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1 Introduction

Integro differential equations arise quite frequently as mathematical models in diverse
disciplines. The study of integro differential equations has been attracting the attention
of many scientific researchers due to its potential as a better model to represent phys-
ical phenomena in various disciplines. Much work has been done in the existence and
uniqueness of solutions for integro differential equations see [2, 3, 6, 7, 8, 12]. All these
results are abstract in the sense that there is no specific procedure to obtain a solution
of the considered equations, so the Euler solutions for integro differential equations are
studied [4].

In many physical phenomena the both past history and future play an important
role along with the present state and hence an appropriate model of the phenomena will
be one that involves past history and future expectation also. This led to the study of
systems involving both retardation and anticipation, for example, see [1]. The existence of
Euler solutions have been studied for set differential equations [11], for causal differential
equations [10], for delay differential equations [5], due to the inherited simplicity in its
idea which paves a path for obtaining a solution of the given system. In this paper,
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we give an approach to obtaining the solution of the integro differential equation with
retardation and anticipation under continuity conditions.

In this paper we consider the integro differential equations with retardation and an-
ticipation of the type

x′ = f(t, x, Sx, xt, x
t), t ∈ I = [t0, T ], (1)

xt0(0) = φ0(0), xT (0) = ψ0(0), (2)

where the retardation function xt is defined as xt ∈ C0 = C[[−h1, 0], R] such that
xt(s) = x(t + s), s ∈ [−h1, 0] and the anticipation is defined as xt ∈ C1 = C[[0, h2], R]
such that xt(σ) = x(t + σ) where σ ∈ [0, h2] and construct Euler solution for the fore
mentioned integro differential equation with retardation and anticipation.

2 Preliminaries

In this section we begin with the integro differential equation given by

x′ = f(t, x) +

∫ t

t0

K(t, s, x(s))ds, (3)

x(t0) = x0. (4)

We begin with the following known results corresponding to integro differential equa-
tions which are prerequisite to obtain the Euler solutions for integro differential equations
with retardation and anticipation. These results are from [9].

Theorem 2.1 Assume that
A(1) g ∈ C[R+ × R, R], H ∈ C[R2

+ × R, R] and H(t, s, u) is monotone non decreasing
in u for each (t, s) ∈ R

2
+;

A(2) v′ ≤ g(t, v) +
∫ t

t0
H(t, s, v(s))ds and w′ ≥ g(t, w) +

∫ t

t0
H(t, s, w(s))ds;

A(3) for (t, s) ∈ R
2
+, x ≥ y and L ≥ 0,

g(t, x)− g(t, y) ≤ L(x− y), H(t, s, x)−H(t, s, y) ≤ L2(x− y).

Then we have v(t) ≤ w(t), for t ≥ t0, provided v(t0) ≤ w(t0).

Next we state the following result which gives existence of extremal solutions.

Theorem 2.2 Assume that g ∈ C[[t0, t0 + a]× R, R],
H ∈ C[[t0, t0 + a]× [t0, t0 + a]× R, R], H(t, s, u) is non decreasing in u for each (t, s)
and

∫ s

t
|H(σ, s, u(s))| dσ ≤ N for t0 ≤ s ≤ t ≤ t0 + a, u ∈ Ω0 = {u ∈ C[[t0, t0 +

a], R] : |u(t) − u0| ≤ b}. Then there exists a maximal and minimal solutions for the
scalar IVP

u′ = g(t, u) +

∫ t

t0

H(t, s, u(s)) ds, (5)

u(t0) = u0. (6)

on [t0, t0 + α], for some 0 < α < a.

We now give the comparison theorem, which is used in the proof of our main result.
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Theorem 2.3 Assume that g ∈ C[R2
+, R], H ∈ C[R3

+, R], H(t, s, u) is non de-

creasing in u for each (t, s) and for t ≥ t0, D−m(t) ≤ g(t,m(t)) +
∫ t

t0
H(t, s,m(s))ds,

where m ∈ C[R+, R] and D−m(t) = limh→0−inf [
m(t+h)−m(t)

h
]. Suppose that γ(t) is

the maximal solution of u′ = g(t, u(t)) +
∫ t

t0
H(t, s, u(s))ds, u(t0) = u0 ≥ 0, existing on

[t0,∞). Then m(t) ≤ γ(t), for t ≥ t0, provided m(t0) ≤ u0.

