 network. The indegree and outdegree for a node of a Boolean circuits are defined
analogously as for Boolean networks.

Our construction uses the fact that G is only used with arguments that have L/2
zeros and L/2 ones each. Given two Boolean P−vectors s, r, we say that s ≤ r if si ≤ ri



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 11 (3) (2011) 275–284 279

for all i. If either s ≤ r or r ≤ s, the two vectors are called comparable. The following
lemma will be applied to the proof of the main result for P = 4L.

Lemma 2.1 Let g : D ⊆ {0, 1}P → {0, 1}L be an arbitrary function, defined on a
domain D where no two elements are comparable. Then there exists a Boolean circuit
B with input vector a of dimension P , and an output vector b = (b1, . . . , bL), such that
b(t +m) = g(a), for some fixed delay m and any a(t) ∈ D. Furthermore, the circuit B
uses only binary AND- and OR- and unary COPY gates and the indegree (outdegree) of
every designated input (output) variable is 0.

Proof The function g can be extended to a cooperative function h, i.e. one for which
s ≤ r implies h(s) ≤ h(r), defined on all of {0, 1}P ; see [11]. The result will follow from
building a suitable Boolean circuit that computes the function h.

Consider a fixed component hi : {0, 1}P → {0, 1} of h. By the cooperativity of
this function, one can write it in the normal form hi(s1, . . . , sP ) = Ψi

1(s1, . . . , sP ) ∨
. . . ∨ Ψi

ki
(s1, . . . , sP ), where each Ψi

j is the conjunction of a number of variables, i.e.,

Ψi
j(s1, . . . , sP ) = sα1i

∧ . . . ∧ sαji
. This suggests a way of computing hi: define Boolean

variables ψi
j(t) := Ψi

j(s(t−1)), and then let hi(t) := ψi
1(t−1)∨ . . .∨ψi

ki
(t−1). Repeating

this procedure for all components of h yields a Boolean circuit which computes h inm = 2
steps, and which is cooperative and has indegree (outdegree) 0 for every input (output).

In order to satisfy the condition that every node have in- and outdegree of at most 2,
we need to modify this construction by introducing additional variables. First, note
that the outdegree of every input si can be very large. One can define two additional
variables which simply copy the value of si(t), then four variables that copy the value
of the previous two, etc. This procedure is repeated for each si so that at least as
many copies of each variable are present as appear in the expressions of all ψi

j . A

similar cascade can be used to define each ψi
j and hi so that each indegree is at most

two. If ψj
i = sα1

∧ sα2
∧ sα3

, say, then one can define r1(t) := sα1
(t − 1), r2(t) :=

sα2
(t − 1) ∧ sα3

(t − 1), ψj
i (t) := r1(t − 1) ∧ r2(t − 1). Similarly for longer disjunctions

and each ψi
j and also similarly for hi, in which case ∧ is replaced by ∨ at each step. This

produces a computation of hi in mi steps for each i. Finally, after introducing further
additional variables at each component i if necessary to compensate for unequal lengths
of the expressions for ψi

j , the Boolean vector h(s1, . . . , sP ) can be computed in exactly
m = max(m1, . . . ,mL) steps.

Notice that the function G is not computed by the Boolean circuit instantaneously,
but after m steps. Since Si(t) = Si−m(t−m), we correct for this by feeding the circuit
an input which has been shifted back by m.

The new cooperative Boolean network has an orbit of length at least (2p − 1)/ℓ. Its
dimension is

N = (p+ γ + 1)L/ℓ+ T, (3)

where γ = p′ − p < ℓ reflects the need for dummy variables (see the legend of Figure 1)
and T is the number of nodes involved in the Boolean circuit that computes G. Since T
only depends on ℓ and L, not on p, the following lemma implies Theorem 2.1.

Lemma 2.2 For arbitrary 1 < c < 2 and sufficiently large p, there exist ℓ,N , and L
as above such that

(

L

L/2

)

> 2ℓ,
2p − 1

ℓ
> cN .
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Proof We prove first that there exist L > 0 even, an integer ℓ > 0, and a real
constant δ > 1 such that

(

L

L/2

)

> 2ℓ > cδL. (4)

Start by fixing an arbitrary δ > 1 such that c < cδ < 2. The second inequality in (4)
is equivalent to L/ℓ < ln 2/(δ ln c). Let L be an even integer with L = wℓ, for some fixed

1 < w < ln 2/(δ ln c). Since
(

L
L/2

)

> 2L

L+1 = 2wℓ

wℓ+1 and w > 1, the first inequality in (4) is

satisfied for sufficiently large ℓ.
It remains to show that (2p − 1)/ℓ ≥ cN for some sufficiently large N as in (3). But

since cL/ℓ < 21/δ, expression (3) implies

c(p+γ+1)L/ℓ+T

(2p − 1)/ℓ
< ℓcT

2
p+γ+1

δ

2p − 1
< ℓcT 2

1

δ
(p+γ+1)−(p−1)

which is < 1 for sufficiently large p.

It follows that for sufficiently large p, we can choose ℓ, L so that the system we
constructed will contain an orbit of length at least cN , as stated in Theorem 2.1.

3 Biased Update Functions and Long Orbits

The bias Λ of a Boolean function is the fraction of input vectors for which the function
outputs 1. A Boolean function would be considered biased if Λ 6= 0.5. More specifically,
let us say that an update function is ε-biased if |Λ−0.5| ≥ ε. Simulation studies of random
Boolean networks indicate that networks with only strongly biased update functions tend
to have shorter orbits than generic networks with a given number of inputs (see [23] and
references therein). The following result from [12] gives a provable upper bound on the
length of orbits in some ε-biased networks.

Theorem 3.1 Let ε, α > 0 and let K,M be positive integers. Then there exists a
positive constant c(ε, α,K,M) < 2 such that for all c > c(ε, α,K,M) and all sufficiently
large N , the length of any orbit in any N -dimensional K-M Boolean network in which
a proportion of least α of the update functions are ε-biased does not exceed cN .

In particular, c(0.25, 1, 2, 2) ≤ 101/4.

To put the last sentence of Theorem 3.1 into perspective, consider Table 1 of Boolean
functions with two inputs.

Thus for K = 2 a Boolean function is biased iff it is 0.25-biased iff it is in C2∪F . The
classes C1 and C2 constitute the canalyzing functions, in which a certain value of one of
the inputs determines the function output [7]. Note the C2 contains the AND and the
OR functions. We call a K = 2 Boolean system a C2-network if all its update functions
are in the class C2. Notice that the last sentence of Theorem 3.1 gives an upper bound
of O(10N/4) for orbit lengths in N -dimensional K = 2,M = 2 C2-networks.

We can prove the following variants of Theorem 2.1 for C2-networks. Part (b) of The-
orem 3.2 implies that the upper bound in the last sentence of Theorem 3.1 is sharp. The
theorem does not require assumptions about the existence of AFLGs [12], but we state
and prove it here in this form to emphasize the connection with the earlier construction.
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In F C1 C2 R
0 0 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1
1 0 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1
1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0

cooperative * * * * * *
bias 1 0 1

2

1

2

1

2

1

2

1

4

1

4

1

4

1

4

3

4

3

4

3

4

3

4

1

2

1

2

Table 1: The different Boolean update functions with K = 2 inputs (adapted from [7]).

s 1111 1110 1101 1100 1011 1010 0111 0101 0011 0000
f(s) 1111 1100 1010 1000 0101 0100 0011 0010 0001 0000

h ◦ f(s) 1111 1110 1101 1100 1011 1010 0111 0101 0011 0000

Table 2: The values of f and h ◦ f on F .

Theorem 3.2 Assume that there exist infinitely many positive integers p > q such
that (1) defines an AFLG with maximal period 2p−1. Let c, c1 be constants with 1 < c < 2
and 1 < c1 < 101/4. Then for arbitrarily large N there exist cooperative Boolean networks
with the following properties:
(a) (Π, g) is a C2 network with at least one orbit of length ≥ cN ,
(b) (Π, g) is a C2, M = 2 network with at least one orbit of length ≥ cN1 .

Proof For part (a), let (Σ, f) be a cooperative K = 2 Boolean network of dimension
N−2 that contains an orbit of length cN . We show how to turn (Σ, f) into a cooperative
C2 Boolean network (Π, g) of dimension N . The update functions gk for k < N − 1 of
the new system are defined as follows:

If fk is already in C2, then gk = fk.

If fk = sik , then gk = sik ∧ sN−1.

If fk is constant with value 1, then gk = sN−1 ∨ sN ; if fk is constant with value 0,
then gk = sN−1 ∧ sN .

Finally, we let gN−1 = sN−1 ∨ sN and gN = sN−1 ∧ sN . Then (Π, g) is a cooperative
C2-system. Now let s ∈ Σ be a state in an orbit of length at least cN of (Σ, f), and define
a state s∗ ∈ Π by s∗ = [s1, . . . , sN−2, 1, 0]. Then the orbit of s∗ in (Π, g) has the same
length as the orbit of s in (Σ, f). This proves part (a).

For the proof of part (b), we need to implement the C1 functions that copy the value
of one input variable by cooperative C2 functions in such a way that the overall dimension
is not increased by more than a factor of 4 log10 2.

Let us define Boolean vector functions f and h on four-dimensional Boolean vectors
s = (s1, s2, s3, s4) as follows:

f(s) = (s1 ∧ s2, s1 ∧ s3, s2 ∧ s4, s3 ∧ s4), h(s) = (s1 ∨ s2, s1 ∨ s3, s2 ∨ s4, s3 ∨ s4).

Let F = {1111, 1110, 1101, 1100, 1011, 1010, 0111, 0101, 0011, 0000} and H = f(F ).
Table 2 gives the values of f, h ◦ f on F .
As Table 2 shows, h ◦ f is the identity on F . It follows that h maps H onto F and

f ◦ h is the identity on H .
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Let L be a positive integer divisible by eight, and let p := L/4. Write [L] as a disjoint
union of blocks of four consecutive integers i(1, r), i(2, r), i(3, r), i(4, r) for r ∈ [p]. Let
~sr := (si(1,r), si(2,r), si(3,r), si(4,r)). Call a Boolean vector s ∈ {0, 1}[L] L-compliant if

(a) ~sr ∈ F for 1 ≤ r ≤ p/2, ~sr ∈ H for p/2 < r ≤ p, and

(b) s takes the value 1 exactly L/2 times.

Lemma 3.1 Let c1 < 101/4. Then there exist a positive integer ℓ and a positive
integer L that is a multiple of eight such that 2ℓ > cL1 and the number of L-compliant
Boolean vectors is larger than 2ℓ.

Proof Let L be a positive integer that is an integer multiple of 8, and let V be the set
of Boolean vectors s ∈ {0, 1}L that satisfies condition (a) above. Since |F | = |H | = 10,
it is clear that |V | = 10L/4.

Let |~sr| denote the number of 1’s in ~sr. For each s ∈ V define the signature of s as
σ(s) = (σ1(s), . . . , σ6(s)), where
σ1(s) = |{r : r ≤ p/2 & |~sr| = 4}|, and σ4(s) = |{r : p/2 < r & |~sr| = 4}|,
σ2(s) = |{r : r ≤ p/2 & |~sr| = 0}|, and σ5(s) = |{r : p/2 < r & |~sr| = 0}|,
σ3(s) = |{r : r ≤ p/2 & |~sr| = 3}|, and σ6(s) = |{r : p/2 < r & |~sr| = 1}|.

Let σmax = ( 1
16 ,

1
16 ,

1
4 ,

1
16 ,

1
16 ,

1
4 ). Then the inequality

|{s ∈ V : σ(s) = σ}| ≤ |{s ∈ V : σ(s) = σmax}| (5)

for any possible signature σ. Moreover, observe that if s ∈ V and σ(s) = σmax, then s
takes the value 1 exactly L/2 times, and hence s is L-compliant. Since the total number
of possible signatures is bounded from above by (L/4 + 1)6, it follows from (5) that the
total number Q of L-compliant Boolean vectors satisfies the inequality

Q ≥
10L/4

(L/4 + 1)6
.

Notice that limL→∞ L ln 101/4 − 6 ln(L/4 + 1)− L ln c1 = ∞.
Thus for sufficiently large L we can find a positive integer ℓ with

L ln 101/4 − 6 ln(L/4 + 1) > ℓ ln 2 > L ln c1,

and the lemma follows.

Now fix c1 < 101/4 and let L, ℓ be as in Lemma 3.1. Build an N -dimensional Boolean
system (Π, g−) as in the proof of Theorem 2.1, but with the following modifications for
indices i where the value of Si will just be copied to Si+2:

We require that the values of Si on the blocks Si of length L are L-compliant vectors.

Instead of requiring Si(t+ 1) = Si+1(t) and implementing this dynamics by C1 func-
tions, we only require Si(t + 2) = Si+2(t) and implement this dynamics as follows: Let
Si be partitioned into blocks bi,1, . . . , bi,L/4 of four Boolean values each, with bi,r(t) ∈ F

for r ≤ L/8 and bi,r ∈ H for L/8 < r ≤ L/4. Define bi,r(t + 1) = h(bi+1,r+L/8(t)) for
r ≤ L/8 and bi,r(t+ 1) = f(bi+1,r−L/8(t)) for L/8 < r ≤ L/4.

This construction is possible by Lemma 3.1 and the observations on the functions f, h
we made above, and the exact same argument as in the proof of Theorem 2.1 shows that
one can choose initial states of (Π, g−) that belong to an orbit of length ≥ cN2 , where
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c2 is a constant that depends only on L and ℓ and satisfies c1 < c2 < 101/4. It is also
straightforward to verify that the resulting system is cooperative.

However, the system may not yet be a C2 system with M = 2, since the loops where
copying occurs do not need to be of even length. So to ensure that we end up with an
M = 2 system we may have at most two leftover sets Si where the copying of some sj
needs to be implemented by sj ∩s

∗
j using a few dummy variables s∗j . Since the number of

these ‘leftover variables’ is at most 2L, this can be done without increasing N too much
so that the resulting orbit will still have length > cN1 (see Appendix A of [12].)

4 Conclusion

Monotone and cooperative systems have been used as a modeling tool for gene regulatory
systems, e.g. in [3, 5]. In the absence of negative feedback continuous systems converge
generically towards an equilibrium under mild regularity hypotheses; see the work by
Hirsch, Smith, Enciso, Mazco, and others [9, 10, 18, 24]. These generic convergence
results have been generalized to the case of continuous monotone maps, in which case
the generic iteration converges towards a periodic solution, with upper bounds for the
maximum period [21]. In contrast, our results show that even very stringent conditions
on Boolean systems with no negative interactions do not preclude very long orbits.

Our reasons for presenting a new proof of Theorem 1 in [12] are two-fold. First
of all, the original construction given in [12] is somewhat difficult to read. We hope
that the much simpler proof presented here will make the result more accessible to the
mathematical community and will make the basic ideas that are common to both con-
structions more clearly visible. Second, as in [15, 20], this construction is based on
additive lagged-Fubini generators (ALFG), which are the basis for the most commonly
used pseudo-random number generators that are ubiquitous in applications from com-
puter science and engineering. We hope that the proof presented here will highlight
some important connections between number theory, computer science, and the study of
Boolean networks and their applications, including the study of gene regulatory networks.
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1 Introduction

We are concerned with the following boundary value problem (BVP) on time scales
T :







y∆
n

(t) + λf(yσ(t))) = 0, t ∈ [a, b] ⊂ T,

y∆
i

(a) = 0, 0 ≤ i ≤ n− 2,
∑m

i=1
αiy

∆
n−2

(ξi) = y∆
n−2

(σ(b))

(1.1)

where λ > 0 is a parameter, f ∈ C([0,∞), [0,∞)), n ≥ 3, m ≥ 1 are integers, a < ξ1 <

ξ2 < ... < ξm < b, αi ∈ (0,+∞) for 1 ≤ i ≤ m and
∑m

i=1
αi < 1.

We assume that D = σ(b)− a−
∑m
i=1

αi(ξi − a) > 0 and σ(b) is right dense so that
σj(b) = σ(b) for j ≥ 1.

The study of dynamic equations on time scales goes back to its founder Stefan Hilger
[10]. Some preliminary definitions and theorems on time scales can be found in the
books [2, 3] which are excellent references for the calculus of time scales.
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Recently, existence results for positive solutions of second-order multi-point boundary
value problems was studied by some authors [9, 11–16].

A few papers can be found in the literature on higher-order multi-point boundary
value problems [4–7].

We were, in particular, motivated by [6, 7]. We study more general problem and we
present results which guarantee the existence of at least one or two positive solutions and
the nonexistence positive solutions. The methods discussed here are similar to earlier
work [1].

This paper is organized as follows. Section 2 introduces some notation and several
lemmas which play important roles in this paper. Section 3 gives nonexistence and
multiplicity results for positive solutions to the BVP (1.1). In this article, the main tool
is the following well-known Krasnosel’skii fixed point theorem in a cone [8].

Theorem 1.1 [8]. Let B be a Banach space, and let P ⊂ B be a cone in B. Assume
Ω1, Ω2 are open subsets of B with 0 ∈ Ω1, Ω̄1 ⊂ Ω2, and let

A : P ∩ (Ω̄2 \ Ω1) → P

be a completely continuous operator such that, either

(i) ‖Ay‖ ≤ ‖y‖, y ∈ P ∩ ∂Ω1, and ‖Ay‖ ≥ ‖y‖, y ∈ P ∩ ∂Ω2; or

(ii) ‖Ay‖ ≥ ‖y‖, y ∈ P ∩ ∂Ω1, and ‖Ay‖ ≤ ‖y‖, u ∈ P ∩ ∂Ω2.

Then A has at least one fixed point in P ∩ (Ω̄2 \ Ω1).

2 Preliminaries and Lemmas

Let G2(t, s) be the Green’s function for the boundary value problem







y∆
2

(t) = 0, t ∈ [a, b],
y(a) = 0,

∑m

i=1
αiy(ξi) = y(σ(b)).

