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Numerical Solutions of System of Non-linear ODEs by

Euler Modified Method

B. S. Desale ∗ and N. R. Dasre

School of Mathematical Sciences, North Maharashtra University,

Jalgaon 425001, India

Received: June 29, 2011; Revised: June 19, 2012

Abstract: In this paper, we have proposed Euler’s modified method for solving the
six coupled system of non-linear ordinary differential equations (ODEs), which are
aroused in the reduction of stratified Boussinesq equations. This method can also be
called as revised Euler’s modified method for solving two simultaneous ODEs. We
have obtained the numerical solutions on stable and unstable manifolds. The error
between the numerical solution and exact solution is of order 10−20 to 10−6. We have
coded this programme in C-language.

Keywords: stratified Boussinesq equation, Euler modified method, integrable

systems.

Mathematics Subject Classification (2010): 34A09, 65L05, 65L99.

1 Introduction

The stratified Boussinesq equations form a system of Partial Differential Equations
(PDEs) modelling the movements of planetary atmospheres. It may be noted that liter-
ature also refers to Boussinesq approximation as Oberbeck–Boussinesq approximation.
For this, one may refer to an interesting article by Rajagopal et al [1] which provides
a rigorous mathematical justification for perturbations of the Navier-Stokes equations.
Majda & Shefter [2] have chosen certain special solutions of this system of ODEs to
demonstrate the onset of instability when the Richardson number is less than 1/4. Ma-
jda and Shefter [3] have shown that the analysis, in the special cases considered, reduces
to the solutions of Hamiltonian system. These reductions form an interesting coupled
system of six non-linear ODEs. Shrinivasan et al [4] have also tested the system for com-
plete integrability by use of first integrals. Further, Desale [6] has incorporated the effect

∗ Corresponding author: mailto:bsdesale@nmu.ac.in

c© 2012 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua215

mailto:bsdesale@nmu.ac.in
http://e-ndst.kiev.ua


216 B.S. DESALE AND N.R. DASRE

of rotation in the same system in the context of basin scale dynamics, while Desale and
Sharma [7] have given special solutions of rotating stratified Boussinesq equations. De-
sale and Patil [8] have tested the system of six coupled nonlinear ODEs by Painleve Test.
Burton and Zhang [9] have given the periodic solutions for singular integral equations.
Biswas et al [10] have studied the behavior of soliton solutions in the form of KdV partial
differential equation in the fiber optics solitons theory in communication engineering.

In this paper, we have given the C-code to find and to test the initial values which
lie on the invariant surface given by equation (4). We have implemented Euler Modified
method to find the numerical solution of the system (1) passing through the initial values
on invariant surface (4). We have discussed the use of this method in the subsection (3.1).
We have given the codes for solutions on stable and unstable manifolds of invariant surface
which is obtained by four first integrals.

2 Preliminaries

Shrinivasan et al [4] have tested the system (1) as given below for complete integrability.
Also, Deasle and Shrinivasan [5] have shown that in the general case, the problem of
integration reduces to the integrations of the system of six coupled autonomous ODE’s

ẇ = g
ρb

ê3 × b,

ḃ = 1
2w × b,







(1)

wherew = (w1, w2, w3)
T , b = (b1, b2, b3)

T and g
ρb

is a non-dimensional constant as men-

tioned by Desale [11] in his Ph. D. thesis.
The above system can be written component-wise as below

ẇ1 = − g
ρb

b2, ẇ2 = g
ρb

b1, ẇ1 = 0,

ḃ1 = 1
2 (w2b3 − w3b2), ḃ2 = 1

2 (w3b1 − w1b3), ḃ3 =
1
2 (w1b2 − w2b1).







(2)

The system (1) admits the following four first integrals

1) |b|2 = c1,

2) w · b = c2,

3) ê3 ·w = c3,

4) |w|2
2 + 2g

ρb

ê3 · b = c4,



































(3)

with non zero values of c1, c2, c3 and c4. The possible critical points of the system (1)
are (±ê3,±ê3). For c1 = 1 and w = ±ê3, c3 may assume the values ±1 (not both).
Now we take c3 = 1, so that the possible critical points are (ê3,±ê3). At the rest points
(ê3,±ê3), the value of c2 is ±1.

Remark 2.1 The case c2 = −1 will be surface disjoint from w ·b = 1 and the similar
analysis will be carried out if we take c2 = −1. Right now we take c1 = 1, c2 = 1 and
c3 = 1. But this forces b = ê3 at a critical point, so with our specific conditions we have
only one rest point (ê3, ê3) on the invariant surface (3). At this critical point fourth first
integral assumes the value c4 = 1

2 + 2g
ρb

.
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With the above specification, we have following four first integrals

|b|2 = 1,w · b = 1, ê3 ·w = 1,
|w|2
2

+
2g

ρb
ê3 · b =

1

2
+

2g

ρb
. (4)

A critical point (ê3, ê3) lies on invariant surface and (b1, b2, b3) is on the surface
|b|2 = 1. Therefore we have

w1 =
−b2k

1− b3
+

b1
1 + b3

,

w2 =
b1k

1− b3
+

b2
1 + b3

,

w3 = 1.























(5)

where k is a function of b3, given by the following equation

k2 =
(1− b3)

2

(1 + b3)2

[4g(1 + b3)− ρb
ρb

]

. (6)

One may refer [4, 5] for more details of this analysis. Since |b|2 = 1, we can use
spherical-polar co-ordinates

b1 = cos θ sinφ, b2 = sin θ sinφ, b3 = cosφ. (7)

Hence,

k2 = tan4(
φ

2
)
[8g

ρb
cos2(

φ

2
)− 1

]

. (8)

For k to be real , Shrinivasan et al [5] have put up the restriction to φ as 0 ≤ φ ≤
2 cos−1(

√

ρb

8g ). With this limitation k takes the values negative, positive and zero. With

these possible choices of k, the invariant surface will be the union of disjoint manifolds
corresponding to k > 0, is unstable manifold, k < 0, is stable manifold and k = 0, is a
center manifold. Regarding these manifolds, readers are advised to refer to Shrinivasan
et al [5].

Now for k > 0, the unstable manifold is given by

w1 = tan(φ2 )
[

cos θ − sin θ
√

8g
ρb

cos2(φ2 )− 1
]

,

w2 = tan(φ2 )
[

cos θ + sin θ
√

8g
ρb

cos2(φ2 )− 1
]

,

w3 = 1,

b1 = cos θ sinφ,

b2 = sin θ sinφ,

b3 = cosφ,

with

k = tan2(
φ

2
)
[8g

ρb
cos2(

φ

2
)− 1

]

.



































































































(9)
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On this surface, system (1) reduces to

dφ

dt
= 1

2 tan(
φ
2 )
√

8g
ρb

cos2(φ2 )− 1,

dθ

dt
= 1

4 sec
2(φ2 ),











(10)

where as for k < 0, the stable manifold is given by

w1 = tan(φ2 )
[

cos θ + sin θ
√

8g
ρb

cos2(φ2 )− 1
]

,

w2 = tan(φ2 )
[

cos θ − sin θ
√

8g
ρb

cos2(φ2 )− 1
]

,

w3 = 1,

b1 = cos θ sinφ,

b2 = sin θ sinφ,

b3 = cosφ,

with

k = − tan2(φ2 )
[

8g
ρb

cos2(φ2 )− 1
]

.































































































(11)

On this surface, system (1) reduces to

dφ

dt
= − 1

2 tan(
φ
2 )
√

8g
ρb

cos2(φ2 )− 1,

dθ

dt
= 1

4 sec
2(φ2 ).











(12)

3 Numerical Solution

In their studies, Shrinivasan et al [5] have shown that the system (1) is completely
integrable and solutions exist on invariant surface (3) for all the time. So we are looking
for the numerical solution of the system (1) on the invariant surface (3). We find the
initial values which satisfy the four first integrals given by (4) and consequently we can
find the solutions of system (1) passing through these initial values. We use the following
programme to find the initial values so that they satisfy the four first integrals. We use
the following programme to test finitely many points.

#include<stdio.h>

#include<conio.h>

#include<math.h>

void main()

{ FILE *fp;

double b10,b20,b30,phi0,theta0;

double eps=0.0000001,G=39.2;

double g=9.8,rho_b=2;

long int i,j,k;
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double y1,w10,w20,w30;

double int1,int2,int3L,int3R;

double diff1,diff2,diff3;

clrscr();

fp=fopen("new_02a1.xls","w+");

fprintf(fp,"\n\t PROGRAMME FOR INITIAL SOLUTIONS

SATISFYING FIRST FOUR INTEGRALS");

b10=0.000001;

b20=0.000001;

b30=0.000001;

printf("\n\t PROGRAMME FOR INITIAL SOLUTIONS

SATISFYING FIRST FOUR INTEGRALS");

fprintf(fp,"\n\tb10\tb20\tb30\ttheta0\tphi0\n");

printf("\nb10\tb20\tb30\ttheta0\tphi0\n");

for(k=0;k<1000;k++) //b30 loop

{

for(j=0;j<1000;j++)//b20 loop

{

for(i=0;i<1000;i++) //b10 loop

{

theta0=atan(b20/b10);

phi0=atan(sqrt(b10*b10+b20*b20)/b30);

y1=sqrt(39.2*cos(phi0/2.0)*cos(phi0/2.0)-1.0);

w10=tan(phi0/2.0)*(cos(theta0)-(sin(theta0)*y1));

w20=tan(phi0/2.0)*(sin(theta0)+(cos(theta0)*y1));

w30=1.000000;

int1=b10*b10+b20*b20+b30*b30;

int2=b10*w10+b20*w20+b30*w30;

int3L=w10*w10+w20*w20+w30*w30+((4.0*g*b30)/rho_b);

int3R=1.0+((4.0*g)/rho_b);

diff1=fabs(int1-1.0);

diff2=fabs(int2-1.0);

diff3=fabs(int3L-int3R);

if(diff1<eps)

{

if(diff2<eps)

{

if(diff3<eps)

{

fprintf(fp,"\n\t%.10lf\t%.10lf\t%.10lf\t%.10lf\t%.10lf",

b10,b20,b30,theta0,phi0);

printf("\n%.10lf\t%.10lf\t%.10lf\t%.10lf\t%.10lf",

b10,b20,b30,theta0,phi0);

} } }

b10=b10+0.000001;

if(b10>=1.000001) b10=0.000001; }

b20=b20+0.000001;
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if(b20>=1.000001) b20=0.000001; }

b30=b30+0.000001;

if(b30>=1.000001) b30=0.000001; }

getch(); }

With the help of the above programme we get the initial value. After getting the
initial value, we decide on which manifold the initial value lies on – that is whether it is
stable, unstable or central manifold. Using the above programme, we get the initial value
b0 = (b10, b20, b30). From this initial value b0 = (b10, b20, b30), we calculate the value of k,
then we conclude whether the initial value is on stable, unstable or on center manifold.
Once we confirm, our initial value is either on stable or unstable surface, accordingly
we find the numerical solution by Euler modified method. In the following subsection
(3.1), we implement the method to calculate the numerical solution. Further, we write
the algorithm and encode the programme.

3.1 Implementation of Euler modified method for the numerical solution

We start with the initial condition t = 0 and the initial point b0 = (b10, b20, b30). We
calculate the initial value of (φ0, θ0) as

θ0 = tan−1

(

b2
b1

)

, φ0 = tan−1

(

√

b21 + b22
b3

)

. (13)

Now, we calculate the value ofφ1 and θ1 by Predictor Formula as

φ1 = φ0 + hf1(t0, φ0, θ0), θ1 = θ0 + hf2(t0, φ0, θ0), (14)

where h is a step size, f1 = 1
2 tan(

φ
2 )
√

8g
ρb

cos2(φ2 )− 1, f2 = 1
4 sec

2(φ2 ). Since there is an

error in φ1 and θ1, we refine or try to get more accurate values of φ1 and θ1 by Corrector
Formula as below,

φ
(1)
1 = φ0 +

h
2 [f1(t0, φ0, θ0) + f1(t0 + h, φ1, θ1)]. (15)

In the above step the error can be reduced to the desired accuracy. Here we have
considered the accuracy of 10−20. The error is reduced by repeating the corrector formula
as below,

φ
(n+1)
1 = φ0 +

h
2 [f1(t0, φ0, θ0) + f1(t0 + h, φ

(n)
1 , θ1)]. (16)

As we get the most correct value of φ, we use this value of φ for calculating the correct
value of θ with the accuracy of 10−20 as

θ
(1)
1 = θ0 +

h
2 [f2(t0, φ0, θ0) + f2(t0 + h, φ1, θ1)], (17)

θ
(n+1)
1 = θ0 +

h
2 [f2(t0, φ0, θ0) + f2(t0 + h, φ1, θ

(n)
1 )], (18)

and so on. This gives us the corrected values of θ and φ. The exact solutions of (10) are

φ(t) = 2 sin−1
[2k1.

√

G−1
G

.e−
t

4

√
G−1

1 + k21 .e
− t

2

√
G−1

]

,

θ(t) = t
4 + tan−1

[√
G

k1

.e
t

4

√
G−1 −

√
G− 1

]

− tan−1
[√

G
k1

.e
t

4

√
G−1 +

√
G− 1

]

+ k2,



































(19)
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where k1, k2 are constants and G = 8g/ρb. Now for our calculations, we took G = 39.2
with g = 9.8 and ρb = 2. We have compared the corrected values with the exact
solutions and we got the minimum error of 10−20 and maximum up to 10−6. Now by
using the method of back substitution we have obtained the values of b(b1, b2, b3) and
w(w1, w2, w3).

3.2 Algorithm for numerical solution

Here we give the algorithm for numerical solution by Euler’s Modified Method [14, 15].
The details of the algorithm are as given below:

Step 1: Enter the initial values of t0, φ0, θ0, t, g, ρb and h (step size).
Step 2:Calculate the values of b10, b20, b30, w10, w20, w30, k1, k2 and k. Here we have

obtained the initial values.
Step 3: Calculate the values of φ1 and θ1 by using Euler’s Predictor Formula.
Step 4: Calculate the value of φ1 up to the desired accuracy by using Euler’s Corrector

Formula.
Step 5: Calculate the value of θ1 up to the desired accuracy by using Euler’s Corrector

Formula.
Step 6: Calculate the values of b1, b2, b3, w1, w2 and w3 by using equation (7).
Step 7: Calculate the exact values of φ and θ by using equation (9) then calculate

the exact values of b1, b2, b3, w1, w2 and w3 by using equation (7).
Step 8: Print the required exact and calculated numerical values.
Step 9: Replace φ1 by φ0, θ1 by θ0 and t0 by t+ h and go to Step 3, until the value

of φ is reached to its maximum for the given unstable manifold.
Step 10: Plot the graphs to see the difference.
Step 11: End.

3.3 Numerical solution on unstable manifold

On this manifold, we have k > 0 and the system (1) reduces to (10). Now we use the
following programme to find the solution on the unstable manifold.

