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Abstract: Sum of ratios optimization is an interesting field of research. This pa-
per presents a solution method for sum of linear ratios multiobjective programming
(SOLR – MOP) problem using the fuzzy goal programming technique. Each member-
ship function of fuzzy objectives is approximated into linear function by using first
order Taylor’s theorem about the vertex of the feasible region where the objective
function has maximum value. Then the resulted approximated linearized member-
ship functions may be used for the formulation of fuzzy goal programming. So the
problem is solved using fuzzy goal programming technique. The efficiency of the
method is measured by numerical examples.
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1 Introduction

Ratio criteria are used to measure the efficiency of a system in any different fields of
engineering and management sciences. The ratio optimization problem is called the
fractional programming. These may be applied to different disciplines such as financial
sector, inventory management, production planning, banking sector and others. Ba-
sically it is used for modeling real life problems with one or more objectives such as
debt/equity, profit/cost, inventory/sales, actual cost/standard cost, output/employees,
nurses/patients ratios etc. with respect to some constraints.
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The ratio optimization problem with linear functions and linear constraints is called
linear fractional programming (LFP) problem. If these problems have more than one
objective then the problem is known as multiobjective linear fractional programming
(MOLFP) problem.

If the ratio optimization problem has sum of linear ratios (ratios of affine functions),
then the fractional programming problem (LFP) is known as sum of linear ratios pro-
gramming (SOLR-P) problem.

A general sum of linear ratios programming (SOLR-P) problem is defined in the
following way:

Max F (x) = Max





p∑

j

fj(x)

mj(x)



 = Max

p∑

j

cT0jx+ α0j

dT0jx+ β0j

subject to

x ∈ S, x ≥ 0, (1)

where p ≥ 2, x, c0j , d0j ∈ Rn, α0j , β0j ∈ R.

The feasible region S is a nonempty, compact, convex set in Rn. The function fj(x) =
cT0jx + α0j , and mj(x) = dT0jx + β0j are positive for all x ∈ S. Note that under these
assumptions, the global maximum for problem (1) is attained by at least one point in S.

If we take more than one objectives in problem (1), then the problem is known as sum
of linear ratios multiobjective programming (SOLR-MOP) problem, mathematically it
can be written as:

MaxF (x) = [F1(x), F2(x), . . . Fk(x)],where

Fi(x) =

p∑

j

fij(x)

mij(x)
, (2)

x ∈ S, x ≥ 0, p ≥ 2, x, cij , dij ∈ Rn, αij , βij ∈ R.

and fij(x) = cTijx + αij , mij(x) = dTijx + βij are positive for all x ∈ S, where S =
{x : Ax (≤, =, ≥) b, x ≥ 0, x ∈ Rn, b ∈ Rm, A ∈ Rm×n}, (i = 1, 2, . . . , k, j =
1, 2, . . . , p)∀ x ∈ S. Here, S is assumed to be non-empty compact convex set in Rn and
all Fi(x) having continuous partial derivative in the feasible region S.

Sum of ratios fractional program was one of the least researched fractional program
until about 1990. During last decade, interest in these programs has become especially
strong. This is because, from a practical point of view, the sum of ratios fractional pro-
grams have numerous applications in the fields as discussed above but still multiobjective
sum of ratios problem has least attention.

Various solution approaches have been proposed in the literature for sum of ratios
fractional program. In [6], Cambini et. al. proposed a simplex type finite algorithm for
the case p = 2 in problem (1) and find the global optimal solution. Later, Konno et.
al.[13] proposed a finite parametric simplex type algorithm for the solution of linear sum
of fractional programs. They give the minimization of the sum of two ratios.

In [4], Benson presented a branch- and - bound algorithm for globally solving the
nonlinear sum of ratios problem. The algorithm has reduced the computational diffi-
culty by conducting branch - and - bound search in Rp space rather than Rn space and
the algorithm is applied in numerical examples for verification. Benson [3] proposed
a branch - and - bound algorithm using the concave envelopes for the same problem.
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In the algorithm, upper bounds are computed by maximizing concave envelopes of a
sum of ratios function over intersection of the feasible region of the equivalent problem
with rectangular sets systematically subdivided as branch and bound search procedure.
The convergence of the algorithm is also presented and computational advantage is also
highlighted. Other algorithms are also presented by Benson in [2, 23, 25].

