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1 Introduction

During the last two decades such recursive procedures as backstepping-like designs be-
came very popular when solving various problems of adaptive and robust nonlinear
control [5, 9, 17, 18, 23]. It is worth mentioning that, despite of the fruitfulness of the
backstepping-like algorithms, the most works devoted to them address the triangular or
pure-feedback form systems [13]

{

ẋi = fi(x1, ..., xi+1), i = 1, . . . , n− 1;
ẋn = fn(x1, ..., xn, u)

(1)

that are feedback linearizable, i.e., to those which satisfy the condition | ∂fi
∂xi+1

| 6= 0,

i = 1, . . . , n; or even have the strict-feedback form
{

ẋi = bixi+1 + θiϕi(x1, ..., xi), i = 1, . . . , n− 1;
ẋn = bnu+ θnϕn(x1, ..., xn)

(with bi 6= 0). Indeed, whatever the problem is (Lyapunov stabilization, adaptive stabi-
lization etc.), the classical version of the backstepping requires system (1) to satisfy the
following two properties:

(A) The virtual control xi+1 = αi(t, x1, ..., xi) obtained at the i-th step (i = 1, . . . , n)
should be well-defined as an implicit function obtained from some nonlinear equation of
the form fi(x1, ..., xi+1) = Fi(t, x1, ..., xi) to be resolved w.r.t. xi+1, where Fi(t, x1, ..., xi)
is some function of the previous coordinates x1, ..., xi (and maybe of t).

(B) Each virtual control xi+1 = αi(t, x1, ..., xi) obtained at the i - th step should be
smooth enough because one needs to take its derivatives at the next steps i = 1, . . . , n.

This necessarily leads to the conditions like | ∂fi
∂xi+1

| 6= 0, i = 1, . . . , n, (to comply with

(A)) and like fi ∈ Cn or fi ∈ Cn−i+1 (to comply with (B)).
Works [3, 4, 18, 22, 25, 26] were devoted to the issue of how to obviate the first re-

striction | ∂fi
∂xi+1

|6=0, at least for some special cases: when fi(x1, ..., xi+1) are polynomials

w.r.t. xi+1 of odd degree (see work [22]); when fi = xpi+1+ϕi(x1, ..., xi) (see works [18,26]
devoted to the problem of global stabilization of such systems into the origin as well as
further works by some of these authors devoted to various adaptive and robust control
problems for this class); partial-state stabilization under the assumption that the ”con-
trollable part” satisfies some additional “growth conditions” (see work [25] and conditions
(A3),(i),(ii),(iii)); the problem of feedback triangulation under the assumption that the
set of regular points is open and dense in the state space (see [3]).

A natural generalization of these cases is the so-called “generalized triangular form”
(GTF), when the only assumption is that fi(t, x1, ..., xi, ·) is a surjection whereas xi and
u are vectors not necessarily of the same dimension (and the dynamics is of class C1 or
Cn depending of the problem to be explored). In works [16,21] it was proved that, first,
the systems of this class are globally robustly controllable, in particular, their bounded
perturbations are globally controllable as well (see [16]) and, second, they are globally
asymptotically stabilizable into every regular point (see [21]). Note that, although the
methods proposed in [14–16, 21] are called “backstepping”, their only common feature
with the classical backstepping designs is the induction over the dimension of the system
and treatment xi+1 as the virtual control at the i-th step. As to the construction, the
approach proposed in [14–16, 21] is absolutely different. This especially applies to [16]
and to the preceeding related works [14, 15] devoted to the problem of global robust
controllability.
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It is worth mentioning that, despite of the importance of the Volterra equations in
applications, the controllability problem for the Volterra systems was investigated in few
works only. Works [1, 2] are devoted to the complete controllability of perturbations of
linear Volterra systems. In these papers, some natural analogs of the integral criterion
of the controllability for linear ODE systems were obtained.

In works [14, 15] the problem of global robust controllability was successively solved
for the nonlinear Volterra systems of the triangular form

ẋi = fi(t, x1, ..., xi+1) +

∫ t

t0

gi(t, s, x1(s), ..., xi+1(s))ds, i = 1, . . . , n,

(where xn+1 = u is the control, and (x1, ..., xn) is the state) including the global control-
lability of their bounded perturbations. Although, as we highlighted above, the inductive
construction proposed in these works differs totally from the classical backstepping de-
signs, the following two assumptions, which are similar to (A) and (B), are essential in
this construction:

(A’) For every x1(·), ..., xi(·) of class C1 the integral equation

ẋi = fi(t, x1(t), ..., xi+1(t)) +
t
∫

t0

gi(t, s, x1(s), ..., xi+1(s))ds,

should be resolvable w.r.t. xi+1(·) on the whole time interval [t0, T ].
(B’) The properties of the linearized control systems (and those of the Frechet deriva-

tive of the input-output map) are essential, which is why fi and gi should be of class C1

at least.
The goal of the current paper is to remove these restrictions (A’) and (B’) and to show

how a modification of the methods proposed in [16,21] can be applied to the problem of
global controllability of the Volterra systems. In many modern applications one has to
deal with large scale interconnected systems - see, for instance [6,10,19]. Developing our
technique, we solve the problem of global controllability for large scale interconnections
of generalized triangular non-smooth Volterra systems.