#include<stdio.h>

#include<stdlib.h>

#include<conio.h>

#include<math.h>

#include<sys\stat.h>

void main()

{

double f(double p);

FILE *fp;

double phi0,phi1,phi10,theta0,theta1,theta10,er_theta,er_phi;

double h,t,t0,t1,b1,b2,b3,w1,w2,w3,b10,b20,b30,w10,w20,w30;

double eb1,eb2,eb3,ew1,ew2,ew3,be1,be2,be3,we1,we2;

double x,y0,y1,z0,z1,diff1,diff2,eps=0.01;

double etheta,ephi,G=39.2,u,u1,u2,k1,k2,k;

int i,n; /* g=9.8 , rho_b=2,*/

clrscr();

printf("\n\n\t\t PROGRAMME FOR EULER MODIFIED METHOD");
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fp=fopen("nrd001.xls","w+"); t0=0.0; t=6.0; h=0.001;

printf("\n\n\t\t Enter the value of phi0= ");

scanf("%lf",&phi0);

printf("\n\n\t\t Enter the value of theta0= ");

scanf("%lf",&theta0);

fprintf(fp,"\n The value of phi0=%lf ",phi0);

fprintf(fp,"\n The value of theta0=%lf ",theta0);

b10=cos(theta0)*sin(phi0);

b20=sin(theta0)*sin(phi0);

b30=cos(phi0);

y1=sqrt(39.2*cos(phi0/2.0)*cos(phi0/2.0)-1);

w10=tan(phi0/2.0)*(cos(theta0)-sin(theta0)*y1);

w20=tan(phi0/2.0)*(sin(theta0)+cos(theta0)*y1);

w30=1.000000;

fprintf(fp,"\n The value of b10=%lf ",b10);

fprintf(fp,"\n The value of b20=%lf ",b20);

fprintf(fp,"\n The value of b30=%lf ",b30);

fprintf(fp,"\n The value of w10=%lf ",w10);

fprintf(fp,"\n The value of w20=%lf ",w20);

fprintf(fp,"\n The value of w30=%lf ",w30);

/*calculating k1 and k2 for exact solution and

k for initial solution */

u=sin(phi0/2.0);

k1=(sqrt((G-1.0)/G)+sqrt(((G-1)/G)-u*u))/u;

k2=theta0-atan((sqrt(G)/k1)-(sqrt(G-1.0)))

+atan((sqrt(G)/k1)+(sqrt(G-1.0)));

k=(tan(phi0/2)*tan(phi0/2))*sqrt(G*cos(phi0/2)*cos(phi0/2)-1);

printf("\n\n\tThe value of k1=%.8f \n\n\tThe value of

k2=%.8f",k1,k2);

printf("\n\n\tThe value of k=%.8f ",k);

fprintf(fp,"\nThe value of k1=%.8f ",k1);

fprintf(fp,"\nThe value of k2=%.8f ",k2);

fprintf(fp,"\nThe value of k=%.8f ",k);

i=0;

printf("\n\n\tPress ’ENTER’ to get step by step");

fprintf(fp,"\n t\t b1\t b2\t b3\t w1\t w2\t w3\t theta\tphi

\tk\t ephi\t etheta");

printf("\n\n\t Error in Theta\t\t Error in Phi \t Value of K");

while(t0<t)

{

i++;

t1=t0+h;

y0=sqrt(39.2*cos(phi0/2.0)*cos(phi0/2.0)-1);

phi1=phi0+(h/2.0)*tan(phi0/2.0)*y0;

phi10=phi1;

theta1=theta0+(0.25*h*f(phi0));
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theta10=theta1;

/* Calculation of phi by modified formula */

do{

y0=sqrt(39.2*cos(phi0/2.0)*cos(phi0/2.0)-1);

y1=sqrt(39.2*cos(phi10/2.0)*cos(phi10/2.0)-1);

phi1=phi0+(0.25*h)*((tan(phi0/2.0)*y0)+(tan(phi10/2.0)*y1));

diff1=fabs(phi1-phi10);

phi10=phi1;

}while(diff1>eps);

k=(tan(phi1/2)*tan(phi1/2)) *sqrt(G*cos(phi1/2)*cos(phi1/2)-1);

/* Calculation of theta by modified formula */

do{

theta1=theta0+(0.125*h)*(f(phi0)+f(phi1));

diff2=fabs(theta10-theta1);

}while(diff2>eps);

/* Calculation of an approximate solution what we need */

b1=cos(theta1)*sin(phi1);

b2=sin(theta1)*sin(phi1);

b3=cos(phi1);

y1=sqrt(39.2*cos(phi1/2.0)*cos(phi1/2.0)-1);

w1=tan(phi1/2.0)*(cos(theta1)-sin(theta1)*y1);

w2=tan(phi1/2.0)*(sin(theta1)+cos(theta1)*y1);

w3=1.000000;

/* calculation of exact solution */

ephi=2*asin((2*k1*sqrt((G-1)/G)*exp(-(t1/4)*sqrt(G-1)))

/(1+k1*k1*exp(-(t1/2)*sqrt(G-1))));

u1=atan((sqrt(G)*exp((t1/4)*sqrt(G-1)))/k1-sqrt(G-1));

u2=atan((sqrt(G)*exp((t1/4)*sqrt(G-1)))/k1+sqrt(G-1));

etheta=(t1/4)+u1-u2+k2;

k=(tan(etheta/2)*tan(etheta/2))

*sqrt(G*cos(etheta/2)*cos(etheta/2)-1);

/* calculation of error in theta and phi*/

er_theta=fabs(theta1-etheta);

er_phi=fabs(phi1-ephi);

/* calculation of B and W */

be1=cos(etheta)*sin(ephi);

be2=sin(etheta)*sin(ephi);

be3=cos(ephi);

y1=sqrt(39.2*cos(ephi/2.0)*cos(ephi/2.0)-1);

we1=tan(ephi/2.0)*(cos(etheta)-sin(etheta)*y1);

we2=tan(ephi/2.0)*(sin(etheta)+cos(etheta)*y1);
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fprintf(fp,"\n%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf

\t%lf\t%lf\t%lf", t1, b1, b2, b3, w1, w2, w3,

theta1, phi1, k, etheta, ephi);

printf("\n\n\t%.20lf\t%.20lf\t%lf",er_theta,er_phi,k);

phi0=phi1;

theta0=theta1;

t0=t1;

getch();

}}

double f(double p)

{ double p_dash;

p_dash=(1.0/cos(p/2.0))*(1.0/cos(p/2.0));

return(p_dash);

}

3.4 Numerical solution on stable manifold

On this manifold, we have k < 0 and the system (1) reduces to (12). Now we use the
following programme to find the solution on the stable manifold.

#include<stdio.h>

#include<stdlib.h>

#include<conio.h>

#include<math.h>

#include<sys\stat.h>

void main()

{

double f(double p);

FILE *fp;

double phi0,phi1,phi10,theta0,theta1,theta10,er_theta,er_phi;

double h,t,t0,t1,b1,b2,b3,w1,w2,w3,b10,b20,b30,w10,w20,w30;

double eb1,eb2,eb3,ew1,ew2,ew3,be1,be2,be3,we1,we2;

double x,y0,y1,z0,z1,diff1,diff2,eps=0.01;

double etheta,ephi,G=39.2,u,u1,u2,k1,k2,k;

int i,n; /* g=9.8 , rho_b=2,*/

clrscr(); printf("\n\n\t\t PROGRAMME FOR EULER MODIFIED METHOD");

fp=fopen("nrd001.xls","w+"); t0=0.0; t=6.0; h=0.001;

printf("\n\n\t\t Enter the value of phi0= ");

scanf("%lf",&phi0);

printf("\n\n\t\t Enter the value of theta0= ");

scanf("%lf",&theta0);

fprintf(fp,"\n The value of phi0=%lf ",phi0);

fprintf(fp,"\n The value of theta0=%lf ",theta0);

b10=cos(theta0)*sin(phi0);

b20=sin(theta0)*sin(phi0);

b30=cos(phi0);

y1=sqrt(39.2*cos(phi0/2.0)*cos(phi0/2.0)-1);

w10=tan(phi0/2.0)*(cos(theta0)+sin(theta0)*y1);

w20=tan(phi0/2.0)*(sin(theta0)-cos(theta0)*y1);
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w30=1.000000;

fprintf(fp,"\n The value of b10=%lf ",b10);

fprintf(fp,"\n The value of b20=%lf ",b20);

fprintf(fp,"\n The value of b30=%lf ",b30);

fprintf(fp,"\n The value of w10=%lf ",w10);

fprintf(fp,"\n The value of w20=%lf ",w20);

fprintf(fp,"\n The value of w30=%lf ",w30);

/*calculating k1 and k2 for exact solution

and k for initial solution */

u=sin(phi0/2.0);

k1=(sqrt((G-1.0)/G)+sqrt(((G-1)/G)-u*u))/u;

k2=theta0-atan((sqrt(G)/k1)-(sqrt(G-1.0)))

+atan((sqrt(G)/k1)+(sqrt(G-1.0)));

k= - (tan(phi0/2)*tan(phi0/2))

*sqrt(G*cos(phi0/2)*cos(phi0/2)-1);

printf("\n\n\tThe value of k1=%.8f \n\n\tThe value of

k2=%.8f",k1,k2);

printf("\n\n\tThe value of k=%.8f ",k);

fprintf(fp,"\nThe value of k1=%.8f ",k1);

fprintf(fp,"\nThe value of k2=%.8f ",k2);

fprintf(fp,"\nThe value of k=%.8f ",k);

i=0;

printf("\n\n\tPress ’ENTER’ to get step by step");

fprintf(fp,"\n t\t b1\t b2\t b3\t w1\t w2\t w3\t theta\t phi

\tk\t ephi\t etheta");

printf("\n\n\t Error in Theta\t\t Error in Phi \t Value of K");

while(t0<t)

{

i++;

t1=t0+h;

y0=sqrt(39.2*cos(phi0/2.0)*cos(phi0/2.0)-1);

phi1=phi0-(h/2.0)*tan(phi0/2.0)*y0;

phi10=phi1;

theta1=theta0+(0.25*h*f(phi0));

theta10=theta1;

/* Calculation of phi by modified formula */

do{

y0=sqrt(39.2*cos(phi0/2.0)*cos(phi0/2.0)-1);

y1=sqrt(39.2*cos(phi10/2.0)*cos(phi10/2.0)-1);

phi1=phi0-(0.25*h)*((tan(phi0/2.0)*y0)+(tan(phi10/2.0)*y1));

diff1=fabs(phi1-phi10);

phi10=phi1;

}while(diff1>eps);

k= - (tan(phi1/2)*tan(phi1/2))

*sqrt(G*cos(phi1/2)*cos(phi1/2)-1);
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/* Calculation of theta by modified formula */

do{

theta1=theta0+(0.125*h)*(f(phi0)+f(phi1));

diff2=fabs(theta10-theta1);

}while(diff2>eps);

/* Calculation of an approximate solution what we need */

b1=cos(theta1)*sin(phi1);

b2=sin(theta1)*sin(phi1);

b3=cos(phi1);

y1=sqrt(39.2*cos(phi1/2.0)*cos(phi1/2.0)-1);

w1=tan(phi1/2.0)*(cos(theta1)+sin(theta1)*y1);

w2=tan(phi1/2.0)*(sin(theta1)-cos(theta1)*y1);

w3=1.000000;

/* calculation of exact solution */

ephi=2*asin((2*k1*sqrt((G-1)/G)*exp(-(t1/4)*sqrt(G-1)))

/(1+k1*k1*exp(-(t1/2)*sqrt(G-1))));

u1=atan((sqrt(G)*exp((t1/4)*sqrt(G-1)))/k1-sqrt(G-1));

u2=atan((sqrt(G)*exp((t1/4)*sqrt(G-1)))/k1+sqrt(G-1));

etheta=(t1/4)+u1-u2+k2;

k=-(tan(etheta/2)*tan(etheta/2))

*sqrt(G*cos(etheta/2)*cos(etheta/2)-1);

/* calculation of error in theta and phi*/

er_theta=fabs(theta1-etheta);

er_phi=fabs(phi1-ephi);

/* calculation of B and W */

be1=cos(etheta)*sin(ephi);

be2=sin(etheta)*sin(ephi);

be3=cos(ephi);

y1=sqrt(39.2*cos(ephi/2.0)*cos(ephi/2.0)-1);

we1=tan(ephi/2.0)*(cos(etheta)+sin(etheta)*y1);

we2=tan(ephi/2.0)*(sin(etheta)-cos(etheta)*y1);

fprintf(fp,"\n%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf

\t%lf\t%lf\t%lf\t%lf\t%lf",t1,b1,b2,b3,w1,w2,

w3, theta1, k, etheta, ephi);

printf("\n\n\t%.20lf\t%.20lf\t%lf",er_theta,er_phi,k);

phi0=phi1;

theta0=theta1;

t0=t1;

getch();

} }

double f(double p)

{ double p_dash;

p_dash=(1.0/cos(p/2.0))*(1.0/cos(p/2.0));

return(p_dash); }
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4 Experimental Results

We have written the code for the above algorithm in C-programming. We have plotted
the graphs by using Matlab. Here we have considered the initial solution as φ0 = 0.100
and θ0 = 0.000 for k > 0. Since at φ = 2.820649 the value of k becomes negative, we
have considered φ0 = 2.820649 and θ0 = 0.000 for k > 0.

In each figure, the first graph shows the numerical value calculated by us, the second
graph shows the exact solution and the third graph shows the comparison of the first
and the second graphs as shown in Figure 1 to Figure 16.

4.1 Figures for numerical solution on unstable manifold

Here we consider k > 0. Here are Figures from 1 to 8.
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Figure 1: Graphs for b1.
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Figure 5: Graphs for φ.
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Figure 8: Graphs for w3.

4.2 Numerical solution on stable manifold

Here we consider k < 0. Here are Figures from 9 to 16.
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Figure 9: Graphs for b1.
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Figure 10: Graphs for b2.
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Figure 11: Graphs for b3.
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Figure 12: Graphs for θ.
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Figure 13: Graphs for φ.
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Figure 14: Graphs for w1.
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Figure 15: Graphs for w2.
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5 Conclusion

Here we have presented the scheme of Euler Modified Method for the numerical solution
of the system of non-linear six coupled ODE’s (1), with the error of 10−6. Initially we
have an error of 10−20 in the solution. It can be reduced as we reduce the step size. This
error increases but it is up to 10−6 which is the upper bound. In future we will attempt
to minimize the error and sharpen the accuracy of the solution.
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1 Introduction

Integro differential equations arise quite frequently as mathematical models in diverse
disciplines. The study of integro differential equations has been attracting the attention
of many scientific researchers due to its potential as a better model to represent phys-
ical phenomena in various disciplines. Much work has been done in the existence and
uniqueness of solutions for integro differential equations see [2, 3, 6, 7, 8, 12]. All these
results are abstract in the sense that there is no specific procedure to obtain a solution
of the considered equations, so the Euler solutions for integro differential equations are
studied [4].

In many physical phenomena the both past history and future play an important
role along with the present state and hence an appropriate model of the phenomena will
be one that involves past history and future expectation also. This led to the study of
systems involving both retardation and anticipation, for example, see [1]. The existence of
Euler solutions have been studied for set differential equations [11], for causal differential
equations [10], for delay differential equations [5], due to the inherited simplicity in its
idea which paves a path for obtaining a solution of the given system. In this paper,
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we give an approach to obtaining the solution of the integro differential equation with
retardation and anticipation under continuity conditions.

In this paper we consider the integro differential equations with retardation and an-
ticipation of the type

x′ = f(t, x, Sx, xt, x
t), t ∈ I = [t0, T ], (1)

xt0(0) = φ0(0), xT (0) = ψ0(0), (2)

where the retardation function xt is defined as xt ∈ C0 = C[[−h1, 0], R] such that
xt(s) = x(t + s), s ∈ [−h1, 0] and the anticipation is defined as xt ∈ C1 = C[[0, h2], R]
such that xt(σ) = x(t + σ) where σ ∈ [0, h2] and construct Euler solution for the fore
mentioned integro differential equation with retardation and anticipation.

2 Preliminaries

In this section we begin with the integro differential equation given by

x′ = f(t, x) +

∫ t

t0

K(t, s, x(s))ds, (3)

x(t0) = x0. (4)

We begin with the following known results corresponding to integro differential equa-
tions which are prerequisite to obtain the Euler solutions for integro differential equations
with retardation and anticipation. These results are from [9].

Theorem 2.1 Assume that
A(1) g ∈ C[R+ × R, R], H ∈ C[R2

+ × R, R] and H(t, s, u) is monotone non decreasing
in u for each (t, s) ∈ R

2
+;

A(2) v′ ≤ g(t, v) +
∫ t

t0
H(t, s, v(s))ds and w′ ≥ g(t, w) +

∫ t

t0
H(t, s, w(s))ds;

A(3) for (t, s) ∈ R
2
+, x ≥ y and L ≥ 0,

g(t, x)− g(t, y) ≤ L(x− y), H(t, s, x)−H(t, s, y) ≤ L2(x− y).

