
Nonlinear Dynamics and Systems Theory, 12 (1) (2012) 1–17

State Feedback Controller of Robinson Nuclear Plant

with States and Control Constraints

A.A. Abouelsoud 1, H. Abdelfattah 2∗, M. El Metwally 3 and M. Nasr 4

1 Electronics and Comm Dept., Faculty of Engineering Cairo University
2 Electronics and Control Department, Faculty of Engineering, Elshorouk Academy

3 Electric Power Dept., Faculty of Engineering Cairo University
4 National Atomic Agency

Received: April 25, 2010; Revised: December 18, 2011

Abstract: This paper deals with the problem of finding a stabilizing feedback con-
troller for nuclear reactor power plant. A mathematical model of the H. B. Robinson
pressurized water reactor plant is formulated. The model includes representations
for point kinetics, core heat transfer, piping, pressurizer, and the steam generator.
The designed linear state feedback controller accounts for constraints on neutron flux
level, steam pressure in steam generator, hot leg temperature and constraints on con-
trol inputs of reactivity and electric heater to pressurizer. Simulation results show
the effectiveness of the proposed design.
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1 Introduction

Currently, there are more than 80 pressurized water reactors (PWRs) operating as im-
portant contributors to electricity supply worldwide. But, in this type of reactor, safety
margins obstruct the optimal exploitation of the plant because instability may occur
under particular operating conditions. The stability of PWR reactor systems has been
of a great concern from the safety and the design point of view [1].

Stability problems may only arise during start up or during transients which signif-
icantly shift the operating point. Instructions for PWRs contain clear rules on how to
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avoid operating points (regions) that may produce power-void oscillations. The current
trend of increasing reactor powers and of applying natural circulation core cooling, how-
ever, has major consequences for the stability of new PWR designs. These modifications
have allowed PWRs to work at high nominal power, but they have also favored an in-
crease in the reactivity feedback and a decrease in the response time, resulting in a lower
stability margin when the reactor is operated at low mass flow and high nominal power
[2]. The objective of improved control is to obtain higher plant productivity. Increas-
ing 1) the plant availability, 2) the economic utilization of the nuclear fuel, and 3) the
operational flexibility.

A new intelligent nonlinear control for power system stabilizers that improves the
transient stability.This permits the most possible simple design implementation of an
adaptive-fuzzy logic passivity-based controller which is developed on power system ob-
tained by a suitable use of the backstepping technique [19]. It is difficult to overstate the
importance of considering control constraints in control system design: such constraints
have well-known implications for the behaviour of the resulting closed-loop system, and
ignoring these constraints can lead to a dramatic loss of performance and, potentially,
stability. Hassan and Boukas [20] show that the problem of stabilizing a linear quadratic
regulator is subject to constraints on the state and the input vectors, Our technique
relays on an iterative approach that uses the solution of the standard linear quadratic
regulator as an initial guess for the optimal solution and then iteratively, the solution is
improved by designing a controller that compensates for the violation of the constraints
at each iteration .

Recently, several controller design techniques for constrained linear systems have been
proposed. We provide a critical review of constraint compensation techniques for control
systems with an emphasis on methods which have been successfully applied to process
control problems. Most of these methods can be classified as: (i) anti-windup techniques;
(ii) model predictive control techniques; and (iii) hybrid feedback linearization/model
predictive control techniques. Anti-windup methods usually are based on applying linear
anti-windup compensation to the linear system obtained from feedback linearization [12–
16]. Model predictive control provides a very convenient framework for the control of
constrained systems as input and output constraints can be incorporated directly into
the associated controller [13–17]. Hybrid feedback linearization/model predictive control
techniques utilize feedback linearization to generate a constrained linear system which is
regulated with a linear model predictive controller [14–18].

Many approaches demonstrate the design of a robust controller using the linear
quadratic gaussian with loop transfer recovery (LQG/ LTR) for nuclear reactors with
the objective of keeping a desirable performance for reactor fuel temperature and tem-
perature of the coolant leaving the reactor for a wide range of reactor power [15].

