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1 Introduction

In this study, we revisit the asymptotic stability of ordinary differential equations via
the curvature properties of the trajectories. We have studied the global stability (given
the local stability) of the zero solution of a class of non-autonomous linear differential
equations of the type

x
′

(t) = A(t)x

under certain conditions on the matrix A. The usual conditions on A + AT appear to
be restrictive, whereas the arguments via the curvature yield the global stability given
the local stability. Apparently, the theory depends on the boundedness of the curvature
and a property of the trajectory called the negative property on compact sets. The idea
of the proof is borrowed from [1], although it deals with only the autonomous systems.
In this paper, the stress is on the nonautonomous differential equations.

Section 2 deals with the necessary preliminaries. The main result is stated in Section
3. Examples have been given here for illustration.
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2 Preliminaries

Let the curve Γ be represented by the C1 map φ : R → R
n. The curvature at each point

x = φ(t), for some t ∈ R on a C1 curve Γ, where φ
′

(t) 6= 0, is given by

κ(x) =
‖‖ φ

′

(t) ‖2 φ′′

(t)−
〈

φ
′

(t), φ
′′

(t)
〉

φ
′

(t) ‖
‖ φ′(t) ‖4 .

Let K(x) be the curvature at a point x ∈ Γ, where Γ is a C1 curve given by φ : R →
R

n. A consequence of the curvature being bounded everywhere along Γ is:

Proposition 2.1 Let K be an upper bound for the curvature on a C1 curve Γ. If
there exist t−, t0 and t+ ∈ R with t− < t0 < t+ such that the tangent at φ(t0) is

orthogonal to the tangents at φ(t−) and φ(t+) and
〈

φ
′

(t), φ
′

(t0)
〉

> 0 for all t ∈ (t−, t+),

then d(φ(t−), φ(t0)) ≥
√
2

K
and d(φ(t0), φ(t+)) ≥

√
2

K
. Here, d(φ(t−), φ(t0)) denotes the

euclidean distance between φ(t−) and φ(t0).

Proof Let Tt denote the unit tangent vector to the curve Γ at φ(t), and let θ(t) be
the angle between Tt0 and Tt.

〈(φ(t+)− φ(t0)), Tt0〉 =
t+
∫

t0

〈

φ
′

(t), Tt0

〉

dt =
t+
∫

t0

‖ φ
′

(t) ‖ cos θ(t) dt.

Let s(t) denote the arc length along the curve Γ, at time t from the fixed point φ(t0).

From [2], we know that

∣

∣

∣

∣

dθ

ds

∣

∣

∣

∣

≤ K. Hence,

〈(φ(t+)− φ(t0)), T0〉 =
s(t+)
∫

s(t0)

cos θ(s) ds ≥ 1
K

θ(t+)
∫

θ(t0)

cos θ dθ.

Since Tt0 and Tt+ are orthogonal to each other, θ(t0) = 0 and θ(t+) =
π

2 .

So, 〈φ(t+)− φ(t0)), Tt0〉 ≥ 1
K
. By a similar argument,

〈

φ(t+)− φ(t0), Tt+

〉

≥ 1
K

or d(φ(t0), φ(t+)) ≥
√
2

K
. By a similar argument

d(φ(t0), φ(t−)) ≥
√
2

K
, thereby proving the proposition.

A consequence of Proposition 2.1 is

Definition 2.1 Let Ω ⊂ R
n be a set such that the curvature at each point along any

regular curve in Ω is bounded above by K. If for each point x0 in Ω there do not exist
points x1 and x2 on any regular curve φ through x0, (where φ(t0) = x0, φ(t1) = x1 and

φ(t2) = x2) with
〈

φ
′

(t0), φ
′

(t1)
〉

= 0,
〈

φ
′

(t0), φ
′

(t2)
〉

= 0 and d(x0, x1), d(x0, x2) ≥ 2
K
,

then Ω is said to have the negative property.

We now turn our attention to nonautonomous ordinary differential equations of the
type

x
′

= A(t)x, (1)

where A : [0,∞) → Mn(R) is a C1 matrix, such that lim
t→∞

A(t) exists and lim
t→∞

A(t) 6= 0.

A solution of equation (1) passing through x0 at time t0 is denoted by x(t, t0, x0).
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Henceforth, if Ω has the negative property, we assume that it is with respect to the
solution curves of the concerned differential equation.

The following is a result on the ω limit points of trajectories in a set with the negative
property.

Lemma 2.1 Let Ω ⊂ R
n have no equilibrium points of equation (1) and have the

negative property. Let Γ = {φ(t) : t ∈ [0,∞)} be any forward trajectory of equation
(1) which is contained entirely in Ω. Then, the omega limit set of Γ consists entirely of
equilibrium points which lie in the closure of Ω but not in Ω.