2 Preliminaries

The first result of the current paper (Theorem 3.1 below) is concerned with the control
systems of the Volterra integro-differential equations:

ẋ(t) = f(t, x(t), u(t)) +

t
∫

t0

g(t, s, x(s))ds, t ∈ I = [t0, T ], (2)

where u ∈ Rm = Rmν+1 is the control, x = (x1, ..., xν)
T ∈ Rn is the state with xi ∈ Rmi ,

mi ≤ mi+1 and n = m1 + . . . ,+mν , functions f and g have the form

f(t, x, u) =









f1(t, x1, x2)
f2(t, x1, x2, x3)

. . .
fν(t, x1, ..., xν , u)









and g(t, s, x) =









g1(t, s, x1)
g2(t, s, x1, x2)

. . .
gν(t, s, x1, ..., xν)









(3)

with fi ∈ Rmi , gi ∈ Rmi and satisfy the conditions:
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(i) f ∈ C(I × Rn × Rm;Rn), g ∈ C(I2 × Rn;Rn),
(ii) f and g satisfy the local Lipschitz condition w.r.t. (x, u), i.e., for every compact

set K ⊂ Rn×Rm there is lK > 0 such that, for every (x1, u1) ∈ K and every (x2, u2) ∈ K
it holds

|f(t, x1, u1)− f(t, x2, u2)| ≤ lK(|x1 − x2|+ |u1 − u2|) and

|g(t, s, x1)− g(t, s, x2)| ≤ lK |x1 − x2| for all t ∈ I, s ∈ I

(iii) For each i = 1, . . . , ν, each t ∈ I and each (x1, ..., xi)
T in Rm1+...+mi , we have

fi(t, x1, ..., xi,R
mi+1) = Rmi .

Given x0 ∈ Rn, and u(·) ∈ L∞(I;Rm), let t 7→ x(t, x0, u(·)) denote the trajectory of
(2), defined by this control u(·) and by the initial condition x(t0) = x0 on the maximal
interval J ⊂ I of the existence of the solution. As in [15], we say that a system of the
Volterra integro-differential equations is globally controllable in time I = [t0, T ] in class
Cµ(I;Rm) (µ ≥ 0), iff for each initial state x0 ∈ Rn and each terminal state xT ∈ Rn

there is a control u(·) in Cµ(I;Rm) which “steers x0 into xT w.r.t. the system”, i.e., the
trajectory x(·) of the system with this control u(·) such that x(t0) = x0 is well-defined
on I and satisfies x(T ) = xT .

In our second result (Theorem 3.2 in the next Section) we consider a large scale
interconnection of systems like (2) in the form

Ẋi(t) = Fi(t,Xi(t), Ui(t)) +

t
∫

t0

Gi(t, s,Xi(s))ds +H(t,X(t), U(t))+

+

t
∫

t0

R(t, s,X(s), U(s))ds, i = 1, . . . , q, t ∈ I = [t0, T ], (4)

where X = [X1, . . . , Xq]
T ∈ RN is the state with Xi = [xi,1, . . . , xi,νi ]

T ∈ Rni and

with xi,j ∈ Rmi,j and U = [U1, . . . , Uq]
T ∈ RM is the control with Ui ∈ Rmi,νi+1 (and

N =
q
∑

i=1

ni =
q,νi
∑

i=1,j=1

mi,j ; M =
q
∑

i=1

νi+1).

We assume that functions Fi and Gi have the form

Fi(t,Xi, Ui)=









Fi,1(t, xi,1, xi,2)
Fi,2(t, xi,1, xi,2, xi,3)

. . .
Fi,νi (t, xi,1, ..., xi,νi , Ui)









,

Gi(t, s,Xi)=









Gi,1(t, s, xi,1)
Gi,2(t, s, xi,1, xi,2)

. . .
Gi,νi(t, s, xi,1, ..., xi,νi )









. (5)

We define

F (t,X, U) =









F1(t,X1, U1)
F2(t,X2, U2)

. . .
Fq(t,Xq, Uq)









, G(t, s,X) =









G1(t, s,X1)
G2(t, s,X2)

. . .
Gq(t, s,Xq)









,
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and assume that the following conditions hold:
(I) F ∈ C(I × RN × RM ;RN ), G ∈ C(I2RN ;RN ).
(II) There exists L > 0 such that, for every (X1, U1) ∈ K and every (X2, U2) ∈ K it

holds
|F (t,X1, U1)− F (t,X2, U2)| ≤ L(|X1 −X2|+ |U1 − U2|),

|G(t, s,X1)−G(t, s,X2)| ≤ L|X1 −X2| for all t ∈ I, s ∈ I

(global Lipschitz property with respect to (X,U)).
(III) For each i = 1, . . . , q, each j = 1, . . . , νi, each t ∈ I and each (xi,1, ..., xi,j)

T in
Rmi,1+...+mi,j , we have Fi,j(t, xi,1, ..., xi,j ,R

mi,j+1) = Rmi,j .
Also we assume that functions H and R satisfy the conditions:
(IV) H ∈ C(I × RN × RM ;RN ), R ∈ C(I2 × RN × RM ;RN ), and for each compact

set Q ⊂ RN × RM , there exists LQ > 0 such that, for all (t, s) ∈ I2, (X1, U1) ∈ Q,
(X2, U2) ∈ Q, we have:

|H(t,X1, U1)−H(t,X2, U2)| ≤ LQ(|X
1 −X2|+ |U1 − U2|),

|R(t, s,X1, U1)−R(t, s,X2, U2)| ≤ LQ(|X
1 −X2|+ |U1 − U2|),

(V) There exists H0 > 0 such that H and R satisfy the inequalities |H(t,X, U)| ≤ H0

and |R(t, s,X, U)| ≤ H0 for all (t, s,X, U) ∈ I2 × RN × RM .