This paper deals with the problem of designing a stabilizing feedback controller for
continuous H. B. Robinson pressurized water reactor plant which is in the form of linear
state-variable model, where the control inputs (reactivity and electric heater to pressur-
izer) act additively. The model is based on mass, and energy balance; design data from
the safety analysis report are used to evaluate the necessary coefficients. The model
includes representations for point kinetics equations (six delayed neutron groups), core
heat transfer, piping, pressurizer, and the steam generator [3].

The H. B. Robinson Nuclear Plant produces 2200 MW at full power. It includes a
pressurized water reactor (PWR), pressurizer, and three vertical U-tube recirculation-
type steam generators [3]. The practicality of the control schemes is demonstrated on
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the problem of finding a stabilizing controller for continuous H. B. Robinson pressurized
water reactor plant subject to both state and control constraints.

Meanwhile the problem of stabilization with state and input constraints has been
solved recently [4–6, 7–9]. Saberi [5] generalized Kaliora’s result to a general linear sys-
tem. Diao [6] constructed a semi-global stabilizing controller subject to both amplitude
and rate constraints. Lin [10] constructed a semi global stabilizing controller subject to
both amplitude and rate constraints. Castelan et al. [7] showed that the problem of
designing a state feedback controller to constrain linear system ẋ = Ax + Bu to a sym-
metric state constraint set S = {−w ≺ Gx ≺ w} is solvable if rank G is less than or equal
to the number of controls and the null space of G; ker G is A,B invariant [11]. Thus
there exists an F such that ker G is A+BF invariant, the eigenvalues of (A+BF )kerG
are in the open left-half plane. Abouelsoud [8] generalized this result to both state and
input constraints.

This paper is organized as follows. In Section 2 a state and control constrained
controller is designed. Section 3 presents description of H. B. Robinson Nuclear power
Plant model. In Section 4 simulation results and discussions are provided. Conclusion is
given in Section 5.

2 Stabilization with State and Control Constraints

Given a continuous-time linear system

ẋ = Ax (t) +Bu (t) , (1)

where x ∈ Rn, u ∈ Rm, (A,B) is a controllable pair, and symmetric constraint state and
control sets

Sx = {x ∈ Rn : −wx ≤ Gxx ≤ wx} , (2)

Su = {u ∈ Rm : −wu ≤ Euu ≤ wu} . (3)

By scaling we can make wx = 1 and wu = 1, where 1 is a column with elements unity,

Sx =
{

x ∈ Rn : −1 ≤ Gxx ≤ 1
}

, (4)

Su =
{

u ∈ Rm : −1 ≤ Euu ≤ 1
}

, (5)

Gx ∈ R(s1×n), Eu ∈ R(r1×m) are both full rank, we consider the problem of designing a
linear state feedback controller

u (t) = Fx (t) (6)

such that the closed loop system
ẋ = ACx (t) , (7)

where AC = A+BF , is asymptotically stable and both the state and control constraints
(4) and (5) are satisfied. We use the results of [8] to design F . First choose the closed
loop poles according to the following criterion.

Lemma 2.1 [7] A necessary and sufficient condition for

Sx =
{

x ∈ Rn : −1 ≤ Gxx ≤ 1
}

to be positively invariant for system (7) is that the eigenvalues λi = µi ± jσi of matrix
AC satisfy

µi ≤ − |σi| . (8)
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Proof See [7].

Let

G =

[

Gx

0

]

, E =

[

0
Eu

]

.

Then the state and control constraints become

−1 ≤

(

G

EF

)

x ≤ 1 or − 1 ≤ Gx+ Eu ≤ 1.

Assume that the invariant zeros of the system
∑

1 : (A, b,G,E) are in the open left-
half plane. (i.e.

