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PERSONAGE IN SCIENCE

Professor Constantin Corduneanu

to the 84th Birthday Anniversary

A.Yu. Aleksandrov 1, A.A. Martynyuk 2∗, N.H. Pavel 3, and S.N. Vassilyev 4

1 St. Petersburg State University, Universitetskij Pr. 35, Petrodvorets, St. Petersburg,
198504, Russia

2 Institute of Mechanics National Academy of Science of Ukraine,
Nesterov Str. 3, Kiev, 03057, Ukraine

3 Ohio University, Department of Mathematics, Athens, Ohio, 45701, USA
4 V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences,

Profsoyuznaya Str. 65, Moscow, 117997, Russia

The paper contains the biographical sketch and reviews scientific achievements of Con-
stantin Corduneanu, the outstanding researcher in Oscillations, Stability and Control
Theory of the 20th century.

1 Brief Outline of C. Corduneanu’s Life

Constantin Corduneanu was born on July 26th, 1928, in the City of Iasi, Province of
Moldova, Romania, from the parents Costache and Aglaia Corduneanu. At that time,
his parents were teachers in the village of Potangeni, Movileni commune in the District
of Iasi.

At the age of 12, in 1940, he had to move to the City of Iasi for getting his secondary
education. He decided to participate in the fierce competition for a place at the Military
Lyceum of Iasi, and he was admitted there, as the 10th, from a number of 400 competitors.
Four years later, in 1944, when the capacity exam had to be taken for promotion to the
second stage of the secondary education, he was classified the 1st among his peers, with
special mention for good answers in Mathematics. In 1945 he was transferred from office
to the Nicolae Filipescu National Military College in Predeal (in the Carpathian Mts).
There he finished his secondary education in 1947.

C. Corduneanu participated in what is nowadays called ”Mathematical Olympiad”,
in the years 1946 and 1947, winning a prize in each case, the first in 1947. That success
convinced him to become a mathematician, and in the Fall of 1947 he registered as a
student at the Faculty of Science, Division Mathematics, with the University of Iasi.

∗ Corresponding author: mailto:center@inmech.kiev.ua
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His association with the University of Iasi had lasted until the year 1977, period in
which he held positions of Assistant, Lecturer, Associate Professor, Professor, Dean of
Mathematics, Vice-Rector for Research and Graduate Studies, as well as some research
positions with the Mathematical Institute of the Romanian Academy. C. Corduneanu
also served, on different occasions, at the Iasi Polytechnic Institute and for three years at
the newly created institution which is known today as the University of Suceava (where
he also served as Rector during the period 1966–1967).

In 1977, C. Corduneanu decided to expatriate from Romania, and to reside in the
United States of America. In January 1978, after teaching some courses at the Interna-
tional Centre for Theoretical Physics (UNESCO) in Trieste, Italy, he came from Italy
to the USA, teaching the Spring Semester of 1978 at the University of Rhode Island,
which he had visited before for two academic years and where he was familiar with the
place and colleagues. Next academic year, 1978–1979, he was a Visiting Professor at the
University of Tennessee in Knoxville. Meantime, the University of Texas at Arlington
created a new professorial position, which C. Corduneanu occupied by competition in
the Fall of 1979. Ever since, he has been associated with this school, currently holding
the title of Emeritus Professor of Mathematics (retired in September 1996, after 47 years
in higher education in Romania and the USA).

Besides his usual duties as a Professor, C. Corduneanu had many other activities, such
as participating in various national or international conferences (more than 100), paying
short visits and talking about his research work in over 60 universities or institutes, in all
continents with the exception of Australia, and in over 20 countries (including Russia,
Ukraine, Germany, England, France, Italy, China, Japan, Hungary, Poland, Portugal and
Chile). He has published during the last 60 years about 200 research papers, including
6 books in a total of 15 editions (Romanian Academy, Academic Press in NY, Springer
Verlag, Cambridge University Press, the Taylor and Francis Publishing House in London,
John Wiley & Sons in NY, Allyn & Bacon in Boston). He has organized and participated
in several conferences, in Romania and in the USA, including the Centennial Volterra
Conference on Integral Equations and Applications, 1996, at the University of Texas at
Arlington, attended by specialists from many countries.

During the last 45 years, he has been associated with at least 10 mathematical journals
from Romania, the USA, South Korea, Israel and Ukraine.

2 Basic Trends of His Scientific Work

2.1 Global Problems in the Theory of Ordinary Differential Equations

This type of problems kept his attention at the beginning of his career, including the
doctoral thesis defended in 1956 at the University of Iasi, the committee being composed
by Academicians Miron Nicolescu, at that time president of the Romanian Academy,
Grigore Moisil and Nicolae Teodorescu from Bucharest, a former student of J. Hadamard
at Sorbonne. C. Corduneanu continued research work in this field for several years,
studying global existence, stability problems, oscillation theory, with special regard to
the almost periodic behavior of solutions to various classes of nonlinear equations.
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2.2 Qualitative Theory of Differential Equations, with Special Regard to
Stability Theory

The work in this category is mainly directed to ordinary differential equations and equa-
tions with causal operators. In [11], he has made one of the first steps in applying
the so-called comparison method, and proving in a single theorem all basic results on
Liapunov stability, based on using simultaneously the Chaplyguine-Wazewski approach
to differential inequalities, and the Liapunov’s function in general form. This method
has been widely applied by the School of Academician V.M. Matrosov, Russia; and in
Ukraine by Academician A.A. Martynyuk and his followers. The result published in [11],
has been included in several monographs and treatises, by authors like V. Lakshmikan-
tham and S. Leela, W. Hahn, T. Yoshizawa, A. Halanay, G. Sansone and R. Conti and
others.

2.3 Theory of Integral Equations

In this domain he has contributed to generalizing the method due to Massera and Schaf-
fer, from differential equations to integral equations. The book [J] contains the basic
results he had obtained until 1987, which became one of most often quoted references
in the literature. Also, the book [E] contains qualitative results with application to the
stability of systems of automatic control.

2.4 Equations with Causal Operators

This category is aimed at presenting, as much as possible, a unified theory of equa-
tions with causal operators (according to Volterra–Tonelli–Tychonoff), that can cover
the classical types of ordinary differential equations, equations with delay, integrodiffer-
ential equations with Volterra type integral, some discrete equations of evolution. In
this regard he has published the book [K] covering research conducted by his group of
students, as well as his own or joint projects (Mehran Mahdavi from Tehran and Yizeng
Li from Shanghai). A second volume dedicated to this type of equations and their con-
nection with the classical types of equations is now in preparation.

2.5 Fourier Analysis (Generalized)

For over a half century, a vide range of problems have been investigated in this field.
The books [A], [B], [I] and [M] are concerned with this subject. The papers [47]–[49] are
dealing with recent developments in this field.

3 Teaching Activities

Aug 1996 – Present Emeritus Professor, University of Texas at Arlington;
1979 – 1996 Professor, University of Texas at Arlington;
1978 – 1979 Visiting Professor, University of Tennessee;
Spring 1978 Visiting Professor, University of Rhode Island;
1968 – 1977 Professor, University of Iasi;
1973 – 1974 Visiting Professor, University of Rhode Island;
1967 – 1968 Visiting Professor, University of Rhode Island;
1962 – 1967 Associate Professor, University of Iasi;
1955 – 1962 Lecturer, University of Iasi;
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1950 – 1955 Assistant, University of Iasi;
1949 – 1950 Teaching Assistant, University of Iasi.

4 Administrative

1998 – Present Emeritus President, American Romanian Academy;
1995 – 1998 President, American Romanian Academy of Arts & Sciences;
1982 – 1995 Counselor and member of the Executive Committee, American

Romanian Academy of Arts and Sciences;
1972 – 1977 Vice Rector, University of Iasi, 1972–1977 (on leave, 1973–1974).

In charge of research and graduate studies;
1968 – 1972 Dean of the Mathematics Faculty, University of Iasi;
1966 – 1967 Rector (President) of the Teachers Training College in Suceava

(today the Stefan cel Mare University of Suceava);
1964 – 1967 Head (Chairman) of the Mathematical Division at the Teachers

Training College in Suceava.

5 Memberships

American Mathematical Society, Society for Industrial and Applied Mathematics, Math-
ematical Association of America, American Romanian Academy of Arts and Sciences,
Romanian Academy (Bucharest), Phi Beta Delta (International Scholars), International
Federation of Nonlinear Analysts.

6 Editorial Activity

Editor:
1981 - Present Libertas Mathematica, the Mathematical Journal of the American

Romanian Academy of Arts and Sciences.

Associate Editor:
2001 – Present Nonlinear Dynamics and Systems Theory (Kiev, Ukraine);
2001 – Present Nonlinear Functional Analysis and Applications (Korea);
1996 – Present Annals of Ovidius Univ. (Constantza, Romania);
1995 – Present Functional Differential Equations (Israel);
1994 – Present Communications on Applied Nonlinear Analysis (U.S.A.);
1979 – 1995 Journal of Integral Equations and Applications (U.S.A.);
1988 – 1992 Differential and Integral Equation (U.S.A.);
1977 – 1985 Nonlinear Analysis - Theory, Methods and Applications (U.K.);
1973 – 1978 Revue Roumaine de Math. Pures Appl. (Romania);
1969 – 1977 and 1996 – Present Analele Stiintifice Univ. Iasi (Romania);
1967 – 1975 Mathematical Systems Theory (Germany).

7 Awards

2010 Honorary Doctor, University of Ekaterinburg, Russia;
2003 Doctor Honoris Causa, Stefan cel Mare Univ., Suceava, Romania;
2003 Best Paper Award, CASYS’03, Liege, Belgium;
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2002 ”V. Pogor” Prize of the Municipality of Iasi;
2001 Medal of Merit in Mathematics from the Union of Czech Mathematicians;
1999 Doctor Honoris Causa, Transylvania University, Brasov, Romania;
1994 Doctor Honoris Causa, University of Iasi, Romania;
1994 Doctor Honoris Causa, Ovidius University, Constantza, Romania;
1991 Distinguished Research Award, University of Texas at Arlington;
1974 Elected Correspondent Member of the Romanian Academy of Sciences in

Bucharest, Division of Mathematical Sciences;
1963 The Research Award of the Romanian Academy of Sciences, for research

work in ”Stability Theory of Automatic Control Systems”;
1961 The Research Award of the Department of Education in Bucharest, for

research conducted in connection with ”Comparison Method in Stability Theory”.

8 Invited Lectures (Colloquium Programs, Exchange Programs)

1. Belgium: The University of Louvain (1971, 1976).
2. Canada: The University of Montreal (1973); McGill University (1987); Montreal

Polytechnic (1989); University of Victoria (1993); Univ. of Waterloo (1994).
3. Czechoslovakia: The Mathematical Institutes of the Academies of Sciences, and

the Universities in Prague, Brunno and Bratislava (1962, 1966, 1971).
4. Morocco: The University of Marrakech (1994, 1995).
5. United Kingdom: The Universities of Warwick, Durham and Sussex (1971, 1973);

The University of Wales (1989); The University of Dundee (1992); Univ. of Strathclyde
(1994).

6. Italy: The Universities in Milano, Florence, Perugia, Naples, and Politecnico in
Torino (1965–1993).

7. Japan: Okayama University of Science (2004).
8. West Germany: Technical University in Aachen (1986).
9. Chile: The University of Osorno (2002).
10. U.S.A.: Arizona State, Brown, Case Western Reserve, Cornell, Drexel, Florida

State, Southern Methodist, Texas Christian, and Wichita State Universities; the Univer-
sities of Rhode Island, Florida at Gainesville, Georgia at Athens, Colorado at Boulder,
Colorado at Colorado Springs, Tennessee at Knoxville, Maryland at College Park, South
Florida, Arizona at Tucson, Southern California, Wisconsin at Madison, Texas at Ar-
lington, Dallas at Irving, New Mexico at Albuquerque, California at Los Angeles, Utah
at Salt Lake City, Miami at Coral Gables; Bishop College in Dallas, Pomona Colleges,
Rensselaer Polytechnic Institute, Georgia Institute of Technology, Virginia Polytechnic
Institute and State University; Ohio University, University of Pittsburg, University of
Houston (Downtown); Howard University, Washington, D. C.; Virginia State University,
Petersburg (1968 – Present).

9 List of Monographs and Books by C. Corduneanu

[A] Functii aproape periodice. Editura Academiei, Bucharest, 1961.

[B] Almost Periodic Functions. John Wiley & Sons, New York, 1968 (translation of [A],
enlarged: with N. Gheorghiu and V. Barbu).

[C] Principles of Differential and Integral Equations. Allyn & Bacon, Inc., Boston, 1971.

[D] Differential and Integral Equations. Univ. of Iasi Press, 1971. [Romanian]
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[E] Integral Equations and Stability of Feedback Systems. Academic Press, Inc., New York,
1973.

[F] Differential and Integral Equations. Univ. of Iasi Press, 1977. (with an Appendix by N.
Pavel). [Romanian]

[G] Principles of Differential and Integral Equations. 2nd Ed., Chelsea Publ. Co., The
Bronx, New York, 1977.

[H] Principles of Differential and Integral Equations. Stereotype edition of [G]. (This edition
is currently distributed by the American Math. Society and Oxford Univ. Press).

[I] Almost Periodic Functions. Chelsea Publ. Co., The Bronx, New York, 1989. The second
English Edition, enlarged. This edition is currently distributed by the American Math. Society
and Oxford Univ. Press.

[J] Integral Equations and Applications. Cambridge Univ. Press, 1991.
[K] Functional Equations with Causal Operators. Taylor and Francis, London, 2002; (Kindle

edition, 2007, distributed by amazon.com).
[L] Integral Equations and Applications. A paperback edition at Cambridge University Press,

2008.
[M] Almost Periodic Oscillations and Waves. Springer Verlag, 2009.
[N] Special Topics in Functional Equations. (In preparation; jointly with Y. Li and M.
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1 Introduction

Motivated by a recent paper by B. G. Pachpatte [18], our purpose is to obtain time scales
versions of some Ostrowski and Grüss type inequalities including three functions, whose
second derivatives are bounded. In detail, we will prove time scales analogues of the
following three theorems presented in [18].

Theorem 1.1 [See [18, Theorem 1]] Let f, g, h : [a, b] → R be twice differentiable

functions on (a, b) such that f ′′, g′′, h′′ : (a, b) → R are bounded, i.e.,

‖f ′′‖∞ := sup
t∈(a,b)

|f ′′(t)| < ∞, ‖g′′‖∞ < ∞, ‖h′′‖∞ < ∞.

Moreover, let

A[f, g, h] := gh

∫ b

a

f(s)ds+ fh

∫ b

a

g(s)ds+ fg

∫ b

a

h(s)ds
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and

B[f, g, h] := |gh| ‖f ′′‖∞ + |fh| ‖g′′‖∞ + |fg| ‖h′′‖∞ .

Then, for all t ∈ [a, b], we have

∣

∣

∣

∣

f(t)g(t)h(t)−
1

3(b− a)
A[f, g, h](t)−

1

3

(

t−
a+ b

2

)

(fgh)′(t)

∣

∣

∣

∣

≤
1

6

{

(

t−
a+ b

2

)2

+
(b− a)2

12

}

B[f, g, h](t).

Theorem 1.2 [See [18, Theorem 2]] In addition to the notation and assumptions of

Theorem 1.1, let

L[f, g, h] := gh
f(a) + f(b)

2
+ fh

g(a) + g(b)

2
+ fg

h(a) + h(b)

2
.

Then, for all t ∈ [a, b], we have

∣

∣

∣

∣

f(t)g(t)h(t)−
2

3(b− a)
A[f, g, h](t)−

1

3

(

t−
a+ b

2

)

(fgh)′(t) +
1

3
L[f, g, h](t)

∣

∣

∣

∣

≤
1

3(b− a)
B[f, g, h](t)

∫ b

a

∣

∣

∣

∣

p(t, s)

(

s−
a+ b

2

)∣

∣

∣

∣

ds,

where p(t, s) = s− a for a ≤ s < t and p(t, s) = s− b for t ≤ s ≤ b.

Theorem 1.3 [See [18, Theorem 3]] In addition to the notation and assumptions of

Theorem 1.1, let

M [f, g, h] := gh
f(b)− f(a)

b− a
+ fh

g(b)− g(a)

b − a
+ fg

h(b)− h(a)

b− a
.

Then, for all t ∈ [a, b], we have

∣

∣

∣

∣

f(t)g(t)h(t)−
1

3(b− a)
A[f, g, h](t)−

1

3

(

t−
a+ b

2

)

M [f, g, h](t)

∣

∣

∣

∣

≤
1

3(b− a)2
B[f, g, h](t)

∫ b

a

∫ b

a

|p(t, τ)p(τ, s)| dsdτ,

where p is defined as in Theorem 1.2.

Our time scales versions of Theorems 1.1–1.3 will contain Theorems 1.1–1.3 as special
cases when the time scale is equal to the set of all real numbers, and they will yield
new discrete inequalities when the time scale is equal to the set of all integer numbers.
Special cases of our results are contained in [2–5, 12, 15, 20] for the general time scales
case, in [8–10,16] for the continuous case and in [1,17] for the discrete case. One can also
use our results for any other arbitrary time scale to obtain new inequalities, e.g., for the
quantum case. For further recent results on time scales calculus published in Nonlinear

Dynamics and Systems Theory, we refer to [11, 13, 14, 19].
The set up of this paper is as follows. In the next section, we give some necessary

details of the time scales calculus. Section 3 contains some auxiliary results as well as
the assumptions and notation used in this paper. Finally, in Sections 4–6, we prove time
scales analogues of Theorems 1.1–1.3. Each result is followed by several examples and
remarks. We would like to point out here that our results are new also for the discrete
case.
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2 Preliminaries

Now we briefly introduce some necessary time scales elements and refer the reader to the
books [6, 7] for further details.

Definition 2.1 A time scale T is a nonempty closed subset of R. The mappings
σ, ρ : T → T defined by σ(t) = inf {s ∈ T : s > t} and ρ(t) = sup {s ∈ T : s < t} are
called the forward and backward jump operators, respectively. A point t ∈ T is said to
be right-dense, right-scattered, left-dense, and left-scattered provided σ(t) = t, σ(t) > t,
ρ(t) = t, and ρ(t) < t, respectively. The set Tκ is defined to be equal to the set T without
its left-scattered maximum (if it exists). A function f : T → R is called rd-continuous and
we write f ∈ Crd(T,R) if it is continuous at all right-dense points and its left-sided limits
exist and are finite at all left-dense points, and f is called delta differentiable at t ∈ T

κ,
with delta derivative f∆(t) ∈ R, provided given ε > 0, there exists a neighborhood U of
t such that

∣

∣f(σ(t)) − f(s)− f∆(t)[σ(t) − s]
∣

∣ ≤ ε |σ(t)− s| for all s ∈ U.

If f is differentiable such that f∆ is rd-continuous, then we write f ∈ C1
rd(T,R). The set

C2
rd(T,R) is defined similarly. A function F : T → R is called a delta antiderivative of

f : T → R if F∆(t) = f(t) holds for all t ∈ T
κ. Then the delta integral of f is defined by

∫ b

a

f(t)∆t = F (b)− F (a), where a, b ∈ T.

Example 2.1 If T = R, then σ(t) = t and f∆(t) = f ′(t) for all t ∈ R and

∫ b

a

f(t)∆t =

∫ b

a

f(t)dt for all a, b ∈ R,

and if T = Z, then σ(t) = t+ 1 and f∆(t) = f(t+ 1)− f(t) for all t ∈ Z and

∫ n

0

f(t)∆t =

n−1
∑

t=0

f(t) for all n ∈ N.

Some results about integrals, that will be used in this paper, are contained in [6,
Section 1.4] and collected as follows.

Theorem 2.1 If a function is rd-continuous, then it possesses a delta antiderivative.

For f, g ∈ Crd([a, b],R) and a, b, c ∈ T, we have

∫ b

a

[f(t) + g(t)]∆t =

∫ b

a

f(t)∆t+

∫ b

a

g(t)∆t,

∫ b

a

f(t)∆t = −

∫ a

b

f(t)∆t,

∫ b

a

f(t)∆t =

∫ c

a

f(t)∆t+

∫ b

c

f(t)∆t,

∣

∣

∣

∣

∣

∫ b

a

f(t)∆t

∣

∣

∣

∣

∣

≤

∫ b

a

|f(t)|∆t,
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and, if additionally f, g ∈ C1
rd([a, b],R),

∫ b

a

f(σ(t))g∆(t)∆t = f(b)g(b)− f(a)g(a)−

∫ b

a

f∆(t)g(t)∆t.

We also need the time scales monomials (see [6, Section 1.6]) defined as follows.

Definition 2.2 Define for all t, s ∈ T

g2(t, s) :=

∫ t

s

(σ(τ) − s)∆τ, h2(t, s) :=

∫ t

s

(τ − s)∆τ,

g3(t, s) :=

∫ t

s

g2(σ(τ), s)∆τ, h3(t, s) :=

∫ t

s

h2(τ, s)∆τ.

It is known that g2(t, s), g3(t, s), h2(t, s), h3(t, s) are nonnegative for t ≥ s and that
g2(t, s) = h2(s, t) and g3(t, s) = −h3(s, t). Moreover, the following formulas are used in
this paper.

Lemma 2.1 The time scales monomials satisfy the following formulas:

g2(t, a)− g2(t, b) = g2(b, a) + (t− b)(b− a), (1)

g2(a, b) + g2(b, a) = (b− a)2, (2)

g3(t, a)− g3(t, b) = g3(b, a) + (t− b)g2(b, a) + (b− a)g2(t, b). (3)

Proof. The function F defined by F (t) := g2(t, a)− g2(t, b)− g2(b, a)− (t− b)(b− a)
satisfies F∆(t) = σ(t) − a − (σ(t) − b) − (b − a) = 0 and F (b) = 0. Hence F = 0
and so (1) holds. Next, (2) follows by letting t = a in (1). Moreover, the function G

defined by G(t) := g3(t, a) − g3(t, b) − g3(b, a) − (t − b)g2(b, a) − (b − a)g2(t, b) satisfies
G∆(t) = g2(σ(t), a)−g2(σ(t), b)−g2(b, a)− (b−a)(σ(t)−b) = F (σ(t)) = 0 and G(b) = 0.
Hence G = 0 and so (3) holds.

3 Auxiliary Results and Assumptions

Throughout this paper we assume that T is a time scale and that a, b ∈ T such that
a < b. Moreover, when writing [a, b], we mean the time scales interval [a, b] ∩ T. The
following two Montgomery-type results are used in the proofs of our three main results.

Theorem 3.1 Suppose f ∈ C1
rd(T,R). Let t ∈ [a, b] and u1, u2 ∈ C1

rd(T,R). If

u(σ(s)) =

{

u1(σ(s)) for a ≤ s < t,

u2(σ(s)) for t ≤ s ≤ b,
(4)

then
∫ b

a

u(σ(s))f∆(s)∆s = (u1(t)− u2(t))f(t)− u1(a)f(a) + u2(b)f(b)

−

∫ t

a

u∆
1 (s)f(s)∆s−

∫ b

t

u∆
2 (s)f(s)∆s.

(5)
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Proof. We use Theorem 2.1 to split the integral into two parts, each of which is
evaluated by applying the integration of parts formula, i.e.,

∫ b

a

u(σ(s))f∆(s)∆s =

∫ t

a

u1(σ(s))f
∆(s)∆s +

∫ b

t

u2(σ(s))f
∆(s)∆s

= u1(t)f(t)− u1(a)f(a)−

∫ t

a

u∆
1 (s)f(s)∆s

+ u2(b)f(b)− u2(t)f(t)−

∫ b

t

u∆
2 (s)f(s)∆s,

from which (5) follows.

Theorem 3.2 Suppose f ∈ C2
rd(T,R). Let t ∈ [a, b] and ui, vi ∈ C1

rd(T,R) be such

that u∆
i (s) = vi(σ(s)) for all s ∈ [a, b], where i ∈ {1, 2}. If u satisfies (4), then

∫ b

a

u(σ(s))f∆∆(s)∆s = (u1(t)− u2(t))f
∆(t)− (v1(t)− v2(t))f(t)

− u1(a)f
∆(a) + v1(a)f(a) + u2(b)f

∆(b)− v2(b)f(b)

+

∫ t

a

v∆1 (s)f(s)∆s +

∫ b

t

v∆2 (s)f(s)∆s.

(6)

Proof. Using (5) with f∆ replaced by f∆∆ and subsequently applying integration
by parts twice, we obtain

∫ b

a

u(σ(s))f∆∆(s)∆s = (u1(t)− u2(t))f
∆(t)− u1(a)f

∆(a) + u2(b)f
∆(b)

−

∫ t

a

u∆
1 (s)f

∆(s)∆s−

∫ b

t

u∆
2 (s)f

∆(s)∆s

= (u1(t)− u2(t))f
∆(t)− u1(a)f

∆(a) + u2(b)f
∆(b)

−

∫ t

a

v1(σ(s))f
∆(s)∆s−

∫ b

t

v2(σ(s))f
∆(s)∆s

= (u1(t)− u2(t))f
∆(t)− u1(a)f

∆(a) + u2(b)f
∆(b)

−

{

v1(t)f(t)− v1(a)f(a)−

∫ t

a

v∆1 (s)f(s)∆s

}

−

{

v2(b)f(b)− v2(t)f(t) −

∫ b

t

v∆2 (s)f(s)∆s

}

,

from which (6) follows.