Note that Fi and Gi have the “general traingular form”, while H and R have an
arbitrary form and are “cross terms”, which characterize the interconnections of the
isolated Xi-subsystems.

3 Main Results

Theorem 3.1 Suppose that system (2) has the form (3) and satisfies conditions
(i),(ii),(iii). Then system (2) is globally controllable in class C∞(I;Rm).

Theorem 3.2 Suppose that functions Fi and Gi have the form (5), satisfy
(I),(II),(III), and suppose that H and R satisfy (IV), (V). Then system (4) is globally
controllable in time I by means of controls of class C∞(I;RM ).

Remark 3.1 Let us compare the results of [15] with our Theorems 3.1 and 3.2. First,
in [15], functions f and g are required not only to be continuous but also to have all their
partial derivatives, w.r.t. x and u, which are required to be continuous whereas we
require (i) and (ii) only ((I) and (II) respectively for Theorem 3.2); (ii) or (II) being the
standard condition needed to guarantee the existence and the uniqueness of the solution
of the “Cauchy problem” for the Volterra systems. Second, our system (2) is MIMO and
furthermore xi and u are vectors of different dimensions whereas, in [15], the system is
SISO (i.e., xi and u are scalar) or at least xi and u should be of the same dimension
(see Remark 3.1 from [15]). Third (and this is essential), our current Assumption (iii) is
much more general than the corresponding Assumption (ii) (or (II), p. 747) from [15].
In this sense, our current Theorem 3.1 and Theorem 3.2 generalize Theorem 3.3 and
Theorem 3.2 from [15] respectively. However: firstly, in our case, function g has a bit
more specific form than function g from [15] (gi does not depend on xi+1 in the current
paper); secondly, since we replace the assumption of C1 smoothness with that of local
Lipschitzness, we do not obtain stronger results on robustness (Theorem 3.1 from [15]).
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Example 3.1 Consider the system given by















ẋ1(t) = (x2(t) + x1(t))| sin x2(t)|+
t
∫

0

√

s2x21(s) + 1ds,

ẋ2(t) = u(t)| cosu(t)|+
t
∫

0

√

ets(x21(s) + x22(s)) + 1ds,

(6)

t ∈ [0, T ]. It is clear that system (6) satisfies our Assumptions (i)-(iii) and therefore is
globally controllable by Theorem 3.1. On the other hand, system (6) does not satisfy the
Assumptions from [15] and the results of [15] are not applicable to system (6).

Remark 3.2 Note that, if g = 0 in (2), then (2) is reduced to the class of the so-
called “generalized triangular form” of ODE control systems considered in [16, 20, 21].
However, in the case of ODE, stronger results were obtained in these works: global
robust controllability (Theorem 3.1 from [16]), global asymptotic stabilization by means
of smooth controls (Theorem 2.1 from [21]), and global discontinuous stabilization in the
sense of Clarke-Ledyaev-Sontag-Subbotin (Theorem 3.4 from [16]).

4 Backstepping in the Non-smooth Case

Let us first reduce Theorem 3.1 to a backstepping process which can be compared with
that from [16].

Let p be in {1, . . . , ν}. Define k := m1 + . . . + mp and consider the following k -
dimensional control system

ẏ(t) = ϕ(t, y(t), v(t)) +

t
∫

t0

ψ(t, s, y(s))ds, t ∈ I = [t0, T ], (7)

where y := (x1, . . . , xp)
T ∈ Rk = Rm1+...+mp is the state, v ∈ Rmp+1 is the control and

ϕ(t, y, v) =









f1(t, x1, x2)
f2(t, x1, x2, x3)

. . .
fp(t, x1, ..., xp, v)









, ψ(t, s, y) =









g1(t, s, x1)
g2(t, s, x1, x2)

. . .
gp(t, s, x1, ..., xp)









, (8)

for all (t, y, v) in I × Rk × Rmp+1. Given y0 ∈ Rk, and v(·) ∈ L∞(I;Rmp+1), let t 7→
y(t, y0, v(·)) denote the trajectory, of (7), defined by the control v(·) and by the initial
condition y(t0, y

0, v(·)) = y0 on the maximal interval J ⊂ I of the existence of the
solution. We reduce the proof of Theorems 3.1 to the following theorem.