∑

1 is minimum phase), then we can choose the closed loop poles as
those invariant zeros; the remaining closed-loop poles are chosen to satisfy condition (8).
Let λi be an invariant zero of

∑

1, then there exist a state direction vi and a control
direction wi such that

P (λi)

(

vi
wi

)

=

(

λiI −A −B

G E

)(

vi
wi

)

= 0. (9)

for i = 1, ..., n − s, where s = rank

(

GxB

Eu

)

, P (λi) is the system matrix. Hence the

feedback matrix satisfies
Fvi = wi or FV1 = W1, (10)

where V1 = (v1, ..., vn−s), W1 = (w1, .., wn−s). The remaining closed-loop poles are
chosen to satisfy conditions (8). Thus there exist closed-loop eigenvectors V2 satisfying

GV2 + EW2 = IS×S , (11)

V2Λ2 = AV2 +BW2, (12)

where

Λ2 = blockdiag

(

µi −σi

σi µi

)

.

For simple complex poles or real poles of the feedback matrix AC , let

FV2 = W2. (13)

Hence
F =

(

W1 W2

) (

V1 V2

)

−1
. (14)

The feedback matrix F (14) ensures that the closed loop system is asymptotically stable
and the state and control constraints are satisfied [8]. The control is now

u = Fx. (15)

3 Robinson Nuclear Power Model

A linear differential equations of pressurized water reactor model that includes the re-
actor core, pressurizer, primary system piping, and a U -tube recirculation-type steam
generator.
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3.1 Core point kinetics equations

The point kinetics equations with six groups of delayed neutrons and reactivity feedbacks
due to changes in fuel temperature, coolant temperature, and primary coolant system
pressure. For model with one fuel node and two coolant nodes [3]

dδP

dt
= −400δP + 0.0125δC1 + 0.035δC2 + 0.111δC3 + 0.301δC4 + 1.140δC5

+3.01δC6 − 1781δTf − 13700δTC1 − 13700δTC2 + 411δPP + 106δρRod,

(16)

dδC1

dt
= 13.125δP − 0.0125δC1, (17)

dδC2

dt
= 87.5δP − 0.0305δC2, (18)

dδC3

dt
= 78.125δP − 0.111δC3, (19)

dδC4

dt
= 158.125δP − 0.301δC4, (20)

dδC5

dt
= 46.25δP − 1.140δC5, (21)

dδC6

dt
= 16.875δP − 3.01δC6, (22)

dδTf

dt
= 0.0756δP − 0.16466δTf + 0.16466δTC1, (23)

dδTC1

dt
= 0.05707δTf + 2.3832δTLP − 2.4403δTC1, (24)

dδTC2

dt
= 0.05707δTf − 2.3832δTC2 + 2.3262δTC1. (25)

3.2 Pressurizer equations

The pressurizer model is based on mass, energy, and volume balances with the assumption
that saturation conditions always apply for steam-water mixture in the pressurizer,

dδPP

dt
= 0.0207δTf − 0.0207δTC1 + 0.0103δTC2 + 0.240δTUP − 0.130δTIP

−0.509δTP + 0.634δTm − 0.116δTOP + 0.121δTLP − 0.279δTHL

+0.0235δTCL − 0.0062δQ. (26)

3.3 Steam generator equations

The steam generator model with three regions: primary fluid, tupe metal, and secondary
fluid,

dδTP

dt
= 0.2238δTIP − 0.76642δTP − 0.53819δTm, (27)

dδTm

dt
= 3.07017δTP − 5.3657δTm − 0.33272δPs, (28)

dδPs

dt
= 1.349δTm − 0.2034δPs − 0.0384δWFW . (29)
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3.4 Piping equations