Assumption (H) For the remaining three sections of this paper, we assume that T is
a time scale and that a, b ∈ T such that a < b. We assume that f, g, h ∈ C2

rd(T,R) are
such that

∥

∥f∆∆
∥

∥

∞
:= sup

t∈(a,b)

∣

∣f∆∆(t)
∣

∣ < ∞,
∥

∥g∆∆
∥

∥

∞
< ∞,

∥

∥h∆∆
∥

∥

∞
< ∞ (7)



124 ELVAN AKIN-BOHNER, MARTIN BOHNER AND THOMAS MATTHEWS

and define

A[f, g, h] := gh

∫ b

a

f(s)∆s+ fh

∫ b

a

g(s)∆s+ fg

∫ b

a

h(s)∆s,

B[f, g, h] := |gh|
∥

∥f∆∆
∥

∥

∞
+ |fh|

∥

∥g∆∆
∥

∥

∞
+ |fg|

∥

∥h∆∆
∥

∥

∞
,

C[f, g, h] := ghf∆ + fhg∆ + fgh∆,

D[f, g, h] :=

(

∫ b

a

g(s)h(s)∆s

)(

∫ b

a

f(s)∆s

)

+

(

∫ b

a

f(s)h(s)∆s

)(

∫ b

a

g(s)∆s

)

+

(

∫ b

a

f(s)g(s)∆s

)(

∫ b

a

h(s)∆s

)

,

L[f, g, h] := gh
g2(b, a)f(a) + h2(b, a)f(b)

(b− a)2
+ fh

g2(b, a)g(a) + h2(b, a)g(b)

(b− a)2

+ fg
g2(b, a)h(a) + h2(b, a)h(b)

(b− a)2
,

M [f, g, h] := gh
f(b)− f(a)

b− a
+ fh

g(b)− g(a)

b− a
+ fg

h(b)− h(a)

b− a
.

4 Time Scales Version of Theorem 1.1

Theorem 4.1 Assume (H). Then, for all t ∈ [a, b], we have

∣

∣

∣

∣

f(t)g(t)h(t)−
1

3(b− a)
A[f, g, h](t)−

1

3

(

t− b+
g2(b, a)

b− a

)

C[f, g, h](t)

∣

∣

∣

∣

≤
1

3

(

h2(b, t) + (t− b)
g2(b, a)

b− a
+

g3(b, a)

b− a

)

B[f, g, h](t) (8)

and

∣

∣

∣

∣

∣

1

b− a

∫ b

a

f(t)g(t)h(t)∆t−
1

3(b− a)2
D[f, g, h]

−
1

3(b− a)

∫ b

a

(

t− b+
g2(b, a)

b− a

)

C[f, g, h](t)∆t

∣

∣

∣

∣

∣

≤
1

3(b− a)

∫ b

a

(

h2(b, t) + (t− b)
g2(b, a)

b− a
+

g3(b, a)

b− a

)

B[f, g, h](t)∆t. (9)

Proof. Fix t ∈ [a, b] and define u by (4), where

u1(s) = g2(s, a), u2(s) = h2(b, s).

With the notation as in Theorem 3.2, using Definition 2.2, we have

v1(s) = s− a, v2(s) = s− b, v∆1 (s) = v∆2 (s) = 1

and u1(a) = v1(a) = u2(b) = v2(b) = 0. Moreover, we have

u1(t)− u2(t)
(1)
= (t− b)(b− a) + g2(b, a), v1(t)− v2(t) = b− a.
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By (6), we therefore obtain

∫ b

a

u(σ(s))f∆∆(s)∆s = ((t− b)(b − a) + g2(b, a))f
∆(t)− (b− a)f(t) +

∫ b

a

f(s)∆s

and thus

f(t) =
1

b− a

∫ b

a

f(s)∆s+

(

t− b+
g2(b, a)

b − a

)

f∆(t)−
1

b− a

∫ b

a

u(σ(s))f∆∆(s)∆s. (10)

Similarly, we get

g(t) =
1

b− a

∫ b

a

g(s)∆s+

(

t− b+
g2(b, a)

b− a

)

g∆(t)−
1

b− a

∫ b

a

u(σ(s))g∆∆(s)∆s (11)

and

h(t) =
1

b− a

∫ b

a

h(s)∆s+

(

t− b+
g2(b, a)

b − a

)

h∆(t)−
1

b− a

∫ b

a

u(σ(s))h∆∆(s)∆s. (12)

Multiplying (10), (11) and (12) by g(t)h(t), f(t)h(t) and f(t)g(t), respectively, adding
the resulting identities and dividing by three, we have

f(t)g(t)h(t)−
1

3(b− a)
A[f, g, h](t)−

1

3

(

t− b+
g2(b, a)

b− a

)

C[f, g, h](t)

= −
1

3(b− a)

∫ b

a

u(σ(s))B̃[f, g, h](t, s)∆s, (13)

where
{

B̃[f, g, h](t, s) := g(t)h(t)f∆∆(s) + f(t)h(t)g∆∆(s) + f(t)g(t)h∆∆(s)

so that
∣

∣

∣
B̃[f, g, h](t, s)

∣

∣

∣
≤ B[f, g, h](t).

(14)

By taking absolute values in (13) and using (7) and

∫ b

a

|u(σ(s))|∆s =

∫ t

a

g2(σ(s), a)∆s+

∫ b

t

h2(b, σ(s))∆s (15)

= g3(t, a)− g3(t, b)

(3)
= g3(b, a) + (t− b)g2(b, a) + (b− a)h2(b, t),

we obtain (8). Integrating (13) with respect to t from a to b, dividing by b − a, noting
that

∫ b

a

A[f, g, h](s)∆s = D[f, g, h], (16)

taking absolute values and using (7) and (15), we obtain (9).

Example 4.1 If we let T = R in Theorem 4.1, then, since C[f, g, h] = (fgh)′,

b−
g2(b, a)

b− a
= b−

(b − a)2

2(b− a)
= b−

b− a

2
=

a+ b

2
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and

h2(b, t) + (t− b)
g2(b, a)

b− a
+

g3(b, a)

b− a
=

1

2

{

(t− b)2 + (t− b)(b− a) +
(b− a)2

3

}

=
1

2

{

(

t− b+
b− a

2

)2

−
(b− a)2

4
+

(b− a)2

3

}

=
1

2

{

(

t−
a+ b

2

)2

+
(b− a)2

12

}

,

we obtain [18, Theorem 1], in particular, Theorem 1.1.

Example 4.2 If we let T = Z and a = 0, b = n ∈ N in Theorem 4.1, then, since

b−
g2(b, a)

b− a
= b−

(b− a)(b − a+ 1)

2(b− a)
= b−

b− a+ 1

2
=

a+ b− 1

2
=

n− 1

2

and

h2(b, t) + (t− b)
g2(b, a)

b− a
+

g3(b, a)

b− a

=
1

2

{

(b − t)(b− t− 1) + (t− b)(b− a+ 1) +
(b− a+ 1)(b − a+ 2)

3

}

=
1

2

{

(

t− b+
b − a+ 2

2

)2

−
(b − a+ 2)2

4
+

(b − a+ 1)(b− a+ 2)

3

}

=
1

2

{

(

t+ 1−
a+ b

2

)2

+
(b− a+ 2)(b− a− 2)

12

}

=
1

2

{

(

t+ 1−
n

2

)2

+
n2 − 4

12

}

,

we obtain

∣

∣

∣

∣

f(t)g(t)h(t)−
1

3n
A[f, g, h](t)−

1

3

(

t−
n− 1

2

)

C[f, g, h](t)

∣

∣

∣

∣

≤
1

6

{

(

t+ 1−
n

2

)2

+
n2 − 4

12

}

B[f, g, h](t)

and

∣

∣

∣

∣

∣

1

n

n−1
∑

t=0

f(t)g(t)h(t)−
1

3n2
D[f, g, h]−

1

3n

n−1
∑

t=0

(

t−
n− 1

2

)

C[f, g, h](t)

∣

∣

∣

∣

∣

≤
1

6n

n−1
∑

t=0

{

(

t+ 1−
n

2

)2

+
n2 − 4

12

}

B[f, g, h](t),
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where

A[f, g, h] = gh

n−1
∑

s=0

f(s) + fh

n−1
∑

s=0

g(s) + fg

n−1
∑

s=0

h(s),

B[f, g, h] = |gh| max
1≤s≤n−1

∣

∣∆2f(s)
∣

∣+ |fh| max
1≤s≤n−1

∣

∣∆2g(s)
∣

∣+ |fg| max
1≤s≤n−1

∣

∣∆2h(s)
∣

∣ ,

C[f, g, h] = gh∆f + fh∆g + fg∆h,

D[f, g, h] =

(

n−1
∑

s=0

g(s)h(s)

)(

n−1
∑

s=0

f(s)

)

+

(

n−1
∑

s=0

f(s)h(s)

)(

n−1
∑

s=0

g(s)

)

+

(

n−1
∑

s=0

f(s)g(s)

)(

n−1
∑

s=0

h(s)

)

.

These inequalities are new discrete Ostrowski–Grüss type inequalities.

Remark 4.1 If we let h(t) ≡ 1 in Theorem 4.1, then (8) becomes

∣

∣

∣

∣

∣

f(t)g(t)−
1

2(b− a)

{

g(t)

∫ b

a

f(s)∆s+ f(t)

∫ b

a

g(s)∆s

}

−
1

2

(

t− b+
g2(b, a)

b− a

)

{

g(t)f∆(t) + f(t)g∆(t)
}

∣

∣

∣

∣

≤
1

2

(

h2(b, t) + (t− b)
g2(b, a)

b− a
+

g3(b, a)

b− a

)

{

|g(t)|
∥

∥f∆∆
∥

∥

∞
+ |f(t)|

∥

∥g∆∆
∥

∥

∞

}

and (9) turns into

∣

∣

∣

∣

∣

1

b− a

∫ b

a

f(t)g(t)∆t−
1

(b − a)2

(

∫ b

a

f(t)∆t

)(

∫ b

a

g(t)∆t

)

−
1

2(b− a)

∫ b

a

(

t− b+
g2(b, a)

b− a

)

{

g(t)f∆(t) + f(t)g∆(t)
}

∆t

∣

∣

∣

∣

∣

≤
1

2(b− a)

∫ b

a

(

h2(b, t) + (t− b)
g2(b, a)

b− a
+

g3(b, a)

b− a

)

·

·
{

|g(t)|
∥

∥f∆∆
∥

∥

∞
+ |f(t)|

∥

∥g∆∆
∥

∥

∞

}

∆t.

If, moreover, we let g(t) ≡ 1, then (8) becomes

∣

∣

∣

∣

∣

f(t)−
1

b− a

∫ b

a

f(s)∆s−

(

t− b+
g2(b, a)

b− a

)

f∆(t)

∣

∣

∣

∣

∣

≤

(

h2(b, t) + (t− b)
g2(b, a)

b− a
+

g3(b, a)

b− a

)

∥

∥f∆∆
∥

∥

∞
.

From these inequalities, special cases such as discrete inequalities can be obtained.
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5 Time Scales Version of Theorem 1.2

Theorem 5.1 Assume (H). Then, for all t ∈ [a, b], we have

∣

∣

∣

∣

f(t)g(t)h(t)−
2

3(b− a)
A[f, g, h](t) +

1

3
L[f, g, h](t)

−
1

3

(

t− b+
g2(b, a)

b− a

)

C[f, g, h](t)

∣

∣

∣

∣

≤
1

3(b− a)
B[f, g, h](t)I(t) (17)

and
∣

∣

∣

∣

∣

1

b− a

∫ b

a

f(t)g(t)h(t)∆t−
2

3(b− a)2
D[f, g, h] +

1

3(b− a)

∫ b

a

L[f, g, h](t)∆t

−
1

3(b− a)

∫ b

a

(

t− b+
g2(b, a)

b− a

)

C[f, g, h](t)∆t

∣

∣

∣

∣

∣

≤
1

3(b− a)2

∫ b

a

B[f, g, h](t)I(t)∆t, (18)

where

I(t) :=
1

b− a

∫ t

a

|2(b− a)g2(σ(s), a)− (σ(s) − a)g2(b, a)|∆s

+
1

b− a

∫ b

t

|2(b− a)h2(b, σ(s))− (b− σ(s))h2(b, a)|∆s.

Proof. Fix t ∈ [a, b] and define u by (4), where

u1(s) = 2(b− a)g2(s, a)− (s− a)g2(b, a), u2(s) = 2(b− a)h2(b, s)− (b− s)h2(b, a).

With the notation as in Theorem 3.2, using Definition 2.2, we have

v1(s) = 2(b− a)(s− a)− g2(b, a), v2(s) = 2(b− a)(s− b) + h2(b, a),

v∆1 (s) = v∆2 (s) = 2(b− a)

and u1(a) = u2(b) = 0, v1(a) = −g2(b, a), v2(b) = h2(b, a). Moreover, we have

u1(t)− u2(t) = 2(b− a)(g2(t, a)− h2(b, t))− (t− a)g2(b, a) + (b− t)h2(b, a)

(1),(2)
= 2(b− a)(g2(b, a) + (t− b)(b− a))

−(t− a)g2(b, a) + (b − t)
(

(b− a)2 − g2(b, a)
)

(2)
= (b− a)g2(b, a) + (t− b)(b− a)2,

v1(t)− v2(t) = 2(b− a)2 − g2(b, a)− h2(b, a)

(2)
= 2(b− a)2 − (b − a)2 = (b− a)2.

By (6), we therefore obtain

∫ b

a

u(σ(s))f∆∆(s)∆s = (b − a) (g2(b, a) + (t− b)(b− a)) f∆(t)

− (b− a)2f(t)− g2(b, a)f(a)− h2(b, a)f(b) + 2(b− a)

∫ b

a

f(s)∆s



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 12 (2) (2012) 119–135 129

and thus

f(t) =
2

b− a

∫ b

a

f(s)∆s−
g2(b, a)f(a) + h2(b, a)f(b)

(b− a)2

+

(

t− b+
g2(b, a)

b− a

)

f∆(t)−
1

(b − a)2

∫ b

a

u(σ(s))f∆∆(s)∆s. (19)

Similarly, we get

g(t) =
2

b− a

∫ b

a

g(s)∆s−
g2(b, a)g(a) + h2(b, a)g(b)

(b− a)2

+

(

t− b+
g2(b, a)

b− a

)

g∆(t)−
1

(b − a)2

∫ b

a

u(σ(s))g∆∆(s)∆s (20)

and

h(t) =
2

b− a

∫ b

a

h(s)∆s−
g2(b, a)h(a) + h2(b, a)h(b)

(b − a)2

+

(

t− b+
g2(b, a)

b− a

)

h∆(t)−
1

(b− a)2

∫ b

a

u(σ(s))h∆∆(s)∆s. (21)

Multiplying (19), (20) and (21) by g(t)h(t), f(t)h(t) and f(t)g(t), respectively, adding
the resulting identities and dividing by three, we have

f(t)g(t)h(t)−
2

3(b− a)
A[f, g, h](t) +

1

3
L[f, g, h](t)

−
1

3

(

t− b+
g2(b, a)

b− a

)

C[f, g, h](t) = −
1

3(b− a)2

∫ b

a

u(σ(s))B̃[f, g, h](t, s)∆s (22)

with B̃ as in (14). By taking absolute values in (22) and using (7) and

1

b− a

∫ b

a

|u(σ(s))|∆s = I(t), (23)

we obtain (17). Integrating (22) with respect to t from a to b, dividing by b− a, noting
(16), taking absolute values and using (7) and (23), we obtain (18).

Example 5.1 If we let T = R in Theorem 5.1, then, since C[f, g, h] = (fgh)′,

b−
g2(b, a)

b− a
=

a+ b

2

and (with p as defined in Theorem 1.2)

I(t) =
1

b − a

∫ t

a

∣

∣

∣

∣

(b− a)(s− a)2 − (s− a)
(b− a)2

2

∣

∣

∣

∣

ds

+
1

b− a

∫ b

t

∣

∣

∣

∣

(b− a)(s− b)2 − (b− s)
(b − a)2

2

∣

∣

∣

∣

ds

=

∫ t

a

∣

∣

∣

∣

(s− a)

(

s−
a+ b

2

)∣

∣

∣

∣

ds+

∫ b

t

∣

∣

∣

∣

(s− b)

(

s−
a+ b

2

)∣

∣

∣

∣

ds

=

∫ b

a

∣

∣

∣

∣

p(t, s)

(

s−
a+ b

2

)∣

∣

∣

∣

ds,
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we obtain [18, Theorem 2], in particular, Theorem 1.2.

Example 5.2 If we let T = Z and a = 0, b = n ∈ N in Theorem 5.1, then, since

b −
g2(b, a)

b− a
=

n− 1

2

and

I(t) =
1

b− a

t−1
∑

s=a

∣

∣

∣

∣

(b − a)(s+ 1− a)(s+ 2− a)− (s+ 1− a)
(b− a)(b − a+ 1)

2

∣

∣

∣

∣

+
1

b− a

b−1
∑

s=t

∣

∣

∣

∣

(b− a)(b − s− 1)(b− s− 2)− (b − s− 1)
(b− a)(b − a− 1)

2

∣

∣

∣

∣

=

t−1
∑

s=a

∣

∣

∣

∣

(s+ 1− a)

(

s+ 1−
a+ b− 1

2

)∣

∣

∣

∣

+
b−1
∑

s=t

∣

∣

∣

∣

(s+ 1− b)

(

s+ 1−
a+ b − 1

2

)∣

∣

∣

∣

=

t−1
∑

s=0

∣

∣

∣

∣

(s+ 1)

(

s+ 1−
n− 1

2

)∣

∣

∣

∣

+

n−1
∑

s=t

∣

∣

∣

∣

(s+ 1− n)

(

s+ 1−
n− 1

2

)∣

∣

∣

∣

,

we have

∣

∣

∣

∣

f(t)g(t)h(t)−
2

3n
A[f, g, h](t) +

1

3
L[f, g, h](t)−

1

3

(

t−
n− 1

2

)

C[f, g, h](t)

∣

∣

∣

∣

≤
1

3n
B[f, g, h](t)

{

t
∑

s=1

s

∣

∣

∣

∣

s−
n− 1

2

∣

∣

∣

∣

+

n
∑

s=t+1

(n− s)

∣

∣

∣

∣

s−
n− 1

2

∣

∣

∣

∣

}

and

∣

∣

∣

∣

∣

1

n

n−1
∑

t=0

f(t)g(t)h(t)−
2

3n2
D[f, g, h]

+
1

3n

n−1
∑

t=0

L[f, g, h](t)−
1

3n

n−1
∑

t=0

(

t−
n− 1

2

)

C[f, g, h](t)

∣

∣

∣

∣

∣

≤
1

3n2

n−1
∑

t=0

B[f, g, h](t)

{

t
∑

s=1

s

∣

∣

∣

∣

s−
n− 1

2

∣

∣

∣

∣

+

n
∑

s=t+1

(n− s)

∣

∣

∣

∣

s−
n− 1

2

∣

∣

∣

∣

}

,

where in addition to A,B,C,D defined in Example 4.2,

L[f, g, h] = gh
(n+ 1)f(a) + (n− 1)f(b)

2n
+ fh

(n+ 1)g(a) + (n− 1)g(b)

2n

+ fg
(n+ 1)h(a) + (n− 1)h(b)

2n
.

These inequalities are new discrete Ostrowski–Grüss type inequalities.
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Remark 5.1 If we let h(t) ≡ 1 in Theorem 5.1, then (17) becomes

∣

∣

∣

∣

∣

f(t)g(t)−
1

b− a

{

g(t)

∫ b

a

f(s)∆s+ f(t)

∫ b

a

g(s)∆s

}

+ g(t)
g2(b, a)f(a) + h2(b, a)f(b)

2(b− a)2
+ f(t)

g2(b, a)g(a) + h2(b, a)g(b)

2(b− a)2

−
1

2

(

t− b+
g2(b, a)

b− a

)

{

g(t)f∆(t) + f(t)g∆(t)
}

∣

∣

∣

∣

≤
1

2(b− a)

{

|g(t)|
∥

∥f∆∆
∥

∥

∞
+ |f(t)|

∥

∥g∆∆
∥

∥

∞

}

I(t),

(observe (2) when calculating L) and (18) turns into

∣

∣

∣

∣

∣

1

b− a

∫ b

a

f(t)g(t)∆t−
2

(b − a)2

(

∫ b

a

f(t)∆t

)(

∫ b

a

g(t)∆t

)

+
1

b− a

∫ b

a

{

g(t)
g2(b, a)f(a) + h2(b, a)f(b)

2(b− a)2
+ f(t)

g2(b, a)g(a) + h2(b, a)g(b)

2(b− a)2

}

∆t

−
1

2(b− a)

∫ b

a

(

t− b+
g2(b, a)

b− a

)

{

g(t)f∆(t) + f(t)g∆(t)
}

∆t

∣

∣

∣

∣

∣

≤
1

2(b− a)2

∫ b

a

{

|g(t)|
∥

∥f∆∆
∥

∥

∞
+ |f(t)|

∥

∥g∆∆
∥

∥

∞

}

I(t)∆t.

If, moreover, we let g(t) ≡ 1, then (17) becomes

∣

∣

∣

∣

∣

f(t)−
2

b− a

∫ b

a

f(s)∆s+
g2(b, a)f(a) + h2(b, a)f(b)

(b− a)2

−

(

t− b +
g2(b, a)

b− a

)

f∆(t)

∣

∣

∣

∣

≤
1

b− a

∥

∥f∆∆
∥

∥

∞
I(t).

From these inequalities, special cases such as discrete inequalities can be obtained.

6 Time Scales Version of Theorem 1.3

Theorem 6.1 Assume (H). Then, for all t ∈ [a, b], we have

∣

∣

∣

∣

f(t)g(t)h(t)−
1

3(b− a)
A[f, g, h](t)−

1

3

(

t− b+
g2(b, a)

b− a

)

M [f, g, h](t)

∣

∣

∣

∣

≤
1

3(b− a)2
B[f, g, h](t)H(t) (24)
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and

∣

∣

∣

∣

∣

1

b− a

∫ b

a

f(t)g(t)h(t)∆t−
1

3(b− a)2
D[f, g, h](t)

−
1

3(b− a)

∫ b

a

(

t− b +
g2(b, a)

b− a

)

M [f, g, h](t)∆t

∣

∣

∣

∣

∣

≤
1

3(b− a)3

∫ b

a

B[f, g, h](t)H(t)∆t,

(25)

where

H(t) :=

∫ b

a

∫ b

a

|p(t, τ)p(τ, s)|∆s∆τ

and

p(t, s) :=

{

σ(s)− a for a ≤ s < t,

σ(s)− b for t ≤ s ≤ b.

Proof. Fix t ∈ [a, b]. We use Theorem 3.1 three times to obtain

∫ b

a

∫ b

a

p(t, τ)p(τ, s)f∆∆(s)∆s∆τ =

∫ b

a

p(t, τ)

{

∫ b

a

p(τ, s)f∆∆(s)∆s

}

∆τ

=

∫ b

a

p(t, τ)

{

(b − a)f∆(τ) −

∫ b

a

f∆(s)∆s

}

∆τ

= (b − a)

∫ b

a

p(t, s)f∆(s)∆s+ (f(a)− f(b))

∫ b

a

p(t, s)∆s

= (b − a)

{

(b− a)f(t)−

∫ b

a

f(s)∆s

}

+ (f(a)− f(b))

{

(b − a)t−

∫ b

a

s∆s

}

= (b − a)2f(t)− (b− a)

∫ b

a

f(s)∆s+ (f(a)− f(b))

∫ a

b

(s− t)∆s

= (b − a)2f(t)− (b− a)

∫ b

a

f(s)∆s+ (g2(t, a)− h2(b, t))(f(a)− f(b))

and thus (by using (1))

f(t) =
1

b− a

∫ b

a

f(s)∆s+

(

t− b+
g2(b, a)

b− a

)

f(b)− f(a)

b− a

+
1

(b− a)2

∫ b

a

∫ b

a

p(t, τ)p(τ, s)f∆∆(s)∆s∆τ. (26)

Similarly, we get

g(t) =
1

b− a

∫ b

a

g(s)∆s+

(

t− b+
g2(b, a)

b− a

)

g(b)− g(a)

b− a

+
1

(b− a)2

∫ b

a

∫ b

a

p(t, τ)p(τ, s)g∆∆(s)∆s∆τ. (27)
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and

h(t) =
1

b− a

∫ b

a

h(s)∆s+

(

t− b+
g2(b, a)

b− a

)

h(b)− h(a)

b− a

+
1

(b − a)2

∫ b

a

∫ b

a

p(t, τ)p(τ, s)h∆∆(s)∆s∆τ. (28)

Multiplying (26), (27) and (28) by g(t)h(t), f(t)h(t) and f(t)g(t), respectively, adding
the resulting identities and dividing by three, we have

f(t)g(t)h(t)−
1

3(b− a)
A[f, g, h](t)−

1

3

(

t− b+
g2(b, a)

b− a

)

M [f, g, h](t)

=
1

3(b− a)2

∫ b

a

∫ b

a

p(t, τ)p(τ, s)B̃[f, g, h](t, s)∆s∆τ (29)

with B̃ as in (14). By taking absolute values in (29) and using (7) and the definition of
H , we obtain (24). Integrating (29) with respect to t from a to b, dividing by b−a, noting
(16), taking absolute values and using (7) and the definition of H , we obtain (25).

Example 6.1 If we let T = R in Theorem 6.1, then, by the same calculations as in
Example 4.1, we obtain [18, Theorem 3], in particular, Theorem 1.3.

Example 6.2 If we let T = Z and a = 0, b = n ∈ N in Theorem 6.1, then, by the
same calculations as in Example 4.2, we obtain

∣

∣

∣

∣

f(t)g(t)h(t)−
1

3n
A[f, g, h](t)−

1

3

(

t−
n− 1

2

)

M [f, g, h](t)

∣

∣

∣

∣

≤
1

3n2
B[f, g, h](t)H(t)

and

∣

∣

∣

∣

∣

1

n

n−1
∑

t=0

f(t)g(t)h(t)−
1

3n2
D[f, g, h]−

1

3n

n−1
∑

t=0

(

t−
n− 1

2

)

M [f, g, h](t)

∣

∣

∣

∣

∣

≤
1

3n3

n−1
∑

t=0

B[f, g, h](t)H(t),

where in addition to A,B,D defined in Example 4.2,

M [f, g, h] = gh
f(b)− f(a)

b− a
+ fh

g(b)− g(a)

b− a
+ fg

h(b)− h(a)

b− a
,

H(t) =

n−1
∑

τ=0

n−1
∑

s=0

|p(t, τ)p(τ, s)| ,

p(t, s) =

{

s+ 1, if 0 ≤ s < t,

s+ 1− n, if t ≤ s ≤ n.