Before we proceed further, we state the following known result relating to integro
differential equations, which is indirectly used in our work.

Theorem 2.4 Let E1 be an open (t, u)-set in R
n+1 and let f ∈ C[E1,R

n],
K ∈ C[E1 ×R

n
+,R

n
+] and x(t) be a solution of (3) and (4)on some interval t0 ≤ t ≤ a0.

Then x(t) can be extended as a solution to the boundary of E1.

We now present a theorem relating to the largest interval of existence of maximal
solutions in a particular setup.

Theorem 2.5 Let the hypothesis of Theorem 2.2 hold. Suppose that the largest
interval of existence of the maximal solution r(t) of (5) and (6) is [t0, t0 + a). Then
there is an ǫ0 > 0 such that 0 < ǫ < ǫ0, the maximal solution r(t, ǫ) of

u′ = g(t, u) +

∫ t

t0

H(t, s, u(s)) ds+ ǫ, (7)

u(t0) = u0 + ǫ ≥ 0, (8)

exists over [t0, t1] ⊂ [t0, t0 + a) and limǫ→0 r(t, ǫ) = r(t) uniformly on [t0, t1].

3 Comparison Theorems

In order to construct the Euler solutions for the integro differential equation with retar-
dation and anticipation. We need the following comparison theorems. We begin with the
following result which deals with the existence of maximal solution in our setup, which
is required for our main result.

Theorem 3.1 Let E be the product space [t0, t0 + a)× R
2 and g ∈ C[E, R],

H ∈ C[[t0, t0 + a)× [t0, t0 + a)×R, R]. Assume that g(t, u, v) is non decreasing in v for
each (t, u), and H(t, s, u) is non decreasing in u for each (t, s). Suppose that r(t) is the
maximal solution of the integro differential equation

u′ = g(t, u, u) +

∫ t

t0

H(t, s, u(s))ds, (9)

u(t0) = u0 ≥ 0, (10)

existing on [t0, t0 + a) and
r(t) ≥ 0, (11)

on [t0, t0 + a). Then the maximal solution r1(t) of

u′ = g1(t, u) +

∫ t

t0

H(t, s, u(s))ds, (12)

u(t0) = u0 ≥ 0, (13)

where g1(t, u) = g(t, u, r(t)) exists on [t0, t0 + a) and r1(t) = r(t) for t ∈ [t0, t0 + a),∫ t

s
|H(σ, s, u(s))|dσ ≤ N for t0 ≤ s ≤ t ≤ t0 + a.
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Proof. Consider the scalar integro differential equation (12) and (13). By Theorem
2.2 there exists a maximal solution r1(t) of (12) and (13) in the interval [t0, t0+α), where
0 < α < a and by Theorem 2.4 this maximal solution can be extended from [t0, t0 + α)
to [t0, t0 + a). This implies that either r1(t) is defined over [t0, t0 + a) or there exists a
t1 < t0 + a such that

|r1(tk)| → ∞, (14)

for a certain sequence {tk}, such that tk → t−1 as k → ∞. Observe that

r′(t) = g(t, r(t), r(t)) +

∫ t

t0

H(t, s, r(s))ds = g1(t, r(t)) +

∫ t

t0

H(t, s, r(s))ds,

and Theorem 2.3 yields that
r(t) ≤ r1(t), (15)

as far as r1(t) exists. Now using the relations (11), (14) and (15), we have

|r1(tk)| → +∞ (16)

for some sequence {tk}, such that tk → t−1 as k → ∞. We shall prove that (16) does not
hold. Since the largest interval of existence of maximal solution r(t) of the scalar integro
differential equaiton (9) and (10) is [t0, t0+a), so by Theorem 2.5 there is an ǫ0 > 0 such
that 0 < ǫ < ǫ0 and the maximal solution r(t, ǫ) of

u′ = g(t, u, u) +

∫ t

t0

H(t, s, u(s)) ds+ ǫ, (17)

u(t0) = u0 + ǫ ≥ 0, (18)

exists over [t0, t1+ν] ⊂ [t0, t0+a), ν > 0, t1+ν < t0+a. From the relations (17), (18)
we get

r′(t, ǫ) > g(t, r(t, ǫ), r(t, ǫ)) +

∫ t

t0

H(t, s, r(s, ǫ))ds

and r(t0) = u0 < u0 + ǫ = r(t0, ǫ). So

r(t0) < r(t0, ǫ).