All piping sections are modeled as well-mixed volumes,

dδTUP

dt
= 0.33645δTC2 − 0.33645δTUP , (30)

dδTHL

dt
= 2.5δTUP − 2.5δTHL − 0.0016δWP , (31)

dδTIP

dt
= 1.45δTHL − 1.45δTIP , (32)

dδTOP

dt
= 1.45δTP − 1.45δTOP , (33)

dδTCL

dt
= 1.48δTOP − 1.48δTCL, (34)

dδTLP

dt
= 0.516δTCL − 0.516δTLP , (35)

where
δP : deviation in reactor power from its intial steady -state value,
δCi: deviation of normalized precursor concentrations,
δTf :deviation of fuel temperature in the fuel node,
δTC1: deviation of coolant temperature in the first coolant node,
δTC2: deviation of coolant temperature in the second coolant node,
δPP : deviation of primary system pressure,
δTP : deviation of temperature of primary coolant node in the steam generator,
δTm: deviation of the steam generator tube metal temperature,
δPs: deviation of steam pressure from its initial steady-state value,
δTUP : deviation of the reactor upper plenum temperature,
δTLP : deviation of the reactor lower plenum temperature,
δTHL: deviation of hot leg temperature,
δTIP : deviation of temperature of primary coolant in the steam generator or inlet plenum,
δTOP : deviation of temperature of primary coolant in the steam generator or outlet
plenum,
δTCL: deviation of cold leg temperature,
δρRod: reactivity due to control rod movement,
δQ : rate of heat addition to the pressurizer fluid with electric heater,
δWFW : deviation of feedwater flow rate in steam generator,
δWP : deviation of primary water flow rate to the steam generator.

Eqs (16)–(35) describing the H. B. Robinson nuclear power system formed in state
space model as follow:

ẋ = Ax+Bu, (36)

where

x =
[

x1 x2

]T
,

x1 =
[

δP δC1 δC2 δC3 δC4 δC5 δC6 δTf δTC1 δTC2

]

,
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x2 =
[

δPP δTP δTm δPs δTUP δTHL δTIP δTOP δTCL δTLP

]

,

u =
[

δρRod δWFW WP δQ
]T

,

B=

[

106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −0.03843 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0016 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −0.0062 0 0 0 0 0 0 0 0 0

]T

,

and
A =

[

A1 A2

]

,

A1=













































−400 0.0125 0.0305 0.111 0.301 1.14 3.01 −1781 −13700 −13700
13.125 −0.0125 0 0 0 0 0 0 0 0
87.5 0 −0.0305 0 0 0 0 0 0 0

78.125 0 0 −0.111 0 0 0 0 0 0
158.125 0 0 0 −0.301 0 0 0 0 0
46.25 0 0 0 0 −1.14 0 0 0 0
16.875 0 0 0 0 0 −3.01 0 0 0
0.07 0 0 0 0 0 0 −0.16466 0.16466 0
0 0 0 0 0 0 0 0.05707 −2.4403 0
0 0 0 0 0 0 0 0.05707 2.3262 −2.3832
0 0 0 0 0 0 0 0.0207 −0.0207 0.0103
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.33645
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0













































,

A2=











































411 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2.3832
0 0 0 0 0 0 0 0 0 0
0 0.634 −0.509 0 0.240 −0.279 −0.130 −0.116 0.0235 0.121
0 −5.3657 3.07017 0.3372 0 0 0.2238 0 0 0
0 0.53819 −0.76442 0 0 0 0 0 0 0
0 1.349 0 −0.2034 0 0 0 0 0 0
0 0 0 0 −0.33645 0 0 0 0 0
0 0 0 0 2.5 −2.5 0 0 0 0
0 0 0 0 0 1.45 −1.45 0 0 0
0 1.45 0 0 0 0 0 −1.45 0 0
0 0 0 0 0 0 0 1.48 −1.48 0
0 0 0 0 0 0 0 0 0.516 −0.516











































.

We can apply the technique in (14) for designing a linear state feedback controller with
state and control constraints to the system (36). The state constraints are on neutron
flux level (δP ), steam pressure in steam generator (δPs) and hot leg temperature (δTHL).
Thus

−400 ≤ δP ≤ 400, −10.07 ≤ δPs ≤ 10.07, −347.24 ≤ δTHL ≤ 347.24.