Then we have v(t) ≤ w(t), for t ≥ t0, provided v(t0) ≤ w(t0).

Next we state the following result which gives existence of extremal solutions.

Theorem 2.2 Assume that g ∈ C[[t0, t0 + a]× R, R],
H ∈ C[[t0, t0 + a]× [t0, t0 + a]× R, R], H(t, s, u) is non decreasing in u for each (t, s)
and

∫ s

t
|H(σ, s, u(s))| dσ ≤ N for t0 ≤ s ≤ t ≤ t0 + a, u ∈ Ω0 = {u ∈ C[[t0, t0 +

a], R] : |u(t) − u0| ≤ b}. Then there exists a maximal and minimal solutions for the
scalar IVP

u′ = g(t, u) +

∫ t

t0

H(t, s, u(s)) ds, (5)

u(t0) = u0. (6)

on [t0, t0 + α], for some 0 < α < a.

We now give the comparison theorem, which is used in the proof of our main result.
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Theorem 2.3 Assume that g ∈ C[R2
+, R], H ∈ C[R3

+, R], H(t, s, u) is non de-

creasing in u for each (t, s) and for t ≥ t0, D−m(t) ≤ g(t,m(t)) +
∫ t

t0
H(t, s,m(s))ds,

where m ∈ C[R+, R] and D−m(t) = limh→0−inf [
m(t+h)−m(t)

h
]. Suppose that γ(t) is

the maximal solution of u′ = g(t, u(t)) +
∫ t

t0
H(t, s, u(s))ds, u(t0) = u0 ≥ 0, existing on

[t0,∞). Then m(t) ≤ γ(t), for t ≥ t0, provided m(t0) ≤ u0.

Before we proceed further, we state the following known result relating to integro
differential equations, which is indirectly used in our work.

Theorem 2.4 Let E1 be an open (t, u)-set in R
n+1 and let f ∈ C[E1,R

n],
K ∈ C[E1 ×R

n
+,R

n
+] and x(t) be a solution of (3) and (4)on some interval t0 ≤ t ≤ a0.

Then x(t) can be extended as a solution to the boundary of E1.

We now present a theorem relating to the largest interval of existence of maximal
solutions in a particular setup.

Theorem 2.5 Let the hypothesis of Theorem 2.2 hold. Suppose that the largest
interval of existence of the maximal solution r(t) of (5) and (6) is [t0, t0 + a). Then
there is an ǫ0 > 0 such that 0 < ǫ < ǫ0, the maximal solution r(t, ǫ) of

u′ = g(t, u) +

∫ t

t0

H(t, s, u(s)) ds+ ǫ, (7)

u(t0) = u0 + ǫ ≥ 0, (8)

exists over [t0, t1] ⊂ [t0, t0 + a) and limǫ→0 r(t, ǫ) = r(t) uniformly on [t0, t1].

3 Comparison Theorems

In order to construct the Euler solutions for the integro differential equation with retar-
dation and anticipation. We need the following comparison theorems. We begin with the
following result which deals with the existence of maximal solution in our setup, which
is required for our main result.

Theorem 3.1 Let E be the product space [t0, t0 + a)× R
2 and g ∈ C[E, R],

H ∈ C[[t0, t0 + a)× [t0, t0 + a)×R, R]. Assume that g(t, u, v) is non decreasing in v for
each (t, u), and H(t, s, u) is non decreasing in u for each (t, s). Suppose that r(t) is the
maximal solution of the integro differential equation

u′ = g(t, u, u) +

∫ t

t0

H(t, s, u(s))ds, (9)

u(t0) = u0 ≥ 0, (10)

existing on [t0, t0 + a) and
r(t) ≥ 0, (11)

on [t0, t0 + a). Then the maximal solution r1(t) of

u′ = g1(t, u) +

∫ t

t0

H(t, s, u(s))ds, (12)

u(t0) = u0 ≥ 0, (13)

where g1(t, u) = g(t, u, r(t)) exists on [t0, t0 + a) and r1(t) = r(t) for t ∈ [t0, t0 + a),
∫ t

s
|H(σ, s, u(s))|dσ ≤ N for t0 ≤ s ≤ t ≤ t0 + a.
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Proof. Consider the scalar integro differential equation (12) and (13). By Theorem
2.2 there exists a maximal solution r1(t) of (12) and (13) in the interval [t0, t0+α), where
0 < α < a and by Theorem 2.4 this maximal solution can be extended from [t0, t0 + α)
to [t0, t0 + a). This implies that either r1(t) is defined over [t0, t0 + a) or there exists a
t1 < t0 + a such that

|r1(tk)| → ∞, (14)

for a certain sequence {tk}, such that tk → t−1 as k → ∞. Observe that

r′(t) = g(t, r(t), r(t)) +

∫ t

t0

H(t, s, r(s))ds = g1(t, r(t)) +

∫ t

t0

H(t, s, r(s))ds,

and Theorem 2.3 yields that
r(t) ≤ r1(t), (15)

as far as r1(t) exists. Now using the relations (11), (14) and (15), we have

|r1(tk)| → +∞ (16)

for some sequence {tk}, such that tk → t−1 as k → ∞. We shall prove that (16) does not
hold. Since the largest interval of existence of maximal solution r(t) of the scalar integro
differential equaiton (9) and (10) is [t0, t0+a), so by Theorem 2.5 there is an ǫ0 > 0 such
that 0 < ǫ < ǫ0 and the maximal solution r(t, ǫ) of

u′ = g(t, u, u) +

∫ t

t0

H(t, s, u(s)) ds+ ǫ, (17)

u(t0) = u0 + ǫ ≥ 0, (18)

exists over [t0, t1+ν] ⊂ [t0, t0+a), ν > 0, t1+ν < t0+a. From the relations (17), (18)
we get

r′(t, ǫ) > g(t, r(t, ǫ), r(t, ǫ)) +

∫ t

t0

H(t, s, r(s, ǫ))ds

and r(t0) = u0 < u0 + ǫ = r(t0, ǫ). So

r(t0) < r(t0, ǫ).

Now applying Theorem 2.1 we conclude that

r(t) < r(t, ǫ), (19)

for t ∈ [t0, t1 + ν]. Since g is non decreasing in v, we arrive at r′(t, ǫ) > g1(t, r(t, ǫ)) +
∫ t

t0
H(t, s, r(s, ǫ))ds, for t ∈ [t0, t1 + ν]. But

r′1(t) = g1(t, r1(t)) +

∫ t

t0

H(t, s, r1(s))ds,

for t ∈ [t0, t1] and r1(t0) = u0 < u0 + ǫ = r(t0, ǫ), so

r1(t) < r(t, ǫ),
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for t ∈ [t0, t1]. Since r(t, ǫ) exists on [t0, t1 + ν], ν > 0. This leads to a contradiction to
(16). Hence r1(t) exists on [t0, t0 + a). Thus r(t) ≤ r1(t) for t ∈ [t0, t0 + a). Furthermore,

r′1(t) = g1(t, r1(t)) +

∫ t

t0

H(t, s, r1(s))ds

= g(t, r1(t), r(t)) +

∫ t

t0

H(t, s, r1(s))ds.

From the monotonic character of g in v, and from the relation (15), we get

r′1(t) = g(t, r1(t), r(t)) +

∫ t

t0

H(t, s, r1(s))ds

≤ g(t, r1(t), r1(t)) +

∫ t

t0

H(t, s, r1(s))ds.

Now using Theorem 2.3, we find that

r1(t) ≤ r(t) (20)

on t ∈ [t0, t0 + a), which implies along with the relation (15) that r1(t) = r(t) for
t ∈ [t0, t0 + a).

We need the following known result in suitable form.

Theorem 3.2 Let the hypothesis of Theorem 3.1 hold and m ∈ C[[t0, t0 + a), R]
such that (t,m(t), ν) ∈ E, t ∈ [t0, t0 + a) and m(t0) ≤ u0. Assume that for a fixed

Dini Derivative the inequality Dm(t) ≤ g(t,m(t), ν) +
∫ t

t0
H(t, s,m(s))ds, is satisfied for

t ∈ [t0, t0 + a)−S, where S denotes an at most countable subset of [t0, t0 + a). Then for
all ν ≤ r(t), t ∈ [t0, t0 + a), we have m(t) ≤ r(t), for t ∈ [t0, t0 + a).

Proof. Since the hypothesis of Theorem 3.1 holds, so there exists a maximal solution
r1(t) of the scalar integro differential equation (12) and (13) with g1(t, u) = g(t, u, r(t))
exists on [t0, t0 + a) and r(t) = r1(t) for t ∈ [t0, t0 + a). Let ν ≤ r(t), t ∈ [t0, t0 + a).
Then using the monotonicity of g in ν we get

Dm(t) ≤ g(t,m(t), ν) +

∫ t

t0

H(t, s,m(s))ds

≤ g(t,m(t), r(t)) +

∫ t

t0

H(t, s,m(s))ds

Dm(t) ≤ g1(t,m(t)) +

∫ t

t0

H(t, s,m(s))ds,

for t ∈ [t0, t0 + a)−S, which on using Theorem 2.3 gives m(t) ≤ r(t), for t ∈ [t0, t0 + a).
The following theorem is needed before we proceed further.

Theorem 3.3 Assume that m ∈ C[I, R+], g ∈ C[I × R+, R+],
H ∈ C[I × I × R+, R+], H is non decreasing in u for each (t, s) and for t ∈ I = [t0, T ],

D−m(t) ≤ g(t, |m|0(t)) +
∫ t

t0

H(t, s, |m|(s))ds, (21)
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where |m|0(t) = supt0≤s≤t|m(s)|. Suppose that r(t) = r(t, t0, u0) is the maximal solution
of the scalar integro differential equation

u′ = g(t, u) +

∫ t

t0

H(t, s, u(s))ds, (22)

u(t0) = u0 ≥ 0, (23)

existing on [t0, T ). Then m(t) ≤ r(t), t ≥ t0, provided | m(t0) |0≤ u0.

Proof. Since the largest interval of existence of maximal solution is [t0, T ) for the
integro differential equation (22) so there exists an ǫ0 > 0 such that 0 < ǫ < ǫ0, the
maximal solution r(t, t0, u0, ǫ) of

u′ = g(t, u) +

∫ t

t0

H(t, s, u(s))ds+ ǫ, (24)

u(t0) = u0 + ǫ ≥ 0, (25)

existing on [t0, t1] ⊂ [t0, T ), for t1 < T and limǫ→0r(t, t0, u0, ǫ) = r(t, t0, u0) uniformly
on [t0, t1]. To prove the conclusion of the theorem, it is sufficient to show that

m(t) < r(t, t0, u0, ǫ), (26)

for t0 ≤ t ∈ I. Suppose that the relation (26) does not hold then there exists tα > t0
such that m(tα) = r(tα, t0, u0, ǫ) and m(t) < r(t, t0, u0, ǫ) for t0 ≤ t < tα. this yields on
computation,

D−m(tα) > g(tα, r(tα, t0, u0, ǫ)) +

∫ t

t0

H(tα, s, r(tα, t0, u0, ǫ))ds (27)

which is contradiction. Observe that we have used the fact that g(t, u) ≥ 0, H(t, s, u) ≥ 0
implies that r(tα, t0, u0, ǫ) is non decreasing in t and

|m|0(tα) = supt0≤s≤tα |m(s)| = r(tα, t0, u0, ǫ) = m(tα),

which yields

D−m(tα) ≤ g(tα, |m|0(tα)) +
∫ tα

t0

H(tα, s, |m|0(s))ds,

= g(tα, r(tα, t0, u0, ǫ)) +

∫ t

t0

H(tα, s, r(tα, t0, u0, ǫ))ds

which is contradiction to (27), and the proof is complete.

4 Euler Solutions

In this section we define an Euler solution and prove a result for its existence of integro
differential equation with retardation and anticipation. Further we give a result which
gives conditions under which the Euler solution becomes a solution of the IVP of the
integro differential equation with retardation and anticipation.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 12 (3) (2012) 237–250 243

Consider the integro differential equation with retardation and anticipation:

x′ = f(t, x, Sx, xt, x
t), (28)

xt0(0) = φ0(0), xT (0) = ψ0(0), (29)

where t ∈ I = [t0, T ], φ0 ∈ C0, ψ0 ∈ C1, f ∈ C[I × R× R× C0 × C1, R],

Sx(t) =
t
∫

t0

K(t, s, x)ds, K(t, s, x) ∈ C[I2 × R, R+] and C0 = C[[−h1, 0], R],

C1 = C[[0, h2], R].
In order to construct the Euler Solution we consider a partition π of the interval I

and on each subinterval of the partition, we obtain a differential equation where the right
hand side is a constant. This will help us to define Euler solution as a limit of a sequence
of polygonal arcs.

In order to do so we have to find a reasonable estimate of xt in the right hand side
of the differential equation (28). For this we take the anticipation as

z(t) =







xt(0), wherever | ξt(0)− φ0(0) |< M,

xt(0) +
ξ(t)

j
,

(30)

where j is the number of points in the partition π and

ξ(t) =















φ0(0), t ∈ [t0 − h1, t0],

φ0(0) +
(ψ0(0)− φ0(0))

(T − t0)
(t− t0), t ∈ [t0, T ],

ψ0(0), t ∈ [T, T + h2].

(31)

With this approximation the integro differential equation with retardation and anticipa-
tion reduces to the integro differential equation with retardation only, i.e.,

x′ = f(t, x, Sx, xt, z(t)), (32)

xt0(0) = φ0(0), z(T ) = ψ0(0), (33)

for t ∈ I = [t0, T ]. Let partition of the interval [t0, T ] be given by

π = {t0, t1, t2, ..., tN = T }. (34)

Consider the sub interval [t0, t1] and the differential equation (32), in that subinterval.
In the right hand side of (32) replace t by t0, x by x0, xt by φ0(0), z(t) by z(t0) and
Sx by (Sx(t0), t0) ie., in the integral replace t with t0, s with t0, x with x0, so (32)
reduces to

x′ = f(t0, x0, (Sx(t0), t0), φ0(0), z(t0)). (35)

Then the right hand side of the differential equation (35) is a constant and hence (35)
posses a unique solution x(t) = x(t, t0, φ0(0)) on [t0, t1].

Set x1 = x(t1) = x(t1, t0, φ0(0)). We now choose the next subinterval [t1, t2] and
consider the differential equation (32) by setting t = t1, x = x1, xt = φ1(t1), z(t) = z(t1)
and Sx = (Sx(t1), t1), i.e., in the integral replace t with t1, s with t1, x with x1. Then
the system (32) reduces to

x′ = f(t1, x1, (Sx(t1), t1), φ1(t1), z(t1)), (36)
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where

φ1(t) =

{

φ0(t), t ∈ [t0 − h1, t0],

x(t, t0, φ0(0)), t ∈ [t0, t1],
(37)

z(t) =







xt1(0), | ξt1(0)− φ0(0) |< M,

xt1(0) +
ξ(t1)

N + 1
,

ξ(t1) = φ0(0) +
(ψ0(0)− φ0(0))

(T − t0)
(t1 − t0). (38)

Clearly the right hand side of (36) is a constant hence there exists a unique solution
x(t) = x(t, t1, φ1(t1)) on [t1, t2].

Set x2 = x(t2) = x(t2, t1, φ1(t1)). Again consider the integro differential equation
with retardation (32) on [t2, t3] and as earlier replacing t by t2, x by x2, xt by φ2(t2),
z(t) = z(t2) and Sx by (Sx(t2), t2), i.e., in the integral replace t by t2, s by t2, x by x2.
Then the system (32) reduces to

x′ = f(t2, x2, (Sx(t2), t2), φ2(t2), z(t2)), (39)

where

φ2(t) =











φ0(t), t ∈ [t0 − h1, t0],

φ1(t), t ∈ [t0, t1],

x(t, t1, φ1(t1)), t ∈ [t1, t2],

(40)

z(t) =







xt2(0), | ξt2(0)− φ0(0) |< M,

xt2(0) +
ξ(t2)

N + 1
,

ξ(t2) = φ0(0) +
(ψ0(0)− φ0(0))

(T − t0)
(t2 − t0). (41)

We observe that the right hand side of (39) is a constant and proceeding as earlier
we get a solution x(t, t2, φ2(t2)) in the interval [t2, t3]. Set x3 = x(t3) = x(t3, t2, φ2(t2)).