Now applying Theorem 2.1 we conclude that

r(t) < r(t, ǫ), (19)

for t ∈ [t0, t1 + ν]. Since g is non decreasing in v, we arrive at r′(t, ǫ) > g1(t, r(t, ǫ)) +∫ t

t0
H(t, s, r(s, ǫ))ds, for t ∈ [t0, t1 + ν]. But

r′1(t) = g1(t, r1(t)) +

∫ t

t0

H(t, s, r1(s))ds,

for t ∈ [t0, t1] and r1(t0) = u0 < u0 + ǫ = r(t0, ǫ), so

r1(t) < r(t, ǫ),



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 12 (3) (2012) 237–250 241

for t ∈ [t0, t1]. Since r(t, ǫ) exists on [t0, t1 + ν], ν > 0. This leads to a contradiction to
(16). Hence r1(t) exists on [t0, t0 + a). Thus r(t) ≤ r1(t) for t ∈ [t0, t0 + a). Furthermore,

r′1(t) = g1(t, r1(t)) +

∫ t

t0

H(t, s, r1(s))ds

= g(t, r1(t), r(t)) +

∫ t

t0

H(t, s, r1(s))ds.

From the monotonic character of g in v, and from the relation (15), we get

r′1(t) = g(t, r1(t), r(t)) +

∫ t

t0

H(t, s, r1(s))ds

≤ g(t, r1(t), r1(t)) +

∫ t

t0

H(t, s, r1(s))ds.

Now using Theorem 2.3, we find that

r1(t) ≤ r(t) (20)

on t ∈ [t0, t0 + a), which implies along with the relation (15) that r1(t) = r(t) for
t ∈ [t0, t0 + a).

We need the following known result in suitable form.

Theorem 3.2 Let the hypothesis of Theorem 3.1 hold and m ∈ C[[t0, t0 + a), R]
such that (t,m(t), ν) ∈ E, t ∈ [t0, t0 + a) and m(t0) ≤ u0. Assume that for a fixed

Dini Derivative the inequality Dm(t) ≤ g(t,m(t), ν) +
∫ t

t0
H(t, s,m(s))ds, is satisfied for

t ∈ [t0, t0 + a)−S, where S denotes an at most countable subset of [t0, t0 + a). Then for
all ν ≤ r(t), t ∈ [t0, t0 + a), we have m(t) ≤ r(t), for t ∈ [t0, t0 + a).

Proof. Since the hypothesis of Theorem 3.1 holds, so there exists a maximal solution
r1(t) of the scalar integro differential equation (12) and (13) with g1(t, u) = g(t, u, r(t))
exists on [t0, t0 + a) and r(t) = r1(t) for t ∈ [t0, t0 + a). Let ν ≤ r(t), t ∈ [t0, t0 + a).
Then using the monotonicity of g in ν we get

Dm(t) ≤ g(t,m(t), ν) +

∫ t

t0

H(t, s,m(s))ds

≤ g(t,m(t), r(t)) +

∫ t

t0

H(t, s,m(s))ds

Dm(t) ≤ g1(t,m(t)) +

∫ t

t0

H(t, s,m(s))ds,

for t ∈ [t0, t0 + a)−S, which on using Theorem 2.3 gives m(t) ≤ r(t), for t ∈ [t0, t0 + a).
The following theorem is needed before we proceed further.

Theorem 3.3 Assume that m ∈ C[I, R+], g ∈ C[I × R+, R+],
H ∈ C[I × I × R+, R+], H is non decreasing in u for each (t, s) and for t ∈ I = [t0, T ],

D−m(t) ≤ g(t, |m|0(t)) +

∫ t

t0

H(t, s, |m|(s))ds, (21)
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where |m|0(t) = supt0≤s≤t|m(s)|. Suppose that r(t) = r(t, t0, u0) is the maximal solution
of the scalar integro differential equation

u′ = g(t, u) +

∫ t

t0

H(t, s, u(s))ds, (22)

u(t0) = u0 ≥ 0, (23)

existing on [t0, T ). Then m(t) ≤ r(t), t ≥ t0, provided | m(t0) |0≤ u0.