These inequalities are new discrete Ostrowski–Grüss type inequalities.
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Remark 6.1 If we let h(t) ≡ 1 in Theorem 6.1, then (24) becomes

∣

∣

∣

∣

∣

f(t)g(t)−
1

2(b− a)

{

g(t)

∫ b

a

f(s)∆s+ f(t)

∫ b

a

g(s)∆s

}

−
1

2

(

t− b+
g2(b, a)

(b − a)

){

g(t)
f(b)− f(a)

b− a
+ f(t)

g(b)− g(a)

b− a

}∣

∣

∣

∣

≤
1

2(b− a)2
{

|g(t)|
∥

∥f∆∆
∥

∥

∞
+ |f(t)|

∥

∥g∆∆
∥

∥

∞

}

H(t)

and (25) turns into

∣

∣

∣

∣

∣

1

b− a

∫ b

a

f(t)g(t)∆t−
1

(b − a)2

(

∫ b

a

f(t)∆t

)(

∫ b

a

g(t)∆t

)

−
1

2(b− a)

∫ b

a

(

t− b +
g2(b, a)

b− a

){

g(t)
f(b)− f(a)

b− a
+ f(t)

g(b)− g(a)

b− a

}

∆t

∣

∣

∣

∣

∣

≤
1

2(b− a)3

∫ b

a

{

|g(t)|
∥

∥f∆∆
∥

∥

∞
+ |f(t)|

∥

∥g∆∆
∥

∥

∞

}

H(t)∆t.

If, moreover, we let g(t) ≡ 1, then (24) becomes

∣

∣

∣

∣

∣

f(t)−
1

b− a

∫ b

a

f(s)∆s−

(

t− b+
g2(b, a)

(b − a)

)

f(b)− f(a)

b− a

∣

∣

∣

∣

∣

≤
1

(b− a)2

∥

∥f∆∆
∥

∥

∞
H(t).
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Boston Inc., Boston, MA, 2003.

[8] Cerone, P., Dragomir, S. S. and Roumeliotis, J. An inequality of Ostrowski type for
mappings whose second derivatives belong to L1(a, b) and applications. Honam Math. J.
21 (1) (1999) 127–137.

[9] Dragomir, S. S. and Barnett, N. S. An Ostrowski type inequality for mappings whose
second derivatives are bounded and applications. J. Indian Math. Soc. (N.S.) 66 (1-4)
(1999) 237–245.

[10] Dragomir, S. S. and Sofo, A. An integral inequality for twice differentiable mappings and
applications. Tamkang J. Math. 31 (4) (2000) 257–266.

[11] Karaca, Ilkay Yaslan. Positive solutions to an nth order multi-point boundary value problem
on time scales. Nonlinear Dynamics and Systems Theory 11 (3) (2011) 285–296.
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Abstract: Certain classes of essentially nonlinear switched mechanical systems with
one degree of freedom are investigated. The conditions are obtained under which, for
the families of subsystems corresponding to switched systems, there exist common
Lyapunov functions of the prescribed form. The fulfilment of these conditions provides
the asymptotic stability of equilibrium positions of switched systems for any switching
law.
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1 Introduction

Stability analysis and synthesis of switched systems are fundamental and challenging
research problems, see, for example, [4, 7, 11]. In some cases it is required to design a
control system in such a way that it remains stable for any admissible switching law [7,
11]. These cases are natural, when switching signal is either unknown, or too complicated
to be explicitly taken into account.

A general approach to the above problem is based on the computation of a common
Lyapunov function (CLF) for a family of subsystems corresponding to the switched sys-
tem. This approach has been effectively used in many papers, see [4, 7–9, 11]. However,
the conditions of the existence of a CLF are not completely investigated even for the case
of families of linear time-invariant systems [7–9].
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This problem is especially complicated for mechanical systems with switching force
fields. Motion of mechanical systems is described usually by differential equations of the
second order, that results in the appearance of some special properties. In [2], it was
mentioned that the known conditions of the existence of CLFs obtained for systems of
general form might be ineffective or even nonapplicable for switched mechanical systems.
The specific character of mechanical systems leads to the necessity of the separate inves-
tigation of such systems as a special subclass of hybrid systems. This subclass possesses
certain theoretical features and is of undoubted practical interest [3–5, 11].

In the present paper, certain types of switched nonlinear mechanical systems with
one degree of freedom are studied. The conditions of the existence of CLFs for fam-
ilies of subsystems corresponding to switched systems are obtained. The fulfilment of
these conditions provides that the equilibrium positions of the considered systems are
asymptotically stable for arbitrary switching law.

2 Statement of the Problem

First, consider the linear switched mechanical system with one degree of freedom

ẍ+ aσẋ+ bσx = 0. (1)

Here scalar variable x(t) is the state of the system; σ = σ(t) is the piecewise constant
function defining the switching law, σ(t) : [0,+∞) → Q = {1, . . . , N}. In the present
paper, we assume that on every bounded time interval the switching function has a
finite number of discontinuities, which are called switching instants of time, and takes a
constant value on every interval between two consecutive switching instants. This kind
of switching law is called admissible one.

Thus, at each time instant, the behaviour of (1) is described by one of the subsystems

ẍ+ asẋ+ bsx = 0, s = 1, . . . , N, (2)

where as and bs are constant coefficients.
Let the inequalities as > 0, bs > 0, s = 1, . . . , N , be fulfilled. Then, for every

subsystem from the family (2), the equilibrium position x = ẋ = 0 is asymptotically
stable. In spite of this fact, it is well known [4, 7] that there exist parameters as and
bs values and switching laws under which the equilibrium position x = ẋ = 0 of the
corresponding switched system (1) is unstable. It is worthy of note that instability can
take place even in the case where family (2) consists of two subsystems (N = 2), and
switching occurs only in the positional forces (a1 = a2 = const > 0).

In the present paper, we consider the nonlinear switched system

ẍ+ aσẋ+ bσx
µ = 0 (3)

and the corresponding family of subsystems

ẍ+ asẋ+ bsx
µ = 0, s = 1, . . . , N. (4)

Here the switching function σ(t) possesses the same properties as in (1); as and bs
are positive constants; µ is a rational number with odd numerator and denominator,
µ > 1. Thus, subsystems from the family (4) are subjected to linear dissipative forces
and essentially nonlinear potential forces. It is known [10] that the equilibrium position
x = ẋ = 0 of each subsystem is asymptotically stable.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 12 (2) (2012) 137–143 139

We will look for the conditions providing the asymptotic stability of the equilibrium
position x = ẋ = 0 of (3) for any admissible switching law. To solve the problem,
we consider the Lyapunov function of a special form and determine the region of the
parameters as and bs values under which CLF of the prescribed form can be constructed
for the family of subsystems (4).

Furthermore, we extend the obtained results to the case of switched mechanical sys-
tem with nonlinear dissipative and potential forces.

3 Conditions of the Existence of a CLF

Consider the Lyapunov function

V (x, ẋ) =
ẋ2

2
+ c

xµ+1

µ+ 1
+ γxβẋ. (5)

Here c and γ are positive constants, and β is a rational number with odd numerator and
denominator, β ≥ 1.

Differentiating V (x, ẋ) with respect to the sth subsystem from family (4), we obtain

V̇ = −asẋ
2 − γbsx

2µ + (c− bs)x
µẋ− asγx

β ẋ+ γβxβ−1ẋ2 ≡ Ws(x, ẋ).

By the use of generalized homogeneous functions properties [12], one gets the following
necessary condition of the negative definiteness of functions W1(x, ẋ), . . . ,WN (x, ẋ):

β = µ. (6)

For such value of the parameter β, the Lyapunov function (5) is positive definite for
any c > 0 and γ > 0, and functions W1(x, ẋ), . . . ,WN (x, ẋ) are negative definite if and
only if the quadratic forms

ωs(y1, y2) = −asy
2
2 − γbsy

2
1 + (c− bs − asγ)y1y2, s = 1, . . . , N, (7)

possess the same property.
Applying the Sylvester criterion, we obtain 4asbsγ > (c − bs − asγ)

2, s = 1, . . . , N.

Hence, the inequalities

(√
asγ −

√

bs

)2

< c <
(√

asγ +
√

bs

)2

, s = 1, . . . , N,

should be valid. It means that, for the existence of the required value of the parameter
c, it is necessary and sufficient the fulfilment of the conditions

(√
asγ −

√

bs

)2

<
(√

ajγ +
√

bj

)2

, s, j = 1, . . . , N. (8)

Conditions (8) can be rewritten in the form

√
γ(
√
as +

√
aj) >

√

bs −
√

bj ,
√
γ(
√
as −

√
aj) <

√

bs +
√

bj, s, j = 1, . . . , N.

Denote

A = max
s,j=1,...,N

√
bs −

√

bj
√
as +

√
aj

,
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B = +∞ if as = aj for all s, j = 1, . . . , N , and

B = min
s,j: as>aj

√
bs +

√

bj
√
as −

√
aj

otherwise.
Finally, we arrive at

Theorem 3.1 Family (4) admits a CLF of the form (5) satisfying the assumptions
of the Lyapunov asymptotic stability theorem if and only if the inequality

A < B (9)

holds.

Remark 3.1 Theorem 3.1 gives us the constructive algorithm for finding the CLF
for family (4). If inequality (9) is fulfilled, then the value of parameter β is determined
by formula (6), while γ ∈ (A,B), and, for the value of γ chosen from this interval,
c ∈ (c(γ), c(γ)), where

c(γ) = max
s=1,...,N

(√
asγ −

√

bs

)2

, c(γ) = min
s=1,...,N

(√
asγ +

√

bs

)2

.

Although we have obtained the necessary and sufficient conditions of the existence
of a CLF for family (4), however only for the Lyapunov function of the special form
(5). Nevertheless, these conditions permit us to deduce the following interesting and
important conclusions about stability of the equilibrium position x = ẋ = 0 of switched
system (3).

Corollary 3.1 Let the switching take place in the velocity forces only (bs = b =
const > 0, s = 1, . . . , N). Then the equilibrium position x = ẋ = 0 of system (3) is
asymptotically stable for any admissible switching law.

Corollary 3.2 Let the switching take place in the potential forces only (as = a =
const > 0, s = 1, . . . , N). Then the equilibrium position x = ẋ = 0 of system (3) is
asymptotically stable for any admissible switching law.

Corollary 3.3 Let family (4) consist of two subsystems (N = 2), and the switching
take place both in the velocity forces and in the potential forces (a1 6= a2, b1 6= b2).
Then the equilibrium position x = ẋ = 0 of system (3) is asymptotically stable for any
admissible switching law.

Remark 3.2 As it was mentioned in Section 2, the statements of Corollaries 3.2 and
3.3 are not true for the linear case (µ = 1). Thus, in comparison with linear systems,
nonlinear ones are “more stable” with respect to the switching of parameters values.

4 Systems with Nonlinear Dissipative and Potential Forces

Consider now the switched system

ẍ+ aσx
ν ẋ+ bσx

µ = 0. (10)
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The corresponding family of subsystems is described as follows

ẍ+ asx
ν ẋ+ bsx

µ = 0, s = 1, . . . , N. (11)

Here as and bs are positive constants; µ is a rational number with odd numerator and
denominator, µ > 1; ν is a positive rational number with even numerator and odd
denominator. In this case, considered subsystems are subjected to essentially nonlinear
dissipative and potential forces. Equations of such type are called the Lienard ones [6,
10]. It is known [10] that the equilibrium position x = ẋ = 0 of each subsystem from
(11) is asymptotically stable.

To obtain the conditions providing the asymptotic stability of the equilibrium position
of (10) for any admissible switching law, construct a CLF for the family (11) in the form

V (x, ẋ) =
ẋ2

2
+ c

xµ+1

µ+ 1
+ γxβ ẋ+ εxẋλ, (12)

where c > 0, γ > 0, ε < 0, while β and λ are rational numbers with odd numerators and
denominators, β ≥ 1, λ ≥ 1.

Differentiating V (x, ẋ) with respect to the sth subsystem from (11), one gets

V̇ = εẋλ+1 − asx
ν ẋ2 − γbsx

µ+β + (c− bs)x
µẋ− asγx

β+ν ẋ

+γβxβ−1ẋ2 − ελasx
ν+1ẋλ − ελbsx

µ+1ẋλ−1 ≡ Ws(x, ẋ).

By the use of generalized homogeneous functions properties [12] and Lemma 2 from [1],
it is easy to obtain the following necessary conditions of the negative definiteness of
functions W1(x, ẋ), . . . ,WN (x, ẋ):

(i) if µ > 2ν + 1, then
β = µ− ν; (13)

(ii) if µ ≤ 2ν + 1, then λ = 1 + 2(β − 1)/(µ+ 1).
It is worthy of note that, in the case where µ = 2ν + 1, systems

ẋ = y, ẏ = −asx
νy − bsx

µ, s = 1, . . . , N,

corresponding to equations from (11) are generalized homogeneous.
In what follows, we consider the only case where µ > 2ν + 1. Under the condition

(13), we have

Ws(x, ẋ) = xν
(

−asẋ
2 − γbsx

2(µ−ν) + (c− bs − asγ)x
µ−ν ẋ

)

+ εẋλ+1

+γβxµ−ν−1ẋ2 − ελasx
ν+1ẋλ − ελbsx

µ+1ẋλ−1, s = 1, . . . , N.

Let

λ >
2µ− 2ν − 1

µ− ν
. (14)

Then the Lyapunov function (12) is positive definite, and for the negative definiteness
of functions W1(x, ẋ), . . . ,WN (x, ẋ) it is sufficient the negative definiteness of quadratic
forms (7).

With the numbers A and B defined in a similar way as in Section 3, we claim the
following result
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Theorem 4.1 Let µ > 2ν + 1. If inequality (9) holds, then for family (11) there
exists a CLF of the form (12) satisfying the assumptions of the Lyapunov asymptotic
stability theorem.

Remark 4.1 In contrast to Theorem 3.1, the conditions of Theorem 4.1 are only
sufficient ones for the existence of a CLF of the given form for the considered family.

Remark 4.2 Under the conditions of Theorem 4.1, we obtain the following construc-
tive algorithm for the finding of a CLF for family (11). The Lyapunov function can be
chosen in the form (12), where β is defined by the formula (13), λ satisfies inequality (14),
ε is an arbitrary negative number, while the values of parameters γ and c are defined in
a similar way as in Remark 3.1.

Corollary 4.1 Let µ > 2ν+1. If the switching takes place in the velocity forces only
(bs = b = const > 0, s = 1, . . . , N), then the equilibrium position x = ẋ = 0 of system
(10) is asymptotically stable for any admissible switching law.

Corollary 4.2 Let µ > 2ν + 1. If the switching takes place in the potential forces
only (as = a = const > 0, s = 1, . . . , N), then the equilibrium position x = ẋ = 0 of
system (10) is asymptotically stable for any admissible switching law.

Corollary 4.3 Let µ > 2ν+1. If family (11) consists of two subsystems (N = 2), and
the switching takes place both in the velocity forces and in the potential forces (a1 6= a2,
b1 6= b2), then the equilibrium position x = ẋ = 0 of system (10) is asymptotically stable
for any admissible switching law.

5 Conclusion

In the present paper, for certain classes of families of nonlinear mechanical systems
with one degree of freedom the conditions of the existence of CLFs of the given form
are obtained. The fulfilment of these conditions provides the asymptotic stability of
equilibrium positions of corresponding switched systems for any switching law. It is
proved that, for considered families of essentially nonlinear systems, we can guarantee the
existence of CLFs under weaker assumptions than for linear ones. Thus, in comparison
with linear systems, nonlinear ones are “more stable” with respect to the switching of
parameters values. Theorems 3.1 and 4.1 can be used for the design of stabilizing controls
for mechanical systems. A challenging direction for further research is the extention of
the obtained results to the switched nonlinear mechanical systems with several degrees
of freedom.
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Abstract: A new result for existence of homoclinic orbits is obtained for the second
order Hamiltonian systems ẍ(t)+V ′(t, x(t)) = f(t), where t ∈ R, x ∈ R

N , V ∈ C1(R×
R

N ,R), V (t, x) = −K(t, x) + W (t, x) is T−periodic in t, T > 0 and f : R −→ R
N

is a continuous bounded function, under an assumption weaker than the so-called
Ambrosetti–Rabinowitz-type condition.
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1 Introduction

In this paper we are concerned with the study of the existence of homoclinic solutions
for second order time-dependent Hamiltonian systems of the type

ẍ(t) + V ′(t, x(t)) = f(t), (HS)

where x = (x1, ..., xN ), V ∈ C1(R × R
N ,R), V ′(t, x) = ∂V

∂x
(t, x) and f : R −→ R

N is
a continuous function. Here, as usual, we say that a solution x of (HS) is homoclinic
(to 0) if x(t) → 0 as t → ±∞. In addition x is called nontrivial if x 6≡ 0.

The existence of homoclinic solutions for (HS) has been extensively investigated in
many papers via the critical point theory, see [8, 11]. These results were obtained under
the fact that the potential V is of the type

V (t, x) = −
1

2
L(t)x.x+W (t, x),

where L ∈ C(R,RN2

) is a symmetric matrix-valued function and W ∈ C1(R× R
N ,R).
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Recently, in [2], Izydorek and Janczewska have studied the existence of such solutions
when the potential V is of the form

V (t, x) = −K(t, x) +W (t, x),

where K,W ∈ C1(R× R
N ,R). Precisely, they established the following result.

Theorem 1.1 Assume that V and f satisfy the conditions
(V1) V (t, x) = −K(t, x) +W (t, x), where K,W : R×R

N → R are C1-maps, T−periodic
with respect to t, T > 0,
(V2) there are constants b1, b2 > 0 such that b1 |x|

2
≤ K(t, x) ≤ b2 |x|

2
for all (t, x) ∈

R× R
N ,

(V3) for all (t, x) ∈ R× R
N , K(t, x) ≤ K ′(t, x).x ≤ 2K(t, x),

(V4) W
′(t, x) = o(|x|), as |x| → 0 uniformly with respect to t,

(V5) there is a constant µ > 2 such that 0 < µW (t, x) ≤ W ′(t, x).x for every t ∈ R and
x ∈ R

N\ {0},
(V6) f : R → R

N is a bounded continuous function,

(V7) b̄1 = min {1, 2b1} > 2M and
(

∫

R
|f(t)|2 dt

)1/2

≤ β

2C , where 0 < β < b̄1 − 2M , M =

sup
{

W (t, x) t ∈ [0, T ], x ∈ R
N , |x| = 1

}

and C is a positive Sobolev constant defined in
[2]. Then the system (HS) possesses a nontrivial homoclinic solution.

Here and in the following x.y denotes the inner product of x, y ∈ R
N and |.| denotes

the associated norm.
The so-called Ambrosetti–Rabinowitz-type condition (V5) appears frequently in the

studying of existence of homoclinic solutions for (HS). The goal of this work is to prove
that Theorem 1.1 still holds if (V5) is replaced by a weaker condition. The motivation for
the paper comes mainly from a paper by An [14], in which he dealt with the existence
of periodic solutions for (HS) with a condition weaker than (V5).

Definition 1.1 A vector field v defined on R
N is called positive if v(x).x > 0 for

all x ∈ R
N\ {0} . We call v a normalized positive vector field if v is positive, linear and

satisfies the following condition:

v(x).x = x.x, ∀ x ∈ R
N . (v1)

Consider the following assumptions:
(V ′

3 ) there exists normalized positive vector field v such that for all (t, x) ∈ R× R
N

K(t, x) ≤ K ′(t, x).v(x) ≤ 2K(t, x),

(V ′
5 ) there exists constant µ > 2 such that for every t ∈ R and x ∈ R

N\ {0}

0 < µW (t, x) ≤ W ′(t, x).v(x).

The main result of this paper is as follows.

Theorem 1.2 Assume that V and f satisfy (V1), (V2), (V
′
3), (V4), (V

′
5 ), (V6), (V7)

and the following assumption:

W (t, x) ≤ M |x|
µ
, ∀ t ∈ R, ∀ |x| ≤ 1. (V8)

Then the system (HS) possesses a nontrivial homoclinic solution.
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It is obvious that if v(x) = x, then (V ′
3) becomes (V3) and (V ′

5) becomes (V5).
Consider the following examples.

Example 1.1 Let θ(x) be the argument of x = (ξ1, ξ2) ∈ R
2\ {0} defined by

θ(x) =



























arctan( ξ2
ξ1
), if ξ1 > 0, ξ2 ≥ 0,

π
2 , if ξ1 = 0, ξ2 > 0,

arctan( ξ2
ξ1
) + π, if ξ1 < 0,

3π
2 , if ξ1 = 0, ξ2 < 0,

arctan( ξ2
ξ1
) + 2π, if ξ1 > 0, ξ2 < 0.

Define a function K ∈ C1(R× R
2,R) as follows:

K(t, x) =

{

|x|2

exp(2 sin 4(ln|x|+θ(x))) , ifx 6= 0,

0, if x = 0.

Define a normalized positive vector field v by v(x) =

(

1 1
−1 1

)

x. An easy computation

shows that K satisfies (V2) and (V ′
3).

Example 1.2 For any µ > 2, define a function W ∈ C1(R× R
2,R) as follows:

W (t, x) =

{

|x|µ

exp(µ(2+sin 4(ln|x|+θ(x)))) , if x 6= 0,

0, if x = 0.

A direct computation (see [14]) shows that W satisfies (V4), (V
′
5) and (V8). Moreover, W

does not satisfy (V5).
In order to obtain homoclinic solution of (HS), we consider a sequence of systems of

differential equations:

ẍ(t) + V ′(t, x(t)) = fk(t), (HSk)

where fk : R → R
N is a 2kT -periodic extension of f to the interval [−kT, kT [, k ∈ N. We

will prove the existence of a homoclinic solution of (HS) as the limit of the 2kT -periodic
solution of (HSk) as in [2,8].

2 Preliminaries

For each k ∈ N, let Ek = W
1,2
2kT (R,R

N ) denote the Hilbert space of 2kT -periodic functions
from R into R

N under the norm

‖x‖Ek
=

(

∫ kT

−kT

(|ẋ(t)|
2
+ |x(t)|

2
)dt

)1/2

,

and let L2
2kT (R,R

N ) denote the Hilbert space of 2kT -periodic functions from R into R
N

under the norm

‖x‖L2

2kT
=

(

∫ kT

−kT

|x(t)|
2
dt

)
1

2

.
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Furthermore, let L∞
2kT (R,R

N ) be the space of 2kT -periodic essentially bounded measur-
able functions from R into R

N under the norm

‖x‖L∞

2kT
= ess sup {|x(t)| : t ∈ [−kT, kT ]} .

Let φk : Ek → R be defined by

φk(x) =

∫ kT

−kT

[

1

2
|ẋ(t)|2 +K(t, x(t))−W (t, x(t)) + fk(t).x(t)

]

dt. (2.1)

It is well known that φk ∈ C1 (Ek,R) and for all x, y ∈ Ek

φ′
k(x)y =

∫ kT

−kT

[ẋ(t).ẏ(t) +K ′(t, x(t)).y(t) −W ′(t, x(t)).y(t) + fk(t).y(t)] dt. (2.2)

Moreover, the critical points of φk in Ek are exactly the classical 2kT -periodic solution of
(HSk) (see [6,9]). We will obtain a critical point of φk by using the following Mountain
Pass Theorem.

Theorem 2.1 [8] Let E be a real Banach space and φ ∈ C1(E,R) satisfying the
Palais-Smale condition. If φ satisfies the following conditions:
(i) φ(0) = 0,
(ii) there exist constants ρ, α > 0 such that φ/∂Bρ(0) ≥ α,

(iii) there exist e ∈ E\Bρ(0) such that φ(e) ≤ 0.
Then φ possesses a critical value c ≥ α given by c = inf

g∈Γ
max
s∈[0,1]

φ(g(s)), where

Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e} .

Lemma 2.1 [2] Let x : R → R
N be a continuous mapping such that ẋ ∈ L2

loc(R,R
N ).

For every t ∈ R the following inequality holds:

|x(t)| ≤
√
2

(

∫ t+ 1

2

t− 1

2

(|ẋ(s)|2 + |x(s)|2)ds

)1/2

,

where L2
loc(R,R

N ) denotes the space of locally square integrable functions from R into
R

N .

Lemma 2.2 [14] Denote by ϕs the flow of the linear vector field v with property (v1),
then

|ϕsx| = es |x| , ∀s ∈ R, ∀x ∈ R
N .

Lemma 2.3 There exist a1, a2 > 0 such that

W (t, x) ≥ a1 |x|
µ
− a2, ∀t ∈ R, ∀x ∈ R

N . (2.3)

Proof. Denote by SN−1 the unit sphere in R
N . For any x ∈ R

N\ {0} , since

d

ds
(|ϕsx|

2
) = 2ϕsx.v(ϕs(x)) > 0,

(|ϕsx|
2
) is increasing in s. Hence, there exist s ∈ R and ξ ∈ SN−1 such that x = ϕsξ

(see[13] for details). Since |x| = |ϕsξ| = es, by (V ′
5) we have

d

ds
[W (t, ϕsξ)] = W ′(t, ϕsξ).v(ϕsξ) ≥ µW (t, ϕsξ) > 0, ∀s, t ∈ R. (2.4)
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Let R > 0, integrating (2.4) over [lnR, s] we obtain

∫ s

lnR

d
dl
[W (t, ϕlξ)]

W (t, ϕlξ)
dl ≥ µs− µ lnR.

By (V ′
5 ) the quantity a1 = inft∈R,|x|=R(W (t, x))R−µ is strictly positive and

W (t, x) ≥ a1 |x|
µ
, ∀ |x| ≥ R, ∀t ∈ R.

Let a2 = supt∈R,|x|≤R W (t, x), then (2.3) holds. 2 Let v be the normalized positive
vector field in (V ′

3) and (V ′
5) of Theorem 1.2. Then v is an invertible linear operator from

R
N to R

N . Let a = 1
‖v−1‖

, b = ‖v‖ , where ‖v‖ and
∥

∥v−1
∥

∥ are operator norms. For any

x ∈ R
N , one has

a |x| ≤ |v(x)| ≤ b |x| . (2.5)

Define a vector field ṽ on Ek by

(ṽ(x))(t) = v(x(t)). (2.6)

Using condition (v1) and a direct computation we have the following Lemma.

Lemma 2.4 For any x ∈ Ek, there hold

∫ kT

−kT

|ẋ(t)|2 dt =

∫ kT

−kT

ẋ(t).