(2.1)

Then

G2(t, s) =























(σ(b)−t)(σ(s)−a)−
∑m

j=i αj(ξj−t)(σ(s)−a)+
∑i−1

j=1
αj(ξj−a)(t−σ(s))

σ(b)−a−
∑

m
i=1

αi(ξi−a)
,

a ≤ t ≤ σ(b), ξi−1 ≤ σ(s) ≤ min{ξi, t}, i = 1,m+ 1,
(t−a)[σ(b)−σ(s)−

∑m
j=i αj(ξj−σ(s))]

σ(b)−a−
∑

m
i=1

αi(ξi−a)
,

a ≤ t ≤ σ(b), max{ξi−1, t} ≤ σ(s) ≤ ξi, i = 1,m+ 1.

(2.2)

Lemma 2.1 There exist a number k ∈ (0, 1) and a continuous function ψ : [a, b] →
R

+ such that

G2(t, s) ≤ ψ(s), t ∈ [a, σ(b)], s ∈ [a, b],

and

G2(t, s) ≥ kψ(s), t ∈ [ξ1, σ(b)], s ∈ [a, b],
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where

ψ(s) = (σ(b)−σ(s))(σ(s)−a)
D

,

k = min2≤i≤m{ 1

σ(b)

∑m
j=i αj(σ(b) − ξj),

ξ1−a
σ(s)−a [1 −

∑m
j=i αj ]}. (2.3)

Proof Now, we will show that we may take ψ(s) = (σ(b)−σ(s))(σ(s)−a)
D

.

Upper bounds:

Case 1. Consider a ≤ σ(s) ≤ ξ1, σ(s) ≤ t. Then

G2(t, s) =
σ(b)−t−

∑m
j=1

αj(ξj−t)

D
(σ(s) − a) =

σ(b)−
∑m

j=1
αjξj+t(

∑m
j=1

αj−1)

D
(σ(s) − a).

Since
∑m

j=1
αj < 1, the maximum occurs when t = σ(s) and then

G2(t, s) ≤
σ(b)−σ(s)+

∑m
j=1

αj(σ(s)−ξj)

D
(σ(s) − a) ≤ (σ(b)−σ(s))(σ(s)−a)

D
,

since
∑m

j=1
αj(σ(s) − ξj) ≤ 0 for σ(s) ≤ ξ1 and ξj ∈ (a, b) with a < ξ1 < ξ2 < ... <

ξm−2 < b.

Case 2. For ξr−1 ≤ t ≤ ξr , 2 ≤ r ≤ m+ 1, ξi−1 ≤ σ(s) ≤ ξi, 2 ≤ i ≤ r, σ(s) ≤ t, we
have

G2(t, s) =
(σ(b)−t)(σ(s)−a)−

∑m
j=i αj(ξj−t)(σ(s)−a)+

∑i−1

j=1
αj(ξj−a)(t−σ(s))

D

=
(σ(b)−t)(σ(s)−a)−

∑m
j=i αj(ξj−σ(s))(σ(s)−a)+

∑m
j=1

αj(t−σ(s))(σ(s)−a)+
∑i−1

j=1
αj(ξj−σ(s))(t−σ(s))

D

≤
σ(b)−t+

∑m
j=1

αj(t−σ(s))

D
(σ(s) − a)

≤
σ(b)−σ(s)

∑m
j=1

αj+t(
∑m

j=1
αj−1)

D
(σ(s)− a)

since
∑m

j=i αj(σ(s)− ξj) ≤ 0 and
∑i−1

j=1
αj(ξj − σ(s)) ≤ 0 for ξi−1 ≤ σ(s) ≤ ξi, 2 ≤ i ≤

m+ 1.

Since
∑m

j=1
αj < 1, the maximum occurs when t = σ(s) so

G2(t, s) ≤
(σ(b)− σ(s))(σ(s) − a)

D
.

Case 3. For ξr−1 ≤ t ≤ ξr, 2 ≤ r ≤ m, ξi−1 ≤ σ(s) ≤ ξi, r ≤ i ≤ m, t ≤ σ(s), we
obtain

G2(t, s) =
(t−a)[σ(b)−σ(s)−

∑m
j=i aj(ξj−σ(s))]

D
≤ (σ(b)−σ(s))(t−a)

D
≤ (σ(b)−σ(s))(σ(s)−a)

D
,
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since
∑m

j=i αj(ξj − σ(s)) ≥ 0 for ξi−1 ≤ σ(s) ≤ ξi, 2 ≤ i ≤ m.

Case 4. For ξm ≤ σ(s) ≤ σ(b), t ≤ σ(s), we clearly have

G2(t, s) ≤
(σ(b)− σ(s))(σ(s) − a)

D
.

Lower bounds: We shall show that we may take an arbitrary interval [ξ1, σ(b)] ⊂
(a, σ(b)]. We are looking for min{G2(t, s) : t ∈ [ξ1, σ(b)]} as a function of s of the same
form as the upper bound.

Case 1. Consider 0 ≤ σ(s) ≤ ξ1, σ(s) ≤ t, we get

G2(t, s) =
σ(b)−t−

∑m
j=1

αj(ξj−t)

D
(σ(s) − a) =

σ(b)−
∑m

j=1
αjξj+t(

∑m
j=1

αj−1)

D
(σ(s) − a).

Since
∑m

j=1
αj < 1, the minimum occurs when t = σ(b) and then

G2(t, s) ≥
σ(b)−

∑m
j=1

αjξj+σ(b)(
∑m

j=1
αj−1)

D
(σ(s) − a)

>
(σ(b)−σ(s))(σ(s)−a)

D
1

σ(b)

∑m

j=1
αj(σ(b)− ξj).

Case 2. For ξr−1 ≤ t ≤ ξr , 2 ≤ r ≤ m+ 1, ξi−1 ≤ σ(s) ≤ ξi, 2 ≤ i ≤ r, σ(s) ≤ t, we
have

G2(t, s)

=
(σ(b)−t)(σ(s)−a)−

∑m
j=i αj(ξj−σ(s))(σ(s)−a)+

∑m
j=1

αj(t−σ(s))(σ(s)−a)+
∑i−1

j=1
αj(ξj−σ(s))(t−σ(s))

D

= 1

D
[t[(

∑m
j=1

αj − 1)(σ(s) − a) +
∑i−1

j=1
αj(ξj − σ(s))] + [σ(b)− σ(s)

∑m
j=1

αj

−
∑m
j=i αj(ξj − σ(s))](σ(s) − a)− σ(s)

∑i−1

j=1
αj(ξj − σ(s))].

Since (
∑m

j=1
αj − 1)(σ(s) − a) +

∑i−1

j=1
αj(ξj − σ(s)) < 0, the minimum occurs when

t = σ(b), then

G2(t, s) ≥
−

∑m
j=i αj(ξj−σ(b))(σ(s)−a)+

∑i−1

j=1
αj(ξj−a)(σ(b)−σ(s))

D

≥ 1

D

∑m

j=i αj(σ(b)− ξj)(σ(s)− a)

>
(σ(b)−σ(s))(σ(s)−a)

D
1

σ(b)

∑m

j=i αj(σ(b)− ξj).

Case 3. For ξr−1 ≤ t ≤ ξr, 2 ≤ r ≤ m, ξi−1 ≤ σ(s) ≤ ξi, r ≤ i ≤ m, t ≤ σ(s), we
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obtain

G2(t, s) =
(t−a)[σ(b)−σ(s)−

∑m
j=i αj(ξj−σ(s))]

D

=
(t−a)[(σ(b)−σ(s))(1−

∑m
j=i αj)−

∑m
j=i αj(ξj−σ(b))]

D

≥ (t−a)(σ(b)−σ(s))
D

[1−
∑m

j=i αj ]

≥ (ξ1−a)(σ(b)−σ(s))
D

[1−
∑m

j=i αj ]

= (σ(s)−a)(σ(b)−σ(s))
D

ξ1−a
σ(s)−a [1−

∑m
j=i αj ].

Case 4. For ξm ≤ σ(s) ≤ σ(b), t ≤ σ(s), we have

G2(t, s) =
(t−a)(σ(b)−σ(s))

D
≥ (ξ1−a)(σ(b)−σ(s))

D
= (σ(s)−a)(σ(b)−σ(s))

D
ξ1−a
σ(s)−a .

Thus we can take

k = min2≤i≤m{ 1

σ(b)

∑m

j=i αj(σ(b) − ξj),
ξ1−a
σ(s)−a [1−

∑m

j=i αj ]}. 2

Lemma 2.2 If y satisfies the boundary conditions

{

y∆
i

(a) = 0, 0 ≤ i ≤ n− 2,
∑m

i=1
αiy

∆
n−2

(ξi) = y∆
n−2

(σ(b))

and

y∆
n

(t) ≤ 0, t ∈ [a, b],

then

y∆
n−2

(t) ≥ 0.

Proof Let P (t) = y∆
n−2

(t), t ∈ [a, σ(b)]. Then we have

P∆
2

(t) ≤ 0, t ∈ [a, b]

P (a) = 0 and
∑m

i=1
αiP (ξi) = P (σ(b)).

It must be true that P (σ(b)) ≥ 0. To see this, assume to the contrary that P (σ(b)) < 0.
Since P (a) = 0 and P (t) is concave downward, we have

P (t) ≥
t− a

σ(b)− a
P (σ(b)), t ∈ [a, σ(b)].
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Therefore,

∑m

i=1
αiP (ξi)− P (σ(b)) ≥

∑m

i=1
αi

ξi−a
σ(b)−aP (σ(b)) − P (σ(b))

>
∑m

i=1
αiP (σ(b)) − P (σ(b))

> P (σ(b)) − P (σ(b)) = 0,

which is a contradiction.

Now, P (a) = 0, P (σ(b)) ≥ 0, and P (t) is concave downward, so we have

P (t) = y∆
n−2

(t) ≥ 0, t ∈ [a, σ(b)].

This completes the proof of the lemma. 2

Let B be the Banach space defined by

B = {y : y∆
n

is continuous on [a, b], y∆
i

(a) = 0 0 ≤ i ≤ n− 3},

with the norm ‖y‖ = maxt∈[a,σ(b)] |y
∆

n−2

(t)| and let

P = {y ∈ B : y∆
n−2

(t) ≥ 0, min
t∈[ξ1,σ(b)]

y∆
n−2

(t) ≥ k‖y‖ },

where k is as in (2.3).

Solving the BVP (1.1) is equivalent to finding fixed points of the operator Lλ : B → B
defined by

Lλy(t) = λ
∫ σ(b)

a
Gn(t, s)f(y

σ(s))∆s, t ∈ [a, σ(b)]. (2.4)

It can be verified that

G2(t, s) = G∆
n−2

n (t, s). (2.5)

From (2.5), it follows that

(Lλy)
∆

n−2

(t) = λ
∫ σ(b)

a
G2(t, s)f(y

σ(s))∆s. (2.6)

Solving the BVP (1.1) in B is equivalent to finding fixed points of the operator L∆
n−2

λ

defined by (2.6).

Lemma 2.3 The operator Lλ is completely continuous such that Lλ(P) ⊂ P .
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Proof From the continuity ofG2(t, s) and f(t) it follows that the operator Lλ defined
by (2.4) is completely continuous in B. By Lemma 2.1, Lemma 2.2, and definition of P ,
we get LλP ⊂ P . 2

3 Existence of Positive Solutions

Now we are ready to establish a few sufficient conditions for the existence of at least
one or two positive solutions and the nonexistence of positive solutions of (1.1).

Now we define

l0 = lim
‖u‖→0

f(u)

‖u‖
, l∞ = lim

‖u‖→∞

f(u)

‖u‖
.

Theorem 3.1 For each λ, satisfying

1

kl∞
∫

σ(b)
a

ψ(s)∆s
< λ < 1

l0
∫

σ(b)
a

ψ(s)∆s
, (3.1)

there exists at least one positive solution of (1.1).

Proof Let λ be given as in (3.1). Now, let ǫ > 0 be chosen such that

1

k(l∞ − ǫ)
∫ σ(b)

a
ψ(s)∆s

≤ λ ≤
1

(l0 + ǫ)
∫ σ(b)

a
ψ(s)∆s

.

Now, turning to l0, there exists an p > 0 such that f(y) ≤ (l0 + ǫ)‖y‖ for 0 < ‖y‖ ≤ p.

So, for y ∈ P with ‖y‖ = p, we have from the fact that 0 ≤ G2(t, s) ≤ ψ(s) for
t ∈ [a, σ(b)], s ∈ [a, b],

(Lλy)
∆

n−2

(t) = λ
∫ σ(b)

a
G2(t, s)f(y

σ(s))∆s

≤ λ
∫ σ(b)

a
ψ(s)f(yσ(s))∆s

≤ λ(l0 + ǫ)
∫ σ(b)

a
ψ(s)∆s‖y‖

≤ ‖y‖ = p.

Next, considering l∞, there exists q̂ > 0 such that f(y) ≥ (l∞ − ǫ)‖y‖ for ‖y‖ ≥ q̂.

Let q = max{2p, q̂}. Then for y ∈ P with ‖y‖ = q, and t ∈ [ξ1, σ(b)] we get

(Lλy)
∆

n−2

(t) = λ
∫ σ(b)

a
G2(t, s)f(y

σ(s))∆s

≥ λk
∫ σ(b)

a
ψ(s)∆s(l∞ − ǫ)‖y‖

≥ ‖y‖ = q.
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By Theorem 1.1, Lλ has a fixed point y such that p ≤ ‖y‖ ≤ q. The proof is complete.
2

Theorem 3.2 For each λ satisfying

1

kl0
∫

σ(b)
a

ψ(s)∆s
< λ < 1

l∞
∫

σ(b)
a

ψ(s)∆s
, (3.2)

there exists at least one positive solution of (1.1).

Proof Let λ be given as in (3.2), and choose let ǫ > 0 such that

1

k(l0 − ǫ)
∫ σ(b)

a
ψ(s)∆s

≤ λ ≤
1

(l∞ + ǫ)
∫ σ(b)

a
ψ(s)∆s

.

Beginning with l0, there exists an p > 0 such that f(y) ≥ (l0 − ǫ)‖y‖ for 0 < ‖y‖ ≤ p.

So, for y ∈ P with ‖y‖ = p, and t ∈ [ξ1, σ(b)] we have

(Lλy)
∆

n−2

(t) = λ
∫ σ(b)

a
G2(t, s)f(y

σ(s))∆s

≥ λk
∫ σ(b)

a
ψ(s)f(yσ(s))∆s

≥ λk(l0 − ǫ)
∫ σ(b)

a
ψ(s)∆s‖y‖

≥ ‖y‖ = p.

It remains to consider l∞. There exists q̂ > 0 such that f(y) ≤ (l∞+ǫ)‖y‖ for ‖y‖ ≥ q̂.

There are two cases:

For case (a), suppose N > 0 is such that f(y) ≤ N, for all 0 ≤ y < ∞. Let q =

max{2p, λN
∫ σ(b)

a
ψ(s)∆s}. Then y ∈ P and ‖y‖ = q, we have

(Lλy)
∆

n−2

(t) = λ
∫ σ(b)

a
G2(t, s)f(y

σ(s))∆s

≤ λN
∫ σ(b)

a
ψ(s)∆s

≤ ‖y‖ = q.

For case (b), let g(h) := max{f(y) : 0 ≤ y∆
n−2

≤ h}. The function g is nondecreasing
and limh→∞ g(h) = ∞. Choose q = max{2p, q̂} so that g(q) ≥ g(h) for 0 ≤ h ≤ q. For
y ∈ P and ‖y‖ = q, we have

(Lλy)
∆

n−2

(t) = λ
∫ σ(b)

a
G2(t, s)f(y

σ(s))∆s

≤ λg(q)
∫ σ(b)

a
ψ(s)∆s



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 11 (3) (2011) 285–296 293

≤ λ(l∞ + ǫ)q
∫ σ(b)

a
ψ(s)∆s

≤ ‖y‖ = q.

By Theorem 1.1, Lλ has a fixed point y such that p ≤ ‖y‖ ≤ q. The proof is complete.
2

In the rest of the paper we assume that f(y) > 0 on R
+. Set

A =

∫ σ(b)

a

ψ(s)∆s.

Theorem 3.3 If either l0 = ∞ or l∞ = ∞, then for all 0 < λ ≤ λ0, where

λ0 := 1

A
supr>0

r
max0<‖u‖≤r f(u)

, (3.3)

(1.1) has at least one positive solution.

(b) If either l0 = 0 or l∞ = 0, then for all λ ≥ λ0, where

λ0 :=
1

A
inf
r>0

r

min0<‖u‖≤r f(u)
,

(1.1) has at least one positive solution.

Proof We now prove the part (a) of Theorem 3.3. By (3.3), there exists r > 0 such
that

λ0 =
1

A
sup
r>0

r

max0<‖u‖≤r f(u)
.

If ‖y‖ = r, it follows that

‖Lλy‖ = max
t∈[a,σ(b)]

|(Lλy)
∆

n−2

(t)| ≤ λ0

∫ σ(b)

a

G2(t, s)f(y
σ(s))∆s ≤ r.

So for all 0 < λ ≤ λ0 we have

‖Lλy‖ ≤ ‖y‖.

Fix λ ≤ λ0. Choose R > 0 sufficiently large so that

λRk
∫ σ(b)

a
ψ(s)∆s ≥ 1. (3.4)

Since l0 = ∞, there is p > 0 such that
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f(y)

‖y‖
≥ R

for t ∈ [a, σ(b)], 0 < ‖y‖ ≤ p. Hence we have that

f(y) ≥ R‖y‖

for t ∈ [a, σ(b)], 0 < ‖y‖ ≤ p. For y ∈ P , ‖y‖ = p and t ∈ [ξ1, σ(b)], we get

(Lλy)
∆

n−2

(t) ≥ λRk
∫ σ(b)

a
ψ(s)∆s‖y‖ ≥ ‖y‖ = p

by (3.4). By Theorem 1.1, Lλ has a fixed point y such that min{p, r} ≤ ‖y‖ ≤ max{p, r}.
Next, we use the assumption that l∞ = ∞. Since l∞ = ∞ there is a q > 0 such that

f(y)

‖y‖
≥ R

for ‖y‖ ≥ q and R is chosen so that (3.4) holds. It follows that

f(y) ≥ R‖y‖

for ‖y‖ ≥ q.