Proof. Since the largest interval of existence of maximal solution is [t0, T ) for the
integro differential equation (22) so there exists an ǫ0 > 0 such that 0 < ǫ < ǫ0, the
maximal solution r(t, t0, u0, ǫ) of

u′ = g(t, u) +

∫ t

t0

H(t, s, u(s))ds+ ǫ, (24)

u(t0) = u0 + ǫ ≥ 0, (25)

existing on [t0, t1] ⊂ [t0, T ), for t1 < T and limǫ→0r(t, t0, u0, ǫ) = r(t, t0, u0) uniformly
on [t0, t1]. To prove the conclusion of the theorem, it is sufficient to show that

m(t) < r(t, t0, u0, ǫ), (26)

for t0 ≤ t ∈ I. Suppose that the relation (26) does not hold then there exists tα > t0
such that m(tα) = r(tα, t0, u0, ǫ) and m(t) < r(t, t0, u0, ǫ) for t0 ≤ t < tα. this yields on
computation,

D−m(tα) > g(tα, r(tα, t0, u0, ǫ)) +

∫ t

t0

H(tα, s, r(tα, t0, u0, ǫ))ds (27)

which is contradiction. Observe that we have used the fact that g(t, u) ≥ 0, H(t, s, u) ≥ 0
implies that r(tα, t0, u0, ǫ) is non decreasing in t and

|m|0(tα) = supt0≤s≤tα |m(s)| = r(tα, t0, u0, ǫ) = m(tα),

which yields

D−m(tα) ≤ g(tα, |m|0(tα)) +

∫ tα

t0

H(tα, s, |m|0(s))ds,

= g(tα, r(tα, t0, u0, ǫ)) +

∫ t

t0

H(tα, s, r(tα, t0, u0, ǫ))ds

which is contradiction to (27), and the proof is complete.

4 Euler Solutions

In this section we define an Euler solution and prove a result for its existence of integro
differential equation with retardation and anticipation. Further we give a result which
gives conditions under which the Euler solution becomes a solution of the IVP of the
integro differential equation with retardation and anticipation.
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Consider the integro differential equation with retardation and anticipation:

x′ = f(t, x, Sx, xt, x
t), (28)

xt0(0) = φ0(0), xT (0) = ψ0(0), (29)

where t ∈ I = [t0, T ], φ0 ∈ C0, ψ0 ∈ C1, f ∈ C[I × R× R× C0 × C1, R],

Sx(t) =
t∫

t0

K(t, s, x)ds, K(t, s, x) ∈ C[I2 × R, R+] and C0 = C[[−h1, 0], R],

C1 = C[[0, h2], R].
In order to construct the Euler Solution we consider a partition π of the interval I

and on each subinterval of the partition, we obtain a differential equation where the right
hand side is a constant. This will help us to define Euler solution as a limit of a sequence
of polygonal arcs.

In order to do so we have to find a reasonable estimate of xt in the right hand side
of the differential equation (28). For this we take the anticipation as

z(t) =




xt(0), wherever | ξt(0)− φ0(0) |< M,

xt(0) +
ξ(t)

j
,

(30)

where j is the number of points in the partition π and

ξ(t) =





φ0(0), t ∈ [t0 − h1, t0],

φ0(0) +
(ψ0(0)− φ0(0))

(T − t0)
(t− t0), t ∈ [t0, T ],

ψ0(0), t ∈ [T, T + h2].

(31)

With this approximation the integro differential equation with retardation and anticipa-
tion reduces to the integro differential equation with retardation only, i.e.,

x′ = f(t, x, Sx, xt, z(t)), (32)

xt0(0) = φ0(0), z(T ) = ψ0(0), (33)

for t ∈ I = [t0, T ]. Let partition of the interval [t0, T ] be given by

π = {t0, t1, t2, ..., tN = T }. (34)

Consider the sub interval [t0, t1] and the differential equation (32), in that subinterval.
In the right hand side of (32) replace t by t0, x by x0, xt by φ0(0), z(t) by z(t0) and
Sx by (Sx(t0), t0) ie., in the integral replace t with t0, s with t0, x with x0, so (32)
reduces to

x′ = f(t0, x0, (Sx(t0), t0), φ0(0), z(t0)). (35)

Then the right hand side of the differential equation (35) is a constant and hence (35)
posses a unique solution x(t) = x(t, t0, φ0(0)) on [t0, t1].