Theorem 4.1 Let p be in {1, ..., ν}. Suppose for each y0 ∈ Rk and each δ > 0, there
is a family of functions {y(ξ, ·) = (x1(ξ, ·), ..., xp(ξ, ·))}ξ∈Rk such that:

1) The map ξ 7→ y(ξ, ·) is of class C(Rk;C1(I;Rk))
2) For each ξ ∈ Rk, each t ∈ I and each 1 ≤ i ≤ p− 1 we have:

ẋi(ξ, t) = fi(t, x1(ξ, t), . . . , xi+1(ξ, t)) +

t
∫

t0

gi(t, s, x1(ξ, s), . . . , xi(ξ, s))ds
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(if p = 1, then, the set of equalities is empty and, by definition, Condition 2) holds true)

3) y(ξ, t0) = y0 and |y(ξ, T )− ξ| < δ for all ξ ∈ Rk

Then, for each (y0, y0p+1) ∈ Rk × Rmp+1 , and each ε > 0, there exists a family of
controls {v̂(ξ,β)(·)}(ξ,β)∈Rk×R

mp+1 such that

4) The map (ξ, β) 7→ v̂(ξ,β)(·) is of class C(Rk × Rmp+1 ;C∞(I;Rmp+1))

5) For each (ξ, β) ∈ Rk × Rmp+1 , we have v̂(ξ,β)(T ) = β and v̂(ξ,β)(t0) = y0p+1.

6) |y(T, y0, v̂(ξ,β)(·))− ξ| < ε for all (ξ, β) ∈ Rk × Rmp+1.

Let us prove that Theorem 3.1 follows from Theorem 4.1. Indeed, suppose Theo-
rem 4.1 holds true.

Suppose p = 1 and k = m1, and take an arbitrary y01 ∈ Rm1 . Given an arbitrary
δ > 0, find any family {y(η, ·)}η∈Rm1 = {x1(η, ·)}ξ∈Rm1 such that Conditions 1)-3) of

Theorem 4.1 hold. Then, for p = 1, we have: for every ε > 0 and every (y01 , y
0
2) ∈ Rm1+m2 ,

there exists a family of controls {v̂(η,β)(·)}(η,β)∈Rm1×Rm2 such that Conditions 4), 5), 6)
of Theorem 4.1 hold with p = 1.

Suppose p = 2. Given any y0 = (y01 , y
0
2) ∈ Rm1+m2 , and any δ > 0, define ε := δ,

and for this ε > 0 find the family {v̂(η,β)(·)}(η,β)∈Rm1×Rm2 obtained at the previous

step (with p = 1). From Conditions 4)-6) applied to p = 1 it follows that the family
{y(ξ, ·)}ξ=(η,β)∈Rm1×Rm2 defined by

y(η, β, t) := (y(t, y01 , v̂(η,β)(·)), v̂(η,β)(t)) for all t ∈ I, ξ = (η, β) ∈ R
m1 × R

m2

satisfies the Conditions 1), 2), 3) of Theorem 4.1 with p = 2. Then we can apply Theorem
4.1 to p = 2, etc. Arguing by induction over p = 1, . . . , ν, we obtain for p = ν that for
each ε > 0, each x0 ∈ Rn, and each α = y0ν+1 ∈ Rmν+1 there exists a family of controls
{v̂(ξ,β)(·)}(ξ,β)∈Rn×R

mν+1 such that Conditions 4), 5), 6) of Theorem 4.1 hold for p = ν.

Fix an arbitrary β ∈ Rmν+1 and define the family of controls {uξ(·)}ξ∈Rn as follows:
uξ(t) := v̂(ξ,β)(t) for all t ∈ I, ξ ∈ Rn. Then {uη(·)}η∈Rn satisfies the conditions:

(a) ξ 7→ uξ(·) is of class C(Rn;C∞(I;Rmν+1))

(b) For each ξ ∈ Rn, the trajectory t 7→ x(t, x0, uξ(·)) is well-defined and
|x(T, x0, uξ(·))− ξ| < ε.

Given any ε > 0, an arbitrary x0 ∈ Rn, and an arbitrary xT ∈ Rn, let {uξ(·)}ξ∈Rn

be a family of controls such that (a), (b) hold. By conditions (a),(b) the map ξ 7→
ξ − x(T, x0, uξ(·)) + xT is well-defined and of class C(Rn;Rn). From condition (b), it

follows that this continuous function maps the compact convex set Bε(xT ) into Bε(xT ).

Then, by the Brouwer fixed-point theorem, there exists ξ∗ ∈ Bε(xT ) ⊂ Rn such that
ξ∗ = ξ∗ − x(T, x0, uξ∗(·)) + xT , i.e., x(T, x0, uξ∗(·)) = xT . Thus, for every x0 ∈ Rn, and
every xT ∈ Rn, there is a control uξ∗(·) ∈ C∞(I;Rmν+1) such that xT = x(T, x0, uξ∗(·)),
i.e., Theorem 3.1 follows from Theorem 4.1.