.
︷︸︸︷

ṽ(x)(t)dt. (2.7)

a ‖x‖Ek
≤ ‖ṽ(x)‖Ek

≤ b ‖x‖Ek
. (2.8)

Lemma 2.5 Let Y : [0,+∞[→ [0,+∞[ be given as follows

Y (s) =

{

maxt∈[0,T ],0<|x|≤s
W ′(t,x).v(x)

|x|2
, s > 0,

0, s = 0.

Then Y is continuous, nondecreasing, Y (s) > 0 for s > 0 and Y (s) → +∞ as s → +∞.

It is easy to prove this lemma by applying (V4), (V
′
5), (V8), (2.3) and (2.5).

Remark 2.1 Assumptions (V4), (V
′
5 ), (V8) and (2.5) imply that W (t, x) = o(|x|

2
) as

x → 0 uniformly for t ∈ [0, T ] and W (t, 0) = 0, W ′(t, 0) = 0. Moreover, from (V2) and
(V ′

3 ) we conclude that K(t, 0) = 0, K ′(t, 0) = 0.

3 Proof of Theorem 1.2

Let γk : Ek → [0,+∞[ be given by

γk(x) =

(

∫ kT

−kT

[

|ẋ(t)|
2
+ 2K(t, x(t))

]

dt

)1/2

. (3.1)

Let b̄2 = max {1, 2b2} , by (V2) we have

b̄1 ‖x‖
2
Ek

≤ γ2
k(x) ≤ b̄2 ‖x‖

2
Ek

. (3.2)
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By (2.1) and (3.1) we have:

φk(x) =
1

2
γ2
k(x)−

∫ kT

−kT

W (t, x(t))dt +

∫ kT

−kT

fk(t).x(t)dt. (3.3)

Moreover, using (V ′
3 ), (2.6) and (2.7) we obtain

φ′
k(x).ṽ(x) ≤

∫ kT

−kT

(

|ẋ(t)|
2
+ 2K(t, x(t))

)

dt

−

∫ kT

−kT

W ′(t, x(t)).v(x(t))dt +

∫ kT

−kT

fk(t).v(x(t))dt

= γ2
k(x)−

∫ kT

−kT

W ′(t, x(t)).v(x(t))dt +

∫ kT

−kT

fk(t).v(x(t))dt. (3.4)

Lemma 3.1 Assume that V and f satisfy (V1), (V2), (V
′
3), (V4), (V

′
5 ), and (V6)−(V8).

Then for every k ∈ N the system (HSk) possesses a 2kT -periodic solution xk ∈ Ek.

Proof. It is clear that φk(0) = 0. We show that φk satisfies the Palais-Smale con-
dition. Assume that (xj)j∈N ⊂ Ek is a sequence such that (φk(xj))j∈N is bounded and
φ′
k(xj) → 0 as j → +∞. Then there exists a constant Ck > 0 such that

|φk(xj)| ≤ Ck, ‖φ′
k(xj)‖E∗

k

≤ Ck, (3.5)

for every j ∈ N. By (3.3) and (V ′
5) we have

γ2
k(xj) ≤ 2φk(xj) +

2

µ

∫ kT

−kT

W ′(t, x(t)).v(x(t))dt − 2

∫ kT

−kT

fk(t).xj(t)dt. (3.6)

From (3.4) and (3.6) we obtain

(1−
2

µ
)γ2

k(xj) ≤ 2φk(xj)−
2

µ
φ′
k(xj)ṽ(xj)−2

∫ kT

−kT

fk(t).xj(t)dt+
2

µ

∫ kT

−kT

fk(t).v(xj(t))dt.

(3.7)
By (2.8), (3.2) and (3.7) we have

(1−
2

µ
)b̄1 ‖xj‖

2
Ek

≤ 2φk(xj) +
2

µ
‖φ′

k(xj)‖E∗

k

b ‖xj‖Ek
+ 2

(

∫ kT

−kT

|fk(t)|
2
dt

)
1

2

‖xj‖Ek

+
2

µ

(

∫ kT

−kT

|fk(t)|
2
dt

)
1

2

b ‖xj‖Ek
. (3.8)

From (3.5), (3.8) and (V7) we obtain

(1−
2

µ
)b̄1 ‖xj‖

2
Ek

−
2Ck

µ
b ‖xj‖Ek

− (2 +
2b

µ
)
β

2C
‖xj‖Ek

− 2Ck ≤ 0. (3.9)

Since µ > 2, (3.9) shows that (xj)j∈N is bounded in Ek. In a similar way to Proposition
4.3 in [6], we can prove that (xj)j∈N has a convergent subsequence in Ek. Hence, φk

satisfies the Palais-Smale condition.
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Now, let us show that there exist constants ρ, α > 0 independent of k such that φk

satisfies the assumption (ii) of Theorem 2.1 with these constants. Let x ∈ Ek such that
0 < ‖x‖L∞

2kT
≤ 1. By (V8) we have

∫ kT

−kT

W (t, x(t))dt ≤ M

∫ kT

−kT

|x(t)|2 dt ≤ M ‖x‖2Ek
. (3.10)

From (3.2), (3.10) and (V7) we have

φk(x) ≥
1

2
b̄1 ‖x‖

2
Ek

−M ‖x‖
2
Ek

− ‖fk‖L2

2kT
‖x‖L2

2kT

≥
1

2
b̄1 ‖x‖

2
Ek

−M ‖x‖2Ek
−

β

2C
‖x‖L2

2kT

≥
1

2
(b̄1 − β − 2M) ‖x‖

2
Ek

+
β

2
‖x‖

2
Ek

−
β

2C
‖x‖Ek

. (3.11)

Note that (V7) implies b̄1 − β − 2M > 0. Set

ρ =
1

C
, α =

b̄1 − β − 2M

2C2
.

(3.11) shows that ‖x‖Ek
= ρ implies that φk(x) ≥ α for k ∈ N. Finally, it remains to

show that φk satisfies assumption (iii) of Theorem 2.1. By the use of (3.2), (3.3) and
(2.3), for every r ∈ R\ {0} and x ∈ Ek\ {0} , the following inequality holds:

φk(rx) ≤
b̄2r

2

2
‖x‖

2
Ek

− a1 |r|
µ

∫ kT

−kT

|x(t)|
µ
dt+ |r| ‖fk‖L2

2kT
‖x‖L2

2kT
+ 2kTa2. (3.12)

Take X ∈ E1 such that X(±T ) = 0. Since µ > 2 and a1 > 0, (3.12) implies that there
exists r0 ∈ R\ {0} such that ‖r0X‖E1

> ρ and φ1(r0X) < 0. Set e1(t) = r0X(t) and

ek(t) =

{

e1(t), |t| ≤ T

0, T < |t| ≤ kT
(3.13)

for k > 0. Then ek ∈ Ek, ‖ek‖Ek
= ‖e1‖E1

> ρ and φk(ek) = φ1(e1) < 0 for every k ∈ N.

By Theorem 2.1, φk possesses a critical value ck ≥ α given by

ck = inf
g∈Γk

max
s∈[0,1]

φk(g(s)), (3.14)

where Γk = {g ∈ C([0, 1], Ek) : g(0) = 0, g(1) = ek} . Hence, for every k ∈ N, there exists
xk ∈ Ek such that

φk(xk) = ck, φ′
k(xk) = 0. (3.15)

The function xk is a desired classical 2kT−periodic solution of (HSk) for k ∈ N. Since
ck > 0, xk is a nontrivial solution even if fk(t) = 0.2

Lemma 3.2 Let xk ∈ Ek be a solution of system (HSk) satisfying (3.15). Then there
exists a positive constant M1 independent of k such that

‖xk‖L∞

2kT
≤ M1, ∀k ∈ N. (3.16)
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Proof. For k ∈ N, let gk : [0, 1] → Ek be a curve given by gk(s) = sek, where ek is
defined by (3.13). Then gk ∈ Γk and φk(gk(s)) = φ1(g1(s)) for all k ∈ N and s ∈ [0, 1].
Therefore, by (3.14)

ck ≤ max
s∈[0,1]

φ1(g1(s)) ≡ M0, ∀k ∈ N, (3.17)

where M0 is independent of k. Since φ′
k(xk) = 0, we get from (2.7), (3.3), (V ′

3) and (V ′
5 )

ck = φk(xk)−
1

2
φ′
k(xk).ṽ(xk)

≥ (
µ

2
− 1)

∫ kT

−kT

W (t, xk(t))dt+

∫ kT

−kT

fk(t).xk(t)dt −
1

2

∫ kT

−kT

fk(t).v(xk(t))dt,

and hence
∫ kT

−kT

W (t, xk(t))dt ≤
2

µ− 2
ck −

2

µ− 2

∫ kT

−kT

fk(t).xk(t)dt+
1

µ− 2

∫ kT

−kT

fk(t).v(xk(t))dt.

(3.18)
Combining (3.18) with (2.8), (3.2), (3.17) and (V7) we obtain

b̄1

2
‖xk‖

2
Ek

≤
µM0

µ− 2
+

β(µ+ b)

2C(µ− 2)
‖xk‖Ek

. (3.19)

Since b̄1 > 0 and all coefficients of (3.19) are independent of k, we see that there exist
M ′

1 > 0 independent of k such that

‖xk‖Ek
≤ M ′

1, ∀k ∈ N, (3.20)

which, together with [2, Proposition 1.1] impliy that (3.16) holds. 2

Let C
p
loc(R,R

N ), where p ∈ N, denotes the space of Cp functions from R into R
N

under the topology of almost uniformly convergence of functions and all derivatives up
to the order p.

Lemma 3.3 Let xk ∈ Ek be a solution of system (HSk) satisfying (3.16). Then
there exists a subsequence (xkm

) of (xk)k∈N convergent to a certain x0 ∈ C1(R,RN ) in
C1

loc(R,R
N ).

Proof. By (3.16), we know that (xk)k∈N is a uniformly bounded sequence. Next,
we will show that (ẋk)k∈N and (ẍk)k∈N are also uniformly bounded sequences. Since xk

satisfies (HSk), if t ∈ [−kT, kT [ we have

|ẍk(t)| ≤ |fk(t)|+ |V ′(t, xk(t))| = |f(t)|+ |V ′(t, xk(t))|

≤ sup
t∈R

|f(t)|+ sup
(t,x)∈[0,T ]×[−M1,M1]

|V ′(t, x(t))| , t ∈ [−kT, kT [. (3.21)

From (3.16), (3.21), (V1) and (V6) there is M2 > 0 independent of k such that

‖ẍk‖L∞

2kT
≤ M2, ∀k ∈ N. (3.22)

Let i = −k,−k+1, ..., k−1. By the continuity of ẋk(t), we can choose t
ki

∈ [iT, (i+1)T ],
such that

ẋk(tki
) =

1

T

∫ (i+1)T

iT

ẋk(s)ds =
1

T
(xk((i + 1)T )− xk(iT )) ,
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it follows that for t ∈ [iT, (i+ 1)T ], i = −k,−k + 1, ..., k − 1

|ẋk(t)| =

∣

∣

∣

∣

∣

∫ t

tki

ẍk(s)ds+ ẋk(tki
)

∣

∣

∣

∣

∣

≤

∫ (i+1)T

iT

|ẍk(s)| ds+ |ẋk(tki
)|

≤ M2T + T−1 |xk((i+ 1)T )− xk(iT )| ≤ M2T + 2M1T
−1 ≡ M3.

Consequently,
‖ẋk‖L∞

2kT
≤ M3, ∀k ∈ N. (3.23)

The task is now to show that (xk)k∈N and (ẋk)k∈N are equicontinuous. Of course, it
suffices to prove that both sequences satisfy the Lipschitz condition with some constants
independent of k. Let k ∈ N and t, t0 ∈ R, we have by (3.23)

|xk(t)− xk(t0)| =

∣

∣

∣

∣

∫ t

t0

ẋk(s)ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t

t0

|ẋk(s)| ds

∣

∣

∣

∣

≤ M3 |t− t0| .

Analogously, we have by (3.22) |ẋk(t)− ẋk(t0)| ≤ M2 |t− t0| . For each k ∈ N, set C1
k =

C1([−kT, kT ],RN) with the norm defined as follows:

‖x‖C1

k
= max

t∈[−kT,kT ]
(|ẋ(t)|+ |x(t)|), x ∈ C1

k .

Now, we will show that (xk)k∈N possesses a convergent subsequence (xkm
) in C1

loc(R,R
N ).

First, let (xk)k∈N be restricted to [−T, T ]. It is clear that (xk) and (ẋk) are uniformly
bounded and equicontinuous. By Arzela-Ascoli theorem, there exist a subsequence (x1

k)
of (xk)k∈N\{1}, x

1 ∈ C([−T, T ],RN) and y1 ∈ C([−T, T ],RN) such that

∥

∥x1
k − x1

∥

∥

C([−T,T ],RN )
→ 0,

∥

∥ẋ1
k − y1

∥

∥

C([−T,T ],RN )
→ 0, as k → +∞. (3.24)

Note that for t ∈ [−T, T ]

x1
k(t) = x1

k(−T ) +

∫ t

−T

ẋ1
k(s)ds, k ∈ N. (3.25)

Let k → ∞ in (3.25) and using (3.24) we obtain

x1(t) = x1(−T ) +

∫ t

−T

y1(s)ds, for t ∈ [−T, T ] (3.26)

which shows that y1(t) = ẋ1(t) for t ∈ [−T, T ] and x1 ∈ C1
1 . Moreover, it follows from

(3.24) that
∥

∥x1
k − x1

∥

∥

C1

1

→ 0, as k → +∞.

Secondly, let (x1
k) be restricted to [−2T, 2T ]. It is clear that (x1

k) and (ẋ1
k) are uniformly

bounded and equicontinuous. Similarly as above, by Arzela-Ascoli theorem, there exist
a subsequence (x2

k) of (x
1
k) satisfying x2 /∈ (x2

k) and x2 ∈ C1
2 such that

∥

∥x2
k − x2

∥

∥

C1

2

→ 0, as k → +∞.

By repeating this procedure for all k ∈ N, there exist (xm
k ) ⊂ (xm−1

k ), xm /∈ (xm
k ) and

xm ∈ C1
m such that

‖xm
k − xm‖C1

m
→ 0, as k → +∞, m = 1, 2, ... . (3.27)



154 A. BENHASSINE AND M. TIMOUMI

Moreover, we have

∥

∥xm+1 − xm
∥

∥

C1
m

≤
∥

∥xm+1
k − xm+1

∥

∥

C1
m

+ ‖xm
k − xm‖C1

m
+
∥

∥xm+1
k − xm

k

∥

∥

C1
m

→ 0

as k → +∞, which leads to

xm+1(t) = xm(t), for t ∈ [−mT,mT ], m = 1, 2, ... . (3.28)

Let
x0(t) = xm(t), for t ∈ [−mT,mT ], m = 1, 2, ... . (3.29)

Then x0 ∈ C1(R,RN ) and xm → x0 as m → +∞ in C1
loc(R,R

N ). Now take a diag-
onal sequence (xkm

) consisting of x1
1, x

2
2, x

3
3, ... (see [4]). For any m ∈ N, (xi

i)
∞
i=m is a

subsequence of (xm
k )k∈N, so it follows from (3.27) and (3.29) that

∥

∥xi
i − x0

∥

∥

C1
m

=
∥

∥xi
i − xm

∥

∥

C1
m

→ 0, as i → +∞, m = 1, 2, ...

That is
xkm

→ x0, as m → +∞ in C1
loc(R,R

N ). (3.30)

Lemma 3.4 The function x0 defined in Lemma 3.3 is the desired homoclinic solution
of (HS).

Proof. Firstly we will show that x0 satisfies (HS). For every k ∈ N, and t ∈ R we
have by Lemma 3.1:

ẍkm
(t) = fkm

(t)− V ′(t, xkm
(t)). (3.31)

Take l1, l2 ∈ R such that l1 < l2. There exists m0 ∈ N such that for all m > m0

ẍkm
(t) = f(t)− V ′(t, xkm

(t)), ∀t ∈ [l1, l2]. (3.32)

Integrating (3.32) from l1 to t ∈ [l1, l2], we have

ẋkm
(t)− ẋkm

(l1) =

∫ t

l1

[f(s)− V ′(s, xkm
(s))]ds. (3.33)

Since (3.30) shows that xkm
→ x0 uniformly on [l1, l2] and ẋkm

→ ẋ0 uniformly on [l1, l2]
as m → +∞, then by taking m → +∞ in (3.33), we get

ẋ0(t)− ẋ0(l1) =

∫ t

l1

[f(s)− V ′(s, x0(s))]ds, for t ∈ [l1, l2]. (3.34)

Since l1 and l2 are arbitrary, (3.34) shows that x0 is a solution of (HS). Secondly, we
prove that x0(t) → 0, as t → ±∞. We have, from (3.20)

∫ kT

−kT

(|ẋk(t)|
2 + |xk(t)|

2)dt ≤ M ′2
1 , ∀k ∈ N. (3.35)

For every l ∈ N, there exists m1 ∈ N such that for m > m1

∫ lT

−lT

(|ẋkm
(t)|

2
+ |xkm

(t)|
2
)dt ≤ M ′2

1 . (3.36)
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Let m → +∞ in (3.36) and use (3.30), it follows that for each l ∈ N,

∫ lT

−lT

(|ẋ0(t)|
2 + |x0(t)|

2)dt ≤ M ′2
1 . (3.37)

Letting l → +∞ in (3.37), we obtain

∫ +∞

−∞

(|ẋ0(t)|
2 + |x0(t)|

2)dt ≤ M ′2
1 , (3.38)

and so
∫

|t|≥r

(|ẋ0(t)|
2 + |x0(t)|

2)dt → 0, as t → ±∞. (3.39)

Combining (3.39) with Lemma 2.3 we obtain our claim.
Now, we show that ẋ0(t) → 0, as t → ±∞. To do this, observe that by Lemma 2.3

|ẋ0(t)|
2
≤ 2

∫ t+ 1

2

t− 1

2

(|x0(s)|
2
+ |ẋ0(s)|

2
)ds+ 2

∫ t+ 1

2

t− 1

2

|ẍ0(s)|
2
ds. (3.40)

From (3.39) and (3.40) it suffices to prove that

∫ r+1

r

|ẍ0(s)|
2
ds → 0, as r → ±∞. (3.41)

By (HS) we obtain

∫ r+1

r

|ẍ0(s)|
2
ds =

∫ r+1

r

(|V ′(s, x0(s))|
2
+ |f(s)|

2
)ds− 2

∫ r+1

r

V ′(s, x0(s)).f(s)ds.

Since V ′(t, 0) = 0 for all t ∈ R, x0 → 0, as t → ±∞ and
∫ r+1

r
|f(s)|

2
ds → 0, as r → ±∞,

then (3.41) follows.
Finally, we will show that if f ≡ 0 then x0 6≡ 0. For this purpose we will use the

properties of Y given by (2.9). The definition of Y implies that

∫ kT

−kT

W ′(t, xk(t)).v(xk(t))dt ≤ Y (‖xk‖L∞

2kT
) ‖xk‖

2
Ek

. (3.42)

Since φ′
k(xk).v(xk) = 0, then (3.4) gives

∫ kT

−kT

W ′(t, xk(t)).v(xk(t))dt =

∫ kT

−kT

|ẋk(t)|
2
dt+

∫ kT

−kT

K ′(t, xk(t)).v(xk(t))dt. (3.43)

Substituting (3.43) into (3.42), and applying (V ′
3 ) and (V2) we obtain

Y (‖xk‖L∞

2kT
) ≥ min {1, b1} ‖xk‖

2
Ek

,

and hence
Y (‖xk‖L∞

2kT
) ≥ min {1, b1} > 0. (3.44)

If ‖xkm
‖L∞

2kmT
→ 0, as m → +∞, we would have Y (0) ≥ min {1, b1} > 0, a contradiction.

Passing to a subsequence of (xkm
)m∈N if necessary, there is η > 0 such that

‖xkm
‖L∞

2kmT
≥ η. (3.45)
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Moreover, for all j ∈ N, t 7→ xkm,j(t) = xkm
(t + jT ) is also a 2kmT -periodic solution

of (HSkm
). Hence, if the maximum of |xkm

| occurs in hkm
∈ [−kmT, kmT ] then, the

maximum of |xkm,j | occurs in skm,j = hkm
− jT. Then there exists a jkm

∈ Z such that
skm,jkm

∈ [−T, T ]. Consequently,

∥

∥xkm,jkm

∥

∥

L∞

2kmT

= max
t∈[−T,T ]

∣

∣xkm,jkm
(t)
∣

∣ .

Suppose, contrary to our claim, that x0 = 0. Then, by Lemma 3.3,

∥

∥xkm,jkm

∥

∥

L∞

2kmT

= max
t∈[−T,T ]

∣

∣xkm,jkm
(t)
∣

∣→ 0,

which contradicts (3.45).2
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Abstract: This paper presents a new approach dealing with the decentralized con-
trol of non linear interconnected systems. The key of this work is, on one hand, the
description of the nonlinear systems using the Kronecker product notations which al-
low important manipulations, and on the other hand the use of the Lyapunov’s direct
method of stability analysis, associated with a quadratic function. The proposed ap-
proach is then applied to an industrial process: a three-machine-based interconnected
power system, to improve its decentralized stabilization.

Keywords: nonlinear systems; interconnected systems; decentralized stabilization;
Kronecker product; power systems.

Mathematics Subject Classification (2010): 93A15, 93D15.

1 Introduction

In recent years, modern control methods have found their way into decentralized design
of interconnected large scale nonlinear systems, leading to a wide variety of new concepts
and results ( [2]- [4], [18], [23]).

Decentralized control aims mainly to carry out a feedback control for each subsystem
using only its local state variables.

The decentralized control law implementation is more feasible and more economical
than a centralized control being dependant on the whole state variables for each subsys-
tem local control. This kind of control is very important for the power systems which
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are generally large scale, interconnected and highly nonlinear systems. Centralized con-
trol for the large scale power system is usually impractical: first, because it requires
an intensive exchange of information between many sub-systems that are geographically
located in different and, generally distant areas; and second for lack of computing ca-
pacity. Consequently, a decentralized nonlinear controller, for which the development is
based only on local information and measurements, is often preferable in power industry
applications. A wide variety of properties for the decentralized control of power systems
are extensively studied in the literature and different design approaches are proposed
accordingly ( [2], [8], [11], [21], [22], [24]).

It is essential to verify that the collection of these decentralized local controls should
obviously guarantee the stability of the global interconnected system.

Analysis of decentralized stability properties of large scale systems has been the mo-
tivation of many works over the past twenty years ( [3], [5], [9], [16]- [18]).

Power system stability has been recognized as an important problem for secure system
operation. Many major blackouts caused by power system instability have illustrated the
importance of this phenomenon. Historically, transient instability has been the dominant
stability problem for most systems and also the focus of much of the power industry’s
attention related to system instability ( [8], [11]- [15]). It is mainly interested in the
maintenance of synchronism between generators following a severe disturbance
In this context, we propose in this work a new decentralized control for the stability
of a class of non linear interconnected continuous systems based on polynomial mod-
eling. The description of these systems using Kronecker product [19] and the use of a
quadratic Lyapunov function have allowed the definition of sufficient conditions for the
global asymptotic stability of the system equilibrium.

This paper is organized as follows: The next part exposes a brief summary of the
main mathematical background that has supported this work. The third part will first
present the studied systems, then expose the approach outcome of this work. The fourth
and final part aims to show the applicability of the proposed design tool, on the basis of
an illustrative example of a three-machine-based interconnected power system, followed
by the concluding section.

2 Mathematical Notations and Properties

The dimensions of the matrices used in this section are the following:

A(p× q), B(r × s), C(q × g), D(s× h), E(n× p), P (n× n), X(n× 1) ∈ R
n,

Y (m× 1) ∈ R
m, Z(q × 1) ∈ R

q.

Throughout the paper, the following notations are used: In is the identity matrix of
order n, On×m is the (n×m) null matrix and AT is the transpose matrix of A.

2.1 Kronecker product

The Kronecker product of A and B denoted by A⊗B is the (pr× qs) matrix defined by:

A⊗B =







a11B . . . a1qB
...

. . .
...

ap1B . . . apqB






.
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2.2 Kronecker power of vectors

The Kronecker power of order i, X [i], of the vector X is defined by

{

X [0]= 1,

X [i]= X [i−1]⊗X= X⊗X [i−1], X [i]∈R
ni

, for i ≥ 1.
(1)

2.3 Permutation matrix

Let eni denote the ith vector of the canonic basis of Rn, the permutation matrix denoted
by Un×m is defined by [19]:

Un×m =

n
∑

i=1

m
∑

k=1

(eni .e
mT

k )⊗ (emk .en
T

i ). (2)

This matrix is square (nm× nm) and has precisely a single ”1” in each row and in each
column. The main useful properties of this matrix are the following:

U−1
n×m = UT

n×m = Um×n, (3)

Un×1 = U1×n = Un. (4)

This matrix ensures the following relations

B ⊗A = Ur×p(A⊗B)Uq×s, (5)

X ⊗ Y = Un×m(Y ⊗X), (6)

X [k] = Uni×nk−iX [k], ∀i ≤ k. (7)

2.4 Vec-function

The function V ec of a matrix was defined in [19] as follows:

A = [A1 A2 . . . Aq], vec(A) =











A1

A2

...
Aq











, (8)

where ∀i ∈ {1, . . . , q}, Ai is a vector of Rp. We recall the following useful rules of this
function, given in [19]:

V ec(E.A.C) = (CT ⊗ E)V ec(A), (9)

V ec(AT ) = Up×qV ec(A). (10)

2.5 Mat-function

An important matrix-valued linear function of a vector, denoted by Mat(n,m)(.) was
defined in [20] as follows. If V is a vector of dimension p = n.m then M = Mat(n,m)(V )
is the (n×m) matrix verifying: V = V ec(M). We recall the following useful lemma for
this function, given in [20].
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Lemma 2.1 Consider the matrix A with p = n and q = nk (k ∈ N), and let i and j

be two integers verifying i+ j = k + 1 and i ≥ 1. Then

Mat(ni,nj)(V ec(PA)) = Uni−1×n(P ⊗ Ini−1).Mi−1,j(A) (11)

with

Mi−1,j(A) =













Mat(ni−1,nj)(A
1T )

Mat(ni−1,nj)(A
2T )

...