Now proceeding in this fashion, we construct a sequence of arcs x(t, t0, φ0(0)),
x(t, t1, φ1(t1)), ..., x(t, tN−1, φN−1(tN−1)) on the sub intervals [t0, t1], [t1, t2],
..., [tN−1, tN ] respectively, which is the Euler polygonal arcs defined on the partition
π = {t0, t1, t2, ..., tN = T }. Thus the entire arc on I is defined by

xπ = xπ(t) = {x(t, ti, φi(ti)) : ti ≤ t ≤ ti+1, i = 0, 1, 2, ..., N − 1}, (42)

where

φi(t) =























φ0(t), t ∈ [t0 − h1, t0],

φ1(t), t ∈ [t0, t1],
...

x(t, ti−1, φi−1(ti−1)), t ∈ [ti−1, ti].

(43)

In (42) the notation emphasizes the fact that the arc corresponds to the partition π. The
diameter µπ of the partition π is given by

µπ = max{ti − ti−1 : 1 ≤ i ≤ N}. (44)
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Definition 4.1 An Euler solution for the integro differential equation with retarda-
tion and anticipation (28), (29) is any arc x = x(t) which is the uniform limit of Euler
polygonal arcs xπj

, corresponding to some sequence πj such that πj → 0, as the diameter
µπj

→ 0, as j → ∞.

Remark 4.1 Observe that the number of points Nj of the partition πj must tend to
∞ as πj → 0 and also that the Euler arc satisfies the conditions xt0 (0) = φ0(0),
xT (0) = ψ0(0).

We now state a result which guarantees the existence of an Euler solution.

Theorem 4.1 Assume that

| f(t, x, Sx, xt, zt) |≤ g(t, | x |0 (t), | z(t) |) +
∫ t

t0

H(t, s, | x(s) |)ds, (45)

where f : I ×R×R×C0 ×C1 → R, K : I2 ×R → R+, g ∈ C[I ×R+ × R+, R+] is non
decreasing in t for each (u, v), is non decreasing in u for each (t, v), is non decreasing
in v for each (t, u) ,H ∈ C[I2 × R+, R+] is non decreasing in t for each (s, u), is non
decreasing in s for each (t, u), is non decreasing in u for each (t, s),
| x |0 (t) = maxt−h1≤t+s≤t | x(t + s) | and r(t, t0, u0) is the maximal solution of the
scalar integro differential equation

u′ = g(t, u, u) +

∫ t

t0

H(t, s, u)ds, (46)

u(t0) = u0, u(T ) = ψ0(0), (47)

existing on [t0, T ] and |z(t)| ≤ r(t), and zt is the reasonable estimate of xt. Then,
(a) there exists at least one Euler solution x(t) = x(t, t0, φ0(0)) of the IVP (28), (29)

which satisfies the Lipschitz condition;
(b) any Euler solution x(t) of (28), (29) satisfies the relation

| x(t) − φ0(0) |≤ r(t, t0, u0)− u0, t ∈ [t0, T ], (48)

where u0 =| φ0 | .

Proof. Let π be the partition of [t0, T ] defined by (34) and let xπ = xπ(t) denote
the corresponding arc with nodes of xπ represented by x1, x2, x3, ..., xN . Writing xπ(t) =
xi(t) = x(t, ti, φi(ti)), ti ≤ t ≤ ti+1, i = 0, 1, 2, ..., N − 1, where φi(ti) is given by (43)
and observe that xi(ti) = xi, i = 0, 1, 2, ..., N − 1. Further for any t ∈ [ti, ti+1], we have
from the definition of Euler solution

| x′π(t) | =| f(ti, xi, Sxi, xti(0), z(ti)) |

≤ g(ti, | xti(0) |, | z(ti) |) +
∫ ti

t0

H(ti, ti, | x(ti) |)ds

thus

| x′π(t) |≤ g(ti, | xti(0) |, | z(ti) |)+
∫ ti

t0

H(ti, ti, | x(ti) |)ds, i = 0, 1, 2, ..., N−1. (49)
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Consider the interval [t0, t1] and applying the properties of norm, integral and the non
decreasing nature of g and H , along with the fact that both g and H are non-negative,
we get

| x1(t)− φ0(0) | = | φ0(0) +
∫ t

t0

f(t0, x0, Sx0, xt0(0), z(t0))ds − φ0(0) |

≤
∫ t

t0

| f(t0, x0, Sx0, xt0(0), z(t0)) | ds

≤
∫ t

t0

[g(s, r(s), r(s)) +

∫ t

s

H(σ, s, r(s))dσ]ds

≤ r(T, t0, | φ0 |)− | φ0 |= ψ0(0)− φ0(0) =M (say).

Next consider the interval [t1, t2] again as before, using the properties of norm and
integral, the monotone character of g and H and the fact that both g and H are non
negative, we obtain,

| x2(t)− φ0(0) | =| x1(t1) +
∫ t

t1

f(t1, x1, Sx1, xt1(0), z(t1))ds − φ0(0) |

≤
∫ t1

t0

| f(t0, x0, Sx0, xt0(0), z(t0)) | ds

+

∫ t

t1

| f(t1, x1, Sx1, xt1(0), z(t1)) | ds

=

∫ t

t0

[g(s, r(s), r(s))ds +

∫ t

s

H(σ, s, r(s))dσ]ds

≤ r(T, t0, | φ0 |)− | φ0 |= ψ0(0)− φ0(0) =M (say).

Proceeding in this manner, on each subinterval [ti, ti+1], we arrive at

| xi(t)− φ0(0) |≤ r(T, t0, | φ0 |)− | φ0 |=M.

Thus combining the relations of all polygonal arcs over the partition π, we deduce that

| xπ(t)− φ0(0) |≤ r(T, t0, | φ0 |)− | φ0 |=M, (50)

on [t0, T ]. Now from the relation (49), we have

| x′π(t) | ≤ g(ti, | xti(0) |, | z(ti) |) +
∫ ti

t0

H(ti, ti, | x(ti) |)ds

≤ g(T, r(T ), r(T )) +

∫ t

t0

H(t, s, r(s))ds

= r′(T, t0, | φ0 |) = L (say).

We next show that xπ is Lipschitz. For this consider t0 ≤ l ≤ t ≤ T, where l ∈ [ti, ti+1]
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and t ∈ [tk, tk+1], i < k. Then

| xπ(t)− xπ(l) | =| xk +

∫ t

tk

f(tk, xk, Sxk, xtk(0), z(tk))ds

− {xi +
∫ l

ti

f(ti, xi, Sxi, xti(0), z(ti))ds} |

+ ...+

∫ tk

tk−1

f(tk−1, xk−1, Sxk−1, xtk−1
(0), z(tk−1))ds

+

∫ t

tk

f(tk, xk, Sxk, xtk(0), z(tk))ds

− {xi +
∫ l

ti

f(ti, xi, Sxi, xti(0), z(ti))ds} |

≤
∫ ti+1

ti

| f(ti, xi, Sxi, xti(0), z(ti)) | ds

+ ...+

∫ tk

tk−1

| f(tk−1, xk−1, Sxk−1, xtk−1
(0), z(tk−1)) | ds

+

∫ t

tk

| f(tk, xk, Sxk, xtk(0), z(tk)) | ds

−
∫ l

ti

| f(ti, xi, Sxi, xti(0), z(ti)) | ds

=

∫ t

l

[g(s, r(s), r(s)) +

∫ t

s

H(σ, s, r(s))dσ]ds

=

∫ t

l

r′(s, t0, u0)ds ≤ L(t− l),

for some ξ ∈ (l, t). This follows using the relations (45), (46), (47) along with the fact that
g(t, u, v), H(t, s, u), r(t) are positive and non decreasing. Thus xπ satisfies the Lipschitz
condition with some constant L on [t0, T ]. Now let πj be a sequence of partitions of [t0, T ]
such that πj → 0 as j → ∞. Thus from the earlier construction, we get a sequence of
polygonal arcs xπj

on [t0, T ] corresponding to each partition πj satisfying

xπj
(t0) = φ0(0), | xπj

(t)− φ0(0) |≤M, | x′πj
(t) |≤ L.

Hence the family {xπj
} is equicontinuous and uniformly bounded. Then the fam-

ily {xπj
} satisfies the hypothesis of the Ascoli–Arzela Theorem and hence we obtain a

subsequence which converges uniformly to a continuous function x(t) on [t0, T ] which
is absolutely continuous on [t0, T ]. Now using the definition of the Euler solution, we
conclude that x(t) is an Euler solution for (28), (29) on [t0, T ]. To prove the relation in
(b), it suffices to observe that x(t) is the uniform limit of the polygonal arcs that satisfy
the relation (48) and thus inherits the property. Thus the proof is complete.

Remark 4.2 If f and K are continuous and K(t, s, x) is non decreasing in t for each
(s, x), we can show that the Euler solution is a solution. This is the essence of the next
result.
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Theorem 4.2 Assume that

| f(t, x, Sx, xt, zt) |≤ g(t, | x |0 (t), | z(t) |) +
∫ t

t0

H(t, s, | x(s) |)ds, (51)

where g ∈ C[I × R+ × R+, R+] is non decreasing in t for each (u, v), is non decreasing
in u for each (t, v), is non decreasing in v for each (t, u) ,H ∈ C[I2 × R+, R+] is non
decreasing in t for each (s, u), is non decreasing in s for each (t, u), is non decreasing in
u for each (t, s), | x |0 (t) = maxt−h1≤t+s≤t | x(t + s) | and r(t, t0, u0) is the maximal
solution of the scalar integro differential equation

u′ = g(t, u, u) +

∫ t

t0

H(t, s, u)ds, (52)

u(t0) = u0, u(T ) = ψ0(0), (53)

existing on [t0, T ], |z(t)| ≤ r(t), and z(t) is the reasonable estimate of xt. Further suppose
that f ∈ C[I × R× R× C0 × C1, R], K ∈ C[I2 × R,R+] is non decreasing in t for each

(s, x), maxt,s∈[t0,T ]K(t, s, x) = k1 ≤ M+φ0(0)
T−t0

. Then the Euler solution x(t) is a solution
of (28), (29).

Proof. Since the hypothesis of Theorem 4.1 is satisfied so we obtain a sequence {xπj
}

of polygonal arcs for the integro differential equation with retardation and anticipation
(28), (29) that converge uniformly to an Euler solution x(t) on [t0, T ].

Let ̂B(φ0(0),M) = {(x, Sx, xt, xt) : x ∈ C[I,R], | x(t)− φ0(0) |≤M,
| Sx(t)− φ0(0) |≤ k1(T − t0)− | φ0(0) |≤M, sup−h1≤s≤0 | x(t+ s)− φ0(0) |≤M,
supσ∈[0,h2] | x(t + σ) − φ0(0) |≤ M, t ∈ [t0, T ]}. Then, we observe that all the Euler

polygonal arcs belongs to the ball ̂B(φ0(0),M), from the proof of Theorem 4.1, also we
conclude that all these Euler arcs satisfy Lipschitz condition with some constant L. Now
since f is continuous implies that it is uniformly continuous on compact sets I × ̂B .
Hence for any given ǫ > 0, we can find a δ > 0 such that

| t− t∗ |< δ, | x(t)−x(t∗) |< δ, | Sx(t)−Sx(t∗) |< δ, | xt−xt∗ |< δ, | xt−xt∗ |< δ,

implies
| f(t, x, Sx, xt, xt)− f(t∗, x∗, Sx∗, xt∗ , x

t∗) |< ǫ,

for any t, t∗ ∈ [t0, T ] and x, x
∗ ∈ C[[t0, T ],R] such that (x, Sx, xt, x

t) ∈ ̂B(φ0(0),M). Let
j be sufficiently large so that the diameter of µπj

corresponding to that j which satisfies

µπj
< δ and Lµπj

< δ, k1µπj
< δ, (L + M

j(T−t0)
)µπj

< δ. Let πj = {t0, t1, t2, ..., T }.
Now for any t, which is not one of the infinitely many points at which xπj

(t) is a node,

then we have x′πj
(t) = f(̂t, xπj

(̂t), Sxπj
(̂t), xπjt̂

, z(̂t)) for some ̂t with in µπj
< δ of t. We

have | t−̂t |< δ, using the fact that xπj
is Lipschitz, we get | xπj

(t)−xπj
(̂t) |≤ L(t−̂t) ≤

Lµπj
< δ,

| Sxπj
(t)− Sxπj

(̂t) | = |
∫ t

t0

K(t, s, xπj
(s)ds −

∫ t̂

t0

K(̂t, s, xπj
(s)ds |

≤
∫ t

t0

| K(t, s, xπj
(s) | ds < δ.
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Now consider | xπj
(t+ s)− xπj

(̂t+ s) | for t− h1 ≤ t+ s ≤ t. Then

| xπjt
(s)− xπjt̂

(s) | =| xπj
(t+ s)− xπj

(̂t+ s) |< δ,

| xπjt
− xπjt̂

| = supt0+h1≤t+s≤t | xπj
(t+ s)− xπj

(̂t+ s) |≤ Lµπj
< δ.

Also if | ξt(0)− φ0(0) |< M then | xtπj
(0)− xt̂πj

(0) |=| xπj
(t)− xπj

(̂t) |< δ
otherwise

| z(t)− z(t1) | =| xtπj
(0) +

z(t)

j
− z(̂t)

j
− xt̂πj

(0) |≤ [L+
M

j(T − t0)
]µπj

< δ.

Hence we have | z(t)− z(̂t) |< δ. Thus by uniform continuity of f on compact sets
| x′πj

(t)− f(t, xπj
(t), Sxπj

(t), xπjt
, z(t)) |

=| f(̂t, xπj
(̂t), Sxπj

(̂t), xπjt̂
, z(̂t))− f(t, xπj

(t), Sxπj
(t), xπjt

, z(t)) |< ǫ.

Now for any t ∈ [t0, T ], consider

| xπj
(t)− φ0(0)−

∫ t

t0

f(s, xπj
(s), Sxπj

(s), xπjs
, z(s))ds |

≤
∫ t

t0

| x′πj
(s)− f(s, xπj

(s), Sxπj
(s), xπjs

, z(s)) | ds ≤ ǫ(T − t0).

Letting j → ∞ in the above inequality, we get

| x(t)− φ0(0)−
∫ t

t0

f(s, x(s), Sx(s), xs, x
s)ds | < ǫ(T − t0).

Since ǫ > 0 is arbitrary, it follows that

x(t) = φ0(0) +

∫ t

t0

f(s, x(s), Sx(s), xs, x
s)ds

which implies that x(t) is continuously differentiable and hence

x′(t) = f(t, x, Sx, xt, x
t)

and xt0(0) = φ0(0), x
T (0) = z(T ) = ψ0(0), t0 ∈ [t0, T ]. Thus the proof is complete.

5 Conclusion

The concepts of anticipation and retardation arise naturally when modeling any goal
oriented physical phenomena. Recently, integro differential equations including these
concepts, have been studied in [6, 12]. In this paper we provided an existence result,
using the concept of Euler solutions and gave criteria under which this Euler solution
becomes a solution. In future, we propose to develop the necessary tools to obtain
numerical solutions of the considered problem.
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Abstract: The first boundary value problem for an autonomous system of linear
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1 Introduction

Usually, when systems of differential equations are investigated, the main attention is paid
to systems of ordinary differential equations (e.g., [1,2]) or systems of partial differential
equations [3]– [7]. Aside remains the analysis of systems of partial differential equations
with delay. Their investigation is extremely rare [8]– [10].