In [8], Shen et. al. solved the sum of convex - convex ratios problem with non-convex
feasible region. They used a branch bound scheme where the Lagrange duality theory
is used to obtain lower bounds and the convergence of the algorithm is also proved.
Shen and Wang [5] proposed also a branch bound algorithm for globally solving the sum
of ratios with coefficients. They reduced the problem in equivalent sequence of linear
programming problem by utilizing linearization technique.

In [10], Dür et. al. gave a branch bound solution algorithm for sum of ratios prob-
lem using rectangular partitions in Euclidean space of dimension p. For the bounding
procedures, they used dual constructions and the calculation of efficient points of a cor-
responding multiobjective optimization problem.

Jaberipour and Khorram [11] proposed a harmony search algorithm for solving a sum
- of - ratios problem. They also presented the numerical examples for demonstration,
effectiveness and robustness of the proposed method and they claimed that all the solution
obtained by their method are superior to those obtained by other methods.

In [16], Kuno developed a branch- and- bound algorithm for maximizing a sum of p ≥
2 linear ratios on a polytope. They embedded the problem in 2p-dimensional space and
constructed the bounding operations. The operations are carried out in p-dimensional
space and rectangular branch bound method is used to find the solution. They also
discussed the convergence criteria and also reviewed some computational results.

Konno and Yamashita [15] proposed a method to minimize the sums and products of
linear fractional functions. They developed efficient deterministic algorithms for globally
minimizing the sum and the product of several linear fractional functions over a polytope
using outer approximation algorithm in given problem. They showed that the Charnes
Cooper transformation plays an essential role in solving these problems. Also a simple
bounding technique using linear multiplicative programming techniques has remarkable
effects on structured problems.

In [14], Konno and Fukaisi presented a practical algorithm for solving low rank linear
multiobjective programming problems and minimize the sum of product of two linear
functions and also solved low rank linear fractional programming problems as minimiza-
tion of sum of linear fractional functions over a polytope. Recently Gao et. al. [22]
gave the extension of branch bound algorithm as maximization of sum of nonlinear ra-
tios problem. They also presented the complexity of the problem and discussed some
numerical experiments on the extended algorithm.

In [26], Gao and Shi presented a comprehensive review on branch - and bound al-
gorithms for solving sum of ratios problem and they made a comparison between two
branch-and bound approaches for solving the sum-of ratios problem. They also modify
the algorithm for nonlinear sum-of ratios problem.

Multiobjective programming problems have been extensively studied for several
decades and the research is based on the theoretical background. As a matter of fact
many ideas and approaches have their foundation in the theory of fractional program-
ming. Multiobjective linear fractional programming problems using fuzzy set theory has
been studied in [19, 21, 27, 28 ]. Luhandjula [28] has given a solution method for MOLFP
using linguistic approach. Dutta, Rao and Tewari [27] modified linguistic approach of
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Luhandjula [28] to solve MOLFP using fuzzy set theoretic approach. Recently, Güzel
and Sivri [20] have given Taylor series approach to solve MOLFP and in [16], they de-
veloped another approach. Toksari [21], developed an algorithm to solve FMOLFP by
Taylor series approach and he linearized the membership functions instead of objection
functions.

Fuzzy set theory becomes the efficient tool for solving various types of non-linear
systems [30, 31, 32].

Our objective in this paper is to propose a simple method to the solution of sum
of linear ratio multiobjective programming (SOLR-MOP)(2) problem using fuzzy goal
programming approach. In this approach, each membership function associated with
each objective of SOLR – MOP is approximated into linear function and then it is solved
by fuzzy goal programming method. In the proposed article, we have attempted to handle
multiobjective case for sum of linear ratios using fuzzy goal programming approach which
is not attempted in the literature. The proposed algorithm is applied to three numerical
examples.