Mat(ni−1,nj)(A
nT

)













,

where Ai denotes the ith row of the matrix A. i.e.,

A =











A1

A2

...

An











.

3 The Proposed Decentralized Stabilization Approach

3.1 Description of the studied systems

We consider the class of nonlinear systems, formed by the interconnection of n subsys-
tems, and for which the r order polynomial development is composed only with the odd
Kronecker power of vectors, i.e., r = 2s− 1, s ∈ N:

Ẋi = fi(Xi) +BiUi + gi(X1, X2, . . . , Xn),
i = 1, 2, . . . , n

(12)

with

fi(Xi) =
s−1
∑

k=0

Ai,2k+1X
[2k+1]
i (13)

and

gi(X1,. . . ,Xn)=
r

∑

s1,...,sn∑
i
si≤r

Gs1,...,snX
[s1]
1 ⊗. . .⊗X

[si]
i ⊗. . .⊗X [sn]

n , (14)

where Xi ∈ R
ni is the state vector of the ith subsystem, Bi is the control matrix of the

ith subsystem, Ui is the control of the ith subsystem, Ai,2k+1 ∈ R
ni×n

2k+1

i , Gs1,...,sn are
matrices with appropriate dimensions.

The overall interconnected system is described by the following compact form:

Ẋ = A1X +A3X
[3] +A5X

[5] + . . .+ArX
[r] + BU

=

s−1
∑

j=0

A2j+1X
[2j+1] + BU, r = 2s− 1, s ∈ N,

(15)

where X = [XT
1 , X

T
2 , . . . , X

T
n ]

T ,X ∈ R
N , N =

n
∑

i=1

ni, A2j+1 ∈ R
N×N2j+1

,

B = diag(B1, B2, . . . , Bn), U = (UT
1 , UT

2 , . . . , UT
n )T .
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3.2 Nonlinear decentralized control stabilization

We expose in this section our approach of a decentralized control synthesis of the inter-
connected global system (15). The decentralized control laws of the n subsystems are
taken in the following form:

Ui = −(Ki1Xi +Ki3X
[3]
i +Ki5X

[5]
i + . . .+KirX

[r]
i ),

i = 1, . . . , n,
(16)

which leads to the following global control law

U =
(

U1 . . . Un

)T

= −(K1X +K3X
[3] +K5X

[5] + . . .+KrX
[r])

= −

s−1
∑

j=0

K2j+1X
[2j+1], r = 2s− 1,

(17)

where K1 = diag(Ki1), i = 1, . . . , n and matrices K2j+1, j = 1, . . . , s − 1 are expressed
from Ki,2j+1.

Let Qi(ni × ni), i = 1, . . . , n be symmetric positive definite matrices, and α be a
positive real. And let Pi (i = 1, . . . , n) be the symmetric positive definite matrices
solution of the following Riccati equations

AT
i1Pi + Pi1Ai1 − Pi(BiR

−1
i BT

i )Pi +Qi + 2αPi = 0, (18)

where Ai1 is the characteristic matrix of the ith subsystem. And let the gains Ki,2j+1

(i = 1, . . . , n and j = 1, . . . , s− 1) be given by

{

Ki1 = R−1
i BT

i Pi,

Mj,j+1(Ki,2j+1) = (R−1
i BT

i Pi)⊗ I
n
j

i
.

(19)

We have then the following theorem.

Theorem 3.1 The decentralized control law (16) (or (17)) is globally and asymptot-

ically stabilizable for system (15) if there exist (ni × ni) positive definite matrices Qi,

i = 1, . . . , n and α ∈ R such that matrices F1, F3, F2s−1 defined by

F1 = Q+ PBR−1BTP + 2αP − (PH +HTP ) (20)

with Q = diag(Qi), P = diag(Pi), R−1 = diag(R−1
i ), H is the interconnection linear

part, and for j ≥ 1,

F2j+1=(PBR−1BTP )⊗ INj −(P⊗ INj )Mj,j+1(A2j+1) (21)

are semi-positive definite.

Proof. The proof of the above theorem is based on Lyapunov direct method. Let V
be the Lyapunov function defined by the following quadratic form:

V = X TPX , (22)



162 S. ELLOUMI AND N. BENHADJ BRAIEK

where P = diag(Pi) is an (n × n) definite symmetric matrix. The global asymptotic
stability of the equilibrium state X = 0 of system (15) is ensured when the time derivative
V̇ (X ) of V (X ) is negative definite for all X ∈ R

n. One has

V̇ = Ẋ TPX + X TP Ẋ . (23)

Using (15), expression (23) leads to

V̇ = 2

s−1
∑

j=0

(V ec(PA2j+1 − PBK2j+1))
TX [2j+2]

= 2

s−1
∑

j=0

X [j+1]T Mat(nj−1,nj)(V ec(PA2j+1 − PBK2j+1))X
[j+1].

(24)

Using Lemma 1, we get

Mat(nj+1,nj+1)(V ec(PA2j+1−PBK2j+1))=Unj ,n(P⊗ Inj )Mnj ,nj+1(A2j+1−BK2j+1). (25)

The use of (25) and the following expression

∀i, j ∈ N; Uni×njX [i+j] = X [i+j] (26)

yield

V̇ = 2

s−1
∑

j=0

X [j+1]TMat(nj−1,nj)(V ec(PA2j+1 − PBK2j+1))X
[j+1]

= 2

s−1
∑

j=0

X [j+1]TUnj ,n(P ⊗ Inj )Mnj ,nj+1(A2j+1 − BK2j+1)X
[j+1]

= 2

s−1
∑

j=0

X [j+1]T (P ⊗ Inj )Mnj ,nj+1(A2j+1 − BK2j+1)X
[j+1]

= 2

s−1
∑

j=0

X [j+1]T (P ⊗ Inj )(Mnj ,nj+1(A2j+1)−Mnj ,nj+1(BK2j+1))X
[j+1]

= 2

s−1
∑

j=0

X [j+1]T (P ⊗ Inj )(Mnj ,nj+1(A2j+1)− BR−1BTP ⊗ Inj−1 )X [j+1].

(27)

Then we obtain the following expression:

V̇ = −X
T
MX (28)

with

X =







X
...

X [j+1]







T

, M =







F1 O

. . .

O 2(P ⊗ Inj )F2j+1.






. (29)

To ensure the asymptotic stability of system (15) with the control law (17), V̇ should
be negative definite, then the matrix M should be positive definite, which is equivalent
to F1 of expression (20) is positive definite and F2j+1, for j ≥ 1, of expression (21) are
semi-positive definite.
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3.2.1 Second version of decentralized stabilizability conditions

We consider system model (15) of the global interconnected system, and let

A2j+1 = A1
2j+1 +A2

2j+1, (30)

where A1
2j+1 expressed from Ai,2k+1 (matrices of separated subsystems) and A2

2j+1 ex-

pressed from G
k,s
ij (corresponding to interconnections).

If there exist symmetric positive definite matricesQi,j+1(n
j+1
i ×n

j+1
i ), j = 1, . . . , s−1,

such that the matrices Pi, solutions of Riccati equations (18), will be solutions of the
following equations, for i = 1, . . . , n :

(Pi⊗I
n
j

i
)Mj,j+1(Ai,2j+1)+MT

j,j+1(Ai,2j+1)(Pi⊗I
n
j

i
)−(PiBiR

−1
i BT

i Pi)⊗I
n
j

i
+Qi,j+1= 0. (31)

Each of isolated decoupled subsystems, in which all the interactions are assumed to be
zero, can be stabilized with control vector Ui of (16), where the gainsKi,2j+1, i = 1, . . . , n
and j = 1, . . . , s− 1 are given by

{

Ki1 = R−1
i BT

i Pi,

Mj,j+1(Ki,2j+1) = (R−1
i BT

i Pi)⊗ I
n
j

i
.

(32)

Now the presence of interconnections will influence the stability, and it is necessary to
obtain sufficient conditions to guarantee the stability of the overall system. This is given
by the following theorem.

Theorem 3.2 The decentralized control law (16) (or (17)) is globally and asymptot-

ically stabilizable for system (15) if there exist (ni × ni) positive definite matrices Qi,

i = 1, . . . , n, α ∈ R, and (nj+1
i ×n

j+1
i ) positive definite matrices Qi,j+1, j ≥ 1, such that

matrix F1, defined by

F1 = Q1 + PBR−1BTP + 2αP − (PA2
1 +A2T

1 P ), (33)

where Q1 = diag(Qi), P = diag(Pi), R−1 = diag(R−1
i ), A2

1 defined in (30) is positive

definite, and for j ≥ 1

F2j+1= Qj+1+(PBR−1BTP )⊗Inj−[MT
j,j+1(A

2
2j+1)(P⊗Inj)+(P⊗Inj )Mj,j+1(A

2
2j+1)], (34)

where Qj+1 = diag(Qi,j+1) are semi positive definite.

Proof. Let V be the Lyapunov function defined by the following quadratic form

V = X TPX . (35)

The development of V̇ leads to

V̇ = X T(PA1+A
T
1 P−PBK1 −KT

1 B
TP )X+2

s−1
∑

j=1

X [j+1]T(⊗Inj)(Mj,j+1(A2j+1)

−(BR−1BTP )⊗ Inj )X [j+1].

(36)

Then using (18) and (31) in (36), we get

V̇=−X T (Q1 + PBR−1BTP + 2αP − (PA2
1 +A2T

1 P ))X−

s−1
∑

j=1

X [j+1]T {Qj+1

+(PBR−1BTP )⊗ Inj −[MT
j,j+1(A

2
2j+1)(P⊗ Inj)+(P⊗ Inj)Mj,j+1(A

2
2j+1)]}X

[j+1].

(37)
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The expression (37) is then equivalent to

V̇ = −X
T
MX (38)

with

X =







X
...

X [j+1]







T

, M =







F1 O

. . .

O F2j+1






. (39)

To ensure the asymptotic stability of system (15) with the control law (17), V̇ should be
negative definite, then the matrix M should be positive definite, which is equivalent to
F1 is positive definite and F2j+1, j ≥ 1 is semi-positive definite.

4 Application of the Proposed Control to a Multimachine Power System

We propose in this part to show that it is possible to apply the proposed decentralized
control method to an industrial process. It consists in studying the stability by decen-
tralized control of a power system composed of three interconnected machines, (Figure
1), characterized by the parameters indicated in Table 1.

4.1 Multimachine power system modelisation

A three machine power system controlled by the steam valve opening, can be described
with the interconnection of three subsystems as follows [21]:

Ẋi(t) = AiXi(t) +BiUi(t) +

3
∑

j=1,j 6=i

pijGijgij(Xi, Xj); i = 1, · · · , 3, (40)

where Xi(t) is the state vector defined by Xi(t)
T=[∆δi(t) ωi(t) ∆Pmi

(t) ∆Xei(t)],
∆δi(t) = δi(t) − δi0, ∆Pmi

(t) = Pmi
(t) − Pmi0, ∆Xei(t) = Xei(t) − Xei0, Ui(t) is the

control, Ui(t) = ∆Xei(t),

Ai =



















1 0 0 0

−
Di

2Hi

0 −
ω0

2Hi

0

0 0 −
1

Tmi

Kmi

Tmi

−
Kei

TeiRiω0
0 0 −

1

Tei



















, Bi =











0
0
0
1

Tei











, Gij =













0

−
ω0E

′
qiE

′
qjBij

2Hi

0
0













,
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gij(xi, xj) = sin (δi(t)− δj(t)) − sin (δi0 − δj0), where:
pij
δi
ωi

Pmi

Xei

Hi

Di

Tmi

Kmi

Tei

Tei

Ri

Bij

ω0

E′
qi

E′
qj

xdi

x′
di

xTi

xadi

T ′
d0i

xij

a constant of either 1 or 0 (if 0, then jth machine has no connection with ith one);
the rotor angle for ith machine, in radian;
the relative speed for ith machine, in radian/second;
the mechanical power for ith machine, in pu;
the steam valve opening for ith machine, in pu;
the inertia constant for ith machine, in second;
the damping coefficient for ith machine, in pu;
the time constant for ith machine’s turbine, in second;
the gain of ith machine turbine;
the time constant of ith machine’s speed governor, in second;
the gain of ith machine’s speed governor;
the regulation constant of ith machine, in pu;
the nodal susceptance between ith and jth machines, in pu;
the synchronous machine speed, in radian/second;
the internal transient voltage for ith machine, in pu, which is a constant;
the internal transient voltage for ith machine, in pu, which is a constant;
the direct axis reactance of the ith generator, in pu;
the direct axis transient reactance of the ith generator, in pu;
the transformer reactance;
the mutual reactance between the excitation coil and the stator coil, in p.u.;
the direct axis transient short-circuit time constant, in second;
the transmission line reactance between the ith and the jth generators, in pu;

δi0, Pmi0 and Xei0 are the initial values of δi(t), Pmi
(t) and Xei(t).

Machine 1 Machine 2 Machine 3
xd(pu) 1.863 2.36 2.36
x′
d(pu) 0.257 0.319 0.319

xT (pu) 0.129 0.11 0.11
xad(pu) 1.712 0.712 0.712
T ′
d0(pu) 6.9 7.96 7.96

H(s) 4 5.1 5.1
D(pu) 5 3 3
Tm(s) 0.35 0.35 0.35
Te(s) 0.1 0.1 0.1
R 0.05 0.05 0.05
Km 1 1 1
Ke 1 1 1

x12(pu) 0.55
x13(pu) 0.53
x23(pu) 0.6
ω0(rad/s) 314.159

Table 1: Three-machine-based system parameters.
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Figure 1: Three-machine example system.

4.1.1 Polynomial model

The nonlinear analytic model (40) can be represented with a third order truncated poly-
nomial form, which is considered to be sufficient for the studied power system modeling:

Ẋi=Ai,1Xi+Ai,3X
[3]
i +BiUi +

3
∑

j=1
j 6=i

3
∑

k=1

k
∑

s=1

pijG
k,s
ij X

[k−s]
i

⊗
X

[s]
j , i = 1, 2, 3. (41)

The global interconnected system is then modelled with the following polynomial form

Ẋ = A1X +A3X
[3] + BU, (42)

where X = [XT
1 , X

T
2 , X

T
3 ]

T ,














A1 = diag(A1, A2, A3),A1(2, 1) = −54.98,
A1(2, 5) = 27.49,A1(2, 9) = 27.49,A1(6, 5) = −46.2,
A1(6, 1) = 23.1,A1(6, 9) = 23.1,A1(10, 9) = −50.59,
A1(10, 1) = 23.1,A1(10, 5) = 27.49,























































A3(2, 1)=9.16,A3(6, 769)=−13.745,A3(8, 1537)=−13.745,
A3(2, 65)=−13.745,A3(6, 833)=7.7,A3(8, 1601)=−13.745,
A3(2, 129)=−13.745,A3(6, 897)=−11.55,A3(8, 1665)=8.43,
A3(2, 257)=13.745,A3(6, 577)=13.745,A3(8, 1153)=13.745,
A3(2, 513)=13.745,A3(6, 1089)=11.55,A3(8, 1409)=13.745,
A3(2, 833)=−4.58,A3(6, 1)=−3.85,A3(8, 1)=−3.85,
A3(2, 1664)=−4.58,A3(6, 1665)=−13.745,A3(8, 833)=−4.58,
A3(i, j) = 0 for the other values of i and j 1 ≤ i ≤ 12,
et 1 ≤ j ≤ 1728.

We want to compute the decentralized control laws given by (16) and (19) for i = 1, 2, 3.
For α, Ri and Qi, i = 1, 2, 3, given by α = 0, Ri = 2, Qi = diag{0.001, 0.001, 0.01, 0.01},
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we obtain:

K11 = [55.90 24.48 349.25 103.87], K21 = K31 = [55.90 33.06 359.28 106.62].

We can easily verify that matrices F1 and F3 given in Theorem 1 are positive defined,
which guarantees the stability of system (42) by the decentralized control law.

Firstly, we want to know the behavior of the proposed power system in free operating
conditions. The curves of Figure 2 show the strongly transient evolution of the power
system state variables, when it is simulated under these conditions towards a perturbation
on the first machine rotor angle.
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Figure 2: State variable evolution in free operating conditions, toward a perturbation on δ1.

Now, to test the performances of the established decentralized control law, we carry
on the simulation of the controlled power system towards some perturbations occurred
on state variables. Figure 3 shows the case when a perturbation is occurred on the rotor
angle of the first machine. Figure 4 illustrates the corresponding control signal evolution.
Regarding to Figure 5 and Figure 6 they show, respectively, the evolution of the three-
machine state variables when a perturbation occurs on the relative speed of the second
machine, and the corresponding control.

From the simulation results shown in these figures, it can be seen that the nonlinear
decentralized control is able to damp the oscillations of the system and to enhance tran-
sient stability of the multimachine power system and this despite different fault locations
that occur on state variables.

5 Conclusion

In this paper, we have developed and validated a new decentralized control approach of
nonlinear interconnected polynomial systems. The studied systems are described by a
polynomial model with odd Kronecker power of state vectors.

The nonlinear decentralized control law, which is also described by a polynomial form,
can guarantee the asymptotic stability of the overall interconnected system when some
sufficient conditions are verified.
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Figure 3: State variable evolution towards a perturbation on δ1.

0 1 2 3
−15

−10

−5

0

5

time(s)

u 1 (
 p

u)

0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

time(s)

u 2 (
 p

u)

0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

time(s)

u 3 (
 p

u)

Figure 4: The corresponding control signal evolution.

This new approach is then validated by numerical simulation study on a three-
interconnected-machine power system. The proposed study has shown the high per-
formances of the considered control which is able to damp the system oscillations and to
enhance the power system transient stability and this despite the high nonlinear inter-
connections between generators and different perturbations that can occur on the system
state variables.
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Figure 5: State variable evolution towards a perturbation on ω2.
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Figure 6: The corresponding control signal evolution.
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1 Introduction

In this paper, we consider the fourth order differential equation

u′′′′(t) + g(t)f(u(t)) = 0, 0 ≤ t ≤ 1, (1)

together with the boundary conditions

u(0) = u′(p) = u′′(1) = u′′′(1) = 0. (2)

Throughout this paper, we assume that

(H1) p is a real constant such that 1−
√
3/3 ≤ p ≤ 1, f : [0,∞) → [0,∞) and g : [0, 1] →

[0,∞) are continuous functions, and g(t) 6≡ 0 on [0, 1].
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In this paper, we will study positive solutions of the problem (1)–(2). By a positive

solution, we mean a solution u(t) to the problem (1)–(2) such that u(t) > 0 for t ∈ (0, 1).
The fourth order equation (1), known as the beam equation, has been studied by many

authors under various boundary conditions and by different approaches. For example, in
2006, Anderson and Avery [2] considered the fourth order four-point right focal boundary
value problem

u′′′′(t) + f(u(t)) = 0, 0 < t < 1, (3)

u(0) = u′(q) = u′′(r) = u′′′(1) = 0, (4)

under the assumption that 1/2 < q < (1 + q)/2 < r < 1. We note that if we allow r = 1,
then (4) reduces to (2). In 2005, Yang [9] considered the boundary value problem

u′′′′(t) = g(t)f(u(t)), 0 ≤ t ≤ 1, (5)

u(0) = u′(0) = u′′(1) = u′′′(1) = 0, (6)

and obtained sufficient conditions for the existence and nonexistence of positive solutions
to the problem (5)–(6). We note that if we let p = 0, then (2) reduces to (6).

For some other results on boundary value problems for the beam equation, we refer
the reader to the papers [1, 3–6, 8].

In this paper, we shall first prove some upper and lower estimates to positive solutions
of the problem (1)–(2), and then establish some sufficient conditions for the existence
and non-existence of positive solutions.

This paper is organized as follows. In Section 2, we give the Green function for the
problem (1)–(2), state the Krasnosel’skii’s fixed point theorem, and fix some notations.
In Section 3, we present some a priori estimates to positive solutions to the problem. In
Section 4, we establish some existence and nonexistence results for positive solutions.

2 Preliminaries

The Green function G : [0, 1]× [0, 1] → [0,∞) for the problem (1)–(2) is

G(t, s) = −t[p2/2− ps− ((p− s)2/2)H(p− s)]

−t2s/2 + t3/6− ((t− s)3/6)H(t− s).

Here, H : (−∞,∞) → (−∞,∞) is the unit step function given by

H(t) =

{

1, if t ≥ 0,

0, if t < 0.

The problem (1)–(2) is then equivalent to the integral equation

u(t) =

∫ 1

0

G(t, s)g(s)f(u(s)) ds, 0 ≤ t ≤ 1. (7)

It is easy to verify that G is a continuous function. Also, we note that if 0 ≤ s ≤ p, then

G(p, s) = s3/6 ≥ 0;

if p ≤ s ≤ 1, then
G(p, s) = p2(3s− 2p)/6 ≥ 0.
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In summary, we have G(p, 0) = 0 and

G(p, s) > 0, 0 < s ≤ 1.

We will need the following simplified version of the Krasnosel’skii fixed point theorem
(see [7]) to prove some of our results.

Theorem 2.1 Let (X, ‖ · ‖) be a Banach space over the reals, and let P ⊂ X be a

cone in X. Let H1 and H2 be distinct positive numbers. If L : P → P is a completely

continuous operator such that

(K1) If v ∈ P and ‖v‖ = H1, then ‖Lv‖ ≤ ‖v‖, and

(K2) If v ∈ P and ‖v‖ = H2, then ‖Lv‖ ≥ ‖v‖.

Then L has a fixed point v in P with min{H1, H2} ≤ ‖v‖ ≤ max{H1, H2}.

For the rest of this paper, we let X = C[0, 1] be equipped with the norm

‖v‖ = max
t∈[0,1]

|v(t)|, for all v ∈ X.

Clearly, X is a Banach space. We define

Y = {v ∈ X | v(t) ≥ 0 for 0 ≤ t ≤ 1},

and define the operator T : Y → X by

(Tu)(t) =

∫ 1

0

G(t, s)g(s)f(u(s)) ds, 0 ≤ t ≤ 1. (8)

It is easy to see that if (H1) holds, then T : Y → Y is a completely continuous operator.
We also define the constants

F0 = lim sup
x→0+

f(x)

x
, f0 = lim inf

x→0+

f(x)

x
,

F∞ = lim sup
x→+∞

f(x)

x
, f∞ = lim inf

x→+∞

f(x)

x
.

These constants, which are associated with the function f , will be used in Sections 4 and
5.

3 Estimates for Positive Solutions

In this section, we derive some upper and lower estimates for positive solutions of the
problem (1)–(2).

Lemma 3.1 If (H1) holds, then G(t, s) ≤ G(p, s) for 0 ≤ t, s ≤ 1.

Proof. We take four cases to prove this inequality. If t ≤ s ≤ p, then

G(p, s)−G(t, s) =
(s− t)3

6
≥ 0.
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If s ≤ t ≤ p or s ≤ p ≤ t, then

G(p, s)−G(t, s) = 0.

If t ≤ p ≤ s or p ≤ t ≤ s, then

G(p, s)−G(t, s) =
(t− p)2

6
(2s− 2p+ s− t) ≥ 0.

If p ≤ s ≤ t, then

G(p, s)−G(t, s) =
(s− p)2

6
(2t− 2p+ t− s) ≥ 0.

The proof is now complete.

We define the function a : [0, 1] → [0,∞) by

a(t) =
3p(2− p)t− 3t2 + t3

p2(3− 2p)
, 0 ≤ t ≤ 1.

We notice that

a(0) = 0, a(1) =
3(
√
3/3 + 1− p)(p− (1 −

√
3/3))

p2(3 − 2p)
≥ 0,

and

a′′(t) =
−6(1− t)

p2(3− 2p)
≤ 0, 0 ≤ t ≤ 1.

Therefore, a(t) is concave downward on [0, 1]. Since a(0) = 0 and a(1) ≥ 0, we have

a(t) ≥ 0, 0 ≤ t ≤ 1.

It is easy to see that
a(t) ≥ min{t, 1− t}, 0 ≤ t ≤ 1. (9)

We leave the verification of (9) to the reader.

Lemma 3.2 Suppose (H1) holds. Then G(t, s) ≥ a(t)G(p, s) for 0 ≤ t, s ≤ 1.

Proof. We take four cases to prove the lemma.
If t ≤ s ≤ p, then

G(t, s)− a(t)G(p, s) =
t

6(3− 2p)p2
[s2(3− s− 2p)(s− p)2

+s(s− t)(p− s)(2s− 2s2 + 2p− 2p2 + s− sp+ p− sp)

+(s− t)2(2p2 − 2p3 + p2 − s3)]

≥ 0.

If s ≤ t ≤ p or s ≤ p ≤ t, then

G(t, s)− a(t)G(p, s) =
s3(t− p)2(3− t− 2p)

6(3− 2p)p2
≥ 0.
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If t ≤ p ≤ s or p ≤ t ≤ s, then

G(t, s)− a(t)G(p, s) =
t(t− p)2(1− s)

2(3− 2p)
≥ 0.

If p ≤ s ≤ t, then

G(t, s)− a(t)G(p, s) =
t(p− t)2(1− s)

6− 4p
+

(s− t)3

6

≥
1

6

[

t(p− t)2(1− s) + (s− t)3
]

≥
1

6

[

t(p− t)2(1− s) + (p− t)2(s− t)
]

=
1

6
(p− t)2s(1− t)

≥ 0.

This completes the proof of the lemma.

Lemma 3.3 Suppose (H1) holds. Then G(t, s) ≥ 0 for 0 ≤ t, s ≤ 1.

Proof. The lemma follows easily from Lemma 3.2 and the facts that a(t) ≥ 0 for
0 ≤ t ≤ 1 and G(p, s) ≥ 0 for 0 ≤ s ≤ 1.

Lemma 3.4 Suppose (H1) holds. If u ∈ C4[0, 1] satisfies the boundary conditions

(2), and
u′′′′(t) ≤ 0 for 0 ≤ t ≤ 1, (10)

then ‖u‖ = u(p), u(t) ≥ 0, and

a(t)u(p) ≤ u(t) ≤ u(p) for 0 ≤ t ≤ 1. (11)

Proof. Suppose u ∈ C4[0, 1] satisfies (2) and (10). If 0 ≤ t ≤ 1, then

u(t) =

∫ 1

0

G(t, s)(−u′′′′(s))ds ≥ 0,

u(t) =

∫ 1

0

G(t, s)(−u′′′′(s))ds ≥ a(t)

∫ 1

0

G(p, s)(−u′′′′(s))ds = a(t)u(p),

and

u(t) =

∫ 1

0

G(t, s)(−u′′′′(s))ds ≤

∫ 1

0

G(p, s)(−u′′′′(s))ds = u(p),

which proves the lemma.
The next theorem follows immediately from Lemma 3.4.