Autonomous second-order systems of linear differential equations of with constant
delay are considered in this paper:







∂u(x,t)
∂t

= a11
∂2u(x,t)

∂x2 + a12
∂2v(x,t)

∂x2 + b11u (x, t− τ) + b12v (x, t− τ) ,

∂v(x,t)
∂t

= a21
∂2u(x,t)

∂x2 + a22
∂2v(x,t)

∂x2 + b21u (x, t− τ) + b22v (x, t− τ) .
(1)

We assume that matrices

A =

[

a11 a12
a21 a22

]

, B =

[

b11 b12
b21 b22

]
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are normal, i.e. AA∗ = A∗A, BB∗ = B∗B, where A∗ is the conjugate transpose of A,
B∗ is the conjugate transpose of B; and they satisfy the commutativity condition, i.e.,

AB = BA.

Functions u (x, t), v (x, t) are defined in a semistrip t ≥ −τ , 0 ≤ x ≤ l, where l is a
positive constant, and the initial and boundary conditions are

u (0, t) = µ1 (t) , u (l, t) = µ2 (t) , v (0, t) = θ1 (t) , v (l, t) = θ2 (t) , t ≥ −τ,
u (x, t) = ϕ (x, t) , v (x, t) = ψ (x, t) , 0 ≤ x ≤ l,−τ ≤ t ≤ 0.

(2)

Compatibility conditions are fulfilled:

µ1 (t) = ϕ (0, t) , µ2 (t) = ϕ (l, t) , θ1 (t) = ψ (0, t) , θ2 (t) = ψ (l, t) ,−τ ≤ t ≤ 0.

A solution of the first boundary value problem has been obtained for the case, when
eigenvalues of the matrices A and B are real and different.

2 Representation of Solution for Delay System

If the matrices A and B are normal and satisfy the commutativity condition, then,
according to [11]– [13], there always exists a nonsingular matrix S, which simultaneously
reduces matrices A and B to the Jordan forms Λ1 and Λ2:

S−1AS = Λ1, S−1BS = Λ2,

S =

[

s11 s12
s21 s22

]

, S−1 =
1

∆

[

s22 −s12
−s21 s11

]

, ∆ = s11s22 − s12s22.
(3)

Therefore by a transformation

(

u(x, t)
v(x, t)

)

= S

(

ξ(x, t)
η(x, t)

)

system (1) can be reduced to a form

(

∂ξ(x,t)
∂t

∂η(x,t)
∂t

)

= Λ1

(

∂2ξ(x,t)
∂x2

∂2η(x,t)
∂x2

)

+ Λ2

(

ξ (x, t− τ)
η (x, t− τ)

)

, (4)

where Λ1 is the Jordan form of the matrix A and Λ2 is the Jordan form of the matrix
B. The initial and boundary conditions will be

ξ (0, t) = µ1 (t) , ξ (l, t) = µ2 (t) , η (0, t) = θ1 (t) , η (l, t) = θ2 (t) , t ≥ −τ,
ξ (x, t) = ϕ (x, t) , η (x, t) = ψ (x, t) , 0 ≤ x ≤ l,−τ ≤ t ≤ 0,

(5)

where
(

µ1 (t)

θ1 (t)

)

= S−1

(

µ1 (t)
θ1 (t)

)

,

(

µ2 (t)

θ2 (t)

)

= S−1

(

µ2 (t)
θ2 (t)

)

,

(

ϕ (x, t)

ψ (x, t)

)

= S−1

(

ϕ (x, t)
ψ (x, t)

)

.
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We will consider the representation of solution of the first boundary value problem for
the system (1), (2), when roots of the characteristic equations λ1, λ2, ς1, ς2 of the both
matrices A and B are real and different, i.e. λ1 6= λ2, ς1 6= ς2. In this case, after the
transformation the system (4) decouples into two independent equations:

∂ξ(x, t)

∂t
= λ1

∂2ξ(x, t)

∂x2
+ ς1ξ (x, t− τ) ,

∂η(x, t)

∂t
= λ2

∂2η(x, t)

∂x2
+ ς2η (x, t− τ) . (6)

We will consider the first equation of system (6)

∂ξ(x, t)

∂t
= λ1

∂2ξ(x, t)

∂x2
+ ς1ξ (x, t− τ) (7)

with initial and boundary conditions

ξ (0, t) = µ1 (t) , ξ (l, t) = µ2 (t) , t ≥ −τ, ξ (x, t) = ϕ (x, t) , 0 ≤ x ≤ l,−τ ≤ t ≤ 0.

A solution will be in the form

ξ (x, t) = ξ0 (x, t) + ξ1 (x, t) + µ1 (t) +
x

l
[µ2 (t)− µ1 (t)] , (8)

where
- ξ0 (x, t) is a solution of homogeneous equation

∂ξ(x, t)

∂t
= λ1

∂2ξ(x, t)

∂x2
+ ς1ξ (x, t− τ) (9)

with zero boundary ξ (0, t) = 0, ξ (l, t) = 0 and nonzero initial conditions ξ (x, t) =
Φ (x, t), Φ (x, t) = ϕ̄ (x, t)− µ̄1 (t)− x

l
[µ̄2 (t)− µ̄1 (t)], −τ ≤ t ≤ 0, 0 ≤ x ≤ l.

- ξ1 (x, t) is a solution of inhomogeneous equation

∂ξ(x, t)

∂t
= λ1

∂2ξ(x, t)

∂x2
+ ς1ξ (x, t− τ) + F (x, t) , (10)

F (x, t) = ς1

{

µ1 (t− τ) +
x

l
[µ2 (t− τ) − µ1 (t− τ)]

}

− µ̇1 (t)−
x

l

[

µ̇2 (t)− µ̇1 (t)
]

with zero boundary ξ (0, t) = 0, ξ (l, t) = 0, t ≥ −τ and zero initial conditions ξ (x, t) = 0,
−τ ≤ t ≤ 0, 0 ≤ x ≤ l.

2.1 Homogeneous equation

For finding the solution ξ0 (x, t) we will use the method of separation of variables. Ac-
cording to this method, the solution will be in a form of product of two functions
ξ0 (x, t) = X (x)T (t). After substitution in the equation (7) we obtain

X (x) T ′(t) = λ1X
′′ (x) T (t) + ς1X (x) T (t− τ) .

Separating variables, we have

T ′ (t)− ς1T (t− τ)

λ1T (t)
=
X ′′ (x)

X (x)
= −k2,
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where k is an arbitrary constant. We will divide the obtained expression into two equa-
tions

T ′(t) + λ1k
2T (t)− ς1T (t− τ) = 0, X ′′ (x) + k2X (x) = 0. (11)

Solutions of the second equation from (11), which is not identically zero and satisfies zero
boundary conditions X (0) = 0, X (l) = 0, are

Xn (x) = An sin
πn

l
x, k2n =

(πn

l

)2

, n = 1, 2, ...

where An are arbitrary constants.
Now we will consider the first of equations from (11)

T ′
n(t) = −λ1

(πn

l

)2

Tn (t) + ς1Tn (t− τ) , n = 1, 2, . . . . (12)

To obtain initial conditions for each of the equations (12) we will expand the correspond-
ing initial condition Φ (x, t) into series under solutions of the second equation

Φ (x, t) =

∞
∑

n=1

Φn (t) sin
πn

l
x, (13)

Φn (t) =
2

l

∫ l

0

ϕ (s, t) sin
πn

l
sds+

2

πn
[(−1)

n
µ̄2 (t)− µ̄1 (t)] , n = 1, 2, ...

Preliminary we should consider some results on linear homogeneous equations with
constant delay

ẋ (t) = bx (t− τ) (14)

with an initial condition x (t) = β (t), −τ ≤ t ≤ 0, b ∈ R.

Definition 2.1 [14] A delay exponential function expτ {b, t} is a function which can
be written as

expτ {b, t} =























0, if −∞ < t < −τ,
1, if −τ ≤ t < 0,
1 + b t

1! , if 0 ≤ t < τ,
. . .

1 + b t
1! + b2 (t−τ)2

2! + ...+ bk [t−(k−1)τ ]k

k! , if (k − 1) τ ≤ t < kτ,
(15)

a k-degree polynomial on intervals (k − 1)τ < t ≤ kτ “merged” in points t = kτ, k =
0, 1, 2, ..., b = const.

Lemma 2.1 A rule of differentiation for the delay exponential function can be for-
mulated in the following way:

d

dt
expτ {b, t} = b expτ {b, t− τ} . (16)

I.e., the delay exponential function is a solution of the equation (14) with unitary initial
conditions x (t) ≡ 1, −τ ≤ t ≤ 0.
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Proof. Within an interval (k − 1)τ < t ≤ kτ the delay exponential function is
represented as follows

expτ {b, t} = 1 + b
t

1!
+ b2

(t− τ)
2

2!
+ b3

(t− 2τ)
3

3!
+ ...+ bk

[t− (k − 1) τ ]
k

k!
.

Differentiating this function we will obtain

d

dt
expτ {b, t} = b+ b2

t− τ

1!
+ b3

(t− 2τ)
2

2!
+ b4

(t− 3τ)
3

3!
+ ...+ bk

[t− (k − 1) τ ]
k−1

(k − 1)!
=

= b

{

1 + b
t− τ

1!
+ b2

(t− 2τ)2

2!
+ b3

(t− 3τ)3

3!
+ ...+ bk−1 [t− (k − 1) τ ]k−1

(k − 1)!

}

=

= b expτ {b, t− τ} ,
Q.E.D. 2

Theorem 2.1 A solution of the equation (14), which satisfies the initial condition
x (t) = β (t), −τ ≤ t ≤ 0, can be presented as follows

x (t) = expτ {b, t}β (−τ) +
∫ 0

−τ

expτ {b, t− τ − s}β′ (s) ds. (17)

Proof. As the expression (17) is a linear functional of the delay exponential function
expτ {b, t} which, as it was shown in Lemma 2.1, is the solution of the equation (14),
then the functional (17) is a solution of the homogeneous equation (14) for any function
β (t). We will show that initial conditions are satisfied, i.e. for −τ ≤ t ≤ 0 the following
identity is correct:

β (t) ≡ expτ {b, t}β (−τ) +
∫ 0

−τ

expτ {b, t− τ − s}β′ (s) ds.

Then we will divide an integral from the expression (17) into two integrals:

x (t) = expτ {b, t}β (−τ) +
∫ t

−τ

expτ {b, t− τ − s}β′ (s) ds+

+

∫ 0

t

expτ {b, t− τ − s}β′ (s) ds.

Using the definition of the delay exponential function, we can obtain that
- expτ {b, t} ≡ 1 at −τ ≤ t ≤ 0;
- expτ {b, t− τ − s} ≡ 1 at −τ ≤ s ≤ t;
- expτ {b, t− τ − s} ≡ 0 at t < s ≤ 0.
Therefore,

x (t) = β (−τ) +
∫ t

−τ

β′ (s) ds = β (−τ) + β (t)− β (−τ) = β (t) ,

Q.E.D. 2
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Remark 2.1 Under the hypothesis of the theorem, continuous differentiability of the
initial function β(t) is required. Computing the integral in (17) by parts we obtain

x (t) = expτ {b, t− τ} β (0) + b

∫ 0

−τ

expτ {b, t− 2τ − s}β (s) ds. (18)

The equality (18) is an integral representation of the solution under the assumption of
only continuity of the function β(t).

Further we will consider the differential equation

ẋ (t) = ax (t) + bx (t− τ) (19)

with an initial condition x (t) = β (t), −τ ≤ t ≤ 0, a, b ∈ R.

Theorem 2.2 A solution of the equation (19), which satisfies initial condition x (t) =
β (t), −τ ≤ t ≤ 0, can be presented as

x (t) = expτ {b1, t} ea(t+τ)β (−τ) +
∫ 0

−τ

expτ {b1, t− τ − s} ea(t−s) [β′ (s)− aβ (s)] ds,

(20)
b1 = be−aτ .

Proof. We will make a substitution x (t) = eaty (t), where y (t) is a new unknown
function

aeaty (t) + eatẏ (t) = aeaty (t) + bea(t−τ)y (t− τ) ,

ẏ (t) = b1y (t− τ) , b1 = be−aτ . (21)

Correspondingly, the initial condition for the equation (21) is

y (t) = e−atβ (t) .

As follows from (17) a solution of the corresponding Cauchy problem for the equation
(21) will be

y (t) = expτ {b1, t} eaτβ (−τ) +
∫ 0

−τ

expτ {b1, t− τ − s}
[

e−asβ′ (s)− ae−asβ (s)
]

ds.

Again, using a substitution x (t) = eaty (t), we obtain

x (t) = expτ {b1, t} ea(t+τ)β (−τ) +
∫ 0

−τ

expτ {b1, t− τ − s} ea(t−s) [β′ (s)− aβ (s)] ds,

i.e. the statement of Theorem 2.2. 2

Using the results obtained above, we will solve each of the equations (12). According
to the equality (20), solutions of (12) will be

Tn (t) = expτ {r1, t} eq1(t+τ)Φn (−τ)+

+

∫ 0

−τ

expτ {r1, t− τ − s} eq1(t−s) [Φ′
n (s)− q1Φn (s)] ds,
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r1 = ς1e
λ1(πn

l )
2

τ , q1 = −λ1
(πn

l

)2

.

Thus, the solution ξ0 (x, t) of the homogeneous equation (9), which satisfies zero
boundary ξ (0, t) = 0, ξ (l, t) = 0 and nonzero initial conditions ξ (x, t) = Φ (x, t), −τ ≤
t ≤ 0, 0 ≤ x ≤ l, is

ξ0 (x, t) =

∞
∑

n=1

{

expτ

{

ς1e
λ1(πn

l )
2
τ , t
}

e−λ1(πn
l )

2
(t+τ)Φn (−τ) +

+

∫ 0

−τ

expτ

{

ς1e
λ1(πn

l )
2
τ , t− τ − s

}

e−λ1( πn
l )

2
(t−s)

[

Φ′
n (s) + λ1

(πn

l

)2

Φn (s)

]

ds

}

×

× sin
πn

l
x,

Φn (t) =
2

l

∫ l

0

ϕ (s, t) sin
πn

l
sds+

2

πn
[(−1)n µ̄2 (t)− µ̄1 (t)] , n = 1, 2, ...

2.2 Inhomogeneous equation

Further we will consider the inhomogeneous equation (10)

∂ξ(x, t)

∂t
= λ1

∂2ξ(x, t)

∂x2
+ ς1ξ (x, t− τ) + F (x, t) ,

F (x, t) = ς1

{

µ1 (t− τ) +
x

l
[µ2 (t− τ) − µ1 (t− τ)]

}

− µ̇1 (t)−
x

l

[

µ̇2 (t)− µ̇1 (t)
]

with zero boundary ξ (0, t) = 0, ξ (l, t) = 0, t ≥ −τ and zero initial conditions ξ (x, t) = 0,
−τ ≤ t ≤ 0, 0 ≤ x ≤ l. We will try to find a solution in the form of series expansion in
terms of the functions from the previous problem, i.e. in the form

ξ1 (x, t) =

∞
∑

n=1

Tn (t) sin
πn

l
x.

After substituting the series in the equation (10) and having equated coefficients of the
same terms, we obtain a system of the equations

T ′
n (t) = −λ1

(πn

l

)2

Tn (t) + ς1Tn (t− τ) + fn (t) , n = 1, 2, ..., (22)

where

fn (t) =
2

l

∫ l

0

F (s, t) sin
πn

l
sds =

=
2

πn

[

ς1

(

(−1)
n+1

µ2 (t− τ) + µ1 (t− τ)
)

−
(

(−1)
n+1

µ̇2 (t) + µ̇1 (t)
)]

, n = 1, 2, ....

Preliminary we will consider a linear inhomogeneous equation with a constant delay:

ẋ (t) = ax (t) + bx (t− τ) + f (t) . (23)

We will solve the Cauchy problem for (22) with a zero initial condition x (t) ≡ 0, −τ ≤
t ≤ 0, where a, b ∈ R, f : [0,∞) → R.
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Theorem 2.3 A solution of the inhomogeneous equation (23), which satisfies zero
initial conditions x (t) ≡ 0, −τ ≤ t ≤ 0, will be

x (t) =

∫ t

0

expτ {b1, t− τ − s} ea(t−s)f (s) ds, b1 = be−aτ . (24)

Proof. As in the previous case, we apply the substitution x (t) = eaty (t) and obtain
a differential equation

aeaty (t) + eatẏ (t) = aeaty (t) + bea(t−τ)y (t− τ) + f (t) .

