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Abstract: In this paper an adaptive critic based wavelet neural network (WNN)
based tracking control strategy for a class of uncertain systems in continous time is
proposed. The adaptive critic WNN controller comprises two WNNs: critic WNN
and action WNN. The critic WNN is approximating the strategic utility function,
whereas the action WNN is minimizing both the strategic utility function and the
unknown nonlinear dynamic estimation errors. Adaptation laws are developed for
the online tuning of wavelets parameters. The uniformly ultimate boundedness of
the closed-loop tracking error is verified even in the presence of WNN approximation
errors and bounded unknown disturbances, using the Lyapunov approach and with
novel weight updating rules. Finally some simulations are performed to verify the
effectiveness and performance of the theoretical development.
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1 Introduction

Typical control strategies are based on a mathematical model that captures as much
information as possible about the plant to be controlled. The ultimate objective is not to
design the best controller for the plant model, but for the real time plant. This objective
is addressed by robust control theory by including in the model a set of uncertainties.
Robust control techniques are applied to the plant model, augmented with uncertainties
and candidate controllers, to analyze the stability of the actual system. This is a powerful
tool for practical controller design, but designing a controller that remains stable in the
presence of uncertainties limits the aggressiveness of the resulting controller, and can
result in suboptimal control performance [1, 2].

In this paper, the robust control techniques are combined with a reinforcement learn-
ing algorithm to improve the performance of robust controller while maintaining the
stability of the system. Reinforcement learning is a class of algorithms for solving multi-
step, sequential decision problems by finding a policy for choosing sequences of actions
that optimize the sum of some performance criterion over time [3]– [7].

In recent years, learning-based control methodology using Neural networks (NNs)
has become an alternative to adaptive control since NNs are considered as general tools
for modeling nonlinear systems [17]. Work on adaptive NN control using the universal
NN approximation property is now pursued by several groups of researchers. By using
neural network (NN) as an approximation tool, the assumptions on linear parameterized
nonlinearities in adaptive controller designing aspects have greatly been relaxed. It also
broadens the class of the uncertain nonlinear systems which can be effectively dealt by
adaptive controllers. However there are some difficulties associated with NN based con-
troller. The basis functions are generally not orthogonal or redundant; i.e., the network
representation is not unique and is probably not the most efficient one and the conver-
gence of neural networks may not be guaranteed. Also the training procedure for NN
may be trapped in some local minima depending on the initial settings. Wavelet neural
networks are the modified form of the NN having the properties of space and frequency
localization properties leading to a superior learning capabilities and fast convergence.
Thus WNN based control systems can achieve better control performance than NN based
control systems [8]– [10].

Adaptive actor-critic WNN-based control has emerged as a promising WNN approach
due to its potential to find approximate solutions to dynamic programming [11]– [14].
In the actor-critic WNN based control a long-term system performance measure can be
optimized, in contrast to the short-term performance measure used in classical adaptive
and WNN control. While the role of the actor is to select actions, the role of the
critic is to evaluate the performance of the actor. This evaluation is used to provide
the actor with a signal that allows it to improve its performance, typically by updating
its parameters along an estimate of the gradient of some measure of performance, with
respect to the actor’s parameters. The critic WNN approximates a certain strategics
utility function that is similar to a standard Bellman equation, which is taken as the
long-term performance measure of the system. The weights of action WNN are tuned
online by both the critic WNN signal and the filtered tracking error. It minimizes the
strategic utility function and uncertain system dynamic estimation errors so that the
optimal control signal can be generated [3].

This paper deals with the designing of reinforcement learning WNN based adaptive
tracking controller for a class of uncertain nonlinear systems. WNN are used for approx-
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imating the system uncertainty as well as to optimize the performance of the control
strategy.

The paper is organized as follows. Section 2 deals with the system preliminaries,
system description is given in Section 3. WNN based controller designing aspects are
discussed in Section 4. Section 5 describes the tuning algorithm for actor-critic wavelets.
The stability analysis of the proposed control scheme is given in Section 6. Effectiveness
of the proposed strategy is illustrated through an example in Section 7 while Section 8
concludes the paper.

2 System Preliminaries

2.1 Wavelet neural network

Wavelet network is a type of building block for function approximation. The building
block is obtained by translating and dilating the mother wavelet function. Corresponding
to certain countable family ofam and bn, wavelet function can be expressed as{

a−d/2m ψ

(
x− bn
am

)
: m ∈ Z, n ∈ Zd

}
. (1)

Consider

am = am0 , bn = na−m0 b0,m ∈ Z, n ∈ Zd. (2)

The wavelet in (1) can be expressed as

ψmn =
{
a
−md/2
0 ψ

(
a−m0 x− nb0

)
: m ∈ Z, n ∈ Zd

}
, (3)

where the scalar parameters a0 and b0 define the step size of dilation and translation
discretizations (typically a0=2 and b0=1) and x = [x1, x2, ..., xn]

T ∈ Rn is the input
vector.