For y ∈ P , ‖y‖ = q and t ∈ [ξ1, σ(b)], we have

(Lλy)
∆

n−2

(t) = λ
∫ σ(b)

a
G2(t, s)f(y

σ(s))∆s

≥ λRk
∫ σ(b)

a
ψ(s)∆s‖y‖

≥ q = ‖y‖

by (3.4). By Theorem 3.1, then Lλ has a fixed point y such that min{q, r} ≤ ‖y‖ ≤
max{q, r}. This completes the proof of part (a). Part (b) holds in an analogous way. 2

Theorem 3.4 a) If l0 = l∞ = ∞, then there is a λ0 > 0 such that for all 0 < λ ≤ λ0,

(1.1) has two positive solutions.
b) If l0 = l∞ = 0, then there is a λ0 > 0 such that for all λ ≥ λ0, (1.1) has two positive
solutions.

Now, we give a nonexistence result as follows.

Theorem 3.5 (a) If there is a constant c > 0 such that f(y) ≥ c‖y‖, then there is a
λ0 > 0 such that (1.1) has no positive solutions for λ ≥ λ0.

(b) If there is a constant c > 0 such that f(y) ≤ c‖y‖, then there is a λ0 > 0 such that
(1.1) has no positive solutions for 0 < λ ≤ λ0.

Proof We now prove the part (a) of this theorem. Assume there is a constant c > 0
such that f(y) ≥ c‖y‖. Assume y(t) is a solution of the BVP (1.1). We will show that
for λ sufficiently large this leads to a contradiction. We have for t ∈ [ξ1, σ(b)],
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y∆
n−2

(t) = λ
∫ σ(b)

a
G2(t, s)f(y

σ(s))∆s ≥ ckλ0
∫ σ(b)

a
ψ(s)∆s‖y‖.

If we pick λ0 sufficiently large so that ckλ0
∫ σ(b)

a
ψ(s)∆s > 1 for all λ ≥ λ0, then we have

y∆
n−2

> ‖y‖ which is a contradiction. The proof of part (b) is similar. 2

Example 3.1 We illustrate Theorem 3.2 with specific time scale T = { 1

2n
: n ∈

N0} ∪ {0} ∪ [1, 5].
Consider the system:







y∆
n

(t) + λf(yσ(t)) = 0, t ∈ [0, 1/2] ⊂ T,

y∆
i

(0) = 0, 0 ≤ i ≤ n− 2,
1/3y(1/4) + 1/5y(1/8)+ 1/10y(1/64) = y(5),

(3.5)

where f = 1 +
√
y, α1 = 1/3, α2 = 1/5, α3 = 1/10, a = 0, b = 1/2, ξ1 = 1/4, ξ2 =

1/8, ξ3 = 1/64, n ≥ 3.

Since f = 1 +
√
y, we have

l0 = ∞ l∞ = 0.

We get ψ(s) = 4096

1967
s(1−2s),

∫ 1

0
ψ(s)∆s = 4096

41307
. Therefore the assumptions of Theorem

3.2 are satisfied. By Theorem 3.2, for all λ ∈ (0,∞), (3.5) has at least one positive
solution.

Example 3.2 We illustrate Theorem 3.3 with specific time scale T = {n
3

: n ∈
N} ∪ [7/3, 5].

Consider the system:







y∆
3

(t) + λf(yσ(t)) = 0, t ∈ [1, 2],
y(1) = y∆(1) = 0,

1/2y(4/3) + 1/3y(5/3) = y(7/3),

(3.6)

where f = ey, α1 = 1/2, α2 = 1/3, a = 1, b = 2, ξ1 = 4/3, ξ2 = 5/3.

Hence l∞ = ∞. Since

A =

∫ 7/3

1

ψ(s)∆s =
60

153
, sup

r>0

r

max0<‖y‖≤r e
y
= sup

r>0

r

er
=

1

e
,

we have

λ0 =
1

A
sup
r>0

r

max0<‖y‖≤r f(y)
=

153

60
e−1.

So, by Theorem 3.3, for all λ ∈ (0, 153
60
e−1], (3.6) has one positive solution.
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1 Introduction

The study of fixed points of functions satisfying certain contractive conditions has been
at the center of vigorous research activity, for example see [1]–[5] and it has a wide range
of applications in different areas such as nonlinear and adaptive control systems, param-
eterize estimation problems, fractal image decoding, computing magnetostatic fields in a
nonlinear medium, and convergence of recurrent networks, see [6]–[10]. Recently, Huang
and Zhang [11] have replaced the real numbers by ordering Banach space and define cone
metric space. They have proved some fixed point theorems of contractive mappings on
cone metric spaces. The study of fixed point theorems in such spaces is followed by some
other mathematicians, see [12]–[16]. Choudhury [17] introduced mutually contractive
sequence of self maps and proved a fixed point theorem. The purpose of this paper is to
obtain a new common fixed point theorem by using a new contractive condition in cone
metric spaces. Our result generalizes and extends many known results in metric spaces.
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Consistent with Huang and Zhang [11], the following definitions and results will be
needed in the sequel.

Let E be a real Banach space. A subset P of E is called a cone if and only if:
(a) P is closed, nonempty and P 6= {θ};
(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P implies ax+ by ∈ P ;
(c) P ∩ (−P ) = {θ}.
Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y if

and only if y − x ∈ P . A cone P is called normal if there is a number K > 0 such that
for all x, y ∈ E,

θ ≤ x ≤ y implies ‖ x ‖≤ K ‖ y ‖.

The least positive number satisfying the above inequality is called the normal constant
of P , while x ≪ y stands for y − x ∈ intP (interior of P ).

Definition 1.1 [11] Let X be a nonempty set. Suppose that the mapping d : X ×
X → E satisfies:

(d1) θ ≤ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X ;
(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X .
Then d is called a cone metric on X and (X, d) is called a cone metric space.

The concept of a cone metric space is more general than that of a metric space.

Example 1.1 [11] Let E = R2, P = {(x, y) ∈ E|x, y ≥ 0} ⊂ R2, X = R and
d : X ×X → E such that d(x, y) = (|x − y|, α|x− y|), where α ≥ 0 is a constant. Then
(X, d) is a cone metric space.

Definition 1.2 [11] Let (X, d) be a cone metric space. We say that {xn} is:
(e) a Cauchy sequence if for every c ∈ E with θ ≪ c, there is an N such that for all

n,m > N, d(xn, xm) ≪ c;
(f) a Convergent sequence if for every c ∈ E with θ ≪ c, there is an N such that for

all n > N, d(xn, x) ≪ c for some fixed x ∈ X .

A cone metric space X is said to be complete if every Cauchy sequence in X is
convergent in X . It is know that {xn} converges to x ∈ X if and only if d(xn, x) → θ as
n → ∞. The limit of a convergent sequence is unique provided that P is a normal cone
with normal constant K[11].

Lemma 1.1 [11] Let (X, d) be a cone metric space, P be a normal cone with normal
constant K. Let {xn} be a sequence in X. Then, {xn} is a Cauchy sequence if and only
if d(xn, xm) → θ(n,m → ∞).

Lemma 1.2 [11] Let (X, d) be a cone metric space, P be a normal cone with normal
constant K. Let {xn} be a sequence in X. If {xn} converges to x and {xn} converges to
y, then x = y. That is the limit of {xn} is unique.

Definition 1.3 Let (X, d) be a cone metric space. A sequence {Ti}
∞
i=1 of self-

mappings on a complete cone metric space is said to be mutually contractive if for all
i, j = 1, 2, · · · , with i 6= j,

d(Tix, Tjy) ≤ kd(x, y) for all x, y ∈ X with x 6= y,

where k ∈ (0, 1) is a constant.
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2 Main Result

Theorem 2.1 Let (X, d) be a complete cone metric space. P be a normal cone with
normal constant K. {Ti}

∞
i=1 be a sequence of self-mappings on X such that

(1) Ti is continuous for all i, j = 1, 2, · · · ;
(2) {Ti}

∞
i=1 is mutually contractive;

(3) TiTj = TjTi for all i, j = 1, 2, · · · .
Then the sequence {Tn}n has a unique common fixed point in X.

Proof Let x0 be an arbitrary point in X . We construct a sequence {xn} ⊂ X as
follows:

x1 = T1x0, x2 = T2x1, · · · , xn = Tnxn−1, · · ·

Then the following cases may arise:.

Case I: If no terms of {xn} are equal. Then, using (2), we get:

d(xn, xn+1) = d(Tnxn−1, Tn+1xn) ≤ kd(xn−1, xn).

By repeated application of above inequalities, we get

d(xn, xn+1) = d(Tnxn−1, Tn+1xn) ≤ knd(x0, x1).

So for n > m, we have

d(xn, xm) ≤ d(xn, xn−1) + · · ·+ d(xm+1, xm)

≤ (kn−1 + · · ·+ km)d(x0, x1) ≤
km

1− k
d(x0, x1)

We get ‖d(xn, xm)‖ ≤ km

1−k
K‖d(x0, x1)‖. This implies d(xn, xm) → θ(n,m → ∞).

Hence xn is a Cauchy sequence by Lemma 1.1. By the completeness of X , there is
x∗ ∈ X such that xn → x∗(n → ∞). Now, we prove that x∗ is a fixed point of Ti.

Since two consecutive terms of {xn} are unequal, for an arbitrary integer i > 0 and
c ≫ θ, we can find n such that x∗ 6= xn−1, n > i,

d(x∗, xn) < c, and d(x∗, xn−1) < c.

Then, we get

d(x∗, Tix
∗) ≤ d(x∗, xn) + d(xn, Tix

∗)

= d(x∗, xn) + d(Tnxn−1, Tix
∗)

≤ d(x∗, xn) + kd(xn−1, x
∗).

Thus, ‖d(x∗, Tix
∗)‖ ≤ K(‖d(x∗, xn)‖+ k‖d(xn−1, x

∗)‖) → 0 since c ≫ θ is arbitrary.
Hence ‖d(x∗, Tix

∗)‖ = 0. This implies x∗ = Tix
∗. So, x∗ is a fixed point of Ti.

Case II: If xi = xi−1 for some positive integer i. Then xi−1 = Tixi−1. Let x
∗ = xi−1,

that is, x∗ = Tix
∗, x∗ 6= Tjx

∗ and further assume that x∗ 6= T n
j x

∗ for all n = 1, 2, · · · .
Thus, we get

d(x∗, T 2
j x

∗) = d(Tix
∗, Tj(Tjx

∗)) ≤ kd(x∗, Tjx
∗).
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Similarly,
d(x∗, T 3

j x
∗) ≤ k2d(x∗, Tjx

∗).

Consequently,

d(x∗, T n
j x

∗) ≤ kn−1d(x∗, Tjx
∗) for all n = 2, 3, · · · .

We get ‖d(x∗, T n
j x

∗)‖ ≤ kn−1K‖d(x∗, Tjx
∗)‖. This implies d(x∗, T n

j x
∗) → θ as n →

∞, that is
T n
j x

∗ → x∗ as n → ∞.

Since Ti is continuous, we get

Tj(T
n
j x

∗) = T n+1
j x∗ → Tjx

∗ as n → ∞.

In the view of Lemma 1.2, we have x∗ = Tjx
∗, j = 1, 2, · · · . This is a contradiction,

so x∗ = T l
jx

∗ for some l.
Let l be the smallest integer with this property. Then, we get

x∗ 6= Tm
j x∗ for some m = 1, 2, · · · , l − 1.

Thus,

d(x∗, T l−1
j x∗) = d(Tix

∗, Tj(T
l−2
j x∗)) ≤ kd(x∗, T l−2

j x∗)

= kd(Tix
∗, Tj(T

l−3
j x∗)) ≤ k2d(x∗, T l−3

j x∗) ≤ · · · ≤ kl−2d(x∗, Tjx
∗),

hence x∗, Tjx
∗, T 2

j x
∗, · · · , T k−1

j x∗ are all distinct. Therefore,

d(x∗, Tjx
∗) = d(T l

jx
∗, Tj(Tix

∗)) = d(Tj(T
l−1
j x∗), Ti(Tjx

∗))

≤ kd(T l−1
j x∗, Tjx

∗) = kd(Tj(T
l−2
j x∗), Ti(Tjx

∗))

≤ k2d(T l−2
j x∗, Tjx

∗) ≤ · · · ≤ kl−2d(T 2
j x

∗, Tjx
∗)

= kl−2d(T 2
j (Tix

∗), Tjx
∗) = kl−2d(Ti(T

2
j x

∗), Tjx
∗)

≤ kl−1d(T 2
j x

∗, x∗) = kl−1d(Tj(Tjx
∗), Tix

∗) ≤ kld(Tjx
∗, x∗).

Hence ‖d(x∗, Tjx
∗)‖ = 0 and x∗ = Tjx

∗ for all j = 1, 2, · · · .
To show uniqueness, assume y∗ is another common fixed point of Ti, then

d(x∗, y∗) = d(Ti(x
∗), Tj(y

∗)) ≤ kd(x∗, y∗).

Hence ‖d(x∗, y∗)‖ = 0 and x∗ = y∗, that is, x∗ is a unique common fixed point of the
sequence {Tn}n. 2

Remark 2.1 Let us remark that in Theorem 2.1, setting E = R,P = [0,+∞), ‖x‖ =
|x|, x ∈ E, we get the well know result in complete metric space.
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Abstract: The paper is devoted to working out new methods for stability analysis
of equilibrium states of nonlinear dynamic systems in a partially ordered space. The
concerned classes of differential systems are described by operator inequalities and
inclusions using the notion of derivative with respect to a cone of nonlinear operator.
Sufficient stability conditions of equilibrium states are formulated for sets of nonlinear
and pseudolinear systems with the interval and polyhedral types operator coefficients.
More general result is presented in the form of comparison principle for a finite set of
differential systems.
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1 Introduction

Stability analysis for dynamic systems with parameter or functional uncertainties is one
of the fundamental issues in system and control theory. The applied researches employ
continuous and discrete models of dynamic objects whose states possess certain properties
with respect to a cone in the phase space (positivity, monotonicity, cooperativity, etc.).
For example, these properties can be determined very often by using a cone of nonnegative
vectors, a cone of symmetric nonnegatively definite matrices, an ellipsoidal cone, etc.
Many important advances have been achieved on the basis of the operator theory in
partially ordered spaces (see, e.g., [1–8]). In addition, classes of positive and monotone
systems arise in stability theory as systems of comparison [7, 9–11].

We study generalized classes of positive and monotone dynamic systems with respect
to a cone and give characterization for such systems by means of operator inequalities and
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inclusions. We formulate analogs of the Lyapunov theorem on the stability of equilibrium
states of nonlinear autonomous differential systems with respect to the first approxima-
tion using the notion of derivative of nonlinear operator with respect to a cone. Finally,
we propose general technique for comparison of a set of differential systems and formu-
late robust stability conditions for some families of nonlinear, pseudolinear and linear
systems in terms of the cone and operator inequalities.

2 Definitions and Auxiliary Facts

A convex closed set K of a real normed space E is called a wedge if αK + βK ⊆ K
∀α, β ≥ 0. A wedge K with edge K ∩ −K = {0} is a cone. A space with a wedge is

partially ordered: X
K
≤ Y ⇔ Y −X ∈ K. A solid cone contains nonempty sets of interior

points intK and boundary ∂K. A cone K is normal if 0
K
≤ X

K
≤ Y implies ‖X‖ ≤ ν‖Y ‖,

where ν is a universal constant. The least of these numbers ν is the normality constant
of K. If E = K − K, then the cone K is reproducing. A reproducing cone K is non-flat,
i.e. X = X+ −X− and X± ∈ K imply ‖X±‖ ≤ µ‖X‖, where µ is a universal constant.
The dual cone K∗ consists of linear nonnegative functionals. Moreover,

K = {X ∈ E : ϕ(X) ≥ 0, ∀ϕ ∈ K∗}, K∗ = {ϕ ∈ E∗ : ϕ(X) ≥ 0, ∀X ∈ K},

intK = {X ∈ K : ϕ(X) > 0, ∀ϕ 6= 0 ∈ K∗}, ∂K = {X ∈ K : ∃ϕ 6= 0 ∈ K∗, ϕ(X) = 0}.

A functional ϕ ∈ E∗ is uniformly positive if ϕ(X) ≥ γ‖X‖ for some γ > 0 and ∀X ∈ K.
A convex shell of X1, . . . , Xn ∈ E is defined by

Co{X1, . . . , Xn} =
{

X : X =

n
∑

i=1

αiXi,

n
∑

i=1

αi = 1, αi ≥ 0, i = 1, n
}

.

A set D ⊂ E is K–convex if X
K
≤ Y implies Co{X,Y } ⊆ D for X,Y ∈ D.

Let E(E1) be a Banach space with a coneK(K1). An operatorM : E → E1 is positive if

MK ⊆ K1. The operator is monotone if X
K
≤ Y ⇒ MX

K1

≤ MY . The operator inequality
M2 D M1 means that M2 − M1 is positive. A linear invertible operator M is positive
invertible if K1 ⊆ MK. Since (M−1)∗ = (M∗)−1, positive invertibility of M leads to
positive invertibility of M∗. If K1 is a normal reproducing cone and M1 E M E M2,
then positive invertibility of M1 and M2 yields positive invertibility of M , furthermore
M−1

2 E M−1 E M−1
1 [1]. An operator M : E → E is called positive-off-diagonal, if

X ∈ K and ϕ ∈ K∗ with ϕ(X) = 0 imply ϕ(MX) ≥ 0. Obviously, if M D αI for a
certain real α, where I is the identity operator, then M is positive-off-diagonal. The
inverse statement holds under certain additional conditions with α ≤ −νµ‖M‖, where ν
and µ are normality and non-flatness constants of M , respectively [4].