By scaling we can make

−1 ≤ 0.0025δP ≤ 1, −1 ≤ 0.099δPs ≤ 1, −1 ≤ 0.0021δTHL ≤ 1.
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The control constraint depends on reactivity (δρRod) and electric heater to pressurizer
(δQ),

−1 ≤ 200δρRod + 0.006δQ ≤ 1.

Thus,

Gx =

[

0.0025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.099 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0021 0 0 0 0

]

,

G =

[

0.0025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.099 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0021 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]

,

and

Eu =
[

200 0 0 0.006
]

, rank

(

GxB

Eu

)

= 4.

Thus,

E =









0 0 0 0
0 0 0 0
0 0 0 0
200 0 0 0.006









.

The transfer function of system (36) has 16 zeros at -0.3365, -0.0849, -2.4362, -2.3832,
-1.48, -1.45, -0.516, -0.1688, -5.701, -0.4315, -0.0305, -0.111, -0.301, -1.14, -3.01, -1.45,
which are in left hand poles thus the transfer function is minimum phase.

The system matrix P (λ) =

(

λI −A −B

G E

)

has 16 state direction vi and 16 control

direction wi, i = 1, ..., 16.

Let V1 =
[

v1 v2 · · · v16
]

=
[

v11 v12
]

, where

v11=













































0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −3e − 016 −5e − 012 −2e − 013 −6e− 011 3.6e− 12 −0.005
0 0 −4e − 010 −4e − 014 −0.0006 −0.0006 0.0003 −3.6e − 015
0 0 0.0022 −0.0021 −0.0015 0.0015 0.0003 −0.0003

0.0006 −0.0730 −0.0025 0.0026 0.0041 −0.0042 −0.0039 0.0381
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−0.00006 0.00001 −0.0003 0.0003 0.0004 −0.0004 −0.0006 −0.0005
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −3e− 015 −6e− 011 3e − 019 4e − 015 3e− 012 −6e − 018
0 0 −6e− 011 −8e− 014 0.0004 −0.0004 2e− 011 −2e − 017
0 0 2e− 013 −3e− 012 −0.0002 0.0002 0.0002 6e − 019













































,
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v12=













































0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0

−8e− 011 0.0001 0 0 0 0 0 −0.0001
−9e− 015 0.0001 0 0 0 0 0 −0.0006
−3e− 012 0.0002 0 0 0 0 0 −0.0015
−0.0035 −0.0024 0.0001 −0.0009 −0.0003 −0.0002 −0.0002 0.0042
−0.0285 6e − 018 0 0 0 0 0 7e − 018
−0.0031 0.00002 0 0 0 0 0 6e − 018

0 0 0 0 0 0 0 0
−9e− 018 −0.0006 7e − 019 −6e− 020 7e − 018 −6e − 018 −4e − 012 0.0004

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −5e − 011

0.0011 6e − 017 0 0 0 0 0 6e − 016
−0.0004 8e − 019 0 0 0 0 0 0.0004
2e − 013 0.0001 0 0 0 0 0 −0.0002













































,

W1 =
[

w1 w2 · · · w16

]

=
[

w11 w12

]

,

w11=

[

−6e − 018 2e − 016 1e − 013 −6e − 015 −2e− 012 5e− 014 6e− 019 7e − 018
0 0 0 0 0 0 0 0
1 −8e − 017 0.5418 −0.5426 −0.6841 0.6923 1 0.8253

0.0084 −1 −1 1 1 −1 −0.3402 1

]

,

w12=

[

6e − 018 6e − 018 −2e − 016 1e − 019 5e − 012 4e− 015 2e− 011 −2e− 020
1 0.0002 0 0 0 0 0 6e− 018

0.0019 1 −4e − 013 −6e − 017 −5e− 013 0 −3e− 019 −0.6923
−0.0438 −0.1894 0.0006 −0.0158 −0.0140 −0.0411 −0.1032 1

]

.

The corresponding state and control direction are 4 state direction vi and 4 control
direction wi, i = 17, ..., 20.