Let us prove Theorem 3.2. Given any U(·) = [U1(·), . . . , Uq(·)]
T

in L∞(I;RN ) and
X0 ∈ RN let t 7→ X(t,X0, U(·)) denote the trajectory of system

Ẋi(t) = Fi(t,Xi(t), Ui(t)) +

t
∫

t0

Gi(t, s,Xi(s))ds i = 1, . . . , q, t ∈ I = [t0, T ],
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defined by the initial condition X(t0) = X0 and by the control U = U(·). Then arguing
as above (for each Xi-subsystem separately), we construct a family {Uξ(·)}ξ∈RN such
that the following conditions hold:

(c) ξ 7→ Uξ(·) is of class C(RN ;C∞(I;RM ))

(d) For each ξ ∈ RN , the trajectory t 7→ X(t, x0, Uξ(·)) is well-defined and
|X(T,X0, Uξ(·))− ξ| < ε.

For each ξ ∈ RN , by X(ξ, ·) denote the trajectory, of (4), defined by the control
Uξ(·) and by the initial condition X(ξ, t0) = X0. Using the Gronwall-Bellmann lemma,
we easily obtain that t 7→ X(ξ, t) is well-defined for all t ∈ I, ξ ∈ RN and there exists
D > 0 such that |X(ξ, t)−X(t,X0, uξ(·))| ≤ D for all t ∈ I and ξ ∈ RN , and therefore,
by condition (d), we obtain: |X(ξ, T )− ξ| ≤ D + ε for all ξ ∈ RN . Taking an arbitrary
XT ∈ RN and applying the Brouwer fixed-point theorem to the map ξ 7→ ξ −X(ξ, T ) +

XT , which maps the closed ball BD+ε(XT ) into BD+ε(XT ), we obtain the existence

of ξ∗ ∈ BD+ε(XT ) ⊂ RN such that XT = X(ξ∗, T ), which means that the control
Uξ∗(·) ∈ C∞(I;RM ) steers X0 into XT in time I w.r.t. system (4). Since X0 and XT

are chosen arbitrarely, the proof of Theorem 3.2 is complete.

5 Proof of Theorem 4.1

Fix an arbitrary p in {1, . . . , ν}, an arbitrary (y0, y0p+1) ∈ Rk × Rmp+1 , and an arbi-
trary ε > 0. Define δ := ε

4 and assume that {y(ξ, ·)}ξ∈Rk satisfies Assumptions 1)-3) of
Theorem 4.1.

To prove Theorem 4.1, we change the approach from [15] and [16] as follows. Along
with system (7), we consider the following k-dimensional control system of the Volterra
equations















ẋi(t) = fi(t, x1(t), ..., xi+1(t)) +
t
∫

t0

gi(t, s, x1(s), ..., xi(s))ds, i = 1, . . . , p− 1,

ẋp(t) = w(t) +
t
∫

t0

gp(t, s, x1(s), ..., xp(s))ds,

t ∈ I

(9)

with states y = (x1, ..., xp)
T ∈ Rk and controls w ∈ Rmp . Given y ∈ Rk, and w(·) ∈

L∞(I;Rmp), let t 7→ z(t, y, w(·)) denote the trajectory, of (9), defined by the control w(·)
and by the initial condition z(t0, y, w(·)) = y on some maximal interval J ⊂ I of the
existence of the solution.

For all ξ ∈ Rk, define

ω(ξ, t) = ẋp(ξ, t)−

t
∫

t0

gp(t, s, x1(ξ, s), ..., xp(ξ, s))ds, t ∈ I. (10)

Then
y(ξ, t) = z(t, y0, ω(ξ, ·)) for all t ∈ I, ξ ∈ R

k. (11)

Then, using the Gronwall-Bellmann lemma, we get the existence of δ(·) in C(Rk; ]0,+∞[)
such that, for each ξ ∈ Rk and each w(·) ∈ L∞(I;Rmp), we have:

∀ t ∈ I |z(t, y0, w(·)) − y(ξ, t)| < δ,
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whenever ‖ w(·)− ω(ξ, ·)‖L∞(I;Rmp ) < δ(ξ). (12)

In order to complete the proof of Theorem 4.1, it suffices to prove the following Propo-
sition, which is similar to Lemma 5.1 from [16].

Proposition 5.1 Assume that {y(ξ, ·)}ξ∈Rk is a family such that Conditions 1)-3)

of Theorem 4.1 hold. Then, for system (7), there exist functions M(·) ∈ C(Rk; ]0,+∞[)
and a family {u(ξ, ·)}ξ∈Rk of controls defined on I such that:

1) For each ξ ∈ Rk, the control u(ξ, ·) is a piecewise constant function on I and the
map ξ 7→ u(ξ, ·) is of class C(Rk;L1(I;R

mp+1)).

2) For each ξ ∈ Rk, the trajectory t 7→ y(t, y0, u(ξ, ·)) is defined for all t ∈ I, and for
each ξ ∈ Rk we have

|ω(ξ, t)− fp(t, y(t, y
0, u(ξ, ·)), u(ξ, t))| < δ(ξ), t ∈ I

3) For each ξ ∈ Rk, we have: ‖ u(ξ, ·)‖L∞(I;Rmp+1) ≤M(ξ).