Proof Let x be an omega limit point of Γ. Assume that x is not an equilibrium
point. There exists a sequence (tn) ↑ ∞ such that φ(tn) → x. By using the fundamental
theorem of calculus, we get

lim
n→∞

tn+1
∫

tn

A(t)φ(t) dt = 0. (2)

There exists a T ∈ R such that for all t > T , 〈A(t)x,A(t)x〉 > 0. Hence, there exists
a δ > 0, t0 ≥ T , such that 〈A(s)y,A(r)z〉 > 0, for all s, r > t0 and y, z ∈ B(x, δ), i.e.,
there exists a τ > 0, such that ∀ |t− t0| < τ , s, r > t0 and y, z ∈ B(x, δ)

〈A(s)x(t, t0, y), A(r)z〉 > 0. (3)

Fix a s > t0 and y ∈ B(x, δ) and call the vector A(s)y as v. From equation (2), we
see that

lim
n→∞

tn+1
∫

tn

〈A(t)φ(t), v〉 dt = 0. (4)

When n is sufficiently large, φ(tn) → x. We get from equation (3):

tn+τ
∫

tn

〈A(t)φ(t), v〉 dt > 0 (5)

For n sufficiently large, there exists an interval (tn, tn+1), where the integrand
must change sign, i.e., there exist tm−

, tm+
with tm−

< tm < tm+
such that

〈

A(tm)φ(tm), A(tm+
)φ(tm+

)
〉

= 0 and
〈

A(tm−
)φ(tm−

), A(tm)φ(tm)
〉

= 0.

Let x0 = A(tm)φ(tm), x1 = A(tm−
)φ(tm−

) and x2 = A(tm+
)φ(tm+

). Now,
〈

φ
′

(tm), φ
′

(tm+
)
〉

= 0 and
〈

φ
′

(tm), φ
′

(tm−
)
〉

= 0. From Proposition 2.1, we conclude

that d(x−, x0) and d(x0, x+) ≥
√
2

K
, which implies that Ω does not have the negative

property, a contradiction. Hence x has to be an equilibrium point. Since x /∈ Ω, x has
to belong to Ω.

We turn our attention to a few applications. Let us now consider nonautonomous
linear differential equations

x
′

(t) = A(t)x+ g(x), (6)
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where A : [0,∞) → Mn(R) is a C1 matrix, such that lim
t→∞

A(t) exists with lim
t→∞

A(t) 6= 0

and g : Rn → R
n is a C1 function and satisfies the smallness conditions.

On the lines of the proof of Lemma 2.1, we have the following result.

Corollary 2.1 Let Ω ⊂ R
n have the negative property with respect to equation (6).

Let Γ = {φ(t) : t ∈ R} be any forward trajectory which is contained entirely in Ω. Then,
the omega limit set of Γ consists entirely of equilibrium points which lie in the closure of
Ω and not in Ω.

Remark 2.1 It is interesting to note that, if Ω is compact and has the negative
property, then every forward trajectory has to leave Ω.

From [3], we have the following result for stability.

Proposition 2.2 Let us consider equation (1) where A(t) is a continuous real valued
n× n matrix on [0,∞). Let M(t) be the maximum eigenvalue of A(t) +A(t)T .

If lim
t→∞

t
∫

t0

M(s) ds = −∞, where t0 is fixed, then every solution of equation (1) tends

to zero as t → ∞.

3 Stability

In this section, we study the global stability given the local stability of equations of the
type (1) or (6).

Theorem 3.1 Let D ⊂ R
n be eventually positively invariant under either of the

equations (1) or (6) and Ω ⊂ D be compact, with no equilibrium points of equation (1)
and have the negative property. If the solutions of D \ Ω approach the equilibrium solu-
tion asymptotically, then the solutions in Ω must also approach the equilibrium solution
asymptotically.

Proof Since, Ω is compact and has the negative property, from Lemma 2.1 and
Corollary 2.1, we know that every forward trajectory in Ω must leave Ω. As Ω ⊂ D,
which is a positively invariant set in R

n, the result follows.
We now have a result on global stability given the local stability.

Corollary 3.1 Let D be positively invariant and contain a unique equilibrium x (with
respect to either equation (1) or (6) and Ω ⊂ D be compact and have the negative property.
If the solutions of D \ Ω approach x asymptotically, then x is globally stable in D.

Remark 3.1 Consider the ordinary differential equation x
′

= Ax, where A is a stable
matrix. Let B be a closed ball of radius 1

2 in R
n such for each y ∈ B, ‖y‖ ≥ 2. We see

that in B the curvature along any solution curve of x
′

= Ax is bounded above by 1. B
does not contain the critical point and has the negative property. Therefore, by Theorem
3.1, the zero solution is globally stable.

Remark 3.2 The autonomous equation y
′

= y(y−1) has critical points at y = 0 and
y = 1. (−∞, 1) is a positively invariant set under y

′

= y(y− 1) and (−2,−1) satisfies the
negative property. By Theorem 3.1, we see that the zero solution is stable in (−∞, 1).
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Example 3.1 x
′

= A(t)x where t > 0 and A(t) is

[

−1 0
0 − 1

1+t

]

.

The only equilibrium point is (0, 0). The maximum eigen value, λ(t) of A+AT is
−2

1 + t
.

Since, lim
s→∞

s
∫

0

λ(t) dt = 0, we see from Proposition 2.2 that we cannot conclude

whether the zero solution is stable or not.

However, the set B((1, 0), 1
2 ) has the negative property and is compact. Using Corol-

lary 3.1, the zero solution is globally asymptotically stable on R
2.

Example 3.2 Consider x
′

= A(t)x where t > 0 and A(t) is

[

0 − 3
(1+t)2

0 − 5
(1+t)

]

.

The only equilibrium point is (0, 0). The maximum eigenvalue λ(t) of A + AT is

−5 +
√
13

2(1 + t)
. lim

s→∞

s
∫

0

λ(t) dt = 0.

Since, the set B((1, 1), 1
2 ) has the negative property and is compact, by Corollary

3.1, the zero solution is globally asymptotically stable on R
2.
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