It will be adduced to

ẏ (t) = b1y (t− τ) + e−atf (t) , b1 = be−aτ . (25)

We will show that the solution of the inhomogeneous equation (25), which satisfies zero
initial condition, is

y (t) =

∫ t

0

expτ {b1, t− τ − s} e−asf (s) ds. (26)

Substituting (26) in the equation (25)

expτ {b1, t− τ − s} e−asf (s)
∣

∣

s=t
+ b1

∫ t

0

expτ {b1, t− 2τ − s} e−asf (s) ds =

= b1

∫ t−τ

0

expτ {b1, t− 2τ − s} e−asf (s) ds+ e−atf (t) ,

considering that

expτ {b1, t− τ − s} e−asf (s)
∣

∣

s=t
= exp {b1,−τ} e−atf (t) = e−atf (t) ,

and dividing the second integral into two, we obtain

e−atf (t) + b1

(
∫ t−τ

0

expτ {b1, t− 2τ − s} e−asf (s) ds

)

+

+b1

(
∫ t

t−τ

expτ {b1, t− 2τ − s} e−asf (s) ds

)

=

= b1

(
∫ t−τ

0

expτ {b1, t− 2τ − s} e−asf (s) ds

)

+ e−atf (t) .

Hence

e−atf (t) + b1

(
∫ t

t−τ

expτ {b1, t− 2τ − s} e−asf (s) ds

)

= e−atf (t) .

After substitution

t− 2τ − s = ω, s = t− τ ⇒ ω = −τ, s = t⇒ ω = −2τ
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we obtain

be−aτ

(
∫ −τ

−2τ

expτ {b1, ω} ea(ω−t+2τ)f (t− 2τ − ω) dω

)

= 0

and identity

e−atf (t) = e−atf (t) ,

which proves correctness of the equality (26). Hence

x (t) = eaty (t) =

∫ t

0

expτ {b1, t− τ − s} ea(t−s)f (s) ds,

Q.E.D. 2

Corollary 2.1 A solution of the inhomogeneous equation (23) with initial condition
x (t) ≡ β (t), −τ ≤ t ≤ 0 is

x (t) = expτ {b1, t} ea(t+τ)β (−τ) +
∫ 0

−τ

expτ {b1, t− τ − s} ea(t−s) [β′ (s)− aβ (s)] ds+

+

∫ t

0

expτ {b1, t− τ − s} ea(t−s)f (s) ds, b1 = be−aτ .

(27)

Proof. Proof is based on statements of the previous Theorems 2.2 and 2.3. 2

Using the results obtained above, a solution of each of the equations (22)

T ′
n (t) = −λ1

(πn

l

)2

Tn (t) + ς1Tn (t− τ) + fn (t) , n = 1, 2, ...

can be written as

Tn (t) =

∫ t

0

expτ {r1, t− τ − s} eq1(t−s)fn (s) ds, r1 = ς1e
λ1( πn

l )
2

τ , q1 = −λ1
(πn

l

)2

.

(28)
Hence, a solution of the inhomogeneous equation (10) with zero boundary ξ (0, t) = 0,
ξ (l, t) = 0, t ≥ −τ and zero initial conditions ξ (x, t) = 0, −τ ≤ t ≤ 0, 0 ≤ x ≤ l, is

ξ1 (x, t) =

∞
∑

n=1

{
∫ t

0

expτ

{

ς1e
λ1( πn

l )
2
τ , t− τ − s

}

e−λ1(πn
l )

2
(t−s)fn (s) ds

}

sin
πn

l
x,

fn (t) =
2

πn

[

ς1

(

(−1)
n+1

µ2 (t− τ) + µ1 (t− τ)
)

−
(

(−1)
n+1

µ̇2 (t) + µ̇1 (t)
)]

,

n = 1, 2, . . . .
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2.3 General solution

Using all previous results, the solution of the first boundary value problem for the equa-
tion (7) can be written in the form of sum:

ξ (x, t) =

∞
∑

n=1

{

expτ

{

ς1e
λ1(πn

l )
2
τ , t
}

e−λ1(πn
l )

2
(t+τ)Φn (−τ)+

+

∫ 0

−τ

expτ

{

ς1e
λ1(πn

l )
2

τ , t− τ − s
}

e−λ1(πn
l )

2

(t−s)

[

Φ′
n (s) + λ1

(πn

l

)2

Φn (s)

]

ds+

+

∫ t

0

expτ

{

ς1e
λ1(πn

l )
2

τ , t− τ − s
}

e−λ1(πn
l )

2

(t−s)fn (s) ds

}

sin
πn

l
x+

+ µ1 (t) +
x

l
[µ2 (t)− µ1 (t)] ,

(29)

Φn (t) =
2

l

∫ l

0

ϕ (s, t) sin
πn

l
sds+

2

πn
[(−1)

n
µ̄2 (t)− µ̄1 (t)] , n = 1, 2, ...,

fn (t) =
2

πn

[

ς1

(

(−1)
n+1

µ2 (t− τ) + µ1 (t− τ)
)

−
(

(−1)
n+1

µ̇2 (t) + µ̇1 (t)
)]

.

Similarly, the second equation from (6) has a solution:

η (x, t) =

∞
∑

n=1

{

expτ

{

ς2e
λ2(πn

l )
2

τ , t
}

e−λ2(πn
l )

2

(t+τ)Ψn (−τ)+

+

∫ 0

−τ

expτ

{

ς2e
λ2(πn

l )
2

τ , t− τ − s
}

e−λ2( πn
l )

2

(t−s)

[

Ψ′
n (s) + λ2

(πn

l

)2

Ψn (s)

]

ds+

+

∫ t

0

expτ

{

ς2e
λ2(πn

l )
2

τ , t− τ − s
}

e−λ2(πn
l )

2

(t−s)gn (s) ds

}

sin
πn

l
x+

+ θ1 (t) +
x

l

[

θ2 (t)− θ1 (t)
]

,

(30)

Ψn (t) =
2

l

∫ l

0

ψ (s, t) sin
πn

l
sds+

2

πn

[

(−1)
n
θ̄2 (t)− θ̄1 (t)

]

, n = 1, 2, ...

gn (t) =
2

πn

[

ς2

(

(−1)n+1 θ2 (t− τ) + θ1 (t− τ)
)

−
(

(−1)n+1 θ̇2 (t) + θ̇1 (t)
)]

.

Then solutions of the boundary value problem of the initial system (1) with the
conditions (2) finally are

u (x, t) = s11ξ (x, t) + s12η (x, t) , v (x, t) = s21ξ (x, t) + s22η (x, t) , (31)

where the solutions ξ (x, t), η (x, t) of the reduced system (6) are defined in (29), (30),
sij , i, j = 1, 2 are the coefficients of the matrix of transformation S.
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3 Existence Conditions for Solutions

The solution of the first boundary value problem of the equations (6) is presented in the
form of formal series (29), (30). We will show that when certain conditions are satisfied
the series converge and the representations are really the solutions of system of delay
partial differential equations.

We will consider the first equations (7).

Theorem 3.1 Let the functions Φn (t), −τ ≤ t ≤ 0 and fn (t), t ≥ 0, defined in
(13), (22), satisfy the conditions

lim
n→+∞

max
−τ≤t≤T−τ

|fn(t)| e−λ2(πn
l )

2
(T−(k−1)τ) = 0,

lim
n→+∞

e−λ2(πn
l )

2
(T−(k−1)τ) max

−τ≤t≤0
|Φn(t)| = 0

(32)

on an interval (k − 1) τ ≤ T < kτ . Then the expression (29) is a solution of the equation
(7) for t: 0 ≤ t ≤ T . And the function ξ(x, t) has a continuous first-order derivative with
respect to t and a second-order derivative with respect to x.

Proof. We will write the representation (29) as a sum of three terms:

ξ (x, t) = S1 (x, t) + S2 (x, t) + S3 (x, t) + µ1 (t) +
x

l
[µ2 (t)− µ1 (t)] , (33)

where

S1(x, t) =

∞
∑

n=1

An(t) sin
πn

l
x, S2(x, t) =

∞
∑

n=1

Bn(t) sin
πn

l
x, S3(x, t) =

∞
∑

n=1

Cn(t) sin
πn

l
x,

An (t) = expτ

{

ς1e
λ1(πn

l )
2

τ , t
}

e−λ1( πn
l )

2

(t+τ)Φn (−τ) ,

Bn (t) =

∫ 0

−τ

expτ

{

ς1e
λ1(πn

l )
2

τ , t− τ − s
}

e−λ1(πn
l )

2

(t−s)×

×
[

Φ′
n (s) + λ1

(πn

l

)2

Φn (s)

]

ds,

Cn (t) =

∫ t

0

expτ

{

ς1e
λ1(πn

l )
2
τ , t− τ − s

}

e−λ1(πn
l )

2
(t−s)fn (s) ds.

1. Firstly we will consider coefficients An (t), n = 1, 2, ... of the first series S1 (x, t).
As follows from the definition of delay exponential function, formulated in (15), for any
moment of time T : (k − 1) τ ≤ T < kτ , k = 0, 1, 2, ... the following equality holds

An (T ) = expτ

{

ς1e
λ1( πn

l )
2

τ , T
}

e−λ1(πn
l )

2

(T+τ)Φn (−τ) = e−λ1(πn
l )

2

(T+τ)Φn (−τ)×

×
[

1 + ς1e
λ1(πn

l )
2

τ T

1!
+ ς21e

2λ1( πn
l )

2

τ [T − τ ]

2!
+ ς31e

3λ1( πn
l )

2

τ [T − 2τ ]3

3!
+
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+...+ ςk1 e
kλ1(πn

l )
2

τ [T − (k − 1) τ ]k

k!

]

.

Hence

S1 (x, T ) =

∞
∑

n=1

An (T ) sin
πn

l
x =

=

∞
∑

n=1

e−λ1( πn
l )

2
(T+τ)Φn (−τ)

[

1 + ς1e
λ1(πn

l )
2
τ T

1!
+ ς21e

2λ1(πn
l )

2
τ [T − τ ]

2!
+

+ς31e
3(πn

l )
2
τ [T − 2τ ]

3

3!
+ . . . +ςk1 e

k( πn
l )

2
τ [T − (k − 1) τ ]

k

k!

]

sin
πn

l
x =

=

∞
∑

n=1

e−λ1(πn
l )

2

(T+τ)Φn (−τ) sin
πn

l
x+ ς1

T

1!

∞
∑

n=1

e−λ1(πn
l )

2

TΦn (−τ) sin
πn

l
x+

+ς21
[T − τ ]

2!

∞
∑

n=1

e−λ1(πn
l )

2

(T−τ)Φn (−τ) sin
πn

l
x+ . . .+

+ςk1
[T − (k − 1) τ ]

k

k!

∞
∑

n=1

e−λ1(πn
l )

2
(T−(k−1)τ)Φn (−τ) sin

πn

l
x.

And if coefficients Φn (−τ) are such that the following condition is satisfied

lim
n→∞

e−λ1(πn
l )

2
(T−(k−1)τ) |Φn (−τ)| = 0,

then the series S1 (x, t) converges absolutely and uniformly.
2. We will consider coefficients Bn (t), n = 1, 2, 3, ... of the second series S2 (x, t). We

will divide the integral into two and calculate the second integral by parts:

Bn (t) = λ1

(πn

l

)2
∫ 0

−τ

expτ

{

ς1e
λ1(πn

l )
2
τ , t− τ − s

}

e−λ1( πn
l )

2
(t−s)Φn (s) ds+

+

∫ 0

−τ

expτ

{

ς1e
λ1(πn

l )
2
τ , t− τ − s

}

e−λ1(πn
l )

2
(t−s)Φ′

n (s) ds =

= λ1

(πn

l

)2
∫ 0

−τ

expτ

{

ς1e
λ1(πn

l )
2
τ , t− τ − s

}

e−λ1(πn
l )

2
(t−s)Φn (s) ds+

+expτ

{

ς1e
λ1(πn

l )
2

τ , t− τ
}

e−λ1(πn
l )

2

tΦn (0)−

− expτ

{

ς1e
λ1(πn

l )
2
τ , t
}

e−λ1(πn
l )

2
(t+τ)Φn (−τ)+

+ς1e
λ1( πn

l )
2

τ

∫ 0

−τ

expτ

{

ς1e
λ1(πn

l )
2

τ , t− 2τ − s
}

e−λ1( πn
l )

2

(t−s)Φn (s) ds−

−λ1
(πn

l

)2
∫ 0

−τ

expτ

{

ς1e
λ1(πn

l )
2
τ , t− τ − s

}

e−λ1(πn
l )

2
(t−s)Φn (s) ds =

= expτ

{

ς1e
λ1(πn

l )
2
τ , t− τ

}

e−λ1(πn
l )

2
tΦn (0)−
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− expτ

{

ς1e
λ1(πn

l )
2

τ , t
}

e−λ1(πn
l )

2

(t+τ)Φn (−τ)+

+ς1e
λ1(πn

l )
2

τ

∫ 0

−τ

expτ

{

ς1e
λ1( πn

l )
2

τ , t− 2τ − s
}

e−λ1(πn
l )

2

(t−s)Φn (s) ds =

= Bn1 (t)−Bn2 (t) +Bn3 (t) .

Now we will consider the first series

Bn1 (t) = expτ

{

ς1e
λ1(πn

l )
2
τ , t− τ

}

e−λ1( πn
l )

2
tΦn (0) .

By analogy with the previous case, for any moment of time T : (k − 2) τ ≤ T < (k − 1) τ
the following holds:

Bn1 (T ) = expτ

{

ς1e
λ1(πn

l )
2
τ , T

}

e−λ1(πn
l )

2
tΦn (0) = e−λ1(πn

l )
2
TΦn (0)×

×
[

1 + ς1e
λ1(πn

l )
2
τ T

1!
+ ς21e

2λ1( πn
l )

2
τ [T − τ ]

2!
+ ς31e

3λ1( πn
l )

2
τ [T − 2τ ]

3

3!
+

+...+ ς
(k−1)
1 e(k−1)λ1(πn

l )
2

τ [T − (k − 2) τ ](k−1)

(k − 1)!

]

.

Hence
∞
∑

n=1

Bn1 (T ) sin
πn

l
x =

∞
∑

n=1

e−λ1(πn
l )

2

TΦn (0)

[

1 + ς1e
λ1(πn

l )
2

τ T

1!
+

+ς21e
2λ1( πn

l )
2

τ [T − τ ]

2!
+ ς31e

3λ1( πn
l )

2

τ [T − 2τ ]
3

3!
+

+...+ ς
(k−1)
1 e(k−1)λ1(πn

l )
2
τ [T − (k − 2) τ ](k−1)

(k − 1)!

]

sin
πn

l
x =

=

∞
∑

n=1

e−λ1(πn
l )

2

TΦn (0) sin
πn

l
x+ ς1

T

1!

∞
∑

n=1

e−λ1( πn
l )

2

(T−τ)Φn (0) sin
πn

l
x+

+ς21
[T − τ ]

2!

∞
∑

n=1

e−λ1(πn
l )

2
(T−2τ)Φn (0) sin

πn

l
x+ . . .+

+ς
(k−1)
1

[T − (k − 2) τ ](k−1)

(k − 1)!

∞
∑

n=1

e−λ1(πn
l )

2

(T−(k−1)τ)Φn (0) sin
πn

l
x.

And if coefficients Φn (0) are such that the following condition is satisfied

lim
n→∞

e−λ1(πn
l )

2

(T−(k−1)τ) |Φn (0)| = 0,

then the series
∑∞

n=1Bn1 (T ) sin
πn
l
x converges absolutely and uniformly.