Set x1 = x(t1) = x(t1, t0, φ0(0)). We now choose the next subinterval [t1, t2] and
consider the differential equation (32) by setting t = t1, x = x1, xt = φ1(t1), z(t) = z(t1)
and Sx = (Sx(t1), t1), i.e., in the integral replace t with t1, s with t1, x with x1. Then
the system (32) reduces to

x′ = f(t1, x1, (Sx(t1), t1), φ1(t1), z(t1)), (36)
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where

φ1(t) =

{
φ0(t), t ∈ [t0 − h1, t0],

x(t, t0, φ0(0)), t ∈ [t0, t1],
(37)

z(t) =




xt1(0), | ξt1(0)− φ0(0) |< M,

xt1(0) +
ξ(t1)

N + 1
,

ξ(t1) = φ0(0) +
(ψ0(0)− φ0(0))

(T − t0)
(t1 − t0). (38)

Clearly the right hand side of (36) is a constant hence there exists a unique solution
x(t) = x(t, t1, φ1(t1)) on [t1, t2].

Set x2 = x(t2) = x(t2, t1, φ1(t1)). Again consider the integro differential equation
with retardation (32) on [t2, t3] and as earlier replacing t by t2, x by x2, xt by φ2(t2),
z(t) = z(t2) and Sx by (Sx(t2), t2), i.e., in the integral replace t by t2, s by t2, x by x2.
Then the system (32) reduces to

x′ = f(t2, x2, (Sx(t2), t2), φ2(t2), z(t2)), (39)

where

φ2(t) =





φ0(t), t ∈ [t0 − h1, t0],

φ1(t), t ∈ [t0, t1],

x(t, t1, φ1(t1)), t ∈ [t1, t2],

(40)

z(t) =




xt2(0), | ξt2(0)− φ0(0) |< M,

xt2(0) +
ξ(t2)

N + 1
,

ξ(t2) = φ0(0) +
(ψ0(0)− φ0(0))

(T − t0)
(t2 − t0). (41)

We observe that the right hand side of (39) is a constant and proceeding as earlier
we get a solution x(t, t2, φ2(t2)) in the interval [t2, t3]. Set x3 = x(t3) = x(t3, t2, φ2(t2)).

Now proceeding in this fashion, we construct a sequence of arcs x(t, t0, φ0(0)),
x(t, t1, φ1(t1)), ..., x(t, tN−1, φN−1(tN−1)) on the sub intervals [t0, t1], [t1, t2],
..., [tN−1, tN ] respectively, which is the Euler polygonal arcs defined on the partition
π = {t0, t1, t2, ..., tN = T }. Thus the entire arc on I is defined by

xπ = xπ(t) = {x(t, ti, φi(ti)) : ti ≤ t ≤ ti+1, i = 0, 1, 2, ..., N − 1}, (42)

where

φi(t) =





φ0(t), t ∈ [t0 − h1, t0],

φ1(t), t ∈ [t0, t1],
...

x(t, ti−1, φi−1(ti−1)), t ∈ [ti−1, ti].

(43)

In (42) the notation emphasizes the fact that the arc corresponds to the partition π. The
diameter µπ of the partition π is given by

µπ = max{ti − ti−1 : 1 ≤ i ≤ N}. (44)
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Definition 4.1 An Euler solution for the integro differential equation with retarda-
tion and anticipation (28), (29) is any arc x = x(t) which is the uniform limit of Euler
polygonal arcs xπj

, corresponding to some sequence πj such that πj → 0, as the diameter
µπj

→ 0, as j → ∞.

Remark 4.1 Observe that the number of points Nj of the partition πj must tend to
∞ as πj → 0 and also that the Euler arc satisfies the conditions xt0 (0) = φ0(0),
xT (0) = ψ0(0).

We now state a result which guarantees the existence of an Euler solution.

Theorem 4.1 Assume that

| f(t, x, Sx, xt, z
t) |≤ g(t, | x |0 (t), | z(t) |) +

∫ t

t0

H(t, s, | x(s) |)ds, (45)

where f : I ×R×R×C0 ×C1 → R, K : I2 ×R → R+, g ∈ C[I ×R+ × R+, R+] is non
decreasing in t for each (u, v), is non decreasing in u for each (t, v), is non decreasing
in v for each (t, u) ,H ∈ C[I2 × R+, R+] is non decreasing in t for each (s, u), is non
decreasing in s for each (t, u), is non decreasing in u for each (t, s),
| x |0 (t) = maxt−h1≤t+s≤t | x(t + s) | and r(t, t0, u0) is the maximal solution of the
scalar integro differential equation

u′ = g(t, u, u) +

∫ t

t0

H(t, s, u)ds, (46)

u(t0) = u0, u(T ) = ψ0(0), (47)

existing on [t0, T ] and |z(t)| ≤ r(t), and zt is the reasonable estimate of xt. Then,
(a) there exists at least one Euler solution x(t) = x(t, t0, φ0(0)) of the IVP (28), (29)

which satisfies the Lipschitz condition;
(b) any Euler solution x(t) of (28), (29) satisfies the relation

| x(t) − φ0(0) |≤ r(t, t0, u0)− u0, t ∈ [t0, T ], (48)

where u0 =| φ0 | .