Theorem 3.1 Suppose (H1) holds. If u ∈ C4[0, 1] is a non-negative solution to the

problem (1)–(2), then u(t) satisfies (11).

We now define

P =
{

v ∈ X : v(p) ≥ 0, a(t)v(p) ≤ v(t) ≤ v(p) on [0, 1]
}

.

Clearly P is a positive cone in X . It is obvious that if u ∈ P , then u(p) = ‖u‖. We
see from Theorem 3.1 that if u(t) is a nonnegative solution to the problem (1)–(2), then
u ∈ P . In a similar fashion to Lemma 3.4, we can show that T (P ) ⊂ P . To find a
positive solution to the problem (1)–(2), we need only to find a fixed point u of T such
that u ∈ P and u(p) = ‖u‖ > 0.
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4 Existence and Nonexistence Results

First, we define some important constants:

A =

∫ 1

0

G(p, s)g(s)a(s) ds and B =

∫ 1

0

G(p, s)g(s) ds.

The next two theorems provide sufficient conditions for the existence of at least one
positive solution for the problem (1)–(2).

Theorem 4.1 Suppose that (H1) holds. If BF0 < 1 < Af∞, then the problem (1)–
(2) has at least one positive solution.

Proof. First, we choose ε > 0 such that (F0 + ε)B ≤ 1. By the definition of F0,
there exists H1 > 0 such that f(x) ≤ (F0 + ε)x for 0 < x ≤ H1. Now for each u ∈ P

with ‖u‖ = H1, we have

‖Tu‖ = (Tu)(p) =

∫ 1

0

G(p, s)g(s)f(u(s)) ds

≤

∫ 1

0

G(p, s)g(s)(F0 + ε)u(s) ds

≤ (F0 + ε)‖u‖

∫ 1

0

G(p, s)g(s) ds

= (F0 + ε)‖u‖B ≤ ‖u‖.

Hence, condition (K1) in Theorem 2.1 is satisfied.
Next we choose δ > 0 and τ ∈ (0, 1/4) such that

∫ 1−τ

τ

G(p, s)g(s)a(s) ds · (f∞ − δ) ≥ 1.

There exists H3 > 2H1 such that f(x) ≥ (f∞ − δ)x for x ≥ H3. Let H2 = H3/τ . If
u ∈ P and ‖u‖ = H2, then for each t ∈ [τ, 1− τ ], we have

u(t) ≥ H2a(t) ≥ H2 min{t, 1− t} ≥ H2τ = H3.

Therefore, for each u ∈ P with ‖u‖ = H2, we have

‖Tu‖ = (Tu)(p) =

∫ 1

0

G(p, s)g(s)f(u(s)) ds

≥

∫ 1−τ

τ

G(p, s)g(s)f(u(s)) ds

≥

∫ 1−τ

τ

G(p, s)g(s)(f∞ − δ)u(s) ds

≥

∫ 1−τ

τ

G(p, s)g(s)a(s) ds · (f∞ − δ)‖u‖ ≥ ‖u‖.

Thus, condition (K2) of Theorem 2.1 is satisfied. By Theorem 2.1, T has a fixed point u
such that min{H1, H2} = H1 ≤ ‖u‖ ≤ max{H1, H2} = H2. This completes the proof of
the theorem.

The proof of the following companion result is very similar to that of Theorem 4.1
and is therefore omitted.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, VOLUME (ISSUE) (YEAR) 171–178 177

Theorem 4.2 Suppose that (H1) holds. If BF∞ < 1 < Af0, then the problem (1)–
(2) has at least one positive solution.

The next two theorems provide sufficient conditions for the nonexistence of positive
solutions to the problem (1)–(2).

Theorem 4.3 Suppose (H1) holds. If Bf(x) < x for all x > 0, then the problem

(1)–(2) has no positive solutions.

Proof. Assume to the contrary that u(t) is a positive solution of the problem (1)–(2).
Then u ∈ P , u(t) > 0 for 0 < t < 1, and

u(p) =

∫ 1

0

G(p, s)g(s)f(u(s)) ds

< B−1

∫ 1

0

G(p, s)g(s)u(s) ds

≤ B−1u(p)

∫ 1

0

G(p, s)g(s) ds

= B−1u(p)B = u(p),

which is a contradiction.
The proof of our next theorem is similar to the one above.

Theorem 4.4 Suppose (H1) holds. If Af(x) > x for all x > 0, then the problem

(1)–(2) has no positive solutions.

We conclude this paper with an example.

Example 4.1 Consider the fourth order boundary value problem

u′′′′(t) = λ(1 + t)u(t)(1 + 3u(t))/(1 + u(t)), 0 ≤ t ≤ 1, (12)

u(0) = u′(3/4) = u′′(1) = u′′′(1) = 0. (13)

Here λ > 0 is a parameter. In this example, p = 3/4, g(t) = 1 + t, and

f(u) = λu(1 + 3u)/(1 + u).

It is easy to see that f0 = F0 = λ, f∞ = F∞ = 3λ, and

λx < f(x) < 3λx for x > 0.

Calculations indicate that

A = 142837/2064384, B = 363/5120.

By Theorem 4.1, if
4.8176 ≈ 1/(3A) < λ < 1/B ≈ 14.1046,

then the problem (12)–(13) has at least one positive solution. From Theorems 4.3 and
4.4 we see that if

λ ≤ 1/(3B) ≈ 4.7015 or λ ≥ 1/A ≈ 14.4528,

then the problem (12)–(13) has no positive solutions.
This example shows that our existence and nonexistence results can be quite sharp.



178 J. R. GRAEF, L. KONG AND B. YANG

Acknowledgment

The research of B. Yang was supported by the Kennesaw State University Tenured Fac-
ulty Professional Development Full Paid Leave Program in Spring 2010.

References

[1] Agarwal, R. P. On a fourth-order boundary value problems arising in beam analysis.
Differential Integral Equations 2 (1989) 91–110.

[2] Anderson, D. R. and Avery, R. I. A fourth-order four-point right focal boundary
value problem. Rocky Mountain J. Math. 36(2) (2006) 367–380.

[3] Bai, Z. and Wang, H. On positive solutions of some nonlinear fourth-order beam
equations. J. Math. Anal. Appl. 270(2) (2002) 357–368.

[4] Dalmasso, R. Uniqueness of positive solutions for some nonlinear fourth-order equa-
tions. J. Math. Anal. Appl. 201(1) (1996) 152–168.

[5] Graef, J. R. and Yang, B. Existence and nonexistence of positive solutions of fourth
order nonlinear boundary value problems. Appl. Anal. 74(1–2) (2000) 201–214.

[6] Gupta, C. P. A nonlinear boundary value problem associated with the static equi-
librium of an elastic beam supported by sliding clamps. Internat. J. Math. Math.

Sci. 12(4) (1989) 697–711.

[7] Krasnosel’skii, M. A. Positive Solutions of Operator Equations. Noordhoff, Gronin-
gen, 1964.

[8] Ma, R. Existence and uniqueness theorems for some fourth-order nonlinear boundary
value problems. Internat. J. Math. Math. Sci. 23(11) (2000) 783–788.

[9] Yang, B. Positive solutions for a fourth order boundary value problem. Electronic
J. of Qualitative Theory of Differential Equations 2005(3) 1–17.



Nonlinear Dynamics and Systems Theory, 12 (2) (2012) 179–191

Existence, Uniqueness and Asymptotic Stability of

Solutions to Non-Autonomous Semi-Linear Differential

Equations with Deviated Arguments

Rajib Haloi 1∗, Dwijendra N. Pandey 2 and D. Bahuguna 3

1,3 Department of Mathematics, Indian Institute of Technology, Kanpur – 208 016, India.
2 Department of Mathematics, Indian Institute of Technology, Roorkee – 247667, India.

Received: June 8, 2011; Revised: March 20, 2012

Abstract: We consider a non-autonomous semi-linear differential equation of
parabolic type with a deviated argument in an arbitrary Banach space. Using the
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1 Introduction

The purpose of this article is to study the following differential equation in a Banach
space (X, ‖ · ‖):

du

dt
+A(t)u(t) = f(t, u(t), u(h(u(t), t))), t > 0;

u(0) = u0, u0 ∈ X.

}

(1)

We assume that for each t ≥ 0, −A(t) generates an analytic semigroup of bounded linear
operators on X , f : [0,∞) × X × X → X and h : X × [0,∞) → [0,∞). The nonlinear
continuous functions f and h satisfy suitable growth conditions in their arguments stated
in Section 2.
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Differential equations with deviated arguments model certain real world systems in
the theory of automatic control, the study of problems related with combustion in rocket
motion, the theory of self-oscillating systems, problems of long-term planning in eco-
nomics, biological systems, and many other systems in the areas of science and technol-
ogy [3]. Recently, many authors have studied the existence, uniqueness and continuous
dependence of a solution of the differential equation of the type (1) (see e.g. Gal [6, 7];
Grimm [8]; Jankowski [12]; Oberg [16]). More details of differential equation with de-
viated arguments can be found in Bahuguna and Muslim [1], Dubey [2], El’sgol’ts and
Norkin [3], Gal [6,7], Grimm [8], Jankowski [12], Kwaspisz [14] and Pandey et. al [17,18].

Oberg [16] has studied the following problem in R
n:

du(t)

dt
= f(t, u(t), u(h(t, u(t)))), t > 0;

u(0) = u0, u0 ∈ R
n,

}

(2)

where u : R+ → R
n, f : R+ × R

n × R
n → R

n and h : R+ × R
n → R+. The existence

theorem for a solution to Problem (2) has been obtained by the Banach fixed point
theorem, when f and h are continuous and uniformly locally Lipschitz on all of their
variables.

The following problem with a deviated argument in a Banach space (X, ‖·‖) has been
studied by Gal [6],

du

dt
−Au(t) = f(t, u(t), u(h(u(t), t))), t > 0;

u(0) = u0, u0 ∈ X,

}

(3)

where −A is the infinitesimal generator of an analytic semigroup of bounded linear oper-
ators on X . The existence and uniqueness of a solution of (3) has been established under
the following conditions on the functions f and h:

(a) f : [0,∞)×Xα ×Xα−1 → X satisfies

‖f(t, x, x′)− f(s, y, y′)‖ ≤ Lf (|t− s|θ1 + ‖x− y‖α + ‖x′ − y′‖α−1)

for all x, y ∈ Xα, x
′, y′ ∈ Xα−1, s, t ∈ [0,∞), for some constants Lf > 0 and

θ1 ∈ (0, 1].

(b) h : Xα × [0,∞) → [0,∞) satisfies

|h(x, t) − h(y, s)| ≤ Lh(‖x− y‖α + |t− s|θ2)

for all x, y ∈ Xα, s, t ∈ [0,∞), for some constants Lh > 0 and θ2 ∈ (0, 1].

For 0 < α ≤ 1, ‖x‖α = ‖(−A)αx‖, denotes the norm on Xα, the domain of (−A)α.
The main objective is to establish the existence, uniqueness and asymptotic stability

of a solution to Problem (1) generalizing some results of Gal [6]. In addition, we establish
a stability theorem.

The article is organized as follows. We provide preliminaries, assumptions and lemmas
needed for proving the main results in Section 2. We prove the local and global existence,
and stability of a solution in Section 3. An example is considered to illustrate the
application of the main results.
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2 Preliminaries and Assumptions

In this section, we give basic assumptions, preliminaries and lemmas necessary to prove
the main results. The material presented here can be found in more details by Friedman
[4], Henry [9], Krien [13], Ladas and Lakshmikantham [15], Sobolevskĭi [19] and Tanabe
[20].

Let (X, ‖ · ‖) be a complex Banach space. Let T ∈ [0,∞) and {A(t) : 0 ≤ t ≤ T }
be a family of closed linear operators on the Banach space X . We will use the following
assumptions [4].

(A1) The domain D(A) of A(t) is dense in X and independent of t.

(A2) For each t ∈ [0, T ], the resolvent R(λ;A(t)) exists for all Reλ ≤ 0 and there is a
constant C > 0 (independent of t and λ) such that

‖R(λ;A(t))‖ ≤
C

|λ|+ 1
, Reλ ≤ 0, t ∈ [0, T ].

(A3) For each fixed s ∈ [0, T ], there are constants C > 0 and ρ ∈ (0, 1], such that

‖[A(t)−A(τ)]A−1(s)‖ ≤ C|t− τ |ρ

for any t, τ ∈ [0, T ]. Here C and ρ are independent of t, τ and s.

The assumption (A2) implies that for each s ∈ [0, T ], −A(s) generates a strongly con-
tinuous analytic semigroup {e−tA(s) : t ≥ 0} in B(X), where B(X) denotes the Banach
algebra of all bounded linear operators on X . Then there exist positive constants C and
d such that

‖e−tA(s)‖ ≤ Ce−dt, t ≥ 0; (4)

‖A(s)e−tA(s)‖ ≤
Ce−dt

t
, t > 0, (5)

for all s ∈ [0, T ] [4].
The assumptions (A1), (A2) and (A3) imply the existence of a unique fundamental

solution {U(t, s) : 0 ≤ s ≤ t ≤ T } to the homogeneous Cauchy problem that possesses
the following properties [4]:

(i) U(t, s) ∈ B(X) and U(t, s) is strongly continuous in t, s for all 0 ≤ s ≤ t ≤ T .

(ii) U(t, s)x ∈ D(A) for each x ∈ X , for all 0 ≤ s ≤ t ≤ T .

(iii) U(t, r)U(r, s) = U(t, s) for all 0 ≤ s ≤ r ≤ t ≤ T .

(iv) the derivative ∂U(t, s)/∂t exists in the strong operator topology and belongs to
B(X) for all 0 ≤ s < t ≤ T , and strongly continuous in t, where s < t ≤ T .

(v)
∂U(t, s)

∂t
+A(t)U(t, s) = 0 and U(s, s) = I for all 0 ≤ s < t ≤ T .

For α > 0, we define negative fractional powers A(t)−α [4][cf. inequality 4] by

A(t)−α =
1

Γ(α)

∫ ∞

0

e−τA(t)τα−1dτ.
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Then A(t)−α is bijective and bounded linear operator on X . We define the positive
fractional powers of A(t) by A(t)α ≡ [A(t)−α]−1. Then A(t)α is a closed linear operator
with the domainD(A(t)α) dense inX andD(A(t)α) ⊂ D(A(t)β) if α > β. For 0 < α ≤ 1,
let Xα = D(A(0)α) and equip this space with the graph norm

‖x‖α = ‖A(0)αx‖.

Then Xα is a Banach space endowed with the norm ‖ · ‖α. If 0 < α ≤ 1, the embedding
X1 →֒ Xα →֒ X are dense and continuous. For each α > 0, define X−α = (Xα)

∗, the
dual space of Xα, and endow with the natural norm

‖x‖−α = ‖A(0)−αx‖.

Also the assumption (A3) implies that there exists a constant C > 0 such that

‖A(t)A(s)−1‖ ≤ C

for all 0 ≤ s, t ≤ T . Hence, for each t, the functional y → ‖A(t)y‖ defines an equivalent
norm on D(A) ≡ D(A(0)) and the mapping t → A(t) from [0, T ] into L(X1, X) is
uniformly Hölder continuous [10].

Let f and h be two continuous functions. For 0 < α ≤ 1, let Wα and Wα−1 be open
sets in Xα and Xα−1, respectively. For each u′ ∈ Wα and u′′ ∈ Wα−1, there are balls
such that Bα(u

′, r′) ⊂Wα and Bα−1(u
′′, r′′) ⊂ Wα−1, for some positive numbers r′ and

r′′. We will use the following assumptions:

(A4) (a) There exist constants Lf ≡ Lf(t, u
′, u′′, r′, r′′) > 0 and 0 < θ1 ≤ 1, such that

the nonlinear map f : [0, T ]×Wα ×Wα−1 → X satisfies the following condition

‖f(t, x, x′)− f(s, y, y′)‖ ≤ Lf(|t− s|θ1 + ‖x− y‖α + ‖x′ − y′‖α−1) (6)

for all x, y ∈ Bα, x
′, y′ ∈ Bα−1 and for all s, t ∈ [0, T ].

(b) There exist constants Lh ≡ Lh(t, u
′, r′) > 0 and 0 < θ2 ≤ 1 such that h(·, 0) = 0,

h :Wα × [0, T ] → [0, T ] satisfies the following condition

|h(x, t) − h(y, s)| ≤ Lh(‖x− y‖α + |t− s|θ2) (7)

for all x, y ∈ Bα and for all s, t ∈ [0, T ].

For t0 ≥ 0 and 0 < β ≤ 1, let Cβ([t0, T ];X) denote the space uniformly Hölder continuous
on [t0, T ] with exponent β. Then Cβ([t0, T ];X) is a Banach space endowed with the norm

‖h‖Cβ([t0,T ];X) = sup
t0≤t≤T

‖h(t)‖+ sup
t,s∈[t0,T ],t6=s

‖h(t)− h(s)‖

|t− s|β
.

Now we consider the following inhomogeneous Cauchy problem

du

dt
+A(t)u = f(t), u(t0) = u0. (8)

Theorem 2.1 [4, Theorem II. 3.1] Suppose that the assumptions (A1)–(A3) hold.

If f ∈ Cβ([t0, T ];X), then the unique solution of (8) is given by

u(t) = U(t, t0)u0 +

∫ t

t0

U(t, s)f(s)ds, t0 ≤ t ≤ T.

Indeed, u : [t0, T ] → X is strongly continuously differentiable on (t0, T ].
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The following lemmas will be used in the subsequent sections.

Lemma 2.1 [5, Lemma 1.1] For h ∈ Cβ([t0, T ];X), we define Q : Cβ([t0, T ];X) →
C([t0, T ];X1) by

Qh(t) =

∫ t

t0

U(t, s)h(s)ds, t0 ≤ t ≤ T.

Then Q is a bounded mapping and ‖Qh‖C([t0,T ];X1) ≤ C‖h‖Cβ([t0,T ];X) for some C > 0.

We have the following corollary from Lemma 2.1.

Corollary 2.1 For y ∈ X1, we define

H(y;h) = U(t, 0)y +

∫ t

0

U(t, s)h(s)ds, 0 ≤ t ≤ T.

Then H is a bounded linear mapping from X1 × Cβ([t0, T ];X) into C([t0, T ];X1).

Lemma 2.2 [10, Lemma 2] Let 0 < α ≤ 1 and f ∈ C([t0, T ];Xα). We define

v(t) =

∫ t

t0

U(t, s)f(s)ds, t0 ≤ t ≤ T.

Then v ∈ C([t0, T ];X1) ∩ C
1((t0, T ];X) and v′(t) +A(t)v(t) = f(t), t0 < t ≤ T.

3 Main Results

In this section, we establish the main results. Let I = [0, δ] for some positive number δ
to be specified later. Let Cα, 0 ≤ α ≤ 1 denote the space of all Xα-valued continuous
functions on I, endowed with the sup-norm, sup

t∈I

‖ψ(t)‖α, ψ ∈ C(I;Xα). Let

Yα = CLα
(I;Xα−1) = {ψ ∈ Cα : ‖ψ(t)− ψ(s)‖α−1 ≤ Lα|t− s|, for all t, s ∈ I},

where Lα is a positive constant to be specified later. It is clear that Yα is a Banach space
under the sup-norm of Cα.

Definition 3.1 A continuous function u : I → X said to be a solution of Problem
(1) if the following are satisfied:

(i) u(·) ∈ CLα
(I;Xα−1) ∩ C

1((0, δ);X) ∩ C(I;X);

(ii) u(t) ∈Wα, for all t ∈ (0, δ);

(iii)
du

dt
+A(t)u(t) = f(t, u(t), u(h(u(t), t))) for all t ∈ (0, δ);

(iv) u(0) = u0.

For 0 < α < β ≤ 1, let u0 ∈ Xα. Let r > 0 be chosen small enough such that the
assumption (A4) holds for the closed balls Bα ≡ Bα(u0, r) and Bα−1 ≡ Bα−1(u0, r).
Let K > 0 and 0 < η < β − α be fixed constants. Let

Sα = {y ∈ Cα∩Yα : y(0) = u0, sup
t∈I

‖y(t)−u0‖α ≤ r, ‖y(t)−y(s)‖α ≤ K|t−s|η ∀ t, s ∈ I}.

Then Sα is a non-empty closed and bounded subset of Cα.
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3.1 Local existence of solution

Now we prove the following theorem of the local existence of a solution to Problem (1).
The proof is based on the ideas of Friedman [4] and Gal [6].

Theorem 3.1 Let u0 ∈ Xβ, where 0 < α < β ≤ 1. If the assumptions (A1)-
(A4) hold, then there exist a positive number δ ≡ δ(α, u0) and a unique solution u(t) to
Problem (1) on the interval [0, δ] such that u ∈ Sα ∩ C1((0, δ);X).

Proof. Let v ∈ Sα. We define fv(t) = f(t, v(t), v(h(v(t), t))). Then the assumption
(A4) implies that fv is Hölder continuous on I of exponent γ = min{θ1, θ2, η}. We
consider the following problem:

du

dt
+A(t)u(t) = fv(t), t ∈ I;

u(0) = u0.

}

(9)

Then by Theorem 2.1, there exists a unique solution uv of (9) which is given by

uv(t) = U(t, 0)u0 +

∫ t

0

U(t, s)fv(s)ds, t ∈ I.

We define a map F by

Fv(t) = U(t, 0)u0 +

∫ t

0

U(t, s)fv(s)ds, for each t ∈ I.

We will claim that F maps from Sα into itself, for sufficiently small δ > 0. Indeed, if
t1, t2 ∈ I with t2 > t1, then we have

‖Fv(t2)− Fv(t1)‖α−1 ≤ ‖[U(t2, 0)− U(t1, 0)]u0‖α−1

+

∥

∥

∥

∥

∫ t2

0

U(t2, s)fv(s)ds−

∫ t1

0

U(t1, s)fv(s)ds

∥

∥

∥

∥

α−1

. (10)

We will use the bounded inclusion X ⊂ Xα−1 to estimate each of the terms on the
right hand side of (10). The first term on the right hand side of (10) is estimated as
follows [4, see Lemma II. 14.1],

‖(U(t2, 0)− U(t1, 0))u0‖α−1 ≤ C1‖u0‖α(t2 − t1), (11)

where C1 is some positive constant. We have the following estimate for the second term
on the right hand side of (10) [4, Lemma II. 14.4],

∥

∥

∥

∥

∫ t2

0

U(t2, s)fv(s)ds−

∫ t1

0

U(t1, s)fv(s)ds

∥

∥

∥

∥

α−1

≤ C2N1(t2 − t1)(| log(t2 − t1)|+ 1), (12)

where N1 = sup
s∈[0,T ]

‖fv(s)‖ and C2 is some positive constant.

Using the estimates (11) and (12), we get from the inequality (10),

‖Fv(t2)− Fv(t1)‖α−1 ≤ Lα|t2 − t1|,
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where Lα = max{C1‖u0‖α, C2N1(| log(t2 − t1)|+ 1)} that depends on C1, C2, N1, δ.
Next our aim is to show that sup

t∈I

‖F (y)(t) − u0‖α ≤ r, for sufficiently small δ > 0.

Since u0 ∈ Xα, we can choose sufficiently small δ1 > 0 such that [4, Lemma II.14.1],

‖U(t, 0)u0 − u0‖α ≤
r

3
, for all t ∈ [0, δ1]. (13)

We choose δ2 > 0 such that

(

C(α)

1− α
Lf [(1 + LαLh)r + δθ22 ] +

C(α)K1

1− α

)

δ1−α
2 ≤

2r

3
.

Let K1 := sup
0≤t≤T

‖f(t, u0, u0)‖. For v ∈ Sα and t ∈ [0, δ2], it follows from the assumption

(A4) [19, cf. inequality (1.65), p. 23], (6), (7) and h(u0, 0) = 0 that

∥

∥

∥

∥

∫ t

0

U(t, s)fv(s)ds

∥

∥

∥

∥

α

≤ C(α)Lf

∫ t

0

(t− s)−α[‖v(s)− u0‖α + ‖v([h(v(s), s)]) − u0‖α−1]ds

+ C(α)K1

∫ t

0

(t− s)−αds

≤ C(α)Lf

∫ t

0

(t− s)−α[‖v(s)− u0‖α + Lα|h((v(s), s)) − h(u(0), 0)|]ds

+ C(α)K1

∫ t

0

(t− s)−αds

≤ C(α)Lf

∫ t

0

(t− s)−α[‖v(s)− u0‖α + Lα|h((v(s), s)) − h(u(0), 0)|]ds

+
C(α)K1δ

1−α

1− α

≤ C(α)Lf

∫ t

0

(t− s)−α[r + LαLh(‖v(s)− u0‖α + sθ2)]ds+
C(α)K1δ

1−α
2

1− α

≤ C(α)Lf [(1 + LαLh)r + δθ22 ]

∫ t

0

(t− s)−αds+
C(α)K1δ

1−α
2

1− α

≤

(

C(α)

1− α
Lf [(1 + LαLh)r + δθ22 ] +

C(α)K1

1− α

)

δ1−α
2 . (14)

Combining (13) and (14), we obtain sup
t∈I

‖Fv(t)−u0‖α ≤ r, where δ3 = min{δ1, δ2} [6, cf.

p. 977].
Next we show that ‖Fv(t + h) − Fv(t)‖α ≤ Khη for some constant K > 0 and

0 < η < 1. If 0 ≤ α < β ≤ 1 and 0 ≤ t ≤ t+ h ≤ δ, then we have

‖Fv(t+ h)− Fv(t)‖α ≤‖[U(t+ h, 0)− U(t, 0)]u0‖α

+

∥

∥

∥

∥

∥

∫ t+h

0

U(t+ h, s)fv(s)ds−

∫ t

0

U(t, s)fv(s)ds

∥

∥

∥

∥

∥

α

.
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Using [4, Lemma II.14.1 and Lemma II.14.4], we get the following estimates

‖[U(t+ h, 0)− U(t, 0)]u0‖α ≤ C(α, u0)h
β−α; (15)

∥

∥

∥

∥

∥

∫ t+h

0

U(t+ h, s)fv(s)ds−

∫ t

0

U(t, s)fv(s)ds

∥

∥

∥

∥

∥

α

≤ C(α)N1h
1−α(1 + | log h|). (16)

From (15) and (16), it is clear that

‖Fv(t+ h)− Fv(t)‖α ≤ hη[C(α, u0)δ
β−α−η + C(α)N1δ

νh1−α−η−ν(| log h|+ 1)]

for any ν > 0 and ν < 1− α− η. Hence, for sufficiently small δ > 0 , we have

‖Fv(t+ h)− Fv(t)‖α ≤ Khη

for some K > 0. Thus F maps Sα into itself.
Finally, we show that F is a contraction map. We choose δ4 > 0 such that

C(α)

1− α
Lf(2 + LαLh)δ

1−α
4 <

1

2
.