A linear operator of the form M = L−P , PK ⊆ K1 ⊆ LK, with a normal reproducing
cone K1 is positive invertible if and only if ρ(T ) < 1, where ρ(T ) is the spectral radius of
the operator pencil of T (λ) = P−λL. If K1 is solid, then ρ(T ) < 1⇔MK∩intK1 6= ∅ [7].

A linear bounded operator F ′(X) is called the Gâteaux derivative of a nonlinear
operator F (X) at X , if limε→0 ε

−1
[

F (X + εH)− F (X)
]

= F ′(X)H exists in the sense
of strong convergence. If this relation holds only for H ∈ K, then F ′ is the Gâteaux
derivative of F with respect to a cone K [13]. The Fréchet derivative F ′ with respect to
K is defined by F (X +H)−F (X) = F ′(X)H + o(‖H‖), H ∈ K. The Fréchet derivative
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is also the Gâteaux derivative. If the Gâteaux derivative is continuous in a neighborhood
of X , then it is the Fréchet derivative. We denote the Gâteaux and Fréchet derivatives
with respect to K and −K by F ′

+(X) and F ′
−(X), respectively. If F ′(X) exists, then

F ′
+(X) = F ′

−(X) = F ′(X).

3 Classes of Dynamic Systems in a Partially Ordered Space

Assume that a dynamic system S operates in a certain domain D of a Banach space E
and its states are defined by

Xt = E(Xτ , τ, t) ∈ E , τ ∈ Υ, t ∈ Υτ , (1)

where E is an operator of the transition from initial state Xτ to state Xt and such that

E(X, τ, τ) = X, E
(

E(X, τ, t), t, s
)

= E(X, τ, s), t ∈ Υτ , s ∈ Υt,

Υ ⊆ R1 is an ordered set of indices, Υτ = {t ∈ Υ : t ≥ τ}. The system is continuous,
discrete or hybrid subject to the structure of Υ. Note that E(·, τ, τ) ≡ I is the identity
operator. If E(Θ, τ, t) ≡ Θ, then Xt ≡ Θ is the equilibrium state of S. We shall consider
only the isolated equilibrium states of dynamic systems.

Let Kt be a constant or time-varying set in E . If E(Kτ , τ, t) ⊆ Kt for t ∈ Υτ , then Kt

is an invariant set of system S. The system is positive with respect to an invariant cone
Kt. System S is monotone with respect to a cone Kt if

Xτ

Kτ

≤ Yτ ⇒ Xt = E(Xτ , τ, t)
Kt

≤ Yt = E(Yτ , τ, t) (2)

for any τ ∈ Υ and t ∈ Υτ . A positive (monotone) dynamic system S is defined by a
positive (monotone) operator E with respect to Kt. Denote the classes of monotone and
positive systems with respect to ±Kt by M and M±

0 , respectively.
Consider the sets

K+
t (Θ) =

{

X ∈ E : X
Kt

≥ Θ
}

, K−
t (Θ) =

{

X ∈ E : X
Kt

≤ Θ
}

,

where Θ ∈ E , Kt is a cone. For the class of systems with invariant sets K±
t (Θ), we use

the notation M±
0 (Θ). Denote the classes of systems which posses the property (2) with

Yτ ∈ K+
τ (Θ), Xτ ∈ K+

τ (Θ), Xτ ∈ K−
τ (Θ) and Yτ ∈ K−

τ (Θ) by M+
1 (Θ), M+

2 (Θ), M−
1 (Θ)

and M−
2 (Θ), respectively. It is obvious that

M ⊆ M±
1 (Θ) ⊆ M±

2 (Θ), M ⊆ M1(Θ) ⊆ M2(Θ),

where M1(Θ) = M+
1 (Θ)∩M−

1 (Θ), M2(Θ) = M+
2 (Θ)∩M−

2 (Θ). A system of M±
2 (Θ) is

monotone in K±
t (Θ). Every system of M+

2 (Θ), M−
2 (Θ) or M2(Θ) with the equilibrium

state Xt ≡ Θ belongs to M+
0 (Θ), M−

0 (Θ) or M0(Θ) = M+
0 (Θ) ∩M−

0 (Θ), respectively.
We describe the classes of systems S introduced above via the inclusions

E′
±(X, τ, t)Kτ ⊆ Kt, X ∈ D, τ ∈ Υ, t ∈ Υτ , (3)

where E′
±(X, τ, t) are the Gâteaux derivatives of E(X, τ, t) with respect to ±Kτ .

Lemma 3.1 Suppose that E(X, τ, t) is Gâteaux differentiable with respect to ±Kτ

in a Kτ -convex domain D for τ ∈ Υ, t ∈ Υτ . Then: (i) S ∈ M if and only if one
of the inclusions (3) holds; (ii) S ∈ M±

0 (Θ) if E(Θ, τ, t) − Θ ∈ ±Kt and (3) holds for
X ∈ K±

τ (Θ); (iii) S ∈ M±
2 (Θ) if and only if (3) holds for X ∈ K±

τ (Θ).
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Proof The necessity assertions (i)–(iii) are obtained by using the definitions of the
corresponding classes of systems S and the Gâteaux derivatives

lim
ε→0

ε−1
[

E(X + εH, τ, t)− E(X, τ, t)
]

= E′
±(X, τ, t)H, X ∈ D, H ∈ K±

τ .

The sufficiency assertions (i)–(iii) follow from the Lagrange type formula:

ϕ
(

E(X +H, τ, t)− E(X, τ, t)
)

= ϕ
(

E′
±(Z, τ, t)H

)

,

where ϕ ∈ E∗, Z = X + µH ∈ Co{X,X +H}, 0 < µ < 1, X and X +H are arbitrary
points of a certain convex set. For this purpose, we use only functionals ϕ ∈ ±K∗

t and
the property of Kτ–convexity of D. Moreover, Z = (1−µ)X +µ(X +H) ∈ D for X ∈ D
and H ∈ ±Kτ . 2

Consider the nonlinear differential system

Ẋ = F (X, t), t ≥ τ ≥ 0, (4)

where F is a continuous operator function that guarantees the existence and uniqueness
of the continuously differentiable solution X(t) = E(Xτ , τ, t) for any τ ≥ 0, Xτ ∈ D.
Let Kt be a cone in the phase space E . For example, the Lyapunov transformation
Kt = L(t)K of a given cone K is a cone also. In this case, we can study the solutions
(4) in the form X(t) = L(t)Z(t) by means of a constant cone K instead of Kt in a phase
space of the transformed system

Ż = L−1(t)F (L(t)Z, t) − L−1(t)L̇(t).

For t ≥ 0, we introduce the following conditions:

X
Kt

≥ Θ, ϕ ∈ K∗
t , ϕ(X −Θ) = 0 ⇒ ϕ (F (X, t)) ≥ 0, (5)

X
Kt

≤ Y, ϕ ∈ K∗
t , ϕ(X − Y ) = 0 ⇒ ϕ (F (X, t)− F (Y, t)) ≤ 0. (6)

Let F±
0 (Θ) denote the classes of operator functions F satisfying (5) with respect to

±Kt. Let F be a class of operator functions satisfying (6). We also define the classes
of operator functions F+

1 (Θ), F+
2 (Θ), F−

1 (Θ) and F−
2 (Θ), that possess property (6)

with Y ∈ K+
t (Θ), X ∈ K+

t (Θ), X ∈ K−
t (Θ) and Y ∈ K−

t (Θ), respectively. Denote
Fk(Θ) = F+

k (Θ) ∩ F−
k (Θ), k = 0, 1, 2. It is obvious that F ⊆ F±

1 (Θ) ⊆ F±
2 (Θ).

Lemma 3.2 [8] Let Kt be a solid cone possessing the extension property

0 ≤ τ < t ⇒ Kτ ⊆ Kt. (7)

Then: (i) system (4) is monotone with respect to Kt if F ∈ F ; (ii) system (4) belongs
to M±

0 (Θ) if F ∈ F±
0 (Θ); (iii) system (4) belongs to M±

0 (Θ) ∩M±
k (Θ) if F ∈ F±

k (Θ),
k = 1, 2; (iv) system (4) belongs to M±

k (Θ) if F (Θ, t) ∈ ±Kt and F ∈ F±
k (Θ), k = 1, 2.

Note that the cone inequality

F (X, t)
Kt

≥ α+(X, t) (X −Θ), X −Θ ∈ ∂Kt, t ≥ 0,
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where α±(X, t) are scalar functions, yields F ∈ F+
0 (Θ). Analogously, if

F (X, t)− F (Y, t)
Kt

≤ β(X,Y, t) (X − Y ), Y −X ∈ ∂Kt, t ≥ 0,

where β(X,Y, t) is a scalar function, then F ∈ F . If this condition holds for Y ∈ K+
t (Θ),

X ∈ K+
t (Θ), X ∈ K−

t (Θ) and Y ∈ K−
t (Θ), then F ∈ F+

1 (Θ), F ∈ F+
2 (Θ), F ∈ F−

1 (Θ)
and F ∈ F−

2 (Θ), respectively.
We can describe the classes of operator function F , F±

0 (Θ) and F±
2 (Θ) by means of

the following operator inequalities generated by Kt:

F ′
±(X, t) D β±(X, t)I, X ∈ D, t ≥ 0, (8)

where β±(X, t) are scalar function. These inequalities ensure that F ′
±(X, t) are positive-

off-diagonal with respect to Kt for X ∈ D and t ≥ 0. In view of Lemma 3.2, we have the
following characterization of the introduced classes of differential systems (4).

Lemma 3.3 Suppose that the operator F (X, t) is Gâteaux differentiable with respect
to ±Kt in the Kt-convex domain D for t ≥ 0. Then: (i) F ∈ F if one of the operator
inequalities (8) holds; (ii) F ∈ F±

0 (Θ) if F (Θ, t) ∈ ±Kt and (8) holds for X ∈ K±
t (Θ);

(iii) F ∈ F±
2 (Θ) if (8) holds for X ∈ K±

t (Θ).

Proof The assertions (i)–(iii) of Lemma 3.3 are obtained by using the Lagrange type
formula:

ϕ
(

F (X +H, t)− F (X, t)
)

= ϕ
(

F ′
±(Z, t)H

)

, H ∈ ±Kt, ϕ ∈ ±K∗
t ,

where Z = X + µH ∈ Co{X,X +H}, 0 < µ < 1. If F ′
±(Z, t)H is continuous, then

F (X +H, t)− F (X, t) =

∫ 1

0

F ′
±(X + µH, t)H dµ, H ∈ ±Kt.2

Let’s introduce some classes of operator functions which are used in the theory of
comparison systems. We write F ∈ F , if one can establish a correspondence between

solutions of (4) and solutions of the differential inequalities Ż
Kt

≤ F (Z, t) such that

Z(τ)
Kτ

≤ X(τ) ⇒ Z(t)
Kt

≤ X(t), t > τ ≥ 0.

In addition, if X(τ) ∈ K+
τ (Θ) (Z(τ) ∈ K+

τ (Θ)), then F ∈ F1(Θ) (F ∈ F2(Θ)). Similarly,
we introduce the classes F , F1(Θ) and F2(Θ) by using −Kt instead of Kt. It is obvious
that F ⊆ F1(Θ) ⊆ F2(Θ) and F ⊆ F1(Θ) ⊆ F2(Θ).

If F ∈ F ∪ F , then system (4) is monotone with respect to Kt. If F ∈ F and
F (Θ, t) ∈ Kt (F ∈ F and F (Θ, t) ∈ −Kt), then system (4) belongs to M+

0 (Θ) (M−
0 (Θ)).

Lemma 3.4 Under the conditions of Lemma 3.2, we have: (i) F ⊆ F ∩ F ;
(ii) F+

k (Θ) ∩ F+
0 (Θ) ⊆ Fk(Θ), F−

k (Θ) ∩ F−
0 (Θ) ⊆ Fk(Θ), k = 1, 2.

By analogy, we can introduce and study classes of difference systems in a Banach
space E with respect to a cone Kt ⊂ E (see [12]).
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4 Stability of Equilibrium States of Autonomous Systems

Definition 4.1 The equilibrium state Xt ≡ Θ of system S is stable in K+
t (Θ) if, for

any ε > 0 and τ ∈ Υ, there exists δ > 0 such that Xτ ∈ Sδ(τ) ⇒ Xt ∈ Sε(t) for t ∈ Υτ ,
where Sε(t) = {X ∈ K+

t (Θ) : ‖X − Θ‖ ≤ ε}. If, for a certain δ > 0, Xτ ∈ Sδ(τ) ⇒
‖Xt −Θ‖ → 0 as t → ∞, then the state Xt ≡ Θ is asymptotically stable in K+

t (Θ).

Lemma 4.1 [8] Let Kt be a normal reproducing cone. The state X ≡ Θ of sys-
tem S ∈ M1(Θ) is Lyapunov stable (asymptotically stable) if and only if it is stable
(asymptotically stable) in K+

t (Θ) and K−
t (Θ).

At first, we formulate known results for linear systems. Let K ⊂ E be a normal
reproducing cone. Positive system Ẋ = AX with a linear bounded operator A : E → E
is exponentially stable if and only if −A is positive invertible. If K ⊆ (γI − A)K for
γ ≥ 0, then the system is exponentially stable and positive with respect to K [14].
Moreover, the system is exponentially stable if K ⊂ −AK ∩ (γ0I − A)K for a certain
γ0 > [ρ2(A)− r2(A)]/[2r(A)], where ρ(A) = max{|λ| : λ ∈ σ(A)}, r(A) = min{|λ| : λ ∈
σ(A)} [15].

Now we formulate the asymptotic stability conditions for an isolated equilibrium state
of nonlinear autonomous system in terms of positive invertible operators.

Theorem 4.1 Let K be a normal reproducing cone. The state X ≡ Θ of system

Ẋ = F (X), F (Θ) = 0, t ≥ 0, (9)

is Lyapunov asymptotically stable if one of the following conditions holds:
(a) F ∈ F+

0 (Θ) ∪ F−
0 (Θ), there exists the Fréchet derivative F ′(Θ), and −F ′(Θ) is

positive invertible:
K ⊆ −F ′(Θ)K. (10)

(b) F ∈ F1(Θ), there exist the Fréchet derivatives F ′
±(Θ) with respect to ±K, and

−F ′
±(Θ) are positive invertible:

K ⊆ −F ′
+(Θ)K ∩ F ′

−(Θ)K. (11)

Proof (a) For X = Θ+H , system (9) is represented as follows:

Ḣ = F ′(Θ)H +R(Θ, H), R(Θ, H) = o(‖H‖), H ∈ E .

In order to use the Lyapunov theorem on stability with respect to the first approximation,
we establish the asymptotic stability of the linear system

Ḣ = F ′(Θ)H. (12)

System (12) is positive with respect to K and −K. Indeed, using the relations

F (Θ + εH) = εF ′(Θ)H +R(Θ, εH),
R(Θ, εH)

ε‖H‖
→
ε→0

0,

and the fact that F ∈ F+
0 (Θ) ∪ F−

0 (Θ), we have

H ∈ ±K, ϕ ∈ ±K∗, ϕ(H) = 0 ⇒
ϕ(F ′(Θ)H)

‖H‖
+

ϕ(R(Θ, εH))

ε‖H‖
≥ 0.
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This implies that ϕ(F ′(Θ)H) ≥ 0, i.e. the positivity conditions of system (12) are
satisfied (see Lemma 3.2). In view of (10), system (12) is exponentially stable. Moreover,
the state X ≡ Θ of original system (9) is Lyapunov asymptotically stable.

(b) If F ∈ F1(Θ), then system (9) belongs to M1(Θ) and has the invariant sets
K±(Θ). For X = Θ+H ∈ K±(Θ), we have the systems

Ḣ = F ′
±(Θ)H +R±(Θ, H), R±(Θ, H) = o(‖H‖), H ∈ ±K.

According to Lemma 4.1, the asymptotic stability in K and −K of the zero state H ≡ 0
of the systems yields the Lyapunov asymptotic stability of the state X ≡ Θ of original
system (9). The linear systems Ḣ = F ′

±(Θ)H are positive with respect to K and −K and
exponentially stable (see above). Therefore, the state X ≡ Θ of system (9) is Lyapunov
asymptotically stable. 2

Note that, in the case of a solid cone K, conditions (10) and (11) are equivalent to
consistency of the corresponding systems of cone inequalities:

H
K
≥ 0, F ′(Θ)H

K
< 0, (13)

H−

K
≤ 0

K
≤ H+, F ′

+(Θ)H+

K
< 0

K
< F ′

−(Θ)H−. (14)

Conjecture 4.1 Let system (9) belong to M1(Θ) with respect to a normal solid cone
K and let the following cone inequalities be feasible:

X−

K
≤ Θ

K
≤ X+, F (X+)

K
< 0

K
< F (X−). (15)

Then the state X ≡ Θ of system (9) is Lyapunov asymptotically stable.

Consider the pseudolinear differential system

Ẋ = A(X)X, t ≥ 0, (16)

where A is a continuous operator function with the values A(X) that are assumed to be
linear bounded operators in E . The Gâteaux (Fréchet) derivatives and Gâteaux (Fréchet)
derivatives with respect to ±K of F (X) = A(X)X have the form

F ′(X) = A(X) +B(X), B(X)H = [A′(X)H ]X,

F ′
±(X) = A(X) +B±(X), B±(X)H = [A′

±(X)H ]X,

where A′(X) and A′
±(X) are the Gâteaux (Fréchet) derivatives of A(X), the values B(X)

and B±(X) are linear operators in E . Since F ′(0) = F ′
±(0) = A(0), we have the following

corollary of Theorem 4.1.