2 Sum of Linear Ratios Fuzzy multiobjective Programming Problem
(SOLR-FMOP)

If an uncertain aspiration level is introduced to each of the objectives of SOLR-MOP, then
these fuzzy objectives are called fuzzy goals. The sum of linear ratios fuzzy multiobjective
programming (SOR-FMOP) problem can be defined as

Find X(x1, x2, .....xn) such that

Fi(x) / gi or Fi(x) ' gi ∀ (i = 1, 2, . . . , k, j = 1, 2, . . . , p) (3)

subject to

x ∈ S = {x ∈ Rn, Ax(≤,=,≥)b, x ≥ 0with b ∈ Rm, A ∈ Rm×n},

Fi(x) =

p∑

j

cTijx+ αij

dTijx+ βij

,

where gi is the aspiration level of the ith objective Fi and /, ' indicate fuzziness of the
aspiration level. The membership function µi(x) must be described for each fuzzy goal.
A membership function can be explained as given below.
If Fi(x) / gi, then

µi(x) =





1, if Fi(x) ≤ gi,

ti − Fi(x)

ti − gi
, if gi ≤ Fi(x) ≤ ti,

0 if Fi(x) ≥ ti.

(4)

If Fi(x) ≥ gi, then

µi(x) =





1, if Fi(x) ' gi,

Fi(x) − ti

gi − ti
, if ti ≤ Fi(x) ≤ gi,

0 if Fi(x) ≤ ti,

(5)
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and ti and ti are the upper tolerance limit and lower tolerance limit, respectively, for the
ith fuzzy goal. Then the problem (3) is called sum of linear ratios fuzzy multiobjective
programming problem ( SOLR-FMOP ).

3 Goal Programming

The concept of goal programming (GP) was first introduced by Charnes and Cooper
in 1961 [7] as a tool to resolve infeasible linear programming problems. Thereafter,
significant methodological development of GP was made by Ignizio [18] and others. The
overall purpose of GP is to minimize the deviations between the achievement of goals
and their aspiration levels. A typical GP is expressed as follows

Minimize

k∑

i=1

|Fi(x)− gi|

subject to (6)

x ∈ X = {x ∈ Rn; Ax ≤ b, x ≥ 0},

where Fij is the linear function of the ith goal and gi is the aspiration level of the ith

goal.
Let Fi(x)− gi = d+i − d−i , d−i , d

+

i ≥ 0. Problem (6) can be formulated as follows

Minimize

k∑

i=1

(d+i + d−i )

subject to

Fi(x) − d+i + d−i − gi = 0, i = 1, 2, . . . k, (7)

d+i , d
−

i ≥ 0, x ∈ X = {x ∈ Rn; Ax ≤ b, x ≥ 0},

where d−i ≥ 0, d+i ≥ 0 are, respectively under - and over - deviations of the ith goal.
Problem (7) has been applied to solve many real world problems.

3.1 Fuzzy goal programming

In fuzzy goal programming approaches, the highest degree of membership function is 1.
So, for the defined membership function in (4) and (5), the flexible membership goals
with aspiration levels 1 can be expressed as

Fi(x) − ti

gi − ti
+ d−i − d+i = 1 or

ti − Fi(x)

ti − gi
+ d−i − d+i = 1, (8)

where d−i ≥ 0, d+i ≥ 0 with d+i .d
−

i = 0 are, respectively, under - and over -deviations
from the aspiration levels.

In conventional GP, the under- and over-deviational variables are included in the
achievement function or minimized and that depends upon the type of the objective
functions to be optimized.

In this approach, only the under - deviational variable d−i is required to achieve the
aspired levels of the fuzzy goals. It may be noted that any over - deviation from fuzzy goal
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indicates the full achievement of the membership value. Recently, B. B. Pal. et.al [19]
proposed an efficient goal programming (GP) method for solving fuzzy multiobjective
linear fractional programming problems.