We will consider the second series

Bn2 (t) = expτ

{

ς1e
λ1(πn

l )
2
τ , t
}

e−λ1(πn
l )

2
(t+τ)Φn (−τ) = An (t) .
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For any moment of time T : (k − 1) τ ≤ T < kτ the series
∑∞

n=1Bn2 (T ) sin
πn
l
x con-

verges absolutely and uniformly if, as follows from the previous case, coefficients Φn (−τ)
are such that the following condition is satisfied

lim
n→∞

e−λ1(πn
l )

2

(T−(k−1)τ) |Φn (−τ)| = 0,

Finally, for coefficients

Bn3 (t) = ς1e
λ1(πn

l )
2
τ

∫ 0

−τ

expτ

{

ς1e
λ1(πn

l )
2
τ , t− 2τ − s

}

e−λ1( πn
l )

2
(t−s)Φn (s) ds

at the moment of time T : (k − 1) τ ≤ T < kτ , we make a substitution T − 2τ − s = ω
and obtain:

Bn3 (T ) = ς1e
λ1( πn

l )
2
τ

∫ T−τ

T−2τ

expτ

{

ς1e
λ1(πn

l )
2
τ , ω

}

e−λ1(πn
l )

2
(ω+2τ)Φn (T − 2τ − ω) dω.

Dividing the integral into two we have:

Bn3 (T ) = ς1e
λ1(πn

l )
2
τ

∫ (k−2)τ

T−2τ

expτ

{

ς1e
λ1(πn

l )
2
τ , ω

}

e−λ1(πn
l )

2
(ω+2τ)×

×Φn (T − 2τ − ω) dω+

+ς1e
λ1(πn

l )
2
τ

∫ T−τ

(k−2)τ

expτ

{

ς1e
λ1( πn

l )
2
τ , ω

}

e−λ1( πn
l )

2
(ω+2τ)Φn (T − 2τ − ω)dω.

Therefore, owing to the mean value theorem, there exist values ω1 : T − 2τ ≤ ω1 ≤
(k − 2) τ , ω2 : (k − 2) τ ≤ ω2 ≤ T − τ for which the following holds:

Bn3 (T ) = ς1 (kτ − T ) e−λ1(πn
l )

2

(ω1+τ) expτ

{

ς1e
λ1( πn

l )
2

τ , ω1

}

Φn (T − 2τ − ω1)+

+ς1 (T − (k − 1) τ) e−λ1(πn
l )

2

(ω2+τ) expτ

{

ς1e
λ1(πn

l )
2

τ , ω2

}

Φn (T − 2τ − ω2) .

Hence
Bn3 (T ) = ς1 (kτ − T ) e−λ1(πn

l )
2
(ω1+τ)Φn (T − 2τ − ω1)×

×
[

1 + ς1e
λ1(πn

l )
2

τ ω1

1!
+ ς21e

2λ1(πn
l )

2

τ [ω1 − τ ]

2!
+ ς31e

3λ1(πn
l )

2

τ [ω1 − 2τ ]
3

3!
+

+...+ ςk−2
1 e(k−2)λ1(πn

l )
2
τ [ω1 − (k − 3) τ ]

k−2

(k − 2)!

]

+

+ς1 (T − (k − 1) τ) e−λ1( πn
l )

2

(ω2+τ)Φn (T − 2τ − ω2)×

×
[

1 + ς1e
λ1(πn

l )
2
τ ω2

1!
+ ς21e

2λ1(πn
l )

2
τ [ω2 − τ ]

2!
+ ς31e

3λ1(πn
l )

2
τ [ω2 − 2τ ]

3

3!
+

+...+ ςk−1
1 e(k−1)λ1(πn

l )
2

τ [ω2 − (k − 2) τ ]k−1

(k − 1)!

]

.
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And

∞
∑

n=1

Bn3 (T ) sin
πn

l
x = ς1

∞
∑

n=1

{

(kτ − T ) e−λ1(πn
l )

2

(ω1+τ)Φn (T − 2τ − ω1) +

+ (T − (k − 1) τ) e−λ1( πn
l )

2
(ω2+τ)Φn (T − 2τ − ω2)

}

sin
πn

l
x+

+ς21

∞
∑

n=1

{ω1

1!
(kτ − T ) e−λ1(πn

l )
2
ω1Φn (T − 2τ − ω1)+

+
ω2

1!
(T − (k − 1) τ) e−λ1(πn

l )
2
ω2Φn (T − 2τ − ω2)

}

sin
πn

l
x+

+ς31

∞
∑

n=1

{

[ω1 − τ ]

2!
(kτ − T ) e−λ1( πn

l )
2
(ω1−τ)Φn (T − 2τ − ω1)+

+
[ω2 − τ ]

2!
(T − (k − 1) τ) e−λ1(πn

l )
2

(ω2−τ)Φn (T − 2τ − ω2)

}

sin
πn

l
x+ . . .+

+ςk−1
1

∞
∑

n=1

{

[ω1 − (k − 3) τ ]
k−2

(k − 2)!
(kτ − T ) e−λ1(πn

l )
2

(ω1−(k−3)τ)Φn (T − 2τ − ω1) +

+
[ω2 − (k − 3) τ ]

k−2

(k − 2)!
(T − (k − 1) τ) e−λ1(πn

l )
2
(ω2−(k−3)τ)Φn (T − 2τ − ω2)

}

sin
πn

l
x+

+ςk1
[ω1 − (k − 2) τ ]

k−1

(k − 1)!
(T − (k − 1) τ)×

×
∞
∑

n=1

e−λ1(πn
l )

2

(ω2−(k−2)τ)Φn (T − 2τ − ω2) sin
πn

l
x.

If coefficients Φn (t) are such that the following condition is satisfied

lim
n→+∞

e−λ1(πn
l )

2
(T−(k−1)τ) max

−τ≤t≤0
|Φn(t)| = 0,

the series
∑∞

n=1Bn3 (T ) sin
πn
l
x converges.

From the convergence of series
∑∞

n=1Bn1 (T ) sin
πn
l
x,

∑∞
n=1Bn2 (T ) sin

πn
l
x,

∑∞
n=1Bn3 (T ) sin

πn
l
x follows the convergence of series S2 (x, t).

3. Now we will consider coefficients Cn (t), n = 1, 2, ... of the third series S3 (x, t).
For the fixed moment of time T : (k − 1)τ ≤ T < kτ we will make a substitution and
write:

Cn (T ) =

∫ T

0

expτ

{

ς1e
λ1( πn

l )
2
τ , T − τ − s

}

e−λ1( πn
l )

2
(T−s)fn (s) ds =

=

∫ T−τ

−τ

expτ

{

ς1e
λ1(πn

l )
2
τ , ω

}

e−λ1(πn
l )

2
(ω+τ)fn (T − τ − ω) dω =

=

∫ 0

−τ

expτ

{

ς1e
λ1(πn

l )
2

τ , ω
}

e−λ1(πn
l )

2

(ω+τ)fn (T − τ − ω) dω+
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+

∫ τ

0

expτ

{

ς1e
λ1(πn

l )
2

τ , ω
}

e−λ1(πn
l )

2

(ω+τ)fn (T − τ − ω) dω+

+

∫ 2τ

τ

expτ

{

ς1e
λ1( πn

l )
2
τ , ω

}

e−λ1( πn
l )

2
(ω+τ)fn (T − τ − ω) dω+

+

∫ T−τ

(k−2)τ

expτ

{

ς1e
λ1(πn

l )
2
τ , ω

}

e−λ1(πn
l )

2
(ω+τ)fn (T − τ − ω) dω.

As follows from the mean value theorem, for each of integrals there are time moments

−τ ≤ ω1 ≤ 0, 0 ≤ ω2 ≤ τ, . . . (k − 2) τ ≤ ωk ≤ T − τ,

for which the following holds:

Cn (T ) = τe−λ1( πn
l )

2
(ω1+τ)fn (T − τ − ω1)+

+τ
[

1 + ς1e
λ1(πn

l )
2
τ ω2

1!

]

e−λ1(πn
l )

2
(ω2+τ)fn (T − τ − ω2)+

+τ

[

1 + ς1e
λ1( πn

l )
2

τ ω3

1!
+ ς21e

2λ1( πn
l )

2

τ [ω3 − τ ]

2!
+ ς31e

3λ1( πn
l )

2

τ [ω3 − 2τ ]
3

3!

]

×

×e−λ1(πn
l )

2
(ω3+τ)fn (T − τ − ω3) + ...+ τ

[

1 + ς1e
λ1(πn

l )
2
τ ωk−1

1!
+ ...+

+ςk−2
1 e(k−2)λ1( πn

l )
2
τ [ωk−1 − (k − 3) τ ]

k−2

(k − 2)!

]

e−λ1(πn
l )

2
(ωk−1+τ)fn (T − τ − ωk−1)+

+ [T − (k − 1) τ ]
[

1 + ς1e
λ1(πn

l )
2

τ ωk

1!
+ ...+

+ςk−1
1 e(k−1)λ1(πn

l )
2

τ [ωk − (k − 2) τ ]k−1

(k − 1)!

]

e−λ1(πn
l )

2

(ωk+τ)fn (T − τ − ωk) .

Hence, we obtain that

S3 (x, T ) =

∞
∑

n=1

Cn (T ) sin
πn

l
x =

∞
∑

n=1

{

τ

k−1
∑

i=1

e−λ1(πn
l )

2
(ωi+τ)fn (T − τ − ωi) +

+ (T − (k − 1) τ) e−λ1(πn
l )

2
(ωk+τ)fn (T − τ − ωk)

}

×

× sin
πn

l
x− ς1

∞
∑

n=1

{

τ
k−1
∑

i=2

ωi

1!
e−λ1(πn

l )
2
ωifn (T − τ − ωi) +

+ (T − (k − 1) τ)
ωk

1!
e−λ1( πn

l )
2
ωkfn (T − τ − ωk)

}

sin
πn

l
x+

+ς21

∞
∑

n=1

{

τ
k−1
∑

i=3

[ωi − τ ]
2

2!
e−λ1(πn

l )
2
(ωi−τ)fn (T − τ − ωi)+

+ (T − (k − 1) τ)
[ωk − τ ]2

2!
e−λ1( πn

l )
2

(ωk−τ)fn (T − τ − ωk)

}

sin
πn

l
x−
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+...+ ςk−2
1

∞
∑

n=1

{

τ
[ωk−1 − (k − 3) τ ]k−2

(k − 2)!
e−λ1(πn

l )
2

(ωi−(k−3)τ)fn (T − τ − ωk−1)+

+ [T − (k − 1) τ ]
[ωk − (k − 3) τ ]k−2

(k − 2)!
e−λ1( πn

l )
2

(ωk−(k−3)τ)fn (T − τ − ωk)

}

sin
πn

l
x+

+ςk−1
1 [T − (k − 1) τ ]

[ωk − (k − 2) τ ]
k−1

(k − 1)!
×

×
∞
∑

n=1

e−λ1( πn
l )

2
(ωk−(k−2)τ)fn (T − τ − ωk) sin

πn

l
x.

And, if coefficients fn (t) satisfy the following condition

lim
n→+∞

max
−τ≤t≤T−τ

|fn(t)| e−λ1(πn
l )

2
(T−(k−1)τ) = 0,

then the series S3(x, t) converges absolutely and uniformly.
Thus it was shown that for absolute and uniform convergence of the series S1(x, t),

S2(x, t), S3(x, t) “fast reduction” on an index n of coefficients Φn (t), −τ ≤ t ≤ 0 and
fn (t), 0 ≤ t ≤ T is required.

Convergence of derivatives ξ′t and ξ′′xx follows from the differentiability property of
delay exponential function (Lemma 2.1). 2

Proof of convergence of the series which represents the solution η (x, t) is similar.

Corollary 3.1 As the solutions u (x, t), v (x, t) are linear combinations of the func-
tions ξ (x, t), η (x, t), they converge absolutely and uniformly, and their representations
(31) are the solution of the boundary value problem of the initial system (1), (2).

References

[1] Das, P., Mukherjee, D., Sen, A., Mukandavire, Z. and Chiyaka, C. Analysis of an In-
host Model for HIV Dynamics with Saturation Effect and Discrete Time Delay. Nonlinear

Dynamics and Systems Theory 11 (2) (2011) 125–136.

[2] Zhan Su, Qingling Zhang and Wanquan Liu. Practical Stability and Controllability for a
Class of Nonlinear Discrete Systems with Time Delay. Nonlinear Dynamics and Systems

Theory 10 (2) (2010) 161-174.

[3] Petrovsky, I.G. Lectures on Partial Differential Equations. Dover Publications, Inc., New
York, 1991.

[4] Kamke, Dr. E. Handbook on ordinary differential equations. Moscow, Nauka, 1971. [Russian]

[5] Poliyanin, A.D. Handbook on linear equations of mathematical physics. Moscow, Physmath-
lit, 2001. [Russian]

[6] Polyanin, A.D. and Zaitsev, V.E. Handbook of exact solutions for ordinary differential

equations. Second edition. Chapman & Hall/CRC, Boca Raton, FL, 2003.

[7] Rozhdestvenskij, B.L. and Janenko, N.N. System of quasilinear equations and their appli-

cation in gas dynamics. Moscow, Nauka, 1978. [Russian]

[8] Basse, B., Baguley, B.C., Marshall, E.S., Joseph, W.R., van Brunt, B., Wake, G.C. and
Wall, D.J.N. A mathematical model for analysis of the cell cycle in cell lines derived from
human tumours. J. Math. Biol. 47 (2003) 295–312.



268 J. DIBLIK, D. KHUSAINOV AND O. KUKHARENKO

[9] Zubik-Kowal, B. Solutions for the cell cycle in cell lines derived from human tumors. Com-

putational and Mathematical Methods in Medicine 7 (4) (2006) 215-228.

[10] Wu, J. Theory and Applications of Partial Functional Differential Equations. Springer-
Verlag, New York, Inc. 1996.

[11] Gantmacher, F.R. Theory of matrices. Moscow, Nauka, 1988. [Russian]

[12] Bazilevich, U.N. Numerical decomposition methods for linear problems in mechanics. Kiev,
Naukova dumka, 1987. [Russian]

[13] Horn, R. and Jonson, Ch. Matrix analysis. Moscow, Mir, 1989. [Russian]

[14] Khusainov, D.Ya. and Shuklin, G.V. On relative controllability in systems with pure delay.
Applied mechanics 41(2) (2005) 118–130. [Russian]

[15] Khusainov, D.Ya. and Verejkina, M. B. Representation the Cauchy problem solution for one
class of systems of delay PDE Bulletin of Kyiv University. Series: Physical-mathematical

sciences 4 (2007) 143–149. [Ukrainian]

[16] Tikhonov, A.N. and Samarsky, A.A. Equations of mathematical physics. Moscow, Nauka,
1977. [Russian]

[17] Elsgolts, L.E. and Norkin, S.B. Introduction to the theory of differential equations with

deviating arguments. Moscow, Nauka, 1970. [Russian]

[18] Hale, J. Theory of functional differential equations. Moscow, Mir, 1984. [Russian]

[19] Kovarzh, I.V., Ivanov, A.F. and Khusainov, D.Ya. Relation between the boundary value
problem and the Cauchy problem for delay PDE. Bulletin of Kyiv University. Series: Cy-

bernetics 8 (2007) 37–42. [Ukrainian]



Nonlinear Dynamics and Systems Theory, 12 (3) (2012) 269–277

Partial Control Design for Nonlinear Control Systems

M.H. Shafiei ∗ and T. Binazadeh

School of Electrical and Electronic Engineering, Shiraz University of Technology,
Shiraz, P.O. Box 71555/313, Iran

Received: June 20, 2011; Revised: June 18, 2012

Abstract: This paper presents a general approach to design a partially stabilizing
controller for nonlinear systems. In this approach, the nonlinear control system is di-
vided into two subsystems, which are called the first and the second subsystems. This
division is done based on the required stability properties of system’s states. Further-
more, it is shown that partial control makes the possibility of converting the control
problem into a simpler one by reducing the number of control input variables. The
reduced input vector (the vector that includes components of input vector appearing
in the first subsystem) is designed based on the new introduced control Lyapunov
function called partial control Lyapunov function (PCLF) to asymptotically stabilize
the first subsystem.