Corollary 4.1 Let one of the following off-diagonal positivity type constraints hold:

A(X) D α±(X)I, X ∈ ±∂K,

A(X) +B(X) D β(X)I, X ∈ ±K,

A(X) +B±(X) D β±(X)I, X ∈ D,

where K is a solid cone, α±(X), β(X) and β±(X) are scalar functions. Then the zero
state X ≡ 0 of system (9) is Lyapunov asymptotically stable if the following system of
cone inequalities is feasible:

H
K
≥ 0, A(0)H

K
< 0. (17)
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Similarly, we can formulate the asymptotic stability conditions of the isolated equilib-
rium states for some classes of autonomous nonlinear and pseudolinear difference system
(see [8]).

Example 4.1 Consider the pseudolinear system

ẋ = A(x)x, A(x) = diag{d− Cx}, x ∈ R
n, t ≥ 0, (18)

where d ∈ R
n is a vector, C is an invertible n× n matrix, diag{·} denotes the diagonal

n × n matrix generated by n vector components. This system is the Kolmogorov type
model describing the dynamics of growth and interaction of n populations. There are
two equilibrium states θ0 = 0 and θ1 = C−1d.

The diagonal matrix A(x) for any x ∈ R
n is positive-off-diagonal with respect to

the cones ±K, where K = R
n
+. Therefore, (18) is positive with respect to ±K and the

asymptotic stability condition (17) of the state x ≡ θ0 is reduced to the inequality d
K
< 0.

Fréchet derivative of the vector function F (x) = A(x)x has the form F ′(x) = A(x) +
B(x), where B(x) = −diag{x}C. The matrix F ′(x) is positive-off-diagonal for x− θ1 ∈
±∂K if B1 = diag{θ1}C is negative-off-diagonal. By virtue of Lemmas 3.2 and 3.3,
system (18) belongs to M±

0 (θ1). Moreover, according to Theorem 4.1, the state x ≡ θ1
of the system is asymptotically stable if B1 is a M -matrix, i.e. B−1

1 D 0 and B1 is
negative-off-diagonal.

5 Comparison Principle for a Set of Differential Systems

Consider a set of independent systems of the type (4):

Si : Ẋi = Fi(Xi, t), Xi ∈ Ei, t ≥ 0, i = 1, s. (19)

For simplicity, we denote X = (X1, . . . , Xs), F (X, t) = (F1(X1, t), . . . , Fs(Xs, t)), E =
E1 × · · · × Es and rewrite (19) as

Ẋ = F (X, t), X ∈ E , t ≥ 0. (20)

Let X be a space with a wedge Wt, and let W : E × [0,∞) → X be a continuous
operator function together with its partial derivatives and not everywhere positive with
respect to Wt.

Definition 5.1 Systems (19) are called comparable if W (X(t), t) ∈ Wt whenever
W (X(τ), τ) ∈ Wτ for t > τ ≥ 0. Simultaneously, W is the operator of comparison of
systems (19).

Theorem 5.1 Let Wt be a solid cone satisfying (7). Then systems (19) are compa-
rable if and only if

W (X, t) ∈ Wt, ϕ ∈ W∗
t , ϕ (W (X, t)) = 0 ⇒ ϕ (DtW (X, t)) ≥ 0, t ≥ 0, (21)

where Dt is the operator of differentiation along solutions of (20).

Proof We construct an invariant set of (20) in the form It = {X ∈ E : W (X, t) ∈
Wt}. The operator of differentiation along solutions of the system is defined as

DtW (X, t) = W ′
X(X, t)F (X, t) +W ′

t (X, t),
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where W ′
t (X, t) is the strong time derivative and W ′

X(X, t) is the Gâteaux derivative.
Let X(t) satisfy (20), X(τ) ∈ Iτ and X(ξ) ∈ ∂Iξ for some ξ ≥ τ . Then

∫ t

ξ

DsW (X(s), s)ds = W (X(t), t)−W (X(ξ), ξ)

and ϕ(W (X(ξ), ξ)) = 0 for some ϕ 6= 0 ∈ W∗
ξ . For ε > 0 and Y ∈ intWξ, we define a

neighbourhood of It in the form Iε
t = {X ∈ E : Wε(X, t) ∈ Wt}, where

Wε(X, t) = W (X, t) + ε arctan(t− ξ)Y.

It is obvious that It ⊂ Iε
t , and Iε

t → It as ε → 0, t ≥ ξ. Since ϕ(Y ) > 0, according to
(21), for some δ > 0, we have

ϕ (DtWε(X(t), t)) = ϕ (DtW (X(t), t)) +
ε

1 + (t− ξ)2
ϕ(Y ) > 0, ξ ≤ t ≤ ξ + δ,

∫ ξ+δ

ξ

ϕ (DtWε(X(t), t)) dt = ϕ(Wε(X(ξ + δ), ξ + δ)) > 0.

It means that the trajectory X(t) at t = ξ cannot leave Iε
ξ , i.e. Wε(X(t), t) ∈ Wξ for

ξ ≤ t ≤ ξ + δ. Otherwise ϕ(Wε(X(ξ), ξ)) = 0 and ϕ(Wε(X(ξ + δ), ξ + δ)) < 0 for some
ϕ ∈ W∗

ξ and δ > 0. According to (7), we have X(t) ∈ Iε
t for ξ ≤ t ≤ ξ + δ. By virtue

of the closedness of Wt, we get Wε(X(t), t) → W (X(t), t) ∈ Wt as ε → 0, ξ ≤ t ≤ ξ + δ.
Thus, It is an invariant set of system (20).

The converse statement follows from the Lagrange type relation:

ϕ(W (X(ξ + δ), ξ + δ))− ϕ(W (X(ξ), ξ)) = δ ϕ(DζW (X(ζ), ζ)),

where ζ ∈ (ξ, ξ+ δ). If ϕ(W (X(ξ), ξ)) = 0 and X(ξ+ δ) ∈ Iξ+δ, then it is necessary that
the inequality ϕ(DξW (X(ξ), ξ)) ≥ 0 holds for sufficiently small δ > 0. 2

Note that (21) holds if

DtW (X, t)
Wt

≥ α(X, t)W (X, t), X ∈ ∂It, t ≥ 0,

where α(X, t) is a certain scalar function.

Now, we formulate known results of comparison for two and three systems with the
zero equilibrium states. In some cases, these results can be established as corollaries of
Theorem 5.1. In phase spaces of the comparison systems, we shall use normal reproducing
cones with bounded normality constants. Consider the following cases.

Case 1. Let s = 2, F1(Θ, t) ≡ 0, F2(Ω, t) ≡ 0 and W (X, t)=X2 − V (X1, t), where
V : E1 × [0,∞) → E2 is a continuous and everywhere positive operator function with
respect to a normal reproducing cone Kt ⊂ E2. If

DtV (X1, t)
Kt

≤ F2(V (X1, t), t), F2 ∈ F2(Ω), t ≥ 0, (22)

then S2 is an upper comparison system for system S1 in the sense that:

Ω
Kτ

≤ V (X1(τ), τ)
Kτ

≤ X2(τ) ⇒ Ω
Kt

≤ V (X1(t), t)
Kt

≤ X2(t), t > τ ≥ 0.
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Thus, systems (19) are comparable with the operator of comparison W .
We assume that an operator V has the following additional properties:

V (Θ, t) ≡ Ω, ‖V (X, t)− Ω‖ ≥ v(X) > 0, X 6= Θ, v(Θ) = 0, t ≥ 0, (23)

where v is a continuous function such that ‖X −Θ‖ ≤ ‖Y −Θ‖ whenever v(X) ≤ v(Y ).

Theorem 5.2 Let an everywhere positive operator V satisfy (22) and (23). Then the
solution X1 ≡ Θ of S1 is Lyapunov stable (asymptotically stable) if the solution X2 ≡ Ω
of S2 is stable (asymptotically stable) in K+

t (Ω).

Case 2. Let s = 3, F1(Ω, t) ≡ F3(Ω, t) ≡ 0, F2(Θ, t) ≡ 0, E1 = E3 and W (X, t) =
[V (X2, t) − X1, X3 − V (X2, t)], where V : E2 × [0,∞) → E1 is a continuous operator
function and Kt ⊂ E1 is a normal reproducing cone. If

F1(V (X2, t), t)
Kt

≤ DtV (X2, t)
Kt

≤ F3(V (X2, t), t), F1 ∈ F1(Ω), F3 ∈ F1(Ω), (24)

then, for X1(τ) ∈ K−
τ (Ω) and X3(τ) ∈ K+

τ (Ω), we have

X1(τ)
Kτ

≤ V (X2(τ), τ)
Kτ

≤ X3(τ) ⇒ X1(t)
Kt

≤ V (X2(t), t)
Kt

≤ X3(t), t > τ ≥ 0. (25)

It means that three systems (19) are comparable with the operator of comparison W
and cone Wt = Kt × Kt. Then S1 (S3) is a lower (upper) comparison system for S2.

Theorem 5.3 Let V satisfy (23) and (24). Then the solution X2 ≡ Θ of system S2

is Lyapunov stable (asymptotically stable) if the solution X1 ≡ Ω of S1 and the solution
X3 ≡ Ω of S3 are stable (asymptotically stable) in K−

t (Ω) and K+
t (Ω), respectively.

Proof Since Kt is reproducing and non-flat, we have

V (X2(τ), τ) − Ω = U+ − U−, ‖U±‖ ≤ γ ‖V (X2(τ), τ) − Ω‖, U± ∈ Kτ ,

where γ > 0 is a universal constant. Let X1(t) and X3(t) be the solutions of systems
S1 and S3 with the initial conditions X1(τ) = Ω− U− ∈ K−

τ (Ω) and X3(τ) = Ω + U+ ∈
K+

τ (Ω), respectively. Then X1(t) ∈ K−
t (Ω), X3(t) ∈ K+

t (Ω) and

‖X1(τ) − Ω‖ ≤ γ ‖V (X2(τ), τ) − Ω‖, ‖X3(τ)− Ω‖ ≤ γ ‖V (X2(τ), τ) − Ω‖.

By virtue of (25) and the normality of Kt, we get

‖V (X2(t), t)− Ω‖ ≤ α‖X1(t)− Ω‖+ β‖X3(t)− Ω‖, t ≥ τ.

where α > 0 and β > 0 depend on the normality constant of Kt.
It follows from (23) and the continuity of V (X, t) that, for any ε > 0, there exists

δ0 > 0 such that ‖X2(t)−Θ‖ ≤ ε whenever ‖V (X2(t), t)− Ω‖ ≤ δ0 for t ≥ τ .
Now we use the stability properties of the solution X1 ≡ Ω of S1 and the solution

X3 ≡ Ω of S3 in K−
t (Ω) and K+

t (Ω), respectively. We choose δ± > 0 so that the
inequalities ‖X1(τ)−Ω‖ ≤ δ− and ‖X3(τ)−Ω‖ ≤ δ+ yield the corresponding inequalities
‖X1(t)− Ω‖ ≤ δ0/(2α) and ‖X3(t)− Ω‖ ≤ δ0/(2β) for t ≥ τ.

Finally, we choose δ > 0 so that

‖X2(τ) −Θ‖ ≤ δ ⇒ ‖V (X2(τ), τ) − Ω‖ ≤ min{δ−, δ+}/γ.
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Then, according to the arguments presented above, we get ‖X2(t) − Θ‖ ≤ ε for t > τ ,
i.e., the solution X2 ≡ Θ of system S2 is Lyapunov stable. In this case, X2(t) → Θ if
X1(t) → Ω and X3(t) → Ω as t → ∞. 2

The proofs of Theorems 5.2 and 5.3 are analogous.

Case 3. Let s ≥ 2. The arrangement problems for systems (19) can be formulated
in the form of a general comparison problem using the block operator

W (X, t) =
[

V2(X2, t)− V1(X1, t), . . . , Vs(Xs, t)− Vs−1(Xs−1, t)
]

.

If Si are comparable with Wt = Kt × · · · × Kt, where Kt is a wedge in X1, then

V1(X1(t), t)
Kt

≤ · · ·
Kt

≤ Vs(Xs(t), t), t > τ ≥ 0,

provided that this ordering takes place at an arbitrary initial time t = τ . In particular, if
Vi(Xi, t) = ‖Xi‖Ei

, then the solutions of comparable systems (19) are ordered by norms:

‖X1(τ)‖E1
≤ · · · ≤ ‖Xs(τ)‖Es

⇒ ‖X1(t)‖E1
≤ · · · ≤ ‖Xs(t)‖Es

, t > τ ≥ 0.

Example 5.1 Consider a set of pseudolinear systems

ẋi = Ai(xi, t)xi, xi ∈ C
ni , t ≥ 0, i = 1, s, (26)

where Ai(xi, t) are continuous ni × ni matrices. We specify an operator of comparison
of the systems with respect to the cone W = R

s−1
+ :

W (X, t) =
[

x∗
2Q2x2 − x∗

1Q1x1, . . . , x∗
sQsxs − x∗

s−1Qs−1xs−1

]

,

where Qi(t) = Q∗
i (t) > 0 are Hermitian positive definite matrices. Then

DtW (X, t) =
[

x∗
2H2x2 − x∗

1H1x1, . . . , x∗
sHsxs − x∗

s−1Hs−1xs−1

]

,

where Hi(xi, t) = A∗
i (xi, t)Qi(t)+Qi(t)Ai(xi, t)+ Q̇i(t), i = 1, s. Using Theorem 5.1 and

the two-sided estimations

[λmin(Hi − λQi)− α]x∗
iQixi ≤ x∗

i (Hi − αQi)xi ≤ [λmax(Hi − λQi)− α]x∗
iQixi,

one can establish that the solutions of (26) are ordered in the form x1(t)
∗Q1(t)x1(t) ≤

· · · ≤ xs(t)
∗Qs(t)xs(t), t ≥ τ ≥ 0, if the following relations hold:

λmax(Hi − λQi) ≤ λmin(Hi+1 − λQi+1), i = 1, s− 1.

In particular, in the case Qi ≡ I, the inequalities λmax(A
∗
i +Ai) ≤ λmin(A

∗
i+1+Ai+1), i =

1, s− 1, ensure the ordering of systems (26) with respect to the Hermitian norm. Here,
for matrix pencils and Hermitian matrices, λmax(·) and λmin(·) denote the maximum and
minimum eigenvalues, respectively.

6 Robust Stability Analysis of Differential Systems

Consider the family of differential systems

Ẋ = F (X, t), F (Θ, t) ≡ 0, t ≥ 0, (27)
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F (X, t)
Kt

≤ F (X, t)
Kt

≤ F (X, t), X ∈ E , t ≥ 0, (28)

under the conditions of existence and uniqueness of solutionsX(t), t > τ ≥ 0, in a Banach
space E contained a normal reproducing cone Kt with a bounded normality constant. We
isolate the extreme systems

Ẋ = F (X, t), F (Θ, t) ≡ 0, t ≥ 0, (29)

Ẋ = F (X, t), F (Θ, t) ≡ 0, t ≥ 0. (30)

If F ∈ F1(Θ) and F ∈ F1(Θ), then, for X(τ) ∈ K−
τ (Θ), X(τ) ∈ K+

τ (Θ), we have

X(τ)
Kτ

≤ X(τ)
Kτ

≤ X(τ) ⇒ X(t)
Kt

≤ X(t)
Kt

≤ X(t), t > τ ≥ 0.

In this case, (29) ((30)) is a lower (upper) comparison system for any system (27), (28).
Assumed that V (X, t) ≡ X and Θ = Ω in Theorem 5.3, we have the following result.

Theorem 6.1 Let F ∈ F1(Θ) and F ∈ F1(Θ). Then the solution X ≡ Θ of any
system (27), (28) is Lyapunov stable (asymptotically stable), if the solution X ≡ Θ of
(29) and the solution X ≡ Θ of (30) are stable (asymptotically stable) in K−

t (Θ) and
K+

t (Θ), respectively.

Now, we consider instead of (28) the conditions

F (X, t)
Kt

≤ F (X, t)
Kt

≤ F (X, t), X ∈ K+
t (Θ), t ≥ 0, (31)

F (X, t)
Kt

≤ F (X, t)
Kt

≤ F (X, t), X ∈ K−
t (Θ), t ≥ 0. (32)

Theorem 6.2 Let Kt be a normal solid cone satisfying (7). If (31) holds with F ∈
F+

0 (Θ) and F ∈ F+
2 (Θ), then stability (asymptotic stability) in K+

t (Θ) of the solution
X ≡ Θ of (30) involves stability (asymptotic stability) in K+

t (Θ) of the solution X ≡ Θ of
any system (27), (31). By analogy, if (32) holds with F ∈ F−

2 (Θ) and F ∈ F−
0 (Θ), then

stability (asymptotic stability) in K−
t (Θ) of the solution X ≡ Θ of (29) involves stability

(asymptotic stability) in K−
t (Θ) of the solution X ≡ Θ of any system (27), (32).

Note that under the conditions of Theorem 6.2, we have Θ
Kt

≤ X(t)
Kt

≤ X(t) and

X(t)
Kt

≤ X(t)
Kt

≤ Θ for t > τ ≥ 0 as soon as these inequalities hold at t = τ (see Section
3). If (31) holds, then F ∈ F+

0 (Θ) implies F ∈ F+
0 (Θ). Similarly, if (32) holds, then

F ∈ F−
0 (Θ) implies F ∈ F−

0 (Θ).