4 Mathematical Modeling of Problem

We consider the sum of linear ratios multiobjective programming (SOLR-MOP) problem
of the form:

MaxF (x) = {F1(x), F2(x), . . . , Fk(x) }

Fi(x) =

p∑

j

cTijx+ αij

dTijx+ βij

, (9)

where dTijx+ βij > 0, ∀ (i = 1, 2, . . . , k, j = 1, 2, . . . p)

subject to

x ∈ S = {Ax ≤ b, x ≥ 0, x, cTij , d
T
ij , ∈ Rn, b ∈ Rm,

A = (m× n) matrix, αij , βij , ∈ R}.

Assume fuzzy aspiration level gi and tolerance limit (ti, ti) for each objective func-
tion Fi(x). We construct the membership function for each objective function using
Zimmermann max-min approach [29]. Then the problem (9) becomes

Find X(x1, x2, . . . , xn)

so as to satisfy

Fi(x) / gi

or (10)

Fi(x) ' gi

subject to x ∈ S = {x ∈ Rn, Ax ≤ b, x ≥ 0 with b ∈ Rm, A ∈ Rm×n}

and Fi(x) =

p∑

j

cTijx+ αij

dTijx+ βij

, where dTijx+ βij > 0, ∀ i and j,

where gi is the aspiration level of the ith objective function Fi(x). The membership
function µi(x), described for each fuzzy goal, is given by equation (4) and equation (5).
Suppose that all Fi(x) and all of their partial derivatives of order less than or equal to
n+1 are continuous on the feasible region S. So the membership functions µi(x) of each
Fi(x) are having same property in the feasible region.

The proposed algorithm can be explained in three steps and linear approximation of
membership functions is motivated by Toksari [21].

Step 1: Determine the vertex of the feasible region, x∗

q = { x∗

q1, x
∗

q2, . . . , x
∗

qn} for

which the ith membership function is maximized associated with the ith objective
Fi(x), ∀ i = 1, 2, . . . , k and j = 1, 2, . . . , p, where n is the number of variable and q

is finite.

Step 2: Transform each fractional membership function into linear membership func-
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tion by using first order Taylor’s theorem

µi(x) = µ̃i(x) ∼= µi(x
∗

q) + [(x1 − x∗

q1)
∂µi(x

∗

q)

∂x1

+ (x2 − x∗

q2)
∂µi(x

∗

q)

∂x2

+ . . . (11)

+ (xn − x∗

qn)
∂µi(xq∗)

∂xn

] +O(h2),

µi(x) = µ̃i(x) ∼= µi(x
∗

q) +

n∑

j=1

[(xj − x∗

qj)
∂µi(x

∗

q)

∂x
j

] +O(h2), (12)

where, if Fi(x) / gi, then

µi(x) =





1, if Fi(x) ≤ gi,

ti − Fi(x)

ti − gi
, if gi ≤ Fi(x) ≤ ti,

0 if Fi(x) ≥ ti.

(13)

If Fi(x) ≥ gi, then

µi(x) =





1, if Fi(x) ≥ gi,

Fi(x)− ti

gi − ti
, if ti ≤ Fi(x) ≤ gi,

0 if Fi(x) ≤ ti.

subject to

x ∈ X = {Ax ≤ b, x ≥ 0, x, cTij , d
T
ij , ∈ Rn, b ∈ Rm,

A = (aij)m×n, αij , βij , ∈ R}.

Now in (12), these are linearized approximated membership function of fuzzy objectives.
Then the problem can be solved by assuming fuzzy goals.

Step 3: Find x∗ = {x∗

1, x
∗

2, . . . , x
∗

n} using fuzzy goal formulation. Apply fuzzy goal
programming approach for the linearized membership functions µ̃i(x) in (12) of Fi. The
flexible membership goals with aspiration levels 1 can be expressed as

µ̃i(x) + d−i − d+i = 1, (14)

where d−i , d
+

i ≥ 0, with d+i d
+

i = 0 are respectively under- and over- deviations from the
aspiration levels.