V2 =
[

v17 v18 v19 v20
]

=













































400 −1.9e− 016 −6.9e − 016 2.7e − 015
−769.6 3.6e− 015 −2.9e − 015 −1e− 014
−5144.4 6e − 014 −2.5e − 014 −7e− 014
−4648.2 2.2e− 014 −1e− 013 −6.1e − 014
−9681.6 1.2e− 013 −2.1e − 013 −1.3e − 013
−3249 4.2e− 014 −5.1e − 014 −5.1e − 014
−1765.2 2.1e− 014 −1.4e − 014 −8.2e − 014
−4.5327 −7.9e− 004 11e − 004 −6.1e − 017
0.0589 −0.0262 0.0054 3e − 018
0.0273 0.0191 −0.0023 −3.3e − 018
−4.9772 −2.9407 15.6583 0.2972

−8.7e− 021 23.5195 −4.2434 −2.9e − 020
4.6e− 021 −2.6368 3.6039 −1.7e − 020
−6.5e− 022 10.10 2.6e − 017 9.1e − 021
−0.0014 −0.0012 9.9e − 005 3.3e − 019

7.1e− 020 −3.1e− 020 476.1905 −4.6e − 019
−8.8e− 020 −2.3e− 021 −105.8493 3.2e − 019
−1.5e− 021 0.9287 −0.8011 1.3e − 020
2.5e− 022 −0.3363 0.1826 −9.1e − 021
6.6e− 024 0.0344 −0.0126 1.5e − 021













































and

W2 =
[

w17 w18 w19 w20

]

=

[

0.1650 0.0011 −0.0064 −1.22e − 004
−4.3e− 019 2.2e + 003 −148.956 −2.8e− 019

2.2128 1.9233 −1.6289e + 006 −2.2e− 016
−5501.1 −37.0275 213.0615 170.7381

]

.

The remaining closed loop poles are chosen as follows: -6.834 , -5.567 , -7.9732 , -0.15.
The state and control feedback controller

F =
(

W1 W2

) (

V1 V2

)

−1
, (37)
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F =
[

F1 F2 F3

]

,

F1 =

[

3.8e − 4 −7.6e− 6 −3e− 8 −1e − 7 −3e − 7 −1.1e− 6 −3e − 6
2e− 4 1.01e − 4 0 0 0 0 0
11.70 6.08 6.8e− 18 5e − 16 1.8e − 16 7e− 16 2.6e − 15

−6.5e + 16 −3.4e+ 16 0.001 0.0037 0.01 0.038 0.1003

]

,

F2 =

[

0.0018 0.0137 0.0137 −4.1e − 4 −6e − 16 −2.6e − 15 8.1e − 17
0 0 0 0 35.10 0 139.56

−2.9e− 11 8e − 10 1.5e − 12 9.5e− 14 8.1e− 10 6e − 9 7.1e − 11
−59.36 −456.66 −456.66 13.7 1.1e− 11 5.1e − 11 11.006

]

,

F3 =

[

0 1.1e − 7 5.9e− 7 3.1e− 15 4e− 17 1.2e − 16
0 4.4e− 16 9e− 16 0 0 0

−1562.5 −3420.8 −0.38 −4.5e − 9 6e− 10 −1e − 9
0 −0.30 −0.0039 −6.9e− 11 2.6e − 13 −7.1e− 12

]

.

4 Result and Discussions

This section presents the simulation and numerical results based on linear state feedback
controller (37) applied to the system (36). The system is simulated for initial state
variables values as follows

x = [ 400 0 0 0 0 0 0 0 0 0 0 0 0 10.07 0 347.24 0 0 0 0 ],

where the initial values satisfy the defined constraints of deviations of neutron flux, steam
pressure and hot leg temperature.

The following figures represent the responses (deviations of the system state variables
with time, where it is clear that all deviations decay with time and tend to zero, satisfying
both performance criterion stability and zero steady state error (1 sec=1000 iterations).