Output of an n dimensional WNN with m wavelet nodes is

f =
∑
m∈Z

∑
n∈Zd

αmnψmn. (4)

3 System Description

Consider a nonlinear system of the form

ẋ1 = x2,
ẋ2 = x3,
...
ẋn = f(x) + u,
y = x1,

(5)

where x = [x1, x2, ..., xn]
T
, u, y are state variable, control input and output respectively.

f = [f1, f2, ..., fn]
T

: <n+1 → <n are smooth unknown, nonlinear functions of state
variables.
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Rewriting the system (5) as

ẋ = Ax+B(f(x) + u(t)),
y = Cx,

(6)

where

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1
0 0 0 . . . 0

 , B =


0
0
0
...
1

 , C =
[

1 0 0 . . . 0
]
.

The objective is to formulate a state feedback control law to achieve the desired
tracking performance. The control law is formulated using the transformed system (6).

Let ȳd = [yd, ẏd, . . . ,
n−1
yd ]T be the vector of desired tracking trajectory. The following

assumptions are taken for the systems under consideration.

Assumption 3.1 Desired trajectory yd (t) is assumed to be smooth, continuous Cn

and available for measurement.

4 Basic Controller Design Using Filtered Tracking Error

Define the state tracking error vector ê(t) as

ê(t) = x̂(t)− ȳd(t). (7)

The filter tracking error is defined as

r̂ = Kê,

where K = [k1, k2, . . . kn−1, 1] is an appropriately chosen coefficient vector such that
ê→ 0 exponentially as < → 0. Differentiating it along the trajectory of the systems, we
get

˙̂r = Keê+ f(x) + u− n
yd . (8)

Applying the feedback linearization method, the control law is defined as

u = (
n
yd−f̂(x)−Keê− r̂), (9)

where Ke = [0, k1, k2, . . . , kn−1]. Substituting (9) in (8),

˙̂r = −r̂ + f̃(x). (10)

Stability of the system (6) with the proposed control strategy will be analyzed in the
subsequent section.

5 Adaptive WNN Controller Design

A novel strategic utility function is defined as the long-term performance measure for
the system. It is approximated by the WNN critic signal. The action WNN signal is
constructed to minimize this strategic utility function by using a quadratic optimization
function. The critic WNN and action WNN weight tuning laws are derived. Stability
analysis using the Lyapunov direct method is carried out for the closed-loop system (6)
with novel weight tuning updates.
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5.1 Strategic utility function

The utility function p(k) = [pi(k)]mi=1 ∈ <m is defined on the basis of the filtered tracking
error r̂ and is given by [3]:

pi(k) = 0, if r̂2i ≤ η,
pi(k) = 1, if r̂2i> η,

(11)

where pi(k) ∈ <, i = 1, 2, . . . ,m and η ∈ < is the predefined threshold, p(k) can be
considered as the current performance index. The long term system performance measure
Q′(k) ∈ <m can be defined using the binary utility function as

Q′(k) = αNp(k + 1) + αN−1p(k + 2) + . . .+ αk+1p(N) + . . . , (12)

where α ∈ < and 0 <α< 1 and N is the horizon. Above equation may be rewritten as

Q(k) = min
u(k)
{αQ(k − 1)− αN+1p(k)}.

This measure is similar to standard Bellman’s equation [15].

5.1.1 Critic WNN

Q′(k)is approximated by the critic WNN by defining the prediction error as

ec(k) = Q̂(k)− α(Q̂(k − 1)− αNp(k)), (13)

where Q̂(k) = ŵT1 (k)φ1(vT1 x(k)) = ŵT1 (k)φ1(k), ec(k) ∈ <m, Q̂(k) ∈ <m is the critic
signal, w1(k) ∈ <n1×m and v1 ∈ <nm×n1 represent the weight estimates, φ1(k) ∈ <n1is
the wavelet activation function and n1 is the number of nodes in the wavelet layer. The
objective function to be minimized by the critic NN is defined as:

Ec(k) =
1

2
eTc (k)ec(k). (14)

The weight update rule for the critic NN is a gradient-based adaptation, which is given
by [3]

ŵ1(k + 1) = ŵ1(k) + ∆ŵ1(k),

where

∆ŵ1(k) = α1

[
−∂Ec(k)

∂ŵ1(k)

]
(15)

or

ŵ1(k + 1) = ŵ1(k)− α1φ1(k)×(ŵT1 (k)φ1(k) + αN+1p(k)− αŵT1 (k − 1)φ1(k − 1))T ,
(16)

where α1 ∈ < is the WNN adaptation gain. The critic WNN weights are tuned by the
reinforcement learning signal and discounted values of critic WNN past outputs.