Indeed, if Proposition 5.1 is proved, then, combining (10), (11), (12) with the form
of the dynamics of (7),(9), we get

|y(t, y0, u(ξ, ·))− y(ξ, t)| < δ for all t ∈ I, ξ ∈ R
k. (13)

Using partitions of unity and arguing as in [15], [16], we get the existence of a family
{v̂(ξ,β)(·)}(ξ,β)∈Rk×R

mp+1 of controls such that Conditions 4) and 5) of Theorem 4.1 hold

and such that for each (ξ, β) ∈ Rk × Rmp+1 we have

|y(t, y0, v̂(ξ,β)(·)) − y(t, y0, u(ξ, ·))| < δ for all t ∈ I, (14)

(t 7→ y(t, y0, v̂(ξ,β)(·)) being defined on I for all (ξ, β) in Rk × Rmp+1). Since δ = ε
4 ,

from (13), (14) and from Assumption 3) of Theorem 4.1 it follows that the family
{v̂(ξ,β)(·)}(ξ,β)∈Rk×R

mp+1 also satisfies Condition 6) of Theorem 4.1. This completes the
proof of Theorem 4.1.

Remark 5.1 The main distinctions of the proof of Proposition 5.1 in comparison
with that of Lemma 5.1 from [16] are as follows:

(⋆) In the current paper, we deal with the Volterra systems whereas [16] is devoted
to the case of ODE.

(⋆⋆) In the current work, the parameter ξ characterizes the terminal state and the
system should be steered to starting from the initial point y0 ∈ Rk. In [16], the con-
struction starts with the initial condition z(ξ, T ) = ξ given at the terminal instant T,
and then the control strategy is adjusted inductively ( [16], Lemma 6.1) while time is
decreasing (from t = T until the initial instant t = t1) in order to reach a certain small
neighborhood of the initial state. However, for the Volterra systems, such an invertion of
time is not possible in general (and one cannot consider the Cauchy initial condition at
terminal instant T ). Therefore the direct repetition of the argument from [16], Section
6 would not suit.

(⋆ ⋆ ⋆) In the current work, we consider the non-smooth case (the right-hand side of
(2) satisfies the local Lipschitz condition only).



420 S. DASHKOVSKIY AND S.S. PAVLICHKOV

5.1 Proof of Proposition 5.1

Following [16], choose any sequence {Rq}
∞

q=1⊂N such that R1 = 1, Rq+1 > Rq+1, q ∈ N.
Define

δq :=
1

2
min

ξ∈BRq+1
(0)
δ(ξ), Mq := max

ξ∈BRq (0)
‖ y(ξ, ·)‖C(I;Rk) + 4δ + 1, q ∈ N; (15)

Kq := {y ∈ R
k| |y| ≤Mq}; dq :=Mq+2 + 1, q ∈ N; (16)

Wq := {ω ∈ R
mp | |ω| ≤ max

ξ∈BRq (0)
‖ ω(ξ, ·)‖C(I;Rmp ) + 1}, q ∈ N; (17)

Ξ1 := BR1(0); Ξq+1 = BRq+1(0)\BRq
(0), q ∈ N; (18)

E1 := BR1(0)× I ×K1;

Eq+1 := Eq

⋃

((

BRq+1(0) \BRq
(0)

)

× I ×Kq+1

)

, q ∈ N; (19)

E :=

∞
⋃

q=1

Eq. (20)

Given an arbitrary q ∈ N, and arbitrary N ∈ N, define

Λq
N := {(t, y, v) ∈ I ×Kq+1 × R

mp | ∃v ∈ R
mp+1(|v|≤N) ∧ (|ω − fp(t, y, v)| <

δq
3
}.

Then every Λq
N is open as a subset of the metric space I ×Kq+1 × Rmp whose metric is

generated by the norm of R×Rk×Rmp . Since I×Kq+1×Wq is compact w.r.t. this metric

space, using condition (iii) and the inclusions Λq
N ⊂ Λq

N+1 and I×Kq+1×Wq ⊂
∞
⋃

N=1

Λq
N ,

we obtain the existence of N0(q) ∈ N such that I ×Kq+1 ×Wq ⊂ Λq

N0(q)
. Without loss

of generality, we assume that N0(q) ≤ N0(q+1).
Define

Uq := {v ∈ R
mp+1 | |v| ≤ N0(q)}. (21)

Then Uq ⊂ Uq+1, q ∈ N and, by the construction, for each (t, y, ω) ∈ I×Kq+1×Wq there

exists v ∈ Uq such that |ω−fp(t, y, v)| <
δq
3 . Let {Lq}

∞

q=1 ⊂ R and L(·) ∈ C(Rk; ]0,+∞[)
be such that 0 < Lq+1 ≤ Lq, q ∈ N and

2Lq(|ϕ(t, y, v)|+(T−t0)|ψ(t, s, y, v)|+1)≤1 ∀(t, s, y, v)∈I2×Bdq
(0)×Uq+2, q∈N, (22)

Lq+1 ≤ L(ξ) ≤ Lq, whenever ξ ∈ Ξq, q ∈ N. (23)

Then we denote by ̥ the following semi-ring of sets ( [12, vol. 2, p. 17])