Figure 1 shows deviation of neutron flux with time, we observe the curve has speed
response (maximum overshoot is within the acceptable constraint 400 ≤ x1 ≤ 400).

Figure 2 shows deviation of generations from the first to sixth of the delayed neutron
fractions within range [-150, 300]. It is clear that the increase in the maximum overshoot
of responses as the increase of generations of the delayed neutron fractions, while the
damping frequency and the settling time of all delayed neutron fractions are the same.

Figure 3 shows the deviation of fuel temperature, it is clear that from graph the
maximum over shoot are very small and settling time (≤ 400 iterations).

Figure 4 shows the deviations of coolant temperature in first node and second node,
also show the deviations of metal and primary temperatures in steam generator, we
observe the curves have speed response, maximum overshoot is within the range [0,5].

Figure 5 shows the deviation of primary pressure, it is clear that from graph the
maximum over shoot is within the interval [0,150], decays with time and tends to zero.

Figure 6 shows the deviation of steam pressure in steam generator, we observe the
curve has speed response (maximum overshoot is within the acceptable constraint 10.07 ≤
x14 ≤ 10.07 and settling time (≤ 800 iterations).

Figure 7 shows the deviations of the reactor upper, outlet plenum, cold leg and lower
plenum temperatures in steam generator, we observe the figures have the same range,
the maximum over shoot are small and settling time (≤ 14000 iterations).

Figure 8 shows the deviation of hot leg temperature, it is clear that the graph has
speed response with (maximum overshoot is within the acceptable constraint −347.24 ≤
x16 ≤ 347.24, and very small settling time (≤ 600 iterations).

Figure 9 shows deviation of inlet plenum temperature, we observe the figure has
maximum over shoot are small, also its decays with time and tends to zero.
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Figure 1: Deviation of neutron flux for simulations with the state feedback controller (37).
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Figure 2: Deviation of normalized precursor concentrations for simulations with the state
feedback controller (37).
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Figure 3: Deviation of fuel temperature for simulations with the state feedback controller
(37).
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Figure 4: Deviations of coolant in first node ,second node , metal and primary steam generator
temperatures for feedback controller (37).
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Figure 5: Deviation of primary pressure for simulations with the state feedback controller
(37).
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Figure 6: Deviation of steam pressure for simulations with the state feedback controller (37).
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Figure 7: Deviation of the reactor upper, outlet plenum ,cold leg and lower plenum tempera-
tures for controller (37).
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Figure 8: Deviation of hot leg temperature for simulations with the state feedback controller
(37).
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Figure 9: Deviation of inlet plenum temperature for simulations with controller (37).
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Figure 10: Deviation of reactivity for a simulation with the state feedback controller (37).
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Figure 11: Deviation of electric heater input to the pressurizer with the state feedback
controller (37).

Figures 10 and 11 show the deviations of reactivity, electric heater control inputs
where the two curves satisfy the acceptable constraints, −0.005 ≤ δρRod ≤ 0.005,
−170 ≤ δQ ≤ 170 which interprets the superior effect of the control technique used.

These figures demonstrate stability of the state feedback system, while the neutron
flux level, steam pressure in steam generator, hot leg temperature, control input reactivity
and control input electric heater to pressurizer constraints are satisfied.

The simulation results provide us with an important practical implication, that is the
nuclear power plant has reached its desired steady state value in a very small time as the
neutron flux of our theoretical system under study as shown in Figure 1 has reached the
desired steady state value in about, which indicates a relative importance of our control
algorithm for practical implementation of different systems.

5 Conclusions

A linear state feedback controller [9, 10] has been designed to globally asymptotically
stabilize H.B. Robinson pressurized water reactor plant [2] subject to symmetrical neu-
tron level flux, steam pressure in steam generator, hot leg temperature, control input
reactivity and electric heater input constraints. Simulation results show the effectiveness
of the proposed technique.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 12 (1) (2012) 1–17 17

References

[1] Akkurt, H. Development of a Control Model for a PWR. MSc thesis, Hacettepe University,
Ankara, 1996. [Turkey]

[2] Frogner, B. and Rao, H.S. Control of Nuclear Power Plants. IEEE Transactions on

Automatic Control 23 (3) (1978) 405–417.