5.1.2 Action WNN

The output of the action NN is to approximate the unknown nonlinear function f(x(k))
and to provide an optimal control signal to be the part of the overall input u(k) as

f̂(k) = ŵT2 (k)φ2(vT2 x(k)) = ŵT2 (k)φ2(k), (17)
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Figure 1: Block diagram of the closed loop system.

where ŵ2(k) ∈ <n2×m and v2 ∈ <nm×n2 represent the matrix of weight estimate, φ2(k) ∈
<n2 is the activation function, n2 is the number of nodes in the hidden layer. Suppose
that the unknown target output-layer weight for the action WNN is w2 then we have

f(k) = wT2 (k)φ2(vT2 x(k))ε2(x(k)) = wT2 (k)φ2(k)ε2(x(k)), (18)

where ε2(x(k)) ∈ <m is the WNN approximation error. Combining (17) and (18),

f̃(k) = f̂(k)− f(k) = (ŵ2(k)− w2)Tφ2(k)− ε2(x(k)), (19)

where f̃(k) ∈ <m is the functional estimation error. The action WNN weights are tuned
by using the functional estimation errorf̃(k)and the error between the desired strategic
utility functionQd(k) ∈ <m and the critic signal Q̂(k) as shown in figure 2. Define

ea(k) = f̃(k) + (Q̂(k)−Qd(k)). (20)

The objective is to make the utility function Qd(k) zero at every step. Thus (20) becomes

ea(k) = f̃(k) + Q̂(k). (21)

The objective function to be minimized by the action NN is given by

Ea(k) =
1

2
eTa (k)ea(k). (22)
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The weight update rule for the action NN is also a gradient based adaptation, which is
defined as

ŵ2(k + 1) = ŵ2(k) + ∆ŵ2(k),

where

∆ŵ2(k) = α2

[
−∂Ea(k)

∂ŵ2(k)

]
(23)

or

ŵ2(k + 1) = ŵ2(k)− α2φ2(k)(Q̂(k) + f̃(k))T , (24)

where α2 ∈ < is the WNN adaptation gain.

The WNN weight updating rule in (24) cannot be implemented in practice since the
nonlinear function f(x(k)) is unknown. However, using (10), the functional estimation
error is given by

f̃(k) = ˙̂r + r̂. (25)

Substituting (25) into (24), ŵ2(k + 1) = ŵ2(k)− α2φ2(k)(Q̂(k) + ˙̂r − r̂)T .
Here the weight update for the action WNN is tuned by the critic WNN output, current
filtered tracking error, and a conventional outer-loop signal as shown in Figure 2.

6 Stability Analysis

Consider a Lyapunov functional of the form

V =
1

2
r̂2. (26)

Differentiating it along the trajectories of the system, we have

V̇ = r̂(Keê+K(f̂(x̂) + u(t)− vr −
n
y
d
).

By the substitution of control law u(t) in the above equation,

V̇ = r̂(−Kr̂ + f̃(x̂)− vr).

V̇ ≤ −Kr̂2 + |r̂|
∣∣∣f̃(x̂)

∣∣∣− r̂vr).
Substituting the robust control term vr = − (ρ2+1)r̂

2ρ2 in the above equation, we get

V̇ ≤ −s1r̂2 + s2(|r̂|
∣∣∣f̃(x̂)

∣∣∣)2,
where s1 = (K + K

2 ) and s2 =
Kρ2

2 . The system is stable as long as

s1r̂
2 ≥ s2(|r̂|

∣∣∣f̃(x̂)
∣∣∣)2. (27)



286 M. SHARMA AND A. VERMA

7 Simulation Results

Simulation is performed to verify the effectiveness of proposed reinforcement learning
WNN based control strategy. Consider a system of the form

ẋ1 = x2,
ẋ2 = 0.01x1 sinx2 + u,
y = x1.

(28)

System belongs to the class of uncertain nonlinear systems defined by (5) with n = 2.
The proposed controller strategy is applied to this system with an objective to solve
the tracking problem of system. The desired trajectory is taken as yd = 0.5 sin t +
0.1 cos 0.5t + 0.3. Initial conditions are taken as x (0) = [0.5, 0]

T
. Attenuation levels

for robust controller are taken as 0.01. Controller gain vector is taken as k = [35, 5].
Wavelet networks with discrete Shannon’s wavelet as the mother wavelet is used for
approximating the unknown system dynamics. Wavelet parameters for these wavelet
networks are tuned online using the proposed adaptation laws. Initial conditions for all
the wavelet parameters are set to zero. Simulation results are shown in Figure 1. As
observed from the figures, system response tracks the desired trajectory rapidly.
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Figure 2: System output and tracking error.
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8 Conclusion

A reinforcement learning WNN based adaptive tracking control strategy is proposed for a
class of systems with unknown system dynamics. Adaptive wavelet networks are used for
approximating the unknown system dynamics. Adaptation laws are developed for online
tuning of the wavelet parameters. The stability of the overall system is guaranteed by
using the Lyapunov functional. The theoretical analysis is validated by the simulation
results.
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