Proof. Let π be the partition of [t0, T ] defined by (34) and let xπ = xπ(t) denote
the corresponding arc with nodes of xπ represented by x1, x2, x3, ..., xN . Writing xπ(t) =
xi(t) = x(t, ti, φi(ti)), ti ≤ t ≤ ti+1, i = 0, 1, 2, ..., N − 1, where φi(ti) is given by (43)
and observe that xi(ti) = xi, i = 0, 1, 2, ..., N − 1. Further for any t ∈ [ti, ti+1], we have
from the definition of Euler solution

| x′π(t) | =| f(ti, xi, Sxi, xti(0), z(ti)) |

≤ g(ti, | xti(0) |, | z(ti) |) +

∫ ti

t0

H(ti, ti, | x(ti) |)ds

thus

| x′π(t) |≤ g(ti, | xti(0) |, | z(ti) |)+

∫ ti

t0

H(ti, ti, | x(ti) |)ds, i = 0, 1, 2, ..., N−1. (49)
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Consider the interval [t0, t1] and applying the properties of norm, integral and the non
decreasing nature of g and H , along with the fact that both g and H are non-negative,
we get

| x1(t)− φ0(0) | = | φ0(0) +

∫ t

t0

f(t0, x0, Sx0, xt0(0), z(t0))ds − φ0(0) |

≤

∫ t

t0

| f(t0, x0, Sx0, xt0(0), z(t0)) | ds

≤

∫ t

t0

[g(s, r(s), r(s)) +

∫ t

s

H(σ, s, r(s))dσ]ds

≤ r(T, t0, | φ0 |)− | φ0 |= ψ0(0)− φ0(0) =M (say).

Next consider the interval [t1, t2] again as before, using the properties of norm and
integral, the monotone character of g and H and the fact that both g and H are non
negative, we obtain,

| x2(t)− φ0(0) | =| x1(t1) +

∫ t

t1

f(t1, x1, Sx1, xt1(0), z(t1))ds − φ0(0) |

≤

∫ t1

t0

| f(t0, x0, Sx0, xt0(0), z(t0)) | ds

+

∫ t

t1

| f(t1, x1, Sx1, xt1(0), z(t1)) | ds

=

∫ t

t0

[g(s, r(s), r(s))ds +

∫ t

s

H(σ, s, r(s))dσ]ds

≤ r(T, t0, | φ0 |)− | φ0 |= ψ0(0)− φ0(0) =M (say).

Proceeding in this manner, on each subinterval [ti, ti+1], we arrive at

| xi(t)− φ0(0) |≤ r(T, t0, | φ0 |)− | φ0 |=M.

Thus combining the relations of all polygonal arcs over the partition π, we deduce that

| xπ(t)− φ0(0) |≤ r(T, t0, | φ0 |)− | φ0 |=M, (50)

on [t0, T ]. Now from the relation (49), we have

| x′π(t) | ≤ g(ti, | xti(0) |, | z(ti) |) +

∫ ti

t0

H(ti, ti, | x(ti) |)ds

≤ g(T, r(T ), r(T )) +

∫ t

t0

H(t, s, r(s))ds

= r′(T, t0, | φ0 |) = L (say).