Now the fuzzy goal programming formulation can be obtained as

Minimize

k∑

i=1

d−i

subject to

µ̃i(x)− d+i + d−i = 1, i = 1, 2, . . . k (15)

d+i , d
−

i ≥ 0

x ∈ S = {x ∈ Rn; Ax ≤ b, x ≥ 0} with d+i .d
+

i = 0.

In the problem (15), S is a non empty convex bounded set having feasible points .
The LPP (15) can be solved easily, which gives the efficient solution of (SOLR-MOP)
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(3). The values of membership functions at the optimal point gives the satisfaction level
(degree) of objective function to the solution.

5 Numerical Examples

Example 1: Consider a SOLR-MOP with two objective functions:

Max

{
x1 + 2x2

2x1 + x2 + 5
+

9x1 + 2x2

7x1 + 3x2 + 1
,

2x1 + 3x2 + 5

x1 + 1
+

5x1 + 4x2

x1 + x2

}

subject to

x1 − x2 ≥ 2,

4x1 + 5x2 ≤ 25, (16)

x1 + 9x2 ≥ 9,

x1 ≥ 5,

x1, x2 ≥ 0.

It is observed that fij ≥ 0, mij ≥ 0, (i = 1, 2 and j = 1, 2) for each x in the feasible
region.

If the fuzzy aspiration levels of the two objectives are 1.806, and 7.83, then find x in
order to satisfy the following fuzzy goals:

(
x1 + 2x2

2x1 + x2 + 5
+

9x1 + 2x2

7x1 + 3x2 + 1

)
' 1.806,

(
2x1 + 3x2 + 5

x1 + 1
+

5x1 + 4x2

x1 + x2

)
' 7.83.

The tolerance limits for the two fuzzy goals are (1.620, 7.05) respectively. The member-
ship functions for the two fuzzy goals are

µ1(x) =





1, if F1(x) ≥ gi,

Fi(x)− ti

gi − ti
, if ti ≤ Fi(x) ≤ gi,

0, if Fi(x) ≤ ti.

i.e.

µ1(x) =





1, if F1(x) ≥ 1.806,
(

x1 + 2x2

2x1 + x2 + 5
+

9x1 + 2x2

7x1 + 3x2 + 1

)
− 1.620

0.19
, if 1.620 ≤ F1(x) ≤ 1.806,

0, if F1(x) ≤ 1.620.

(17)

µ2(x) =





1, if F2(x) ≥ 7.83,
(

2x1+3x2+5

x1+1
+

5x1 + 4x2

7x1 + 3x2 + 1

)
− 7.05

0.78
, if 7.05≤F2(x)≤7.83,

0, if F2(x) ≤ 7.05.

(18)
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Expand the membership functions µ1(x) about point (5, 0.44) and µ2(x) about point
(5, 1)

µ1(x) ∼= µ̃1(x) = µ1(5, 0.44) + (x1 − 5)
∂µ1(5, 0.44)

∂x1

+ (x2 − 0.44)
∂µ1(5, 0.44)

∂x2

,

µ1(x) ∼= µ̃1(x) = 0.14x1 + 0.54x2 + 0.06, (19)

µ2(x) ∼= µ̃2(x) = µ2(5, 1) + (x1 − 5)
∂µ2(5, 1)

∂x1

+ (x2 − 1),
∂µ2(5, 1)

∂x2

,

µ2(x) ∼= µ̃2(x) = −0.18x1 + 0.50x2 + 1.4. (20)

Now apply the fuzzy goal programming technique:

Minimize (d−1 + d−2 )

subject to

µ̃1(x)− d+1 + d−1 = 1, (21)

µ̃2(x)− d+2 + d−2 = 1,

d−1 , d
+

1 , d
−

2 , d
+

2 ≥ 0,

x ∈ S = {x ∈ Rn; Ax ≤ b, x ≥ 0} with d+1 .d
+

1 = 0 andd+2 .d
+

2 = 0.