Let v1, v2 ∈ Sα and t ∈ [0, δ4]. Then we have [19, cf. inequality (1.65), page 23],

‖Fv1(t)− Fv2(t)‖α ≤ C(α)Lf

∫ t

0

(t− s)−α(‖v1(s)− v2(s)‖α

+ ‖v1([h(v1(s), s)])− v2([h(v2(s), s)])‖α−1)ds

≤ C(α)Lf (2 + LαLh)

∫ t

0

(t− s)−α‖v1(s)− v2(s)‖αds

≤
C(α)

1− α
Lf (2 + LαLh)δ

1−α
4 sup

t∈I

‖v1(t)− v2(t)‖α. (17)

Then, from (17), it is clear that F is a contraction map. Since Sα is a complete metric
space, by the Banach fixed-point theorem, there exists u ∈ Sα such that Fu = u. From
Lemma 2.1 and Theorem 2.1, it follows that u ∈ C1((0, δ);X). Thus u is a solution to
Problem (1) on [0, δ], where δ = min{δ3, δ4}.

3.2 Global existence of solution

In this section, we prove the global existence of a solution to Problem (1).

Theorem 3.2 Assume that (A1)–(A4) hold. Suppose that there are positive con-

stants k1 and k2 such that

‖f(t, x, y)‖ ≤ k1(1 + ‖x‖α + ‖y‖α−1) for 0 < α < 1, (18)

|h(z, t)| ≤ k2(1 + ‖z‖α) (19)

for all t, where 0 ≤ t ≤ T, x, z ∈ Xα and y ∈ Xα−1, then the initial value problem (1) has

a unique solution that exists for all t ∈ [0, T ], for each u0 ∈ Wβ, where 0 < α < β ≤ 1.
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Proof. Let δ > 0 be sufficiently small such that u(t), t ∈ (0, δ], be the local solution
of (1) obtained in Theorem 3.1. So for the global existence of a solution to problem (1),
it is enough to show that ‖u(t)‖α is bounded as t ↑ δ and this bound is independent of t.

Now using (6), (7), (18) and (19), we get, for u(.) ∈ X1,

‖u(t)‖α ≤ ‖U(t, 0)u0‖α +

∥

∥

∥

∥

∫ t

0

U(t, s)f(s, u(s), u(h(u(s), s)))ds

∥

∥

∥

∥

α

≤ ‖A(0)αA(t)−βA(t)βU(t, 0)A(0)−βA(0)βu0‖

+ k1

∫ t

0

(t− s)−α[(1 + ‖u(s)‖α + Lα|h(u(s), s)− h(u0, 0)|+ ‖u0‖α−1]ds.

(20)

Using [4, inequality (II.14.12) and (II.14.14)] in (20), we get

‖u(t)‖α ≤ (C′ +D)‖u0‖α + k1[1 + (1 + Lαk2)]

∫ t

0

(t− s)−α(1 + ‖u(s)‖α)ds,

where D = sup
t∈[0,T ]

Kk1

∫ t

0

(t − s)−αds, K is the constant in the bounded inclusion X ⊂

Xα−1 and C′ is some positive constant. Applying the Gronwall lemma, we get that
‖u(t)‖α is bounded as t ↑ δ.

Remark 3.1 In the case when A(t) is a self adjoint positive definite operator in a
Hilbert spaceX , Theorem 3.1 and Theorem 3.2 can be strengthened. Assumptions (A1),
(A2) and (A3) imply that, for 0 ≤ α ≤ 1 and for all s, t ∈ [0, T ] [13, p. 185],

‖A(t)αA(s)−α‖ ≤ C‖A(t)A(s)−1‖α ≤ C′, (21)

where C,C′ > 0. Then we can prove Theorem 3.1 and Theorem 3.2 with a less regularity
assumption on u0.

3.3 Existence of solution with regularity

In this section, we give a theorem with more regularity on f and u0. We denote D(A(0))
by X1. We equipped this space X1 with the graph norm

‖x‖1 := (‖x‖2 + ‖A(0)x‖2)
1

2 ,

that is equivalent to the usual norm ‖A(0)x‖ for x ∈ D(A(0)).
Let f and h be two continuous functions. Let W1 and W be open sets in X1 and X ,

respectively. For each u ∈ W1 and u′ ∈ W , there are balls such that B1(u, r) ⊂ W1 and
B(u′, r′) ⊂W . We will make use of the following stronger assumptions:

(A4)
′
(a) There exist constants Lf ≡ Lf (t, u, u

′, r, r′) > 0 and 0 < θ1 ≤ 1, such that the
nonlinear map f : [0, T ]×W1 ×W → Xα satisfies:

‖f(t, x, x′)− f(s, y, y′)‖α ≤ Lf (|t− s|θ1 + ‖x− y‖1 + ‖x′ − y′‖) (22)

for all x, y ∈ B1, x
′, y′ ∈ B, for all s, t ∈ [0, T ] and α ∈ (0, 1).

(b) There exist constants Lh ≡ Lh(t, u
′, r′) > 0 and 0 < θ2 ≤ 1, such that h(·, 0) =

0, h :W1 × [0, T ] → [0, T ] satisfies:

|h(x, t) − h(y, s)| ≤ Lh(‖x− y‖1 + |t− s|θ2) (23)

for all x, y ∈ B1 and for all s, t ∈ [0, T ].
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Then we have the following theorem.

Theorem 3.3 Let u0 ∈ W1. Suppose that the assumptions (A1)-(A3) and (A4)
′

hold. Then there exist a positive number δ ≡ δ(u0) and a unique solution u(t) of Prob-

lem (1) on the interval [0, δ] such that ∈ CL(I;X) ∩ C1((0, δ);X) ∩ C(I;X), where

CL(I;X) = {ψ ∈ C(I;X1) : ‖ψ(t)− ψ(s)‖ ≤ L|t− s|, for all t, s ∈ I},

for some L > 0. Further, we assume that there are positive constants k1 and k2 such

that

‖f(t, x, y)‖α ≤ k1(1 + ‖x‖1 + ‖y‖) for 0 < α < 1, (24)

|h(z, t)| ≤ k2(1 + ‖z‖1), (25)

for all t, x, z ∈ X1 and y ∈ X, where 0 ≤ t ≤ T. Then the unique solution of (1) exists

for all t ≥ 0.

Proof. We denote the interval [0, δ] by I. For each v ∈ C(I, B1), we define a map F
by

Fv(t) = U(t, 0)u0 +

∫ t

0

U(t, s)f(s, v(s), v(h(v(s), s)))ds for each t ∈ I.

By Lemma 2.2, the map F from C(I, B1) into C(I;X1) is well defined. The proof of
this Theorem can be obtained by the same argument as in the proof of Theorem 3.1 and
Theorem 3.2. Thus, we omit the details of the proof.

3.4 Asymptotic stability of solution

In this section, we discuss the asymptotic stability of a solution to Problem (1) in X .
The proof is based on the ideas of Friedman [4] and Webb [21].

Theorem 3.4 Suppose that the assumptions (A1)-(A4) hold, u0 ∈ Xβ, where

0 < α < β ≤ 1 and there exists a continuous solution u ∈ Xα. Suppose there exist a

continuous function ǫ : [0,∞) → [0,∞) and a constant k3 > 0 such that

‖f(t, u(t), u(h(u(t), t)))‖ ≤ k3(ǫ(t) + ‖u(t)‖α + ‖u(t)‖α−1) for 0 < α < 1, t ≥ 0. (26)

Then

(i) if ǫ(t) is bounded on [0,∞), then ‖u(t)‖α is bounded on [0,∞);

(ii) if ǫ(t) = O(eσt) for some −1 < σ < 0, then ‖u(t)‖α = O(eσt);

(iii) if ǫ(t) = o(1), then ‖u(t)‖α = o(1).

Proof. It is known [4, p. 176] that there exists 0 < θ < d, such that

‖Aγ(t)U(t, 0)‖ ≤
C

tγ
e−θt if t > 0, (27)

for any 0 ≤ γ ≤ 1.
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Now, for t > 0, put ϕ(t) = eθt‖u(t)‖α. Using (27) to the solution of Problem (1), we
obtain

ϕ(t) ≤ Ct−α‖u0‖+ C

∫ t

0

eθs(t− s)−αk3[ǫ(s) + ‖u(s)‖α + ‖u(s)‖α−1]ds

≤ Ct−α‖u0‖+ Ck3

∫ t

0

eθs(t− s)−αǫ(s)ds+ Ck3(1 +K)

∫ t

0

(t− s)−αϕ(s)ds

≤

{

C0t
−α‖u0‖+ C0

∫ t

0

eθs(t− s)−αǫ(s)ds

}

+ C0

∫ t

0

(t− s)−αϕ(s)ds, (28)

where C0 = max{C,Ck3, Ck3(1 +K)}. We denote

χ(t) = C0t
−α‖u0‖+ C0

∫ t

0

eθs(t− s)−αǫ(s)ds.

Then it is clear that
χ(t) ≤ C0t

−α‖u0‖+ C̃eθt sup
0≤s<∞

ǫ(s), (29)

for some constant C̃ > 0. We get from (28) by the method of iteration that [21],

ϕ(t) ≤ χ(t) +

∫ t

0

[

∞
∑

0

(t− s)j−1−jα[Γ(1 − α)]j

Γ(j − jα)

]

χ(s)ds.

We note that the series in the bracket is bounded by B1(t − s)−α exp[B2(t − s)1−α] for
some constants B1, B2 > 0. Thus it follows that, for t ≥ 1 and for any λ > 0,

ϕ(t) ≤ B3e
λt‖u0‖+B4e

θt sup
0≤s<∞

ǫ(s), (30)

where B3 and B4 are some positive constants. Thus, for any 0 < θ0 < θ, we get

‖u(t)‖α ≤ B3e
−θ0t‖u0‖+ B4 sup

0≤s<∞

ǫ(s). (31)

The proof follows from the inequality (31).

4 Example

Consider the following differential equation with deviated argument [6, 10]:

∂u

∂t
−

∂

∂x
(k(t, x)

∂

∂x
u(x)) = ˜H(x, u(t, x)) + ˜G(t, x, u(t, x));

u(t, 0) = u(t, 1), t > 0;
u(0, x) = u0(x), x ∈ (0, 1).











(32)

Here, ˜H(x, u(t, x)) =

∫ x

0

K(x, y)u(g̃(t)|u(t, y)|, y)dy for all (t, x) ∈ (0,∞) × (0, 1).

Assume that g̃ : R+ → R+ is locally Hölder continuous in t with g̃(0) = 0 and

K ∈ C1([0, 1] × [0, 1];R). The function ˜G : R+ × [0, 1] × R → R is measurable in x,
locally Hölder continuous in t, locally Lipschitz continuous in u, uniformly in x [6].

We assume that k is positive function with continuous partial derivative kx such that,
for all 0 ≤ t <∞ and x ∈ (0, 1),
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(i) 0 < k0 ≤ k(t, x) < k
′

0,

(ii) |kx(t, x)| ≤ k1,

(iii) |k(t, x)− k(s, x)| ≤ C|t− s|ǫ,

(iv) |kx(t, x)− kx(s, x)| ≤ C|t− s|ǫ,

for some ǫ with 0 < ǫ ≤ 1, some constants k0, k
′

0, and C > 0.
Let X = L2((0, 1);R). We define X1 = D(A(0)) = H2(0, 1)∩H1

0 (0, 1) and A(t)u(t) =

−
∂

∂x
(k(t, x)

∂

∂x
u(x)). Then X1/2 = D((A(0))1/2) = H1

0 (0, 1). Then the family {A(t) :

t > 0} satisfies the assumptions (A1), (A2) and (A3) on each bounded interval [0, T ]
[10].

For x ∈ (0, 1), we define f : R+ ×H2(0, 1)× L2(0, 1) → H1
0 (0, 1) by

f(t, φ, ψ) = ˜H(x, ψ) + ˜G(t, x, φ),

where ˜H(x, ψ(x, t)) =

∫ x

0

K(x, y)ψ(y, t)dy and ˜G : R+ × [0, 1] × H2(0, 1) → H1
0 (0, 1)

satisfies ‖ ˜G(t, x, u)‖H1

0
(0,1) ≤ C(1 + ‖u‖H2(0,1)), for some C > 0. Then it can be shown

that f satisfies the condition (22)( see Gal [6]) and h : H2(0, 1)× R+ → R+ defined by
h(φ(x, t), t) = g̃(t)|φ(x, t)| satisfies (23) (see Gal [6]). Thus, we can apply the results of
previous sections to study the existence, uniqueness and asymptotic stability of solution
of (32).
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Abstract: This paper presents a solution to the boundary stabilization of a vibrating
plate under fluid loading. The fluid is considered to be compressible, barotropic and
inviscid. A linear control law is constructed to suppress the plate vibration. The
control forces and moments consist of feedbacks of the velocity and normal derivative
of the velocity at the boundaries of the plate. The novel features of the proposed
method are that (1) it asymptotically stabilizes vibrations of a plate in contact with
fluid (the fluid has a free surface) via boundary control and without truncation of
the model; and (2) the stabilization of both plate vibrations and fluid motions are
simultaneously achieved by using only a linear feedback from the plate boundaries.

Keywords: semigroups of operators; LaSalle invariant set theorem; asymptotic sta-
bilization; Kirchhoff plate; compressible Newtonain barotropic fluid.
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1 Introduction

The vibration of a plate in contact with fluids has been thoroughly analyzed by many
authors [1–3]. Such problems appear frequently in practice, for example when study-
ing the veins, pulmonary passages and urinary systems which can be modeled as shells
conveying fluid, aero-elastic instabilities around flexible aircraft, container conveying the
fluids and dams [1–5].

One of the most challenging practical difficulties which is present in many of the
fluid-structure applications is the vibration of the structures. This may be due to rel-
atively low rigidity and small structural damping and a little excitation may lead long
vibration decay time. Vibration is the most destructing source for the flexible structures.
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Therefore, vibration of flexible structures is capable for disturbance, discomfort, damage
and destruction. In particular, many researchers have studied the problem of vibration
suppression (stabilization) of plates (without and with being in contact with a fluid)
since the plate is a necessary element in many applications such as aircraft’s skin and
flexible structures. In particular, it is widely used in fluid-structure systems [1, 2, 4, 5].
Therefore, an important question in the research of experimentalists and applied math-
ematicians in the field of flexible structures is the control and stability of vibrating plate
under arbitrary loading (such as fluid loading) [6,8–11]. That is, if the equilibrium state
is slightly disturbed, do the perturbations grow or decay? Therefore, suppressing the
vibration of such plates (under heavy fluid loading) takes attention of control researchers
that investigate in this field.

Boundary stabilization methods are efficient methods to exclude the problems of both
in-domain measurement and actuation. The boundary actuators designed for the nondis-
cretized PDE models are often simple compensators which ensure closed-loop stability
for an infinite number of modes.

For some references in boundary stabilization methods, see [12]. Several researchers
have proposed boundary actuators for a variety of flexible systems [9, 10, 12–15]. Some
researches have been concerned with the fluid-structure stabilization problem, [3, 16].
In these studies, the fluid doesn’t have free surface; however, in fact, in most of fluid-
structure problems such as dams, large containers, the fluid has at least a free surface.
Therefore, in this work we study the stabilization problem of vibrating plate in contact
with a fluid having free surface; also we present the simulation results which verify our
mathematical results. The fluid is considered to be barotropic compressible Newtonian
fluid whereas the plate is taken to be Kirchhoff plate. We use the semigroup techniques
to demonstrate the well-posedness of the system. Then benefitting from the Lyapunov
stability method and the LaSalle’s invariant set theorem, we prove the asymptotic stabil-
ity of the closed loop system. The main objective of this paper is to use boundary control
method for stabilizing the plate vibration in contact with a fluid having free surface via
boundary actuators at the plate boundary. It should be noted that the Lyapunov meth-
ods are extended to various applications [17, 18]. The presented method uses control
actuators at the boundaries of structure.

This article is arranged as follows. In Section 2, the dynamics of a plate and surround-
ing fluid are presented. Section 3 is devoted to well-posedness and boundary stabilization
proof of the fluid-structure problem. Section 4 presents the simulation results. Section 5
is devoted to the conclusion.

2 Governing Equations of Motion

2.1 Fluid domain

The governing equations for the Newtonian barotropic fluid with low velocity can be
simplified from the Navier–Stockes equation to the wave equation [19]. The related
equations are listed below















c2∆φ = φ,tt in Θ,

ρ0φ,t = −p(x, y, 0, t) in Ω,

ρ0φ,tt + ρ0gφ,n + pe,t = 0 in Ω2,

φ,n = 0 in Ω3,

(1)

where Ω, Ω2 and Ω3 are defined as follows:
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Figure 1: Different boundaries of the fluid-structure system.

1) The wet surface or the fluid structure interface (see Figure 1).
This is the most essential part of the fluid boundary. The motion of the structure

and the normal component of the fluid motion coincide, that is [19]:

vf .n = vs.n, (2)

where vf is the fluid velocity and vs is the structure velocity.
In this boundary the following equation can be attained [19]:

ρ0φ,t = −p(x, y, 0, t). (3)

2) A free surface with prescribed external pressure, where we allow the linearized
(gravitational) waves Ω2 (see Figure 2) [19]:

ρ0φ,tt + ρ0gφ,n + pe,t = 0. (4)

3) Fixed surface with prescribed external pressure, Ω3, see Figure1, [19]:

φ,n = 0, (5)

where φ(x, y, z, t) is the velocity potential. This means that v = ∇φ and c is the sound
speed in the fluid.

2.2 Structure Domain

The governing equation of a Kirchhoff’s plate with external pressure p(x, y, 0, t) can be
written as follows [8]:







D▽
4w + ρhw,tt = p in Ω,

w = ∂w/∂n = 0 in Γ0,

V (n) + ∂M (ns)/∂s = U1 , M (n) = U2 in Γ1,







(6)

∀(x, y, t) ∈ Ω× [0,∞); where w(x, y, t) represents the transverse displacement, p(x, y, 0, t)
is the external transverse force distribution (hydrodynamic pressure due to fluid loading)
on the plate, h is the thickness of the plate, E is the Young’s modulus of elasticity, ν is
the Poisson’s ratio and D = Eh/(12(1 − ν2)) is the flexural rigidity. It should be noted
that Ω is a bounded simple region and n = (n1, n2) is the unit outward normal vector to
the boundaries of the plate. M11, M12, M22 and V1, V2 are defined in the Appendix.
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Figure 2: Schematic view of the fluid-structure problem.

3 Stabilization of Plate Under Heavy Fluid Loading

In this section, we consider the stabilization problem of the vibration of a plate without
any boundary attachment. For this purpose, first, the following definitions will be used.
The inner product on the space H = H1

Ω3
(Θ)×  L2(Θ)×H2

Γ0
(Ω)×L2(Ω) will be presented

as

< X, Y >H=

∫

Θ

[
ρ0

2c2
τ1τ2 +

ρ0

2
Π(κ1, κ2)]dθ +

∫

Ω

[
ρ0

2g
τ1τ2 +

ρh

2
ζ1ζ2 + Λ(η1, η2)]dΩ, (7)

where X,Y ∈ H, X = (κ1, τ1, η1, ζ1), Y = (κ2, τ2, η2, ζ2), H2
Ω3

(Θ) = {κ1 : κ1 ∈ H2(Θ) :
∂κ1/∂n = 0|Ω1

} and H2
Γ0

(Ω) = {ξ1 : ξ1 ∈ H2(Ω) : ξ1 = 0|Γ0
, ∂ξ1/∂n|Γ0

= 0}; also the
following relations hold

{

Π(κ1, κ2) = κ1,xκ2,x + κ1,yκ2,y + κ1,zκ2,z,

Λ(η1, η2) = (1/2)∆η1∆η2.
(8)

It should be noticed that Π(κ, κ) and Λ(η, η) take the roles of the strain energy of the
plate and fluid respectively and therefore must be nonnegative.

The plate governing equations and related boundary conditions are as follows (see [8]):














D∆2w + ρhw,tt = p,

w = ∂w/∂n = 0 in Γ0,

V (n) + ∂M (ns)/∂s = U1 in Γ1,

M (n) = U2 in Γ1.















(9)

For this problem, our main intention is to show that the system (9) under boundary
feedbacks U1 = −w,t and U2 = ∂(w,t)/∂n is well-posed and asymptotically stable. Note
that ∂Ω = Γ = Γ1 ∪ Γ2 and

M (n) = M11n
2
1 + M22n

2
2 − 2M11n1n2,

M (ns) = (M11 −M22)n1n2 + M12(n
2
1 − n2

2),
V1 = M11

,
x + M12

,
y,

V2 = M12
,
x + M22

,
y,

V (n) = V1n1 + V2n2,

(10)
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where −→n = (n1, n2) is the unit outward vector normal to the boundary. V1, V2 stand for
transversal forces which lay in the planes being perpendicular to unit vectors in x and
y directions. V (n),M (n), are, respectively, transverse force and bending moment which
lay perpendicular to the normal direction. For definitions of the remaining parameters
see Appendix. To analyze the system using the notion of the linear operators, we utilize
the following notation

AX =









τ1
c2∆κ1

ζ1
−D
ρh

∆2η1 + p









. (11)

The state space representation of the system (9) is







































Ξ̇ = AΞ,
w = 0, ∂w/∂n = 0 in Γ0,

V (n) + M
(ns)
,s = −w,t, , M (n) = ∂(w,t)/∂n in Γ1,

ρ0φ,t = −p in Ω,

ρ0φ,tt + ρ0gφ,n = 0 in Ω2,

φ,n = 0 in Ω3,

Ξ(0) = Ξ0,







































(12)

where Ξ = (ξ1, ξ2, ξ3, ξ4), φ = ξ1, φ,t = ξ2, w = ξ3 and w,t = ξ4 . At first, it will be shown
that the operator A with the following domain is a dissipative operator.

D(A) = {(ξ1, ξ2, ξ3, ξ4)|ξ1 ∈ H2(Θ) ∩H1
Ω3

(Θ), ξ2 ∈ H1
Ω3

(Θ),
ξ3 ∈ H2

Γ0
(Ω) ∩H4(Ω), ξ4 ∈ H2

Γ0
such that ρ0ξ2|Ω = −p, }

(13)

where H4
Γ0

(Ω) = {ξ3 : ξ3 ∈ H4(Ω) : ξ3 = 0|Γ0
, ∂ξ3/∂n|Γ0

= 0} and H2
Ω3

(Θ) = {ξ1 : ξ1 ∈
H2(Θ), ξ1 = 0|Ω3

}.

Lemma 3.1 A is a dissipative operator.

Proof. We start from the fact that the total mechanical energy of the systems is
equal to the following inner product E(t) =< Ξ,Ξ >, therefore

Ė(t) = 2 < Ξ, Ξ̇ >= 2 < Ξ, AΞ > . (14)

With the above premise and referring to the Lemma 5.1 of Appendix, the proof will
be complete.

Lemma 3.2 The resolvent (αI −A)−1 exists and is compact (∀α > 0).

Proof. For this purpose, we utilize the following relation

(αI −A)X = X0, X0 ∈ H (15)

it can be seen that

< (αI −A)X,X >H= α‖X‖2H + ‖ξ4‖
2
L2(Γ1)

+ ‖∂ξ4/∂n‖
2
L2(Γ1)

≥ α‖X‖2H, (16)

where ‖X‖2
H

=< X,X >.
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Using Lax-Milgram lemma, one can easily prove that the above equation has a unique
weak solution (see [20–22]). In particular one can infer that:

R(αI −A) = H2(Θ) ×H1(Θ) ×H4(Ω) ×H2(Ω), where α > 0.
On the other hand, it is clear that D(A) is dense in H2(Θ)×L2(Θ)×H4(Ω)×  L2(Ω),

hence, according to Lumer-Phillips theorem; it is proved that A generates a C0-semigroup
of contractions (see [24]). Finally one can obtain the following result

‖X0‖H ≥ α‖X‖H. (17)

Using Sobolev embedding theorem (Rellich-Kondrachov compact embedding theorem),
since (αI −A)−1V is compactly embedded in  L2(Θ)×  L2(Θ)×  L2(Ω)×  L2(Ω), therefore
the compactness of the above-mentioned resolvent is evident.

Theorem 3.1 Let in the system (22), the initial condition Ξ0 belong to D(A). Then

the system (22) is well-posed.

Proof. Based on Lemma 3.1, it is evident that the system (22) is well-posed [24].
Also its strong solution has the following regularity (see [23, 24]).

φ(t) ∈ C0([0, t], H2(Θ) ∩H1
Ω3

(Θ)) ∩ C1([0, t], H1
Ω3

(Θ)) ∩C2([0, t], L2(Θ)),
w(t) ∈ C0([0, t], H4(Ω) ∩H2

Γ0
(Ω)) ∩ C1([0, t], H2

Γ0
(Ω)) ∩ C2([0, t], L2(Θ)).

(18)

Now, we turn our attention to the proof of the asymptotic stability of the closed loop
system.