We next show that xπ is Lipschitz. For this consider t0 ≤ l ≤ t ≤ T, where l ∈ [ti, ti+1]
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and t ∈ [tk, tk+1], i < k. Then

| xπ(t)− xπ(l) | =| xk +

∫ t

tk

f(tk, xk, Sxk, xtk(0), z(tk))ds

− {xi +

∫ l

ti

f(ti, xi, Sxi, xti(0), z(ti))ds} |

+ ...+

∫ tk

tk−1

f(tk−1, xk−1, Sxk−1, xtk−1
(0), z(tk−1))ds

+

∫ t

tk

f(tk, xk, Sxk, xtk(0), z(tk))ds

− {xi +

∫ l

ti

f(ti, xi, Sxi, xti(0), z(ti))ds} |

≤

∫ ti+1

ti

| f(ti, xi, Sxi, xti(0), z(ti)) | ds

+ ...+

∫ tk

tk−1

| f(tk−1, xk−1, Sxk−1, xtk−1
(0), z(tk−1)) | ds

+

∫ t

tk

| f(tk, xk, Sxk, xtk(0), z(tk)) | ds

−

∫ l

ti

| f(ti, xi, Sxi, xti(0), z(ti)) | ds

=

∫ t

l

[g(s, r(s), r(s)) +

∫ t

s

H(σ, s, r(s))dσ]ds

=

∫ t

l

r′(s, t0, u0)ds ≤ L(t− l),

for some ξ ∈ (l, t). This follows using the relations (45), (46), (47) along with the fact that
g(t, u, v), H(t, s, u), r(t) are positive and non decreasing. Thus xπ satisfies the Lipschitz
condition with some constant L on [t0, T ]. Now let πj be a sequence of partitions of [t0, T ]
such that πj → 0 as j → ∞. Thus from the earlier construction, we get a sequence of
polygonal arcs xπj

on [t0, T ] corresponding to each partition πj satisfying

xπj
(t0) = φ0(0), | xπj

(t)− φ0(0) |≤M, | x′πj
(t) |≤ L.

Hence the family {xπj
} is equicontinuous and uniformly bounded. Then the fam-

ily {xπj
} satisfies the hypothesis of the Ascoli–Arzela Theorem and hence we obtain a

subsequence which converges uniformly to a continuous function x(t) on [t0, T ] which
is absolutely continuous on [t0, T ]. Now using the definition of the Euler solution, we
conclude that x(t) is an Euler solution for (28), (29) on [t0, T ]. To prove the relation in
(b), it suffices to observe that x(t) is the uniform limit of the polygonal arcs that satisfy
the relation (48) and thus inherits the property. Thus the proof is complete.

Remark 4.2 If f and K are continuous and K(t, s, x) is non decreasing in t for each
(s, x), we can show that the Euler solution is a solution. This is the essence of the next
result.
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Theorem 4.2 Assume that

| f(t, x, Sx, xt, z
t) |≤ g(t, | x |0 (t), | z(t) |) +

∫ t

t0

H(t, s, | x(s) |)ds, (51)

where g ∈ C[I × R+ × R+, R+] is non decreasing in t for each (u, v), is non decreasing
in u for each (t, v), is non decreasing in v for each (t, u) ,H ∈ C[I2 × R+, R+] is non
decreasing in t for each (s, u), is non decreasing in s for each (t, u), is non decreasing in
u for each (t, s), | x |0 (t) = maxt−h1≤t+s≤t | x(t + s) | and r(t, t0, u0) is the maximal
solution of the scalar integro differential equation

u′ = g(t, u, u) +

∫ t

t0

H(t, s, u)ds, (52)

u(t0) = u0, u(T ) = ψ0(0), (53)

existing on [t0, T ], |z(t)| ≤ r(t), and z(t) is the reasonable estimate of xt. Further suppose
that f ∈ C[I × R× R× C0 × C1, R], K ∈ C[I2 × R,R+] is non decreasing in t for each

(s, x), maxt,s∈[t0,T ]K(t, s, x) = k1 ≤ M+φ0(0)
T−t0

. Then the Euler solution x(t) is a solution
of (28), (29).

Proof. Since the hypothesis of Theorem 4.1 is satisfied so we obtain a sequence {xπj
}

of polygonal arcs for the integro differential equation with retardation and anticipation
(28), (29) that converge uniformly to an Euler solution x(t) on [t0, T ].