Consider the pseudolinear system

Ẋ = A(X, t)X, t ≥ 0, (33)

with the isolated equilibrium state X ≡ Θ under one of the following conditions:

A(X, t) E A(X, t) E A(X, t), X
Kt

≥ Θ
Kt

≥ 0, t ≥ 0, (34)

A(X, t) E A(X, t) E A(X, t), X
Kt

≤ Θ
Kt

≤ 0, t ≥ 0. (35)
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The values of continuous operator functions A(X, t), A(X, t) and A(X, t) are linear
bounded operators in E . If X ≡ Θ is an equilibrium state of the system, then either
Θ = 0 or Θ 6= 0 and Θ ∈ kerA(Θ, t) at t ≥ 0. The extreme systems

Ẋ = A(X, t)X, t ≥ 0, (36)

Ẋ = A(X, t)X, t ≥ 0, (37)

have the equilibrium states X ≡ Θ and X ≡ Θ, respectively. So, we formulate the
corollaries of Theorem 6.2 and Lemma 3.3 using the following constraints:

A(X, t) +B+(X, t) D β
+
(X, t)I, X ∈ K+

t (Θ), t ≥ 0, (38)

A(X, t) +B+(X, t) D β+(X, t)I, X ∈ K+
t (Θ), t ≥ 0, (39)

A(X, t) +B−(X, t) D β
−
(X, t)I, X ∈ K−

t (Θ), t ≥ 0, (40)

A(X, t) +B−(X, t) D β−(X, t)I, X ∈ K−
t (Θ), t ≥ 0, (41)

whereB±(X, t)H = [A′
±(X, t)H ]X , B±(X, t)H = [A

′

±(X, t)H ]X , A′
±(X, t) and A

′

±(X, t)

are the Gâteaux (Fréchet) derivatives with respect to ±Kt, β±
(X, t) and β±(X, t) are

scalar functions.

Corollary 6.1 Let Kt be a normal solid cone satisfying (7). If (38) and (39) hold,
then stability (asymptotic stability) in K+

t (Θ) of the solution X ≡ Θ of (37) involves
stability (asymptotic stability) in K+

t (Θ) of the solution X ≡ Θ of any system (33), (34).
By analogy, if (40) and (41) hold, then stability (asymptotic stability) in K−

t (Θ) of the
solution X ≡ Θ of (36) involves stability (asymptotic stability) in K−

t (Θ) of the solution
X ≡ Θ of any system (33), (35).

Note that in Corollary 6.1, we can use the constraints

A(X, t) D α+(X, t)I, A(X, t)Θ
Kt

≥ 0, X −Θ ∈ ∂Kt, t ≥ 0, (42)

A(X, t) D α−(X, t)I, A(X, t)Θ
Kt

≤ 0, Θ−X ∈ ∂Kt, t ≥ 0, (43)

instead of (38) and (41), respectively.

Example 6.1 Consider the family of pseudolinear systems

ẋ = A(x, t)x, A(x, t) E A(x, t) E A(x), x ∈ R
n
+, t ≥ 0, (44)

where A(x, t) = A0(t) +
∑n

j=1 xjAj(t), A(x) = A0 +
∑n

j=1 xjAj , Ai(t) E Ai, Ai(t) =

‖a
(i)
ks (t)‖

n
k,s=1 and Ai = ‖a

(i)
ks ‖

n
k,s=1 are n × n matrices, i = 0, n. Here K = R

n
+ is a cone

of nonnegative vectors and E denotes the elementwise matrix inequality.
The Gâteaux (Fréchet) derivative of F (x, t) = A(x, t)x has the form

F ′(x, t) = A(x, t) +B(x, t), B(x, t) = [(∂A/∂x1)x, . . . , (∂A/∂xn)x] ,

So, for F (x, t) = A(x, t)x and F (x) = A(x)x, we have

F ′(x, t) = F ′
±(x, t) = A0(t) +

∑n

j=1 xjBj(t), Bj(t) = ‖a
(j)
ks (t) + a

(s)
kj (t)‖

n
k,s=1,

F
′
(x) = F

′

±(x) = A0 +
∑n

j=1 xjBj , Bj = ‖a
(j)
ks + a

(s)
kj ‖

n
k,s=1.
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Then conditions (38) and (42) with Θ = 0 are reduced to the form

a
(0)
ks (t) ≥ 0, a

(j)
ks (t) + a

(s)
kj (t) ≥ 0, k 6= s, t ≥ 0, j = 1, n;

a
(i)
ks (t) ≥ 0, k 6= s, t ≥ 0, i = 0, n,

respectively. If one of these conditions holds and in addition

A
−1

0 E 0, a
(0)
ks ≥ 0, a

(j)
ks + a

(s)
kj ≥ 0, k 6= s, j = 1, n,

then according to Corollary 6.1 the zero equilibrium state of any system (44) is asymp-
totically stable in K (see also assertion (a) of Theorem 4.1 and Corollary 4.1).

Consider the parameter family of autonomous pseudolinear systems

Ẋ = A(X, p)X, A(X, p) =

s
∑

i=1

piAi(X), X ∈ E , t ≥ 0, (45)

where p = [p1, . . . , ps]
⊤ ∈ R

s
+ is a vector of nonnegative scalar parameters. The values

of operator functions Ai(X) and A(X, p) are linear bounded operators in E .

Corollary 6.2 Let all the operators Ai(X) satisfy one of the off-diagonal positivity
type constraints of Corollary 4.1 with a normal solid cone K, and the system of cone

inequalities H
K
≥ 0 and Ai(0)H

K
< 0 for i = 1, s is feasible. Then the zero solution X ≡ 0

of any system (45) for p ∈ R
s
+ is Lyapunov asymptotically stable.

Consider the family of linear differential systems

Ẋ = A(t)X, A(t) E A(t) E A(t), t ≥ 0, (46)

where the inequality E between linear operators is generated by a normal reproducing
cone Kt. In (46), we isolate the extreme systems:

Ẋ = A(t)X, (47)

Ẋ = A(t)X. (48)

Theorem 6.3 Any system (46) is positive with respect to Kt if

eA(θ)δKτ ⊆ Kt, t ≥ θ ≥ τ ≥ 0, t− τ ≥ δ ≥ 0. (49)

Moreover, if system (48) is asymptotically stable, then any positive system (46) is asymp-
totically stable.

Proof Note that Kt in (49) with δ = 0 satisfies (7). The evolutional and exponential
operators of system (46) are connected by [16]

E(t, τ) = lim
n→∞

[

eA(ϑn)hn . . . eA(ϑ1)hn

]

, eA(ϑ)h = lim
n→∞

[E(ϑ, ϑ− h/n)]
n
,

where ϑk ∈ [tk, tk+1], tk = τ + khn, hn = (t − τ)/n, k = 0, n, t ≥ τ , ϑ ≥ 0, h ≥ 0.
Therefore, (49) ensures positivity of (46). In the case of a constant cone, the inverse
statement holds also. If A(t)Kt ⊆ Kt and (7) hold, then

eA(ϑ)hKτ =

∞
∑

k=0

(hk/k!)Ak(ϑ)Kτ ⊆ Kt, τ ≤ ϑ ≤ t, 0 ≤ h ≤ t− τ.
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Let A(t) = A1(t) +A2(t) and eAs(ϑ)hKτ ⊆ Kt, s = 1, 2. Then

eA(ϑ)h = lim
n→∞

2−n
[

eA1(ϑ)
h

n eA2(ϑ)
h

n + eA2(ϑ)
h

n eA1(ϑ)
h

n

]n

, eA(ϑ)hKτ ⊆ Kt,

and consequently E(t, τ)Kτ ⊆ Kt. Assuming that A1(t) = A(t) and A2(t) = A(t)−A(t),
we have the positivity of any system (46) with respect to Kt.

Let X(t) and X(t) be the solutions of (46) and (48) with initial conditions X(τ) = Xτ

and X(τ) = Xτ , respectively. Since 0
Kτ

≤ Xτ

Kτ

≤ Xτ implies 0
Kt

≤ X(t)
Kt

≤ X(t), t ≥ τ ≥ 0,
and Kt is normal, the asymptotic stability of system (48) ensures the asymptotic stability
in ±Kt of any positive system (46). Moreover, if Kt is reproducing, then any system (46)
is Lyapunov asymptotically stable. 2

Remark 6.1 Note that any system (46) is positive with respect to Kt if the operator
inequality A(t) D α(t)I holds for some scalar function α(t) (see Corollary 6.1 and the
notation below). This inequality ensures (49) subject to (7). Indeed,

eA(ϑ)δ = eα(ϑ)δ e[A(ϑ)−α(ϑ)I]δ, eA(ϑ)δKτ =

∞
∑

k=0

(δk/k!)[A(ϑ)− α(ϑ)I]k Kτ ⊆ Kϑ ⊆ Kt.

Example 6.2 Consider the family of linear systems

ẋ = A(t)x, A(t) E A(t) E A, A
−1

E 0, x ∈ R
n, t ≥ 0, (50)

where A(t) is a matrix function with nonnegative off-diagonal entries, −A is anM -matrix
and E denotes the elementwise matrix inequality. The system ẋ = A(t)x is positive with
respect to the cone R

n
+, and the system ẋ = Ax is asymptotically stable. Thus, any

system (50) is asymptotically stable and positive with respect to R
n
+.

Example 6.3 Consider the family of linear systems in a matrix space C
n×n

Ẋ = M(t)X, M(t) E M(t) E M(t), X ∈ C
n×n, t ≥ 0, (51)

where M(t)X = A∗(t)X +XA(t), M(t)X = A∗(t)X +XA(t) +
s
∑

i=1

B∗(t)XB(t),

E is an operator inequality generated by the cone of Hermitian positive semidefinite
matrices Kn. Since eM(ϑ)δX = eA

∗(ϑ)δXeA(ϑ)δ, the Lyapunov equation

Ẋ = A∗(t)X +XA(t)

and any system (51) are positive with respect to Kn. If the system

Ẋ = A∗(t)X +XA(t) +

s
∑

i=1

B∗(t)XB(t) (52)

is asymptotically stable, then any system (51) is positive and asymptotically stable. Au-
tonomous system of the type (52) is asymptotically stable, if the linear matrix inequality

A∗X +XA+

s
∑

i=1

B∗XB < 0

has a solution X = X∗ > 0.
Note that the matrix differential equation (52) is known as the second-moment equa-

tion for the Itô stochastic system. This equation is positive and monotone with respect
to Kn.
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Abstract: Some existence theorems are obtained for periodic and subharmonic so-
lutions to noncoercive first order Hamiltonian systems and to similar second order
Hamiltonian systems, when the Hamiltonian satisfies a superquadratic condition and
need not satisfy the global Ambrosetti–Rabinowitz condition. For the resolution, we
use minimax methods in critical point theory, especially a Local Linking Theorem
and a Generalized Mountain Pass Theorem.

Keywords: Hamiltonian systems; periodic solutions; subharmonics; critical points.

Mathematics Subject Classification (2000): 34C25, 34A34, 37J45, 35Q40.

1 Introduction

Consider the nonautonomous first order Hamiltonian systems

Jẋ− u∗A(t)u(x) + u∗G′(t, u(x)) = 0, (1.1)

where u : R2N −→ R
m (1 ≤ m ≤ 2N) is a linear operator, A is a continuous T−periodic

function (T > 0) from R into the space of symmetric (m×m)-matrices, G : R×R
m −→ R

is a continuous function, T− periodic in the first variable, differentiable with respect to
the second variable and its derivative G′(t, x) = ∂G

∂x
(t, x) is continuous, and J is the

standard symplectic matrix:

J =

(

0 −I

I 0

)

.

When A(t) = 0 for all t ∈ R, m = 2N and u = idR2N , Rabinowitz has proved in [7] the
existence of periodic solutions for (1.1) under some suitable conditions, in particular the
following superquadratic condition:
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There exist two constants µ > 2 and r > 0 such that for all t ∈ R and x ∈ R
2N , |x| ≥ r

0 < µG(t, x) ≤ G′(t, x)x, (1.2)

where x.y denotes the standard inner product of x, y in R
2N and |.| denotes the corre-

sponding norm. Since then, condition (1.2) has been used extensively in the literature,
see [2–7,9,10]. If m = 2N , u = idR2N and G satisfies the superquadratic condition
(1.2), the existence of nontrivial periodic solutions for the Hamiltonian systems (1.1),
was studied by Li-Szulkin in [3] when A is a constant symmetric (2N × 2N) matrix, and
by Li-Willem when A(t) is a continuous periodic map from R into the space of symmetric
(2N × 2N) matrices, not necessary constant. In [10], the author has studied the same
problem as in [4] in the general case when u is not necessary the identity.

By remarking that the condition (1.2) does not cover some superquadratic nonlinear-
ity like

G(t, y) = |y|
2
[ln(1 + |x|

p
)]q, p, q > 1, (1.3)

the author has studied, recently in [11], the existence of nontrivial periodic solution for
(1.1) when the function G satisfies some superquadratic conditions which cover the cases
as in (1.3). In particular, the author has assumed that the function G satisfies the two
following assumptions:

there exist constants 1 < α < 2 and a > 0 such that

|G′(t, y)| ≤ a(|y|α + 1), ∀(t, y) ∈ R× R
m; (1.4)

there exist constants β > 1
2−α

, b > 0 and r > 0 such that

G′(t, y).y − 2G(t, y) ≥ b |y|
β
, ∀t ∈ R, ∀ |y| ≥ r. (1.5)

Consider the function G defined in R× R
m by

G(t, y) =

∣

∣

∣

∣

cos(
2π

T
t)

∣

∣

∣

∣

|y|
α+1

+ |y|
2
ln(1 + |y|

2
), (1.6)

where 3
2 < α < 2. A simple computation shows that G neither satisfies the condition

(1.2), nor (1.5). In section 3, we will extend the ranges of α and β and obtain the existence
of nontrivial T− periodic solutions of (1.1) under some superquadratic conditions covering
the cases as in (1.6). For the resolution, we shall use a Local Linking Theorem.

The existence of subharmonic solutions for (1.1), i.e. of distinct kT−periodic solutions
of (1.1), has been investigated in [2,6,9] when A(t) = 0 for all t ∈ R, m = 2N , u = idR2N

and G satisfies the condition (1.2). In section 4, we are interested in the existence of
infinitely many subharmonic solutions of the Hamiltonian systems (1.1) when A(t) = 0 for
all t ∈ R, u is not necessary the identity and the function G satisfies some superquadratic
conditions covering the cases as in (1.6). The main obstacle in obtaining such solutions
is the fact that any T−periodic solution is also kT−periodic. For the resolution, we shall
use the minimax methods in critical point theory, specially, a Generalized Mountain Pass
Theorem.

2 Preliminaries

We will recall here some basic results needed in the proof of our next results.
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2.1 Linking theorem [4]

Let X be a real Banach space with a direct sum decomposition

X = X1 ⊕X2.

Consider two sequences of subspaces

X1
0 ⊂ X1

1 ⊂ · · · ⊂ X1, X2
0 ⊂ X2

1 ⊂ · · · ⊂ X2

such that

Xj = ∪n∈NX
j
n, j = 1, 2.

For every multi-index α = (α1, α2) ∈ N
2 , we denote by Xα the space

X1
α1

⊕X2
α2
.

Let us recall that

α ≤ β ⇔ α1 ≤ β1, α2 ≤ β2.

A sequence (αn) ⊂ N
2 is admissible if, for every α ∈ N

2, there exists m ∈ N such that

n ≥ m ⇒ αn ≥ α.

For every function f : X −→ R, we denote by fα the function f restricted to the space
Xα.

Definition 2.1 Let f ∈ C1(X,R). The function f satisfies the (PS)∗ condition if
every sequence (xαn

) such that (αn) is admissible and

xαn
∈ Xαn

, sup
n∈N

f(xαn
) < ∞, f ′

αn
(xαn

) −→ 0,

possesses a subsequence which converges to a critical point of f .

Definition 2.2 The function f ∈ C1(X,R) has a local linking at 0, with respect to
(X1, X2) if, for some r > 0,

f(x) ≥ 0, x ∈ X1, ||x|| ≤ r,

f(x) ≤ 0, x ∈ X2, ||x|| ≤ r.

Remark 2.1 If f has a local linking at 0, then 0 is a critical point of f .

Theorem 2.1 Suppose that f ∈ C1(X,R) satisfies the following assumptions

a) f has a local linking at 0 and X1 6= {0},

b) f satisfies the (PS)∗ condition,

c) f maps bounded sets into bounded sets,

d) for every m ∈ N, f(x) −→ −∞ as ‖x‖ −→ +∞, x ∈ X1
m ⊕X2.

Then f has at least two critical points.
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2.2 Generalized Mountain Pass Theorem

Let X be a real Banach space. We shall say that f ∈ C1(X,R) satisfies the Cerami-
condition (C) if every sequence (xn) in X satisfying

(f(xn)) is bounded and ‖f ′(xn)‖ (1 + ‖xn‖) → 0 as n → ∞

possesses a convergent subsequence.

As shown in [1], a deformation lemma can be proved with the weaker condition (C)
replacing the used (PS) condition, and it turns out that the Generalized Mountain Pass
Theorem holds true under condition (C). We then have:

Theorem 2.2 Let X be a real Hilbert space with inner product < ., . >. Suppose
X = X1 ⊕ X2 and f ∈ C1(X,R) satisfies the Cerami-condition (C) and the following
conditions:
a) f(x) = 1

2 < P+x − P−x, x > +b(x), where P+ : E −→ E+ and P− : E −→ E− are
the orthogonal projections and b′ is compact,
b) there exist constants m, ρ > 0, such that

f(x) ≥ m, ∀x ∈ ∂Bρ ∩X1,

c) there exist e ∈ ∂B1 ∩X1 and constants r1, r2 > 0 such that

f(x) ≤ 0, ∀x ∈ ∂Q,

where
Q = {se/0 ≤ s ≤ r1} ⊕

{

x ∈ X2/ ‖x‖ ≤ r2
}

.

Then f possesses a critical value c ≥ m which can be characterized as

c = inf
h∈Γ

max
x∈Q

f(h(x)),

where
Γ =

{

h ∈ C(Q,E)/h = id on ∂Q
}

.