[3] Kerlin, T.W. and Katz, E.M. and Thakkar, J.G. Theoretical and experimental dynamic
analysis of the H. B. Robinson nuclear plant. Nuclear Technology 30 (1976) 299–314.

[4] Kaliora, G. and Astolfi, A. Output feedback asymptotic stabilization with bounded mea-
surements. In: Proc. 4th Asian Control Conf. (2002) 857–862.

[5] Saberi, A. and Han, J. and Stoorvogel, A. Constrained stabilization problems for linear
plants. Automatic 38 (2002) 639–654.

[6] Diao, L. and Guay, M. Output feedback stabilization of uncertain non-minimum phase
nonlinear systems. Industrial and Engineering Chemistry Research 44 (9) (2005) 3116–
3123.

[7] Castelan, E.B. and Hennet, J.C. On invariant polyheda of continuous time linear systems.
IEEE Transactions on Automatic Control 38 (11) (1993) 839–842.

[8] Abouelsoud, A.A. Global stabilization of linear time-invariant systems subject to state
and control constraints. Mediterranean Journal of Measurement and control 3 (4) (2007)
157–163.

[9] Goebel, R. Stabilizing a linear system with saturation through optimal control. IEEE

Transactions on Automatic Control 50 (5) (2005) 650–655.

[10] Wu, F. and Lin, Z.and Zheng, Q. Output feedback stabilization of linear systems with
actuator saturation. IEEE Transactions on Automatic Control 52 (1) ( 2007) 122–128.

[11] Trentelman, H.L. and Stoorvogel, A.A. and Hautus, M. Control theory for linear systems.
Springer-Verlag London, Ltd., London, 2001.

[12] Calvet, J.-P. and Arkun, Y. Feedforward and feedback linearization of nonlinear systems
and its implementation using internal model control (IMC). Ind. Eng. Chem. Res. 27
(1988) 1822–1831.

[13] Keerthi, S.S. and Gilbert, E.G. Optimal in-nitehorizon feedback laws for a general class
of constrained discrete-time systems: Stability and moving horizon approximations. J.

Optimiz. Theory Appl. 57 (1988) 265–292.

[14] Kurtz, M.J. and Henson, M.A. Input-output linearizing control of constrained nonlinear
processes. J. Process Control 7 (1997) 3–17.

[15] Adel Ben-Abdennour, Edwards, M. and Kwang Lee, Y. LQG/LTR robust control of nuclear
reactors with improved temperature performance. IEEE Transactions on Nuclear Science

39 (6) (1992) 2286–2294.

[16] Kendi, T.A. and Doyle, F.J. Nonlinear control of a fluidized bed reactor using approximate
feedback linearization. Ind. Eng. Chem. Res. 35 (1996) 746–757.

[17] Meadows, E.S., Henson, M.A., Eaton, J.W. and Rawlings, J.B. Receding horizon control
and discontinuous state feedback stabilization. Int. J. Control 62 ( 1995) 1217–1229.

[18] Nevistic, V. and Morari, M. Constrained control of feedback-linearizable systems. In: Proc.
European Control Conf. Rome, Italy. (1995) 1726–1731.

[19] Psillakis, H.E. and Alexandridis, A.T. A simple nonlinear adaptive-fuzzy passivity-based
control of power systems. Nonlinear Dynamics and Systems Theory 7 (1) (2007) 51-67.

[20] Hassan, M.F. and Boukas, E.K. Constrained linear quadratic regulator:continuous-time
case. Nonlinear Dynamics and Systems Theory 8 (1) (2008) 35-42.


	Introduction
	Stabilization with State and Control Constraints
	Robinson Nuclear Power Model
	Core point kinetics equations
	Pressurizer equations
	Steam generator equations
	Piping equations

	Result and Discussions
	 Conclusions