Let B̂(φ0(0),M) = {(x, Sx, xt, x
t) : x ∈ C[I,R], | x(t)− φ0(0) |≤M,

| Sx(t)− φ0(0) |≤ k1(T − t0)− | φ0(0) |≤M, sup−h1≤s≤0 | x(t+ s)− φ0(0) |≤M,

supσ∈[0,h2] | x(t + σ) − φ0(0) |≤ M, t ∈ [t0, T ]}. Then, we observe that all the Euler

polygonal arcs belongs to the ball B̂(φ0(0),M), from the proof of Theorem 4.1, also we
conclude that all these Euler arcs satisfy Lipschitz condition with some constant L. Now
since f is continuous implies that it is uniformly continuous on compact sets I × B̂ .
Hence for any given ǫ > 0, we can find a δ > 0 such that

| t− t∗ |< δ, | x(t)−x(t∗) |< δ, | Sx(t)−Sx(t∗) |< δ, | xt−xt∗ |< δ, | xt−xt
∗

|< δ,

implies
| f(t, x, Sx, xt, x

t)− f(t∗, x∗, Sx∗, xt∗ , x
t∗) |< ǫ,

for any t, t∗ ∈ [t0, T ] and x, x
∗ ∈ C[[t0, T ],R] such that (x, Sx, xt, x

t) ∈ B̂(φ0(0),M). Let
j be sufficiently large so that the diameter of µπj

corresponding to that j which satisfies

µπj
< δ and Lµπj

< δ, k1µπj
< δ, (L + M

j(T−t0)
)µπj

< δ. Let πj = {t0, t1, t2, ..., T }.

Now for any t, which is not one of the infinitely many points at which xπj
(t) is a node,

then we have x′πj
(t) = f(t̂, xπj

(t̂), Sxπj
(t̂), xπjt̂

, z(t̂)) for some t̂ with in µπj
< δ of t. We

have | t− t̂ |< δ, using the fact that xπj
is Lipschitz, we get | xπj

(t)−xπj
(t̂) |≤ L(t− t̂) ≤

Lµπj
< δ,

| Sxπj
(t)− Sxπj

(t̂) | = |

∫ t

t0

K(t, s, xπj
(s)ds −

∫ t̂

t0

K(t̂, s, xπj
(s)ds |

≤

∫ t

t0

| K(t, s, xπj
(s) | ds < δ.
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Now consider | xπj
(t+ s)− xπj

(t̂+ s) | for t− h1 ≤ t+ s ≤ t. Then

| xπjt
(s)− xπjt̂

(s) | =| xπj
(t+ s)− xπj

(t̂+ s) |< δ,

| xπjt
− xπjt̂

| = supt0+h1≤t+s≤t | xπj
(t+ s)− xπj

(t̂+ s) |≤ Lµπj
< δ.

Also if | ξt(0)− φ0(0) |< M then | xtπj
(0)− xt̂πj

(0) |=| xπj
(t)− xπj

(t̂) |< δ

otherwise

| z(t)− z(t1) | =| xtπj
(0) +

z(t)

j
−
z(t̂)

j
− xt̂πj

(0) |≤ [L+
M

j(T − t0)
]µπj

< δ.

Hence we have | z(t)− z(t̂) |< δ. Thus by uniform continuity of f on compact sets
| x′πj

(t)− f(t, xπj
(t), Sxπj

(t), xπjt
, z(t)) |

=| f(t̂, xπj
(t̂), Sxπj

(t̂), xπjt̂
, z(t̂))− f(t, xπj

(t), Sxπj
(t), xπjt

, z(t)) |< ǫ.

Now for any t ∈ [t0, T ], consider

| xπj
(t)− φ0(0)−

∫ t

t0

f(s, xπj
(s), Sxπj

(s), xπjs
, z(s))ds |

≤

∫ t

t0

| x′πj
(s)− f(s, xπj

(s), Sxπj
(s), xπjs

, z(s)) | ds ≤ ǫ(T − t0).

Letting j → ∞ in the above inequality, we get

| x(t)− φ0(0)−

∫ t

t0

f(s, x(s), Sx(s), xs, x
s)ds | < ǫ(T − t0).

Since ǫ > 0 is arbitrary, it follows that

x(t) = φ0(0) +

∫ t

t0

f(s, x(s), Sx(s), xs, x
s)ds

which implies that x(t) is continuously differentiable and hence

x′(t) = f(t, x, Sx, xt, x
t)

and xt0(0) = φ0(0), x
T (0) = z(T ) = ψ0(0), t0 ∈ [t0, T ]. Thus the proof is complete.

5 Conclusion

The concepts of anticipation and retardation arise naturally when modeling any goal
oriented physical phenomena. Recently, integro differential equations including these
concepts, have been studied in [6, 12]. In this paper we provided an existence result,
using the concept of Euler solutions and gave criteria under which this Euler solution
becomes a solution. In future, we propose to develop the necessary tools to obtain
numerical solutions of the considered problem.
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