3 Existence of Periodic Solutions

Let u : R2N → R
m (1 ≤ m ≤ 2N) be a nontrivial linear operator with adjoint u∗, A be

a continuous T−periodic function (T > 0) from R into the space of symmetric (m×m)-
matrices and G : R × R

m → R, (t, y) → G(t, y) be a continuous function, T− periodic
in the first variable, differentiable with respect to the second variable and its derivative
G′(t, y) = ∂G

∂y
(t, y) is continuous. Consider the noncoercive Hamiltonian systems

(HS) Jẋ− u∗A(t)u(x) + u∗G′(t, u(x)) = 0.

We are interested in the existence of nontrivial T−periodic solutions for (HS).
Consider the following assumptions

(G0) JKer u ⊂ Ker u.
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(G1) G(t, y) = o(|y|2) as |y| → 0, uniformly in t ∈ R.

(G2) lim
|y|→∞

G(t, y)

|y|
2 = +∞, uniformly in t ∈ R.

(G3) There exist constants α > 1 and a > 0 such that

|G′(t, y)| ≤ a(|y|
α
+ 1), ∀ t ∈ R, ∀y ∈ R

m.

(G4) There exist constants β > α, b > 0 and r > 0 such that

G′(t, y).y − 2G(t, y) ≥ b |y|
β
, ∀ t ∈ R, ∀ |y| ≥ r.

(G5) There exists a constant δ > 0 such that either

(i) G(t, y) ≥ 0, ∀t ∈ R, ∀ |y| ≤ δ,

or

G(t, y) ≤ 0, ∀t ∈ R, ∀ |y| ≤ δ.

Our first main result in this section is the following:

Theorem 3.1 Assume conditions (G0) − (G4) hold. If 0 is an eigenvalue of
J d

dt
− u∗Au, assume also (G5). Then the system (HS) possesses at least one nontrivial

T−periodic solution.

Example 3.1 Let p, q > 1 be two real numbers. The function

G(t, y) = |y|
2
[ln(1 + |x|

p
)]q

satisfies (G1)−(G5). The linear map u : RN ×R
N −→ R

N defined by u(p, q) = p satisfies
(G0). Let A(t) = IdN . Therefore for all T > 0, the corresponding Hamiltonian system
(HS) possesses at least a nontrivial T−periodic solution.

Remark 3.1 Observe that if x is a periodic solution of (HS) then y(t) = x(−t) is a
periodic solution of

Jẏ(t) + u∗A(−t)u(y)− u∗G′(−t, u(y)) = 0.

Hence, it is easy to see that we obtain the same result of Theorem 3.1 if we replace
assumptions (G2) and (G4) respectively by the following ones

lim
|y|→∞

G(t, y)

|y|2
= −∞, uniformly in t ∈ R.

There exist constants β > α, b > 0 and r > 0 such that

G′(t, y).y − 2G(t, y) ≤ −b |y|
β
, ∀ t ∈ R, ∀ |y| ≥ r.
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Now consider the noncoercive second order Hamiltonian systems

(NS) ẍ− u∗A(t)u(x) + u∗W ′(t, u(x)) = 0

where u : RN −→ R
m, (1 ≤ m ≤ N) is a linear operator with adjoint u∗, A(t) is a

symmetric m×m matrix, continuous and T−periodic, W : R×R
m −→ R is a continuous

function T−periodic in the first variable and continuously differentiable with respect to
the second variable. Consider the following assumptions:

(W1) W (t, y) = o(|y|
2
) as |y| → 0, uniformly in t ∈ R.

(W2) lim
|y|→∞

W (t, y)

|y|
2 = +∞, uniformly in t ∈ R.

(W3) There exist constants α > 1 and a > 0 such that

|W ′(t, y)| ≤ a(|y|α + 1), ∀ t ∈ R, ∀y ∈ R
m.

(W4) There exist constants β > α, b > 0 and r > 0 such that

W ′(t, y).y − 2W (t, y) ≥ b |y|
β
, ∀t ∈ R, ∀ |y| ≥ r.

(W5) There exists a constant δ > 0 such that either

(i) W (t, y) ≥ 0, ∀t ∈ R, ∀ |y| ≤ δ,

or

(ii) W (t, y) ≤ 0, ∀t ∈ R, ∀ |y| ≤ δ.

Our second main result in this section is the following:

Theorem 3.2 Assume conditions (W1) − (W4) hold. If 0 is an eigenvalue of

J d2

dt2
− u∗Au, assume also (W5). Then the system (NS) possesses at least one non-

trivial T−periodic solution.

3.1 Proof of Theorem 3.1

Let S1 = R/TZ and E = H
1

2 (S1,R2N ) be the Sobolev space of T−periodic functions
with inner product < ., . >H1/2 and norm ‖.‖

H
1

2

defined by

< x, y >
H

1

2

= x̂0.ŷ0 + π
∑

k∈Z

|k| x̂k.ŷk

and

‖x‖
H

1

2

=

(

|x̂0|
2
+ π

∑

k∈Z

|k| |x̂k|
2

)
1

2

for x, y ∈ H
1

2 (S1,R2N ), where

x(t) ∼=
∑

k∈Z

exp(J
2kπt

T
)x̂k, x̂k ∈ R

2N ,
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and

y(t) ∼=
∑

k∈Z

exp(J
2kπt

T
)ŷk, ŷk ∈ R

2N .

Consider the closed subspace of H1/2(S1,R2N )

X =
{

x ∈ H
1

2 (S1,R2N)/x(t) ∈ (Ker u)⊥ a.e.
}

.

It is well known that the space X is compactly embedded in Ls(S1,R2N ) for every
s ∈ [1,∞[ (see [5]) and as a consequence there exists a constant γs > 0 such that

‖x‖Ls ≤ γs ‖x‖
H

1

2

, ∀x ∈ X. (3.1)

Define on X the bilinear form

B(x, y) = −
1

2

∫ T

0

[Jẋ.y −A(t)u(x).u(y)]dt.

Let X+ (resp.X−) be the positive (resp. negative) space corresponding to the spectral
decomposition of B in X and X0 = kerB. Then X = X+ ⊕X− ⊕X0. In fact it is not
difficult to check that X+, X− and X0 are mutually orthogonal in L2(S1,R2N ). Denote
Q the quadratic form associated to B:

Q(x) = −
1

2

∫ T

0

[Jẋ.x−A(t)u(x).u(x)]dt.

We prove (see [11]) that there exists a constant ν > 0 such that

Q(x) ≥ ν ‖x‖
2
, ∀x ∈ X+, (3.2)

Q(x) ≤ −ν ‖x‖
2
, ∀x ∈ X−. (3.3)

Now, since X0 is of finite dimension, there exists a constant a1 > 0 such that

‖x‖
H

1

2

≤ a1 ‖x‖L2 , ∀x ∈ X0. (3.4)

We deduce from (3.2), (3.3) and (3.4) that the following expression

‖x‖
2
=
∥

∥x+ + x− + x0
∥

∥

2
= Q(x+)−Q(x−) +

∣

∣x0
∣

∣

2

L2
(3.5)

where xi ∈ X i, i = +,−, 0, is an equivalent norm on X , which will be considered in the
following. Therefore we deduce from (3.1) that for all s ∈ [1,∞[, there exists a constant
µs > 0 such that

‖x‖Ls ≤ µs ‖x‖ , ∀x ∈ X. (3.6)

If zero is not an eigenvalue of J d
dt

− u∗Au, we take

X1 = X+, X2 = X−.

If zero is an eigenvalue of J d
dt

− u∗Au, we take

X1 = X+ ⊕X0, X2 = X−, if G(t, y) ≤ 0 for |y| ≤ δ,
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X1 = X+, X2 = X− ⊕X0, if G(t, y) ≥ 0 for |y| ≤ δ.

In the following, we will assume that zero is an eigenvalue of J d
dt

− u∗Au and

G(t, y) ≤ 0, for |y| ≤ δ. (3.7)

The other cases are similar.
Define a functional f in X by

f(x) = −
1

2

∫ T

0

[Jẋ.x−A(t)u(x).u(x)]dt −

∫ T

0

G(t, u(x))dt.

It is easy to see that there exist two constants m,M > 0 such that

m|x| ≤ |u(x)| ≤ M |x|, ∀x ∈ (Ker u)⊥. (3.8)

Combine this with (G3)(ii), there are two constants c, d > 0 such that

|u∗G′(t, u(x))| ≤ c|x|β + d, ∀t ∈ R, ∀x ∈ (Ker u)⊥. (3.9)

Therefore, we conclude that f ∈ C1(X,R) and maps bounded sets into bounded sets.
Now, let us choose Hilbertian basis (en)n∈≥1 for X1 and (en)n≤−1 for X2. Define

X1
n = space(e1, ..., en), n ≥ 1

X2
n = space(e−1, ..., e−n), n ≥ 1

Xj =
⋃

n≥1

X
j
n, j = 1, 2.

We will proceed by successive lemmas.

Lemma 3.1 The functional f satisfies the (PS)∗ condition.

Proof Consider a sequence (xαn
) such that (αn) is admissible and

xαn
∈ Xαn

, c = sup
n∈N

f(xαn
) < ∞, f

′

αn
(xαn

) → 0 as n → ∞. (3.10)

We claim that (xαn
) is bounded. Suppose by contradiction that (xαn

) is not bounded,
then going, if necessary, to a subsequence, we can assume that ‖xαn

‖ → ∞ as n → ∞.
By (G4) and (3.8) there exists a constant c1 > 0 such that for all t ∈ R and for all
x ∈ (Ker u)⊥

G′(t, u(x)).u(x) − 2G(t, u(x)) ≥ b |x|
β
− c1. (3.11)

Therefore, by noting xαn
= xn and fαn

= fn, we have

−f
′

n(xn).xn + 2f(xn) =

∫ T

0

[G′(t, u(xn)).u(xn)− 2G(t, u(xn))]dt

≥ b

∫ T

0

|xn|
β
− c1T.
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Combining this with (3.6), we obtain

∫ T

0 |xn|
β
dt

‖xn‖
−→ 0, as n −→ ∞. (3.12)

Let xn = x+
n + x−

n + x0
n ∈ X+ ⊕X− ⊕X0. By (G3), Hölder’s inequality, (3.6) and (3.8),

we have

f ′
n(xn).x

+
n =

∥

∥x+
n

∥

∥

2
−

∫ T

0

G′(t, u(xn)).u(x
+
n )dt

≥
∥

∥x+
n

∥

∥

2
−

∫ T

0

|G′(t, u(xn))|
∣

∣u(x+
n )
∣

∣ dt

≥
∥

∥x+
n

∥

∥

2
− a

∫ T

0

(|u(xn)|
α
+ 1)

∣

∣u(x+
n )
∣

∣ dt

≥
∥

∥x+
n

∥

∥

2
− a

∫ T

0

(Mα |xn|
α + 1)M

∣

∣x+
n

∣

∣ dt

≥
∥

∥x+
n

∥

∥

2
− aMα+1[

∫ T

0

(|xn|
α
)

β

α dt]
α
β [

∫ T

0

∣

∣x+
n

∣

∣

β

β−α dt]
β−α

β − aM
∥

∥x+
n

∥

∥

L1

≥
∥

∥x+
n

∥

∥

2
− aMα+1µββ−α

∥

∥x+
n

∥

∥

α

Lβ

∥

∥x+
n

∥

∥− aMµ1

∥

∥x+
n

∥

∥

for all integer n ∈ N, which implies that
∥

∥x+
n

∥

∥ ≤ ‖f ′
n(xn)‖ + c2 ‖xn‖

α

Lβ + c3, ∀n ∈ N, (3.13)

where c2, c3 are two constants. Since 1 < α < β, we deduce from (3.12) and (3.13) that

‖x+
n ‖

‖xn‖
−→ 0, as n −→ ∞. (3.14)

Similarly
‖x−

n ‖

‖xn‖
−→ 0, as n −→ ∞. (3.15)

By (G4) and (3.8), there exist two constants c4, c5 > 0 such that

G′(t, u(y)).u(y)− 2G(t, u(y)) ≥ c4 |y| − c5, ∀(t, y) ∈ R× (Ker u)⊥, (3.16)

which implies

2f(xn)− f ′
n(xn).xn =

∫ T

0

[G′(t, u(xn)).u(xn)− 2G(t, u(xn))]dt

≥

∫ T

0

[c4 |xn| − c5]dt

≥

∫ T

0

[c4
∣

∣x0
n

∣

∣− c4
∣

∣x+
n

∣

∣− c4
∣

∣x−
n

∣

∣− c5]dt. (3.17)

Moreover, it follows from the equivalence of the norms on the finite dimensional subspace
X0 that there exists a positive constant d such that

‖x‖ ≤ d ‖x‖L1 , ∀x ∈ X0. (3.18)
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Combining (3.6), (3.17) and (3.18) we obtain

2f(xn)− f ′
n(xn).xn ≥ c4

1

d

∥

∥x0
n

∥

∥− c4µ1

∥

∥x+
n

∥

∥− c4µ1

∥

∥x−
n

∥

∥− c5T. (3.19)

Therefore, by (3.14), (3.15) and (3.19), we have
∥

∥x0
n

∥

∥

‖xn‖
−→ 0 as n −→ ∞. (3.20)

We deduce from (3.14), (3.15) and (3.20) that

1 =
‖xn‖

‖xn‖
≤

∥

∥x0
n

∥

∥+ ‖x−
n ‖+ ‖x+

n ‖

‖xn‖
−→ 0 as n −→ ∞, (3.21)

which is a contradiction. So (xn) must be bounded. Since the space X is closed in the

reflexive space H
1

2 (S1,R2N ), then X is also reflexive and the sequence (xn) possesses a
subsequence (xnk

) weakly convergent to a point x. Note that

Q(x+
nk

− x+) = (f ′
nk
(xnk

)− f ′(x)).(x+
nk

− x+) (3.22)

+

∫ T

0

[G′(t, u(xnk
))−G′(t, u(x))].[u(x+

nk
)− u(x+)]dt

which implies that x+
nk

−→ x+ in X . Similarly, x−
nk

−→ x in X . It follows that xnk
−→ x

in X and f ′(x) = 0. So f satisfies the (PS)∗ condition. The proof of Lemma 3.1 is
complete.

Lemma 3.2 The functional f satisfies the local linking condition at zero.

Proof By assumption (G3) and (3.8), there exists a constant b1 > 0 such that

|G(t, u(x))| ≤ b1(|x|
α+1

+ |x|), ∀t ∈ R, ∀x ∈ (Ker u)⊥. (3.23)

Assumption (G1) and (3.8) imply that for any ǫ > 0, there exists a constant R > 0 such
that

|G(t, u(x))| ≤ ǫ |x|
2
, ∀t ∈ R, ∀ |x| ≤ R. (3.24)

Combining (3.23) with (3.24), we obtain

|G(t, u(x))| ≤ (ǫ |x|
2
+M1 |x|

α+1
), ∀t ∈ R, ∀x ∈ (Keru)⊥ (3.25)

where M1 = b1(1 +Rα). Hence we obtain by (3.6)
∣

∣

∣

∣

∣

∫ T

0

G(t, u(x))dt

∣

∣

∣

∣

∣

≤ ǫµ2
2 ‖x‖

2
+M1µ

α+1
α+1 ‖x‖

α+1
. (3.26)

So for all x ∈ X2 = X−

f(x) ≤ −‖x‖
2
+ ǫµ2

2 ‖x‖
2
+M1µ

α+1
α+1 ‖x‖

α+1
. (3.27)

Since α > 1 and ǫ is arbitrary, we deduce that there exists a constant r > 0 small enough
such that

f(x) ≤ 0, ∀x ∈ X2, ‖x‖ ≤ r. (3.28)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 11 (3) (2011) 319–336 329

Now, let η > 0 be such that

∀ x ∈ (Ker u)⊥, |x| ≤ η ⇒ |u(x)| ≤ δ (3.29),

where δ is introduced in (G5). Since X0 is a finite dimensional space, there exists a
constant ρ > 0 such that

‖x‖∞ ≤ ρ ‖x‖ , ∀x ∈ X0. (3.30)

Let x = x0 + x+ ∈ X1 = X0 ⊕X+ such that ‖x‖ ≤ η

2ρ and set

I =
{

t ∈ [0, T ]/
∣

∣x+(t)
∣

∣ ≤
η

2

}

.

On I, we have by (3.30)

|x(t)| ≤
∣

∣x0(t)
∣

∣+
∣

∣x+(t)
∣

∣ ≤
∥

∥x0
∥

∥

∞
+

η

2
≤ η,

hence, by (3.7) and (3.29)
∫ T

0

G(t, u(x))dt ≤ 0. (3.31)

On [0, T ] | I, we have also by (3.30)

|x(t)| ≤
∣

∣x0(t)
∣

∣+
∣

∣x+(t)
∣

∣ ≤ ρ
∥

∥x0
∥

∥+
∣

∣x+(t)
∣

∣ ≤
η

2
+
∣

∣x+(t)
∣

∣ ≤ 2
∣

∣x+(t)
∣

∣ .

Hence, by (3.6) and (3.25), we obtain
∣

∣

∣

∣

∣

∫

[0,T ]|I

G(t, u(x))dt

∣

∣

∣

∣

∣

≤ 4ǫµ2
2

∥

∥x+
∥

∥

2
+ 2α+1M1µ

α+1
α+1

∥

∥x+
∥

∥

α+1
.

Therefore, we have

f(x) ≥
∥

∥x+
∥

∥

2
− 4ǫµ2

2

∥

∥x+
∥

∥

2
− 2α+1M1µ

α+1
α+1

∥

∥x+
∥

∥

α+1
−

∫

I

G(t, u(x))dt. (3.32)

Since α > 1, we deduce from (3.31) and (3.32), by taking ǫ small enough, that there
exists a constant 0 < r < η

2ρ such that

f(x) ≥ 0, ∀ x ∈ X1, ‖x‖ ≤ r. (3.33)

Properties (3.28) and (3.33) show that f satisfies the local linking condition at zero which
completes the proof of Lemma 3.2.