ΣΘ(·),ϑ(·),AΘ,Aϑ
:= {(η, s, z) ∈ R

k×R×R
k | ϑ(η, z) ≤ s≤Θ(η, z)}\{(η, s, z) ∈ R

k×R×R
k

|(s = Θ(η, z)) ∧ ((η, z) ∈ AΘ) or (s = ϑ(η, z))∧((η, z) ∈ Aϑ)},

where Θ(·), and ϑ(·) range over the set of all the functions from class C(Rk ×Rk; I) such
that for all (ξ, y, z) ∈ Rk × Rk × Rk

|Θ(ξ, y)−Θ(ξ, z)| ≤ L(ξ)|y − z| and |ϑ(ξ, y)− ϑ(ξ, z)| ≤ L(ξ)|y − z|,
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and AΘ ⊂ Rk × Rk, Aϑ ⊂ Rk × Rk range over the set of all subsets of Rk × Rk.
For each (ξ, t, y) ∈ E, let q ∈ N be such that ξ ∈ Ξq. From (18)-(20) it follows

that y ∈ Kq+1. By (17), and by the definition of Uq, there exists vξ,t,y ∈ Uq such that

|ω(ξ, t)− fp(t, y, vξ,t,y)| <
δq
3 .

Using the compactness of each Eq in Rk × I × Rk and the properties of semirings of
sets (see Lemma 2 in [12, vol.2, p. 18]), we repeat the construction from [16, p.1435-
1436] and obtain the existence of a sequence {(ξr, tr, yr)}

∞

r=1, sequences {Sr}
∞

r=1 ⊂ ̥ and
{Σl}

∞

l=1 ⊂ ̥ of sets from ̥ and sequences of natural indices 1 ≤ r1 < r2 < . . . < rq < . . .
and 1 ≤ l1 < l2 < . . . < lq < . . . such that first

(ξr, tr, yr) ∈ Sr and ∀(η, s, z) ∈ Sr (|η − ξ| <
1

4
) ∧ (|z − y| <

1

4
), (24)

∀(η, s, z) ∈ Sr |ω(η, s)− fp(s, z, vξr,tr,yr
)| < δ(η), (25)

(this group of inequalities characterizes the size of Sr and the properties of the feedback
controller to be constructed), second

E⊂
∞
⋃

r=1

Sr; and Eq⊂

rq
⋃

r=1

Sr, for all q ∈ N, (26)

Sr

⋂

E1 6= ∅, if 1 ≤ r ≤ r1; and Sr

⋂

((

BRq+1(0)\BRq
(0)

)

× I ×Kq+1

)

6= ∅,

if rq + 1 ≤ r ≤ rq+1, (27)

Sr

⋂





rq
⋃

j=1

Sj



 = ∅, if r ≥ rq+1 + 1, q ∈ N. (28)

(this group of inclusions and inequalities characterizes the local finiteness of the countable
covering {Sr}

∞

r=1 of E), and third

(A1)
rq
⋃

r=1
Sr =

lq
⋃

l=1

Σl for all q ∈ N (which implies that
∞
⋃

l=1

Σl =
∞
⋃

r=1
Sr);

(A2) Σl′
⋂

Σl′′ = ∅ for all l′ 6= l′′;
(A3) for each r ∈ N, there is a finite set of indices P (r)⊂N such that Sr =

⋃

l∈P (r)

Σl.

This group of conditions characterizes the relationship between the original countable
covering {Sr}

∞

r=1 of E and its derivative covering {Σl}
∞

l=1 ⊂ ̥, of E by mutually disjoint
sets Σl, obtained by using the properties of semiring ̥ [12, vol. 2, p. 18].

From (A1), (A2), (A3), it follows that for every l ∈ N there exists r(l) ∈ N such that
Σl ⊂ Sr(l), and such that, if 1 ≤ l ≤ l1, then 1 ≤ r(l) ≤ r1, and if lq + 1 ≤ l ≤ lq+1

(q ∈ N), then rq + 1 ≤ r(l) ≤ rq+1. Since Σl ⊂ Sr(l), we obtain from (24), (26), (27):

(

B 1
2
(ξ) × I × R

k
)

⋂

Σl = ∅, whenever l /∈ Ω(ξ), l ∈ N, ξ ∈ R
k, (29)

where Ω(ξ) is the finite number of indices given by

Ω(ξ) :=

{

{l}l3l=1, if ξ ∈ Ξ1 ∪ Ξ2;

{l}
lq+2

l=lq−1+1, if ξ ∈ Ξq+1, q ≥ 2.
(30)
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Define
v(ξ, t, y) = vξr(l),tr(l),yr(l)

, whenever (ξ, t, y) ∈ Σl, l ∈ N. (31)

Then, from (25), (31), and from the inclusion Σl⊂Sr(l), we obtain:

|ω(η, s)− fp(s, z, v(η, s, z))| < δ(η) for all (η, s, z) ∈
∞
⋃

l=1

Σl (32)

Lemma 5.1 1) For every ξ ∈ Rk, there are a unique z(ξ, ·) ∈ C(I;Rk) such that

z(ξ, t0) = ξ, (33)

a unique finite sequence of indices {νj(ξ)}
N(ξ)
j=1 = {νj}

N(ξ)
j=1 ⊂ Ω(ξ) such that N(ξ) ≤

|Ω(ξ)|, and νµ 6= νj whenever µ 6= j, and a unique finite sequence t0 = τ∗1 (ξ) < τ∗2 (ξ) <
. . . < τ∗

N(ξ)(ξ) < τ∗
N(ξ)+1(ξ) = T such that:

1.a) ż(ξ, t) is defined and continuous at each t in I \ {τ∗1 (ξ), ..., τ
∗

N(ξ)(ξ)}, and

(ξ, t, z(ξ, t)) ∈ E and |ω(ξ, t)− fp(t, z(ξ, t), v(ξ, t, z(ξ, t)))| < δ(ξ), t ∈ I (34)

1.b) for each j = 1, . . . , N(ξ), we have:

(ξ, t, z(ξ, t)) ∈ Σνj for all t ∈]τ∗j (ξ), τ
∗

j+1(ξ)[, (35)

ż(ξ, t) = ϕ(t, z(ξ, t), v(ξ, t, z(ξ, t))) +

t
∫

t0

ψ(t, s, z(ξ, s), v(ξ, s, z(ξ, s)))ds

for all t ∈]τ∗j (ξ), τ
∗

j+1(ξ)[, (36)

τ∗j+1(ξ) = Θνj (ξ, z(ξ, τ
∗

j (ξ))), and τ∗j (ξ) = ϑνj (ξ, z(ξ, τ
∗

j+1(ξ))) (37)

2) Given any ξ ∈ Rk, and any l ∈ N, define t 7→ sl(ξ, t) and t 7→ tl(ξ, t) by

sl(ξ, t) = t− ϑl(ξ, z(ξ, t)), tl(ξ, t) = t−Θl(ξ, z(ξ, t)) for all t ∈ I. (38)

Then, for every ξ ∈ Rk, and every l ∈ N, first,

3(t− τ)

2
≥ sl(ξ, t)− sl(ξ, τ) ≥

t− τ

2
whenever t > τ, l ∈ N, (39)

3(t− τ)

2
≥ tl(ξ, t)− tl(ξ, τ)≥

t− τ

2
whenever t > τ, l ∈ N, (40)

for all t ∈ I and τ ∈ I, and, second, there are unique s∗l (ξ) ∈ I and t∗l (ξ) ∈ I such that
sl(ξ, s

∗

l (ξ)) = 0 and tl(ξ, t
∗

l (ξ)) = 0. Moreover, t0 = s∗ν1(ξ); τ
∗

i (ξ) = t∗νi−1
(ξ) = s∗νi(ξ) for

every i = 2, ..., N(ξ); and T = t∗νN(ξ)
(ξ).

The proof of the current Lemma 5.1, which is omitted, is by induction on i ∈
{1, . . . , N(ξ)} and is similar to that of Lemma 6.1 from [16]. The only difference is that
the induction argument starts with the initial instant t0 = τ∗1 (ξ) whereas in [16] it starts
with T = τ∗1 (ξ) down to t0. Having proved Lemma 5.1 one combines it with the implicit
function theorem and proves Lemma 5.2 (again by induction on i ∈ {1, . . . , N(ξ)}).
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Lemma 5.2 For all i ∈ {1, ..., N(ξ)}, functions η 7→ s∗νi(η), η 7→ t∗νi(η), η 7→
z(η, s∗νi(η)), and η 7→ z(η, t∗νi(η)) defined in the previous Lemma 5.1 are continuous at
every ξ ∈ Rk

The only differences of the proof of the current Lemma 5.2. in comparison with that
of Lemma 6.2 from [16] are as follows: first one should use the implicit function theorem
for the continuous monothone functions instead of C1 - case (due to nonsmoothness),
and second one needs to invert the time again in comparison with [16].

Finally, define the desired family of controls {u(ξ, ·)}ξ∈Rk by

u(ξ, t) = v(ξ, t, z(ξ, t)) whenever t ∈ I, ξ ∈ R
k. (41)

From Lemmas 5.1 and 5.2 it immediately follows that the family {u(ξ, ·)}ξ∈Rk defined
by (41) satisfies all the Conditions 1),2),3) of Proposition 5.1. The proof of Proposition
5.1 is complete. This completes the proof of Theorem 4.1 and respectively those of
Theorems 3.1 and 3.2.

6 Conclusion

The problem of global controllability of triangular integro-differential Volterra equations
with noninvertible input-output links and with nonsmooth (Lipschitz continuous) dy-
namics has been solved. In addition we proved the global controllability of large scale
interconnections of such systems when the cross-terms are bounded and Lipschitz con-
tinuous. The main distinctions of the current work in comparison with the thechniques
used in preceeding works [15, 16] are as follows. First, in contrast to [15, 16], since the
dynamics is not differentiable (but satisfies the local Lipschitz condition only) we can-
not refer to the properties of the Frechet derivative of the input-state map u(·) 7→ x(·)
that was essential in [15, 16] and cannot consider the linearized control system around a
trajectory (which characterizes this Frechet derivative). Second, in contrast to [15] the
input-output links xi+1(·) 7→ xi(·) are not invertible, which is why each virtual control
needeed at each step of the backstepping procedure cannot be obtained as in [15] by
solving the corresponding Volterra equations. To handle the second problem, we update
some auxilary construction from [16] to the case of Volterra nonsmooth systems and
to handle the first one we develop a backstepping design which is different from that
from [15, 16]. All the arguments that are similar to those from [15, 16] are omitted and
only essential changes are highlighted.
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