Thus new LPP is obtained

Minimize (d−1 + d−2 )

subject to

0.14x1 + 0.54x2 − d+1 + d−1 = 0.94, (22)

−0.18x1 − 0.50x2 − d+2 + d−2 = −0.4,

x1 − x2 ≥ 2,

4x1 + 5x2 ≤ 25,

x1 + 9x2 ≥ 9,

x1 ≥ 5,

x1, x2 ≥ 0, with d+1 .d
+
1 = 0 and d+2 .d

+
2 = 0.

The optimal solution of the above problem is given by x1 = 5, x2 = 1, d−1 = 0, d+1 =
0.30, d−2 = 0, d+2 = 0 and the membership values are µ1 = 0.12, µ2 = 1. The optimal
solution of the problem (22) is at the point (5, 1) and minimum value is 0. The point
(5, 1) is the efficient solution of the given original problem in the feasible region with
optimal values of the functions F1 = 1.643, F2 = 7.83. The membership function values
at (5, 1) indicate that goals F1 and F2 are satisfied 12% and 100% respectively, for the
obtained solution.
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Example 2: Let us consider a SOLR - MOP with three objective functions

Max {F1(x) =
x1 + 4x2

2x1 + x2 + 1
+

9x1 + 2x2

x1 + 3x2 + 1
+

x1 + 3x2

x2 + 1
, (23)

F2 =
3x1 + 8x2

x1 + x2 + 3
,+

x1 + 2x2

2x1 + 3x2 + 2
+

x1 + 2x2

3x1 + x2 + 2
}

subject to

x1 − x2 ≥ 5,

4x1 + 5x2 ≤ 25, (24)

x1 ≥ 5,

x1, x2 ≥ 0.

If the fuzzy aspiration levels of two objectives are (9.08, 2.76) respectively, then find
x in order to satisfy the following goals:

F1(x) ' 9.08, F2(x) ' 2.76. (25)

The tolerance limits for the three fuzzy goals are (8.79, 2.51) respectively. The member-
ship functions for the two fuzzy goals are given by

µ1(x) =





1, if F1(x) ≥ 9.08,

x1+4x2

2x1+x2+1
+

9x1 + 2x2

x1 + 3x2 + 1
+

x1 + 3x2

x2 + 1
− 8.79

0.29
, if 8.79 ≤ F1(x) ≤ 9.08,

0 if F1(x) ≤ 8.79.

(26)

µ2(x)=





1, if F2(x) ≥ 2.76,

3x1+8x2

x1+x2+3
,+

x1 + 2x2

2x1 + 3x2 + 2
+

x1 + 2x2

3x1 + x2 + 2
− 2.51

0.25
, if2.51≤F2(x)≤2.76,

0 if F2(x) ≤ 2.51.

(27)

Both membership functions are expanded by using first order Taylor’s theorem about
the point (6.25, 0) in the feasible region. The linearized forms of membership functions
are obtained

µ1(x) ∼= µ̃1(x) = 0.68x1 + 4.47x2 − 3.25, (28)

µ2(x) ∼= µ̃2(x) = 0.48x1 + 3.09x2 − 2. (29)

Now apply the fuzzy goal programming technique and the new LPP is obtained

Minimize (d−1 + d−2 )

subject to

0.68x1 + 4.47x2 − d+1 + d−1 = 4.25, (30)

0.48x1 + 3.09x2 − d+2 + d−2 = 3,

x1 − x2 ≥ 5,

4x1 + 5x2 ≤ 25,

x1 ≥ 5,

x1, x2 ≥ 0. with d+1 .d
+

1 = 0 and d+2 .d
+

2 = 0.
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The alternate optimal solution is obtained but the best minimum value is 0 at x1 =
5.56, x2 = 0.56, d−1 = 0, d+1 = 0.51, d−2 = 0.01, d+2 = 0 and the membership values
are µ1 = 0, µ2 = 1. So the optimal solution of problem (31) is at (5.56, 0.56). The
point (5.56, 0.56) is the efficient solution of the given original problem in the feasible
region with optimal values of the functions F1 = 7.93, F2 = 3.12. The membership
function values at (5.56, 0.56) indicate that goals F1 and F2 are satisfied 0% and 100%
respectively, for the obtained solution.