Lemma 3.3 For each m ∈ N, f(x) −→ −∞ as ‖x‖ −→ ∞, x ∈ X1
m ⊕X2.

Proof For x = x+ + x0 + x− ∈ X1
m ⊕X2, we have

f(x) =
∥

∥x+
∥

∥

2
−
∥

∥x−
∥

∥

2
−

∫ T

0

G(t, u(x+ + x0 + x−))dt. (3.34)

Since X1
m is of finite dimension, there exists a positive constant γ1 such that

∥

∥x+ + x0
∥

∥ ≤ γ1
∥

∥x+ + x0
∥

∥

L2
, ∀x = x+ + x0 ∈ X1

m. (3.35)
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On the other hand, by assumption (G2)(i) and (3.8), there exists a constant c6 > 0 such
that

−G(t, u(x)) ≤ −2γ1 |x|
2
+ c6, ∀ x ∈ (Ker u)⊥. (3.36)

Combining (3.34), (3.35) and (3.36), we obtain for x = x+ + x0 + x− ∈ X1
m ⊕X2

f(x) ≤
∥

∥x+
∥

∥

2
−
∥

∥x−
∥

∥

2
− 2γ1[

∥

∥x+
∥

∥

2

L2
+
∥

∥x−
∥

∥

2

L2
+
∥

∥x0
∥

∥

2

L2
] + c6T

≤ −
∥

∥x−
∥

∥

2
−
∥

∥x+
∥

∥

2
− 2

∥

∥x0
∥

∥

2
+ c6T

which concludes the proof of Lemma 3.3.

We deduce from the previous lemmas that the functional f satisfies all the assump-
tions of the Local Linking Theorem and hence the functional f possesses at least two
distinct critical points on X . Therefore the Hamiltonian system (HS) has at least one
non trivial T−periodic solution.

3.2 Proof of Theorem 3.2

We consider only the case when 0 is an eigenvalue of − d2

dt2
+ u∗Au and

W (t, y) ≤ 0, ∀t ∈ R, ∀|y| ≤ δ. (3.37)

The other cases are similar and simpler.
We shall apply the Local Linking Theorem to the functional

f(x) =
1

2

∫ T

0

[|ẋ|2 +A(t)u(x).u(x)]dt −

∫ T

0

W (t, u(x))dt

defined on the following closed subspace X of H1(S1,RN )

X = {x ∈ H1(S1,RN )/x(t) ∈ (Ker u)⊥a.e.}

where H1(S1,RN ) is the space of T− periodic absolutely continuous vector functions
from S1 into R

N whose first derivatives have square integrable norm. The inner product
on H1(S1,RN) is given by

< u, v >H1=

∫ T

0

[u(t).v(t) + u̇(t).v̇(t)]dt.

The functional f is continuously differentiable onX and maps bounded sets into bounded
sets. Moreover the critical points of f correspond to the T− periodic solutions of the
system (NS) (see [9]).

Let X+ (resp. X−) be the positive (resp. negative) space corresponding to the

spectral decomposition of − d2

dt2
+u∗Au in X and X0 = Ker(− d2

dt2
+u∗Au). Let X2 = X−

and X1 = X0 ⊕X+ and choose a Hilbertian basis (en)n≥0 for X1. Define

X1
n = span(e0, e1, ..., en), n ∈ N,

X2
n = X2, n ∈ N.

It is well known that X0, X2 are of finite dimensional.
As in the proof of Theorem 3.1, we prove by using assumptions (W3), (W4) that f



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 11 (3) (2011) 319–336 331

satisfies the (PS)∗ condition and by using assumptions (W1), (W3) that f satisfies the
local linking at zero. Assumption (W2) implies that f satisfies assertion d) of the Local
Linking Theorem. Consequently the functional f satisfies all the Local Linking Theorem
assumptions and then it has at least two critical points. Therefore the system (NS)
possesses a nontrivial T− periodic solution.

4 Subharmonic Solutions

Let u, u∗ and G be defined as in Section 3, we are interested in the existence of infinitely
many subharmonic solutions of the Hamiltonian systems

(HS) Jẋ+ u∗G′(t, u(x)) = 0,

i.e. of distinct kT− periodic solutions of (HS).
Let α > 1 be as in (G3) and consider the following assumptions:
(G′

4) There exist constants β > α− 1, b > 0 and r > 0 such that

G′(t, y).y − 2G(t, y) ≥ b |y|
β
, ∀t ∈ R, ∀ |y| ≥ r.

(G′
5) G(t, y) ≥ 0, ∀(t, y) ∈ R× R

m.

Our main result in this section is

Theorem 4.1 Assume (G0) − (G3), (G′
4) and (G′

5) hold. Then the Hamiltonian
system (HS) possesses infinitely many subharmonic solutions.

Example 4.1 Let 3
2 ≤ α < 2 be a real number. The function

G(t, y) =

∣

∣

∣

∣

cos(
2π

T
t)

∣

∣

∣

∣

|y|
α+1

+ |y|
2
ln(1 + |y|

2
)

satisfies (G1) − (G3), (G
′
4) and (G′

5). The linear map u : RN × R
N −→ R

N defined
by u(p, q) = p satisfies (G0). Therefore the corresponding Hamiltonian system (HS)
possesses infinitely many subharmonic solutions.

Remark 4.1 We obtain the same result if we replace assumptions (G2), (G
′
4) and

(G′
5) respectively by

lim
|y|→∞

G(t, y)

|y|
2 = −∞, uniformly in t ∈ R.

There exist constants β > α− 1, b > 0 and r > 0 such that

G′(t, y).y − 2G(t, y) ≤ −b |y|
β
, ∀t ∈ R, ∀ |y| ≥ r,

G(t, y) ≤ 0, ∀(t, y) ∈ R× R
m.

Proof of Theorem 4.1. Choose k ∈ N. By making the change of variables s = k−1t,
(HS) transforms to

(HSk) Jẏ + ku∗G′(ks, y(s)) = 0.
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Hence, finding kT−periodic solutions of (HS) is equivalent to finding T−periodic solu-
tions of (HSk). Let X be the space introduced in section 3 and consider the functional
fk defined over X by

fk(y) = −
1

2

∫ T

0

Jẏ.yds− k

∫ T

0

G(ks, u(y(s)))ds.

The assumptions of Theorem 4.1 imply that fk is continuously differentiable in X and
critical points of fk are T−periodic solutions of (HSk). Let X+, X− and X0 be re-
spectively the positive, negative and null subspaces of X corresponding to the spectral
decomposition of the quadratic form

Q(y) = −
1

2

∫ T

0

Jẏ.yds.

Then X = X− ⊕X0 ⊕X+ and as in Section 3, we consider the equivalent norm on X

given by

‖y‖
2
= Q(y+)−Q(y−) +

∣

∣y0
∣

∣

2
,

where y = y− + y0 + y+ ∈ X = X− ⊕X0 ⊕X+. Then we have

fk(y) =
∥

∥y+
∥

∥

2
−
∥

∥y−
∥

∥

2
− k

∫ T

0

G(ks, u(y))ds. (4.1)

We will apply the Generalized Mountain Pass Theorem to the functional fk over X with
X1 = X+ and X2 = X0 ⊕X−. We will proceed by successive lemmas.

Lemma 4.1 The functional fk satisfies the Cerami’s condition (C).

Proof Let (yn) be a sequence such that (fk(yn)) is bounded from above and
‖f ′

k(yn)‖ (1 + ‖yn‖) −→ 0 as n −→ ∞. We claim that (yn) is a bounded se-
quence in X . For otherwise, going if necessary to a subsequence, we can assume that
‖yn‖ −→ ∞ as n −→ ∞.

By (G′
4) and (3.8), there is a constant c > 0 such that

G′(ks, u(y)).u(y)− 2G(ks, u(y)) ≥ b |y|
β
− c, ∀(t, y) ∈ R× R

m (4.2)

which implies with that

2fk(yn)− f ′
k(yn).yn = k

∫ T

0

[G′(ks, u(yn)).u(yn)− 2G(ks, u(yn))]ds

≥ k[b

∫ T

0

|yn|
β
ds− cT ].

Hence for a given k ∈ N, we get

∫ T

0

|yn|
β
ds ≤ c1 (4.3)

for all integer n and some positive constant c1 > 0.
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Now, let yn = y−n + y0n + y+n ∈ X− ⊕X0 ⊕X+ and set

p =
2β + 1

2α− 1
> 1 and q =

p

p− 1
=

2β + 1

2β + 1− α
. (4.4)

It follows from Höder’s inequality, (3.1) and (4.3) that

∫ T

0

|yn|
α
∣

∣y+n
∣

∣ ds =

∫ T

0

|yn|
β
p |yn|

α− β
p

∣

∣y+n
∣

∣ ds

≤ [

∫ T

0

(|yn|
β
p )pds]

1

p [

∫ T

0

(|yn|
α− β

p

∣

∣y+n
∣

∣)qds]
1

q

≤ [

∫ T

0

(|yn|
β
)ds]

1

p [

∫ T

0

(|yn|
α− β

p )2qds]
1

2q [

∫ T

0

∣

∣y+n
∣

∣

2q
ds]

1

2q

≤ [

∫ T

0

|yn|
β
ds]

1

p ‖yn‖
β+α
2β+1

L
β+α

β+1−α

∥

∥y+n
∥

∥

L2q

≤ c
1

p

1 γ
β+α

2β+1

β+α

β+1−α

γ2q ‖yn‖
β+α

2β+1

∥

∥y+n
∥

∥ (4.5)

for all integer n. By (G3), (3.1), (3.8), (4.3) and (4.5), we have

f ′
k(yn).y

+
n =

∥

∥y+n
∥

∥

2
− k

∫ T

0

G′(ks, u(yn)).u(y
+
n )ds

≥
∥

∥y+n
∥

∥

2
− k

∫ T

0

|G′(ks, u(yn))|
∣

∣u(y+n )
∣

∣ ds

≥
∥

∥y+n
∥

∥

2
− ka

∫ T

0

(|u(yn))|
α
+ 1)

∣

∣u(y+n )
∣

∣ ds

≥
∥

∥y+n
∥

∥

2
− kaMα+1

∫ T

0

(|yn|
α
∣

∣y+n
∣

∣ ds− kaM

∫ T

0

∣

∣y+n
∣

∣ ds

≥
∥

∥y+n
∥

∥

2
− kaMα+1c

1

p

1 γ
β+α

2β+1

β+α

β+1−α

γ2q(‖yn‖
β+α
2β+1

∥

∥y+n
∥

∥− kaMγ1
∥

∥y+n
∥

∥

for all integer n. Noting that β+α

2β+1 < 1, one sees

‖y+n ‖

‖yn‖
−→ 0 as n −→ ∞. (4.6)

Similarly for y−n , we have
‖y−n ‖

‖yn‖
−→ 0 as n −→ ∞. (4.7)

On the other hand, since X0 is of finite dimension, there exists a constant γ > 0 such
that

‖y‖ ≤ γ2 ‖y‖L2 , ∀y ∈ X0. (4.8)

Therefore by Hölder’s inequality, (3.1) and (4.8) we have

1

γ2

∥

∥y0m
∥

∥

2
≤

∫ T

0

∣

∣y0m
∣

∣

2
ds ≤

∫ T

0

|yn|
β

β+1 |yn|
β+2

β+1 ds
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≤ [

∫ T

0

|yn|
β
ds]

1

β+1 [

∫ T

0

|yn|
β+2

β ds]
β

β+1

≤ (c1)
1

β+1 (γ β+2

β

)
β+2

β+1 ‖yn‖
β+2

β+1 . (4.9)

Since β+2
β+1 < 2, we deduce from (4.9)

∥

∥y0n
∥

∥

‖yn‖
−→ 0 as n −→ ∞. (4.10)

Hence by (4.6), (4.7) and (4.10) we have

1 =
‖yn‖

‖yn‖
≤

∥

∥y0n
∥

∥+ ‖y−n ‖+ ‖y+n ‖

‖yn‖
−→ 0 as n −→ ∞, (4.11)

which is a contradiction. Therefore (yn) must be bounded. Then by a standard argument,
(yn) has a convergent subsequence, which shows that fk satisfies the Cerami’s condition.

Lemma 4.2 There exist constants m > 0 and α > 0 such that

fk(y) ≥ m, ∀y ∈ ∂Bρ ∩X1. (4.12)

Proof As in (3.26), for all ǫ > 0, there exists a constant M1 > 0 such that

∣

∣

∣

∣

∣

∫ T

0

G(ks, u(y))ds

∣

∣

∣

∣

∣

≤ ǫγ2
2 ‖y‖

2
+M1γ

α+1
α+1 ‖y‖

α+1
, ∀y ∈ X. (4.13)

Now for all x ∈ X1 = X+, we have by (4.13)

fk(y) =
1

2
‖y‖2 − k

∫ T

0

G(ks, u(y))ds

≥
1

2
‖y‖

2
− kǫC2 ‖y‖

2
− kCα+1M1 ‖y‖

α+1
,

where C = sup(1, γ2, γα+1). So letting ǫ = 1
4kC2 and ρ = 1

8 (kM1C
α+1)−

1

α−1 , we have

fk(y) ≥
1

4
ρ2 − kM1(Cρ)α+1 =

1

8
ρ2 = m > 0 (4.15)

for y ∈ X1 with ‖y‖ = ρ.

Lemma 4.3 There exist e ∈ X1 and two constants r1, r2 > 0 such that

(4.16) fk(y) ≤ 0, ∀y ∈ ∂Q,

where

Q = {se/0 ≤ s ≤ r1} ⊕
{

y ∈ X2/ ‖y‖ ≤ r2
}

.
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Proof Let e ∈ X1 with ‖e‖ = 1. By (G2) and (3.8), there exists a constant M2 > 0
such that

G(ks, u(y)) ≥ γ2 |y|
2
−M2, ∀t ∈ R, ∀y ∈ (Ker u)⊥, (4.17)

where γ is the constant given by (4.8). It follows from (4.8) and (4.17) that for all s > 0
and y ∈ X2 = X0 ⊕X−

fk(se+ y) =
1

2
s2 −

1

2

∥

∥y−
∥

∥

2
− k

∫ T

0

G(ks, u(se+ y))ds

≤
1

2
(s2 −

∥

∥y−
∥

∥

2
)− kγ2 ‖se+ y‖

2
L2 + kM2T

≤
1

2
(s2 −

∥

∥y−
∥

∥

2
)− kγ2(s2 ‖e‖

2
L2 + ‖−‖

2
L2 + ‖y0‖

2
L2) + kM2T

≤
1

2
s2 − ks2 −

1

2

∥

∥y−
∥

∥

2
− ‖y0‖

2
L2 + kM2T. (4.18)

Let

r1 =

√
2kM2T

2k − 1
, r2 =

√

2kM2T ,

it is clear from (4.18) that

fk(se+ y) ≤ 0 either s ≥ r1 or ‖y‖ ≥ r2. (4.19)

Let
Q = {se/0 ≤ s ≤ r1} ⊕

{

y ∈ X2/ ‖y‖ ≤ r2
}

. (4.20)

Then we have ∂Q = Q1 ∪Q2 ∪Q3, where

Q1 =
{

y ∈ X0 ⊕X−/ ‖y‖ ≤ r2
}

, Q2 = r1e⊕
{

y ∈ X0 ⊕X−/ ‖y‖ ≤ r2
}

,

Q3 = {se/0 ≤ s ≤ r1} ⊕
{

y ∈ X0 ⊕X−/ ‖y‖ = r2
}

.

By (4.19), one has
fk(y) ≤ 0, ∀y ∈ Q2 ∪Q3.

It follows from (G5)(i) that fk(y) ≤ 0 for all y ∈ X0 ⊕X−, which implies that

fk(y) ≤ 0, ∀y ∈ Q1.

Hence we obtain (4.16). The proof of Lemma 4.3 is complete.

By Lemma 4.1-3, we conclude that the functional fk satisfies all the assumptions of
the Generalized Mountain Pass Theorem. Therefore for a given k ∈ N, there exists a
critical point yk ∈ X of fk such that fk(yk) > 0.
Finally, we claim that the system (HS) has infinitely many subharmonic solutions. Note
that y1(ks) satisfies (HSk), in fact

d

ds
(y1(ks)) = k

dy1

ds
(ks) = kJu∗G′(ks, y1(ks)).

If yk(s) = y1(ks), it is easy to check that

ck = fk(yk) = kf1(y1) = kc1. (4.21)
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Since c1 = f1(y1) > 0, one has that ck −→ +∞ as k −→ ∞. Noting that

ck ≤ sup
y∈Q

fk(y) = sup
y∈Q

[
1

2
(s2 −

∥

∥y−
∥

∥

2
)− k

∫ T

0

G(ks, u(y)ds] ≤
1

2
r21 ≤ M2T, (4.22)

where Q is defined as in (4.20). Combining (4.21) with (4.22) yields a contradiction as
k −→ ∞. Therefore the sequence (ck) of critical values is bounded and there is a k1 ∈ N

such that yk(s) 6= y1(ks) for all k ≥ k1.
Now, consider the T−periodic functionG1(t, x) = k1G(k1t, x). By the same technicals

as in the previous steps, we prove that the following Hamiltonian system

J
dz

ds
+ jG

′

1(js, u(z)) = 0 (3.23)

possesses a sequence of nonzero T−periodic solutions (zj) such that there exists an integer
k2 satisfying zj(s) 6= z1(js) for all j ≥ k2. Moreover, from the form of (3.23) and the
corresponding variational problem we have

zj(s) = yjk1
(s) and yjk1

(s) 6= y1(jk1s) for all j ≥ k2.

By repeating this reasoning infinitely, we obtain a sequence x1(t) = y1(t), xk1
(t) =

yk1
( t
k1

), xk1k2
(t) = yk1k2

( t
k1k2

), ... of distincts nonzero solutions of the system (HS) with
xl is lT− periodic. The proof of Theorem 4.1 is complete.
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