Theorem 3.2 Using the boundary feedback control laws (19), the states of the system

Ξ will eventually tend toward zero,

U1 = −ξ4 and U2 = ∂ξ4/∂n. (19)

Proof. The mechanical energy of the system as discussed previously, is

E(t) =< Ξ,Ξ > . (20)

By performing some algebraic operations and using Green’s Lemma, the following can
be obtained (see Appendix):

Ė(t) = −‖ξ4‖
2
L2(Γ1)

− ‖∂ξ4/∂n‖
2
L2(Γ1)

≤ 0. (21)

At this step, because of the compactness of the resolvent (αI − A)−1 , one can use
LaSalle’s invariant set theorem and therefore, it is sufficient to show that the following
system has the trivial solution as its unique solution:







































Ξ̇ = AΞ in Ω,

ξ4 = ∂ξ4/∂n = 0 and M (n) = V (n) = 0 in Γ1,

ξ3 = ∂ξ3/∂n = 0 in Γ0,

ρ0φ,t = −p in Ω,

ρ0φ,tt + ρ0gφ,n = 0 in Ω2,

φ = 0 in Ω3,

Ξ(0) = Ξ0.







































(22)

Using the Holmgren uniqueness theorem [25], one can easily show that the above system
of equations admits only trivial solution. Then, by regarding the LaSalle’s invariant set
theorem,

lim
t→∞

E(t) = 0, (23)

which yields the desired stability.
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4 Simulation Results

In this section, we compare the controlled vibration of the plate in contact to a fluid with
the uncontrolled one. We plot displacements of some points of the plate in the controlled
and uncontrolled cases. We will see the effect of the boundary actuators.

4.1 Geometric Properties of the Plate and the Acoustic Fluid Models

Acoustic fluid region is a 0.5m× 0.5m× 0.5m cubic space. All sides of the fluid except
one which is in contact with the plate are fixed and; therefore, the normal velocities of
the fluid at those faces are zero. One face is in contact with the plate and the other face
is a free surface (see Figure 2).

4.2 Mechanical Properties of Plate and Acoustic Fluid

The mechanical properties of the fluid and plate are shown in Table 1 and Table 2,
respectively.

Bulk Modulus Density
225e7 1000 Kg/m3

Table 1: Material properties of the fluid.

Young Modulus Poisson’s Ratio Density
200e9 Pa 0.3 1920 Kg/m3

Table 2: Material properties of the plate.

4.3 Results

We present two sets of results. First, the results of the vibration of middle point of the
plate without boundary actuators at the plate boundaries are presented and then the
other set is for the vibrations of the same point of the plate in the presence of the boundary
actuators. We attach a set of boundary actuators with controller gain kf = 3N.s/m at
two controlled sides of the plate. First, the results for the free vibrations of the plate
are presented and subsequently the simulation results for the controlled vibrations of
the plate are demonstrated. The displacements of the mentioned points of the plate are
illustrated by Figures 3–8.

5 Conclusion

Asymptotic stability of the vibration of plates in contact with a fluid was proved. It is
shown that the mechanical energy of the systems would converge asymptotically toward
zero. Since the control laws consisted only of the feedback from the shear force and
bending moment at the boundary of plate, measurement cost was minimized. Also,
the proposed method avoids installation of distributed actuators / sensors which meant
observation of vibration data along the plate or in the interior of the fluid is not required
and the asymptotical stability of the fluid is accomplished without using any actuation
in the fluid domain or its boundary.
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Figure 3: Displacement of the point (0.25, 0) of the plate in contact with the fluid in its free
vibration.
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Figure 4: Displacement of point (0.25, 0.25) of the plate in contact with the fluid in its free
vibration.
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Figure 5: Displacement of point (0.25, 0.5) of the plate in contact with the fluid in its free
vibration.

0 0.5 1 1.5 2 2.5 3 3.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−4

Time (sec)

D
is

pl
ac

em
en

t (
m

)

Figure 6: Displacement of point (0.25, 0) of the plate in contact with the fluid in the presence
of the boundary actuators.



202 ALI NAJAFI AND BEHROOZ RAEISY

0 0.5 1 1.5 2 2.5 3 3.5 4
−8

−6

−4

−2

0

2

4

6

8
x 10

−5

Time (sec)

D
is

pl
ac

em
en

t (
m

)

Figure 7: Displacement of point (0.25, 0.25) of the plate in contact with the fluid in the presence
of the boundary actuators.
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Figure 8: Displacement of point (0.25, 0.5) of the plate in contact with the fluid in the presence
of the boundary actuators.
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Appendix

In this section it will be shown that the time derivative of the mechanical energy of
the system is negative semi-definite and in the sequel we show that the operator A is
dissipative.

Lemma 5.1 For the operator A, with definition (11), one can have

Ė(t) = 2 < Ξ, AΞ >= −‖ξ4‖
2
L2(Γ1)

− ‖∂ξ4/∂n‖
2
L2(Γ1)

. (24)

Proof. It is clear that Ė(t) = 2 < Ξ, AΞ >. For the rest of the proof, we define some
parameters

M11 = −D(w,xx + νw,yy), (25)

M22 = −D(w,yy + νw,xx), (26)

M12 = −D(1 − ν)w,xy , (27)

κ11 = −w,xx , κ22 = −w,yy , κ12 = −2w,xy, (28)

V1 = M11,x + M12,y, (29)

V2 = M12,x + M22,y. (30)

We notice that the governing equation of motion can be rewritten in the following
form [8]

M11,xx + 2M12,xy + M22,yy = ρhw,tt. (31)

The energy functional takes the following form

E(t) = 1
2

∫

Ω
[M11κ11 + M22κ22 + M12κ12 + ρhw2

,t]dΩ
+
∫

Θ[ ρ0

2c2φ
2
,t + ρ0

2 |∇φ|2]dΘ +
∫

Ω2

[ρ0

2gφ
2
,t]dΩ.

(32)

Therefore, time derivative of E(t) will be

Ė(t) =
1

2

∫

Ω

[Ṁ11κ11 + Ṁ22κ22 + Ṁ12κ12 + M11κ̇11 + M22κ̇22 + M12κ̇12 + 2ρhw,tw,tt]dΩ

+

∫

Ω2

[
ρ0

g
φ,tφ,tt]dΩ +

∫

Θ

[
ρ0

c2
φ,tφ,tt + ρ0(φ′txφ,x + φ,tyφ′y)]dΘ (33)

and therefore

2Ė(t) =
∫

Ω[M11κ̇11 + M22κ̇22 + M12κ̇12 + (M11,xx + M22,yy + 2M12,xy)wt]dΩ+
∫

Ω[Ṁ11κ11 + Ṁ22κ22 + Ṁ12κ12 + (M11,xx + M22,yy + 2M12,xy)w,t]dΩ+
∫

Ω2

[ρ0

g
φ,tφ,tt]dΩ + ρ0

∫

Θ[ ∂
∂x

((φ,tφ,tt) + ∂
∂y

(φ,tφ,tt)]dΘ.

(34)
Employing the relations for the resultant moments in directions x and y (see (24)– (28)),
we get

2Ė(t) =
∫

Ω
[(M11,xxw,t −M11w,xxt) + (M22,yyw,t −M22w,yyt) + 2(M12,xyw,xyt)]dΩ+

∫

ΩD[w,xxw,xxt + νw,yytw,xx]dΩ +
∫

ΩD[νw,yyw,xxt + w,yytw,yy]dΩ+
∫

Ω
2D(1 − ν)w,xytw,xydΩ −

∫

Ω
D[w,xxxxw,t + νw,xxyyw,t]dΩ−

∫

Ω
2D(1 − ν)w,xxyyw,tdΩ −

∫

Ω
D[w,yyyyw,t + νw,xxyyw,t]dΩ+

∫

Ω pw,tdΩ +
∫

Ω2

ρ0

g
φ,tφ,ttdΩ + ρ0

∫

Ω φ,tφ,ndΩ+

ρ0
∫

Ω2

φ,tφ,ndΩ + ρ0
∫

Ω3

φ,tφ,ndΩ.

(35)
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Rearranging the terms and using the boundary conditions for the fluid yield

2Ė(t) = 2
∫

Ω
[(M11,xw,t + M12,yw,t −M11w,tx −M12w,yt),xdΩ+

∫

Ω[(M22,yw,t −M12,xw,t −M22w,ty −M12w,xt),ydΩ+
∫

Ω
pw,tdΩ +

∫

Ω2

ρ0

g
φ,tφ,ttdΩ + ρ0

∫

Ω
φ,tφ,ndΩ + ρ0

∫

Ω2

φ,tφ,ndΩ.

(36)

Applying Green’s Lemma and also boundary conditions of the fluid yield

2Ė(t) =
u

Γ(M11,xw,t + M12,yw,t −M11w,tx −M12w,yt)n1dΓ+u
Γ[(M22,yw,t −M12,xw,t −M22w,ty −M12w,xt)n2dΓ+

∫

Ω
pw,tdΩ − ρ0

∫

Ω2

φ,tφ,ndΩ −
∫

Ω
pw,tdΩ + ρ0

∫

Ω2

φ,tφ,ndΩ.

(37)

Grouping the terms and noting that

∂∆

∂x
= n1

∂∆

∂n
− n2

∂∆

∂s
, (38)

∂∆

∂y
= n1

∂∆

∂s
− n2

∂∆

∂n
, (39)

yield the following result

Ė(t) =
z

Γ

[(V (n) +
∂Mns

∂s
)w,t −M (n)(w,t),n]dΓ. (40)

By applying the assumptions of Theorem 2, and using the related boundary condi-
tions, the following result is attained:

Ė(t) = −‖ξ4‖
2
L2(Γ1)

− ‖
∂ξ4

∂n
‖2L2(Γ1)

. (41)
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1 Introduction

It is well known that in applied sciences some practical problems concerning physics,
mechanics and the engineering technique fields associate with differential equations of
higher order (Chlouverakis and Sprott [1] and Linz [9]) . Therefore, the investigation of
qualitative behaviors of solutions of nonlinear differential equations of higher order has
a great importance in theory and applications of differential equations. In particular, by
now, several authors have contributed to the theoretical study of instability of solutions
of some fifth order nonlinear differential equations without delay (Ezeilo [3–5], Li and
Duan [7], Li and Yu [8], Sadek [11], Sun and Hou [12], Tiryaki [13], Tunç [14–16], Tunç and
Erdoğan [21], Tunç and Karta [22], Tunç and Şevli [23] ). Throughout all of the mentioned
papers, based on Krasovskii’s properties (Krasovskii [6]), the Lyapunov’s second (or
direct) method has been used as a basic tool to prove the results established on the
instability of solutions, since differential equations studied cannot be solved explicitly.
This method, invented by the Russian mathematician Lyapunov in 1892, proves to be
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extremely effective and useful and is still far of being obsolete. On the other hand, it
should be noted that the instability of solutions of some certain fifth order nonlinear
delay differential equations has been discussed by Tunç [17, 19, 20].

Besides, in 1978, Ezeilo [3] established an instability result for the fifth order nonlinear
differential equation without delay

x(5) + a1x
(4) + a2x

′′′ + a3x
′′ + a4x

′ + f(x) = 0. (1)

In this paper, instead of (1), we consider the fifth order nonlinear delay differential
equation

x(5) + a1x
(4) + a2x

′′′ + a3x
′′ + a4x

′ + f(x(t− r)) = 0, (2)

where a1, a2, a3 and a4 are some real constants, r is a positive real constant, the primes
in (2) denote differentiation with respect to t, t ∈ ℜ+ = [0,∞); f is a differentiable
function on ℜ with f(0) = 0. It is assumed that the existence and uniqueness of the
solutions of (2) are guaranteed (see [2], pp. 14,15).

We write (2) in system form as follows

x′ = y, y′ = z, z′ = w, w′ = u,

u′ = −a1u− a2w − a3z − a4y − f(x) +
t
∫

t−r

f ′(x(s))y(s)ds. (3)

In all what follows, x(t), y(t), z(t), w(t) and u(t) are abbreviated as x, y, z, w and
u, respectively.

The motivation for this paper comes from the above mentioned papers and Martynyuk
et. al [10] and Tunç [18]. Our aim is to convey the results established in Ezeilo [3] to Eq.
(3).

Consider the linear constant coefficient fifth order differential equation

x(5) + a1x
(4) + a2

...
x + a3ẍ+ a4ẋ+ a5x = 0, (4)

where a1, a2, a3, a4 and a5 are some real constants. It is well-known from the qualitative
behavior of solutions of linear differential equations that the trivial solution of (4) is
unstable if and only if, the associated auxiliary equation

ψ(λ) ≡ λ5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ+ a5 = 0 (5)

has at least one root with a positive real part. The existence of such a root naturally
depends on (though not always all of) the coefficients a1, a2, a3, a4 and a5. For example,
if a1 < 0, then it follows from a consideration of the fact that the sum of the roots of
(5) equals to (−a1) and that at the least one root of (5) has a positive real part for
arbitrary values of a2, a3, a4 and an analogue consideration, combined with the fact that
the product of the roots (5) equals to (−a5) will verify that at least one root of (5) has
a positive real part if

a1 = 0 and a5 6= 0 (6)

for arbitrary a2, a3 and a4. The condition a1 = 0 here in (6) is, however, superfluous
when

a5 < 0; (7)

for then ψ(0) = a5 < 0 and ψ(R) > 0 if R > 0 is sufficiently large; thus showing that
there is a positive real root of (5) subject to (7) and for arbitrary a1, a2, a3 and a4.
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A root with a positive real part also exists for certain equations (5) with a5 positive
and sufficiently large. To see this easily we refer to the well-known Routh-Hurwitz criteria
which stipulate that each root of (5) has a negative real part. Namely, a necessary and
sufficient condition for the negativity of the real parts of all the roots of the polynomial
equation (5) is the positivity of all the principal diagonals of the minors of the Hurwitz
matrix:

H5 =













a1 1 0 0 0
a3 a2 a1 1 0
a5 a4 a3 a2 a1
0 0 a5 a4 a3
0 0 0 0 a5













.

It should be also noted that the principal diagonal of the Hurwitz matrix H5 exhibits
the coefficients of the polynomial equation (5) in the order of their numbers from a1 to
a5 . The fourth order minor, say ∆4, concerned here is given by the determinant

∆4 =

∣

∣

∣

∣

∣

∣

∣

∣

a1 1 0 0
a3 a2 a1 1
a5 a4 a3 a2
0 0 a5 a4

∣

∣

∣

∣

∣

∣

∣

∣

,

that is, on multiplying out:

∆4 = −a25 + a5(2a1a4 + a2a3 − a1a
2
2) + a4(a1a2a3 − a23 − a21a4). (8)

It is thus clear, in particular, that if ∆4 < 0, as would indeed be the case from (8), if

a5 ≥ R0 > 0 (9)

with R0 = R0(a1, a2, a3, a4) sufficiently large, then at the least one root of (5) has a
non-negative real part subject to (9).

Let r ≥ 0 be given, and let C = C([−r, 0], ℜn) with ‖φ‖ = max
−r≤s≤0

|φ(s)| , φ ∈ C.

For H > 0 define CH ⊂ C by CH = {φ ∈ C : ‖φ‖ < H}.
If x : [−r, a) → ℜn is continuous, 0 < A ≤ ∞, then, for each t in [0, A), xt in C is

defined by
xt(s) = x(t+ s),−r ≤ s ≤ 0, t ≥ 0.

Let G be an open subset of C and consider the general autonomous delay differential
system with finite delay

ẋ = F (xt), xt = x(t+ θ),−r ≤ θ ≤ 0, t ≥ 0,

where F : G → ℜn is continuous and maps closed and bounded sets into bounded sets.
It follows from the conditions on F that each initial value problem

ẋ = F (xt), x0 = φ ∈ G

has a unique solution defined on some interval [0, A), 0 < A ≤ ∞. This solution will be
denoted by x(φ)(.) so that x0(φ) = φ.

Definition 1.1 The zero solution x = 0 of ẋ = F (xt) is stable if for each ε > 0 there
exists δ = δ(ε) > 0 such that ‖φ‖ < δ implies that |x(φ)(t)| < ε for all t ≥ 0. The zero
solution is said to be unstable if it is not stable.
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2 Main Results

Our first main result is given by the following theorem.

Theorem 2.1 In addition to the assumptions imposed to the function f in Eq. (2),
we assume that there exist constants a1, a3, δ (> 0), δ5 and δ̄5 such that the following
conditions hold:

a1 > 0, f(0) = 0, f(x) 6= 0, (x 6= 0), δ̄5 ≥ f ′(x) > δ5 ≥ 0 for all x,

where

δ5 >

{

0, if a3 ≤ 0,
a23a

−1
1 , if a3 > 0.

Then the trivial solution x = 0 of Eq. (2) is unstable provided

r < 2min
{

1,
δ5 − δa3

(1 + δ)δ5
,
δa1 − a3

δ̄5

}

.

Remark 2.1 The kernel of the proof of Theorem 2.1 will be to show that, under
the conditions sated in Theorem 2.1, there exists a continuous Lyapunov functional
V0 = V0(xt, yt, zt, wt, ut) which has the following three properties:

(P1) in every neighborhood of (0, 0, 0, 0, 0), there exists a point (ξ, η, ζ, µ, ρ) such that
V0(ξ, η, ζ, µ, ρ) > 0,

(P2) the time derivative d
dt
V0(xt, yt, zt, wt, ut) along solution paths of the correspond-

ing equivalent differential system for Theorem 2.1 is positive semi-definite,
(P3) the only solution (x, y, z, w, u) = (x(t), y(t), z(t), w(t), u(t)) of (3) which satisfies

d
dt
V0(xt, yt, zt, wt, ut) = 0 is the trivial solution (0, 0, 0, 0, 0).

Proof. Consider the Lyapunov functional V0 = V0(xt, yt, zt, wt, ut) defined by

V0 = 1
2{−δa4x

2 + (a4 + δa2)y
2 + (a2 − δ)z2 − w2}+ δyw + δa1yz

−δxu− δa1xw − δa2xz − δa3xy + zu+ a1zw + yf(x)

−λ
0
∫

−r

t
∫

t+s

y2(θ)dθds, (10)

where δ is a fixed positive constant, as is possible in view of the condition δ5 > a23a
−1
1 such

that a3a
−1
1 < δ < δ5a

−1
3 , and s is a real variable such that the integral

0
∫

−r

t
∫

t+s

y2(θ)dθds

is non-negative, and λ is a positive constant which will be determined later in the proof.
It is clear from (10) that

V0(−ε
2, 0, 0, 0, ε) = δ(ε3 −

1

2
a4ε

4) > 0

for all sufficiently small ε. Hence, in every neighborhood of the origin, (0, 0, 0, 0, 0), there
exists a point (−ε2, 0, 0, 0, ε) such that V0(−ε

2, 0, 0, 0, ε) > 0, which shows that the prop-
erty (P1) holds for V0.
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By an elementary differentiation, time derivative of the functional V0(xt, yt, zt, wt, ut)
in (10) along the solutions of (3) yields

d
dt
V0(xt, yt, zt, wt, ut) = δxf(x) + {f ′(x) − δa3}y

2 + (δa1 − a3)z
2 + a1w

2

−δx
t
∫

t−r

f ′(x(s))y(s)ds + z
t
∫

t−r

f ′(x(s))y(s)ds

−λry2 + λ
t
∫

t−r

y2(s)ds.

The assumptions f(0) = 0, δ̄5 ≥ f ′(x) > δ5 ≥ 0 and the estimate 2 |mn| ≤ m2+n2 imply

δxf(x) ≥ (δδ5)x
2,

−δx
t
∫

t−r

f ′(x(s))y(s)ds ≥ −δ |x|
t
∫

t−r

f ′(x(s)) |y(s)| ds≥ − 1
2 (δδ̄5r)x

2 − 1
2 (δδ̄5)

t
∫

t−r

y2(s)ds

z
t
∫

t−r

f ′(x(s))y(s)ds ≥ − |z|
t
∫

t−r

f ′(x(s)) |y(s)| ds ≥ − 1
2 δ̄5rz

2 − 1
2 δ̄5

t
∫

t−r

y2(s)ds

so that
d
dt
V0(xt, yt, zt, wt, ut) = (δδ5 −

1
2δδ5r)x

2 + {δ5 − δa3 − λr}y2

+(δa1 − a3 −
1
2 δ̄5r)z

2 + a1w
2

+2−1{2λ− (1 + δ)δ̄5}
t
∫

t−r

y2(s)ds.

Let λ = (1+δ)δ̄5
2 . Hence

d
dt
V0(xt, yt, zt, wt, ut) = (δδ5 − 2−1δδ5r)x

2 + {δ5 − δa3 − 2−1(1 + δ)δ5r}y
2

+(δa1 − a3 − 2−1δ̄5r)z
2 + a1w

2 > 0

provided r < 2min{1, δ5−δa3

(1+δ)δ5
, δa1−a3

δ̄5
}, which verifies that the property (P2) holds for

V0.

On the other hand, d
dt
V0(xt, yt, zt, wt, ut) = 0 if and only if x = y = z = w = 0, which

implies that x = y = z = w = u = 0. Furthermore, by f(x) 6= 0 for all x 6= 0, it follows
that d

dt
V0(xt, yt, zt, wt, ut) = 0 if and only if x = y = z = w = u = 0. Thus, the property

(P3) holds for V0. By the above discussion, we conclude that the zero solution of Eq. (2)
is unstable. The proof of Theorem 2.1 is completed. 2

Our second main result is given by the following theorem.

Theorem 2.2 In addition to the assumptions imposed to the function f in Eq. (2),
we assume that there exist constants a1, a3, δ (> 0), δ̄′5 and δ′5 such that the following
conditions hold:

a1 < 0, f(0) = 0, f(x) 6= 0, (x 6= 0),−δ̄′5 ≤ f ′(x) < −δ′5 for all x,

where
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δ′5 =

{

0, if a3 ≥ 0,

a23 |a1|
−1
, if a3 < 0.

Then the trivial solution x = 0 of Eq. (2) is unstable provided

r < 2min
{

1,
δ5 − δa3

(1 + δ)δ5
,
δa1 − a3

δ̄5

}

.

Proof. Consider the Lyapunov functional V1 = V1(xt, yt, zt, wt, ut) defined by

V1 = 1
2{δa4x

2 − (a4 + δa2)y
2 − (a2 − δ)z2 + w2} − δyw − δa1yz

+δxu + δa1xw + δa2xz + δa3xy − zu− a1zw − yf(x)

−λ
0
∫

−r

t
∫

t+s

y2(θ)dθds.

Now, the constant δ is fixed as follows |a3| |a1|
−1

< δ < δ′5 |a3|
−1
.

It is clear from V1 that

V1(ε
2, 0, 0, 0, ε) = δ(ε3 +

1

2
a4ε

4) > 0

for all sufficiently small ε, so that V1 has the property (P1).
Calculating the time derivative of V1 along solutions of (3), we obtain

d
dt
V1(xt, yt, zt, wt, ut) = −δxf(x)− {f ′(x) − δa3}y

2 − (δa1 − a3)z
2 − a1w

2

+δx
t
∫

t−r

f ′(x(s))y(s)ds − z
t
∫

t−r

f ′(x(s))y(s)ds

−λry2 + λ
t
∫

t−r

y2(s)ds.

The assumptions f(0) = 0, −δ̄′5 ≤ f ′(x) < −δ′5 and the estimate 2 |mn| ≤ m2 +n2 imply

−δxf(x) ≥ (δδ′5)x
2,

−δx
t
∫

t−r

f ′(x(s))y(s)ds ≥ δ |x|
t
∫

t−r

f ′(x(s)) |y(s)| ds ≥ − 1
2 (δδ̄

′
5r)x

2 − 1
2 (δδ̄

′
5)

t
∫

t−r

y2(s)ds

and

z
t
∫

t−r

f ′(x(s))y(s)ds ≥ |z|
t
∫

t−r

f ′(x(s)) |y(s)| ds ≥ − 1
2 δ̄

′
5rz

2 − 1
2 δ̄

′
5

t
∫

t−r

y2(s)ds

so that

d
dt
V1(xt, yt, zt, wt, ut) = δ(δ′5 −

1
2 δ̄

′
5r)x

2 + {δ′5 − δa3 − λr}y2 + (−δa1 + a3 −
1
2 δ̄

′
5r)z

2

−a1w
2 + 2−1{2λ− (1 + δ)δ̄′5}

t
∫

t−r

y2(s)ds.
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Let λ =
(1+δ)δ̄′

5

2 . Hence

d
dt
V1(xt, yt, zt, wt, ut) = δ(δ′5 − 2−1δ̄′5r)x

2 + {δ′5 − δa3 − 2−1(1 + δ)δ̄′5r}y
2

+(−δa1 + a3 − 2−1δ̄′5r)z
2 − a1w

2 > 0

provided r < 2min{
δ′
5

δ̄′
5

,
δ′
5
−δa3

(1+δ)δ̄′
5

, −δa1+a3

δ̄′
5

}, which verifies that the property (P2) holds for

V1.

The remaining of the proof is similar to the proof of Theorem 2.1. Therefore, we omit
the details. The proof of Theorem 2.2 is now completed. 2

Remark 2.2 When we take into account the assumptions established in Tunç ( [19,
20]), it can be seen that our assumptions are completely different from that of ( [19,20]).
That is to say, Theorems 2.1 and 2.2 raise two new results on the instability of solutions
of a delay differential equation (2).

Example 2.1 Consider nonlinear differential equation of fifth order with delay

x(5) + x(4) + x′′′ +
1

2
x′′ + x′ + 3x(t− r) = 0. (11)

We write (11) in system form as follows

x′ = y, y′ = z, z′ = w,w′ = u, u′ = −u− w − 1
2z − y − 3x+ 3

t
∫

t−r

y(s)ds.

It follows that Eq. (11) is special case of Eq. (2) and

a1 = 1 > 0, a2 = 1 > 0, a3 =
1

2
> 0, a4 = 1 > 0,

f(x) = 3x, f(0) = 0, f(x) 6= 0, (x 6= 0), f ′(x) = 3,

3 = δ̄5 = f ′(x) > δ5 > 0, δ5 >
1

4
=
a23
a1
,

1

2
= a3a

−1
1 < δ < δ5a

−1
3 = 2δ5.

In view of the above estimates, we conclude that all the assumptions of Theorem 2.1
hold. Hence, if

r < 2min
{

1,
δ5 − 2−1δ

(1 + δ)δ5
,
δ − 2−1

3

}

,

then the zero solution of (11) is unstable.
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