Example 3: Let us consider a SOLR - MOP with three objective functions

Max {F1(x) =
x1

x2 + 1
+

x2

2x1 + 3
,

F2(x) =
x2 + 4

x1 + 2x2 + 1
+

x1 + 2

3x1 + x2 + 2
,

F3(x) =
x1 + 2x2

x1 + 3x2 + 2
+

5x1 + x2

2x1 + 5x2 + 3
}

subject to

x1 ≤ 6,

x2 ≤ 6, (31)

2x1 + x2 ≤ 9,

−2x1 + x2 ≤ 5,

x1 − x2 ≤ 5,

x1, x2 ≥ 0.

If the fuzzy aspiration levels of the three objectives are (4.5, 5, 2.57) respectively,
then

F1(x) ' 4.5, F2(x) ' 5, F3(x) ' 2.57. (32)

The tolerance limits for the two fuzzy goals are 0, 0.86, 0 respectively. The membership
functions for the three fuzzy goals are

µ1(x) =





1, if F1(x) ≥ 4.5,

x1

x2 + 1
+

x2

2x1 + 3
− 0

4.5
, if 0 ≤ F1(x) ≤ 4.5,

0, if F1(x) ≤ 0.

(33)

µ2(x) =





1, if F2(x) ≥ 5,

x2 + 4

x1 + 2x2 + 1
+

x1 + 2

3x1 + x2 + 2
− 0.86

4.14
, if 0.86 ≤ F2(x) ≤ 5,

0 if F2(x) ≤ 0.86.

(34)

µ3(x) =





1, if F3(x) ≥ 2.57,

x1 + 2x2

x1 + 3x2 + 2
+

5x1 + x2

2x1 + 5x2 + 3
− 0

2.57
, if 0 ≤ F3(x) ≤ 2.57,

0, if F3(x) ≤ 0.

(35)
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By expanding the first order Taylor’s theorem for membership functions µ1, µ2 and µ3

about points (4.5, 0), (0, 0) and (4.5, 0) respectively in the feasible region:

µ1(x) ∼= µ̃1(x) = 0.22x1 − 4.22x2 + 0.01, (36)

µ2(x) ∼= µ̃2(x) = 1.33x1 − 1.69x2 + 1, (37)

µ3(x) ∼= µ̃3(x) = 0.059x1 − 0.71x2 + 0.74. (38)

Apply fuzzy goal programming technique, the new LPP is obtained

Minimize (d−1 + d−2 + d−3 )

subject to

0.22x1 − 4.22x2 − d+1 + d−1 = 0.99,

1.33x1 − 1.69x2 − d+2 + d−2 = 0,

0.059x1 − 0.71x2 − d+3 + d−3 = 0.26,

x1 ≤ 6,

x2 ≤ 6, (39)

2x1 + x2 ≤ 9,

−2x1 + x2 ≤ 5,

x1 − x2 ≤ 5,

x1, x2 ≥ 0, with d+1 .d
+

1 = 0, d+2 .d
+

2 = 0 and d−3 .d
+

3 = 0.

Optimal solution of the problem (40) is at the point x1 = 4.5, x2 = 0, d−1 = 0, d−2 =
0, d−3 = 0, d+1 = 0, d+2 = 5.99 d+3 = 0.01 and the minimum value is 0. The efficient
solution of the given problem is x1 = 4.5, x2 = 0, F1 = 4.5, F2 = 0.86, F3 = 2.57 and
the membership values are µ1 = 1, µ2 = 0, µ3 = 1. The membership function values at
(4.5, 0) indicate that goals F1, F2 and F3 are satisfied 100%, 0% and 100% respectively,
for the obtained solution.

6 Conclusion

In this paper, a new algorithm has been proposed to optimize sum of linear ratios multiob-
jective programming (SOLR-MOP)problem using fuzzy set theory and goal programming
method. Most of the reported work is based on the single objective optimization. So, the
proposed algorithm is a simple procedure to optimize sum of linear ratios in multiobjec-
tive case. This reduces computational complexity as compared to the previous reported
work.
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