Keywords: partial stability; partial control; partial control Lyapunov function
(PCLF).
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1 Introduction

The problem of partial stability, that is stability with respect to a part of system’s states,
finds applications in many of engineering problems. In particular, partial stability arises
in the study of inertial navigation systems, spacecraft stabilization via gimbaled gyro-
scopes or flywheels, electromagnetic, adaptive stabilization, guidance, etc. [1]– [14]. In
the mentioned applications, although the plant may be unstable (in the standard con-
cept), it might be partially asymptotically stable, i.e., some states may have convergent
behavior. It is in contrast to many other engineering problems where Lyapunov stability
(in its standard concept) is required [17]– [20]. For example, consider the equation of
motion for the reaction wheel pendulum depicted in Figure 1 [15]:
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Figure 1: Coordinate convections for the reaction wheel pendulum [15].

d11θ̈1 + d12θ̈2 + φ (θ1) = 0,

d21θ̈1 + d22θ̈2 = u,
(1)

where θ1 is the pendulum angle, θ2 is the disk angle, u is the motor torque input and

d11 = m1l
2
c1 +m2l

2
1 + I1 + I2,

d12 = d21 = d22 = I2,
φ(θ1) = −m̄g sin(θ1),
m̄ = m1lc1 +m2l1,

(2)

where l1 is the length of pendulum; lc1 is the position of the center of mass of the
pendulum; m1 is the mass of the pendulum; m2 is the mass of disk; I1, I2 are the
inertia of the pendulum and the disk around their center of masses. The reaction wheel
pendulum is a physical pendulum with a symmetric disk attached to the end. The disk
is free to spin about an axis which is parallel to the axis of rotation of the pendulum.
Also, the disk is controlled by a DC-motor and the coupling torque generated by the
angular acceleration of the disk can be used to actively control the system [15]. Suppose
that a feedback control law should be designed so that θ̇1 → 0 and θ̇2 be constant; that
is, θ̇2 (t) → Ω as t → ∞ where Ω > 0. This implies that θ2 (t) = Ωt → ∞ as t → ∞.
Consequently, it is obvious that the reaction wheel pendulum is unstable in the standard
concept; however, it is partially asymptotically stabilizable with respect to θ1, θ̇1 and θ̇2.

Although partial stability has applications in many of engineering fields, there are
a few papers regarding the design of control laws which stabilize only part of system’s
states [2]– [12] and advantages of partial control technique are not fully recognized.
Among the existing papers in the field of partial control, most of them only consider a
case study and try to design control laws for partial stability of their specific applications.
Applications are Euler dynamical system [3], permanent rotations of a rigid body, relative
equilibrium of a satellite, stationary motions of a gimbaled gyroscope [2] and chaos
synchronization [7]. The references [2], [4], [9]– [11] focus on designing partial control
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and have given some way of designing. However, it is worth noting that the control
schemes posed in these references are uneasy to realize and are usable only for systems
with some special structures. In [12], a new class of nonlinear systems which is called
“partially passive system” was introduced and some theorems for partial stabilization
were developed.

In this paper, some new partial stabilization theorems for nonlinear dynamical sys-
tems are posed. It is shown that partial control makes the possibility of converting the
control problem into a simpler one having fewer control input variables; which is one of
the main contributions of this paper. In all of the existing papers in the field of partial
control, the input vector is wholly designed; but in this paper by designing the reduced
input vector, the advantage of partial control in simplifying the problem by reducing
the control variables is recognized. The system’s state is separated into two parts and
accordingly the nonlinear dynamical system is divided into two subsystems. The subsys-
tems, hereafter, are referred to as the “first” and the “second” subsystems. The reduced
control input vector (the vector that includes components of input vector which appear
in the first subsystem) is designed in such a way to guarantee asymptotic stability of the
nonlinear system with respect to the first part of state vector. The design procedure is
based on selection of a proper control Lyapunov function which is called partial control
Lyapunov function. It’s name is because that in this function only the first part of states
is appeared.

The remainder of this paper is arranged as follows. First, the preliminaries on partial
stability/control are given in Section 2. In Section 3, the theorems for partial control
design are presented and explained in detail. Finally, conclusions are made in Section 4.

2 Preliminaries

In this section, the definitions and notations of partial stability are introduced. Consider
a nonlinear system in the form;

ẋ = f(x), x(t0) = x0, (3)

where x ∈ Rn is the state vector. Let vectors x1 and x2 denote the partitions of the
state vector, respectively. Therefore, x = (xT

1 , x
T
2 )

T where x1 ∈ Rn1 , x2 ∈ Rn2 and
n1 + n2 = n. As a result, the nonlinear system (3) can be divided into two parts (the
first and the second subsystems) as follows

ẋ1(t) = F1(x1(t), x2(t)), x1(t0) = x10,
ẋ2(t) = F2(x1(t), x2(t)), x2(t0) = x20,

(4)

where x1 ∈ D ⊆ Rn1 , D is an open set including the origin, x2 ∈ Rn2 and F1 : D×Rn2 →
Rn1 is such that for every x2 ∈ Rn2 , F1(0, x2) = 0 and F1(., x2) is locally Lipschitz in
x1. Also, F2 : D×Rn2 → Rn2 is such that for every x1 ∈ D, F2(x1, .) is locally Lipschitz
in x2, and Ix0

= [0, τx0
) , 0 < τx0

≤ ∞ is the maximal interval of existence of solution
(x1(t), x2(t)) of (4) ∀t ∈ Ix0

. Under these conditions, the existence and uniqueness of
solution is ensured. Now, stability of the dynamical system (4) with respect to x1 can
be defined as follows [5]:

Definition 2.1 1. The nonlinear system (4) is Lyapunov stable with respect to
x1 if for every ε > 0 and x20 ∈ Rn2 , there exists δ(ε, x20) > 0 such that ‖x10‖ < δ
implies ‖x1(t)‖ < ε for all t ≥ 0.
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2. The nonlinear system (4) is asymptotically stable with respect to x1, if it is Lya-
punov stable with respect to x1 and for every x20 ∈ Rn2 , there exists δ = δ(x20) > 0
such that ‖x10‖ < δ implies limt→∞ x1(t) = 0.

It is important to note that this partial stability definition (which is given in [5]) is
different from past definitions of partial stability [1, 4]. In past definitions, it is required
that F1(0, 0) = 0 and F2(0, 0) = 0. Also, the initial condition of the whole system should
be in a neighborhood of the origin which is not required in Definition 2.1. The main
advantage of considering the condition F1(0, x2) = 0 for every x2, is that it makes the
possibility of investigating the partial stability even if a part of system’s states goes to
infinity. Using this fact, authors of [5] present the unification of partial stability theory
for autonomous systems and stability theory for nonlinear time-varying systems. This
unification allows the stability theory of time-varying systems to be presented as a special
case of autonomous partial stability theory.

In order to analyze partial stability, the following theorem and its corollary are taken
from [5]. Note that in the following theorem, V̇ (x1, x2) = V ′(x1, x2)F (x1, x2) where the

row vector of ∂V (x)/∂x is shown by V ′(x) and F (x1, x2) =
[

FT
1 (x1, x2) FT

2 (x1, x2)
]T

.

Theorem 2.1 Consider the nonlinear dynamical system (4). If there exist a contin-
uously differentiable function V : D×Rn2 → R and class K functions α(.) and γ(.) such
that

V (0, x2) = 0, x2 ∈ Rn2 , (5)

α(‖x1‖) ≤ V (x1, x2), (x1, x2) ∈ D ×Rn2 , (6)

V̇ (x1, x2) ≤ −γ(‖x1‖), (x1, x2) ∈ D ×Rn2 , (7)

then, the nonlinear dynamical system (4) is asymptotically stable with respect to x1.

Proof. See [5]. 2

Corollary 2.1 Consider the nonlinear dynamical system (4). If there exist a positive
definite continuously differentiable function V : D → R, and a class K function γ(.) such
that

V ′(x1)F1(x1, x2) ≤ −γ (‖x1‖) , (x1, x2) ∈ D ×Rn2 , (8)

then, the equilibrium point of the nonlinear dynamical system (4) is asymptotically stable
with respect to x1.

Now, consider the following autonomous nonlinear control system:

ẋ1(t) = F1(x1, x2, u(x1, x2)), x1(t0) = x10,
ẋ2(t) = F2(x1, x2, u(x1, x2)), x2(t0) = x20,

(9)

where u ∈ Rm and F1 : D×Rn2 ×Rm → Rn1 is such that for every x2 ∈ Rn2 , F1(., x2, .)
is locally Lipschitz in x1 and u. Also, F2 : D × Rn2 × Rm → Rn2 is such that for every
x1 ∈ D, F2(x1, ., .) is locally Lipschitz in x2 and u. These assumptions guarantee the
local existence and uniqueness of the solution of the differential equations (9).

Definition 2.2 The nonlinear control system (9) is said to be asymptotically stabiliz-
able with respect to x1, if there exists some admissible feedback control law u = k(x1, x2),
which makes system (9) asymptotically stable with respect to x1.
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3 An Approach for Partial Control Design

This section presents a feasible design algorithm for partial stabilization of nonlinear
systems. Suppose the ẋ1-subsystem in Eq. (9) is affine with respect to the control input
(the ẋ2-equation may have a general dynamical form). Therefore,

ẋ1 = f1(x1, x2) +
∑m

i=1 g1i(x1, x2)ui,

ẋ2(t) = F2(x1, x2, u),
(10)

where ui is the ith component of input vector u. Also, g1i ∈ Rn1 , for i=1,2,. . . ,m. Let
define r = number of (g1i 6= 0)i=1,...,m. Hence, r is the number of components of input
vector which appear in ẋ1-subsystem. Thus 0 ≤ r ≤ m. Now, with respect to the value
of r, two cases may be considered.

3.1 Case 1: r 6= 0

By augmenting the r nonzero vectors g1i in a matrix, the nonlinear system (10) can be
rewritten as follows;

ẋ1 = f1(x1, x2) +G1(x1, x2)u1,
ẋ2 = F2(x1, x2, u),

(11)

where u1 ∈ Rr is the reduced version of input vector u, that contains r control variables
appearing in ẋ1-subsystem, G1(x1, x2) is an n1 × r matrix where its columns are the r
nonzero vectors g1i. In this case, the task is to find an appropriate u1, which guarantees
partial stabilization of nonlinear system (11) with respect to x1.

Theorem 3.1 Consider the nonlinear dynamical system (11). Suppose V (x1) : D →
R is a positive definite continuously differentiable function (which is called partial control
Lyapunov function) with the property that no solution x1 of the unforced system (11) can
stay identically in the set {V ′(x1) = 0} other than the trivial solution x1(t) ≡ 0. Also,
suppose γ(.) is class K function. Then, the system may be asymptotically stabilizable
with respect to x1 through the following reduced input vector

u1 = k1(x1, x2) =

{

bT{−V ′(x1)f1−γ(‖x1‖)}
bbT

, where bbT 6= 0,
0, where bbT = 0,

(12)

where b = V ′(x1)G1(x1, x2). It is stressed that only in the points of state space x1 − x2

where bbT = 0, the following condition should be satisfied:

V ′(x1)f1(x1, x2) = −γ (‖x1‖) ∀(x1, x2), where bbT = 0. (13)

Proof. By use of the control law (12), the time derivative of V (x1) in the line of
system’s trajectory is

V̇ (x1) = V ′(x1)ẋ1

= V ′(x1)f1 + V ′(x1)G1

[

(V ′(x1)G1)
T{−V ′(x1)f1−γ(‖x1‖)}

(V ′(x1)G1)(V ′(x1)G1)
T

]

(14)

=V ′(x1)f1 + {−V ′(x1)f1 − γ (‖x1‖)}
= −γ (‖x1‖).
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Therefore, according to Corollary 2.1, the nonlinear system (11) is asymptotically
stable with respect to x1. For the case where bbT = 0, if condition (13) is satisfied, then
by taking u1 = 0, partial stability will be achieved. 2

Note: When V ′(x1) = 0, then bbT = 0. In the points where bbT = 0, condition
(13) should be satisfied, which results in γ (‖x1‖) = 0. Since, γ (.) is a class K function,
thus γ (‖x1‖) = 0 ⇒ x1 = 0. Therefore, as mentioned in Theorem 3.1, V (x1) should be
chosen in a way that V ′(x1) = 0 ⇒ x1 ≡ 0.

3.2 Case 2: r = 0

This situation means that there is no component of input vector in ẋ1-subsystem. Sup-
pose that ẋ2-subsystem is affine with respect to input. Therefore,

ẋ1 = f1(x1, x2),
ẋ2 = f2(x1, x2) +G2(x1, x2)u.

(15)

This system may be viewed as a cascade connection of two subsystems where x2 is
to be viewed as an input for first subsystem. The form (15) is usually referred to as
the regular form. Assume that x2 and u both belong to Rm (in other words, n2 = m),
and G2(x1, x2) is an m by m nonsingular matrix. This assumption is not so restrictive
and many design methods, which are based on regular forms, e.g., backstepping or slid-
ing mode techniques use such an assumption [16]. In this case, the task is to find an
appropriate u; which guarantees partial stabilization of the closed-loop system.

Theorem 3.2 Consider the nonlinear dynamical system (15). Suppose V (x1) : D →
R is a partial control Lyapunov function, γ(.) is a class K function and ϕ(x1) is a smooth
function. The design of the function ϕ(x1) is such that

V ′(x1)(f1(x1, ϕ(x1))) ≤ −γ(‖x1‖). (16)

Therefore, the nonlinear system (15) may be asymptotically stabilized with respect to x1

by the following input vector

u =G−1
2 [ϕ′(x1)f1 − f2]. (17)

Proof. Substitution of (17) in ẋ2-subsystem (15) yields,

ẋ2 = f2 +G2u
= f2 +G2G

−1
2 [ϕ′(x1)f1 − f2]

= ϕ′(x1)f1

(18)

which results in x2 = ϕ(x1). Since the condition (16) means that the first subsystem (ẋ1-
subsystem) may be asymptotically stabilized by a virtual input in the form x2 = ϕ(x1)
(according to Corollary 2.1). Therefore, the control law (17) partially stabilized the
nonlinear system (15) with respect to x1. 2

3.3 Example. Partial stabilization of reaction wheel pendulum

The reaction wheel pendulum was described in Introduction. We define the states z1 =
θ1, z2 = θ̇1, z3 = θ2 and z4 = θ̇2, The system’s equations (1) can be written as follows

ż1 = z2,

ż2 = − d22

detDφ(z1)− d12

detDu,
ż3 = z4,

ż4 =
d21

detDφ(z1) +
d11

detDu,

(19)
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where detD = d11d22−d12d21 > 0. The problem is to stabilize the downward position of
the pendulum, that is z1 = 0, z2 = 0, while stability of the rest of states is not of interest.
Therefore, the state vector x = [z1, z2, z3, z4]

T
can be divided into x1 = [z1, z2]

T
and x2 =

[z3, z4]
T
. By separating the states into x1 and x2, one has: r = 1 and u1 = u. The task is

to design u according to Theorem 3.1 to achieve asymptotic stability with respect to x1.

Consider that for ẋ1-subsystem f1 =
[

z2 − d22

detDφ(z1)
]T

and G1 =
[

0 − d12

detD

]T
.

By taking the partial control Lyapunov function V (x1) = 0.5
(

z21 + z1z2 + z22
)

then b =

V ′(x1)G1 = − d12

detD (z2 + 0.5z1). Therefore, the points bbT = 0 are equal to the points
z2 = −0.5z1. First of all, the condition (13) should be checked. The left side of condition
(13) is:

V ′(x1)f1|bbT=0 = V ′(x1)f1|z2=−0.5z1
= −3

8
z21 . (20)

By choosing γ (‖x1‖) = αz21+βz22 ; α,β> 0, the positive constants α and β may be chosen
such that V ′(x1)f1|z2=−0.5z1

= − γ (‖x1‖)|z2=−0.5z1
= − 3

8z
2
1 . This condition is satisfied

for example for α = 0.25 and β = 0.5. Now, according to Theorem 3.1, u is:

u =

{

−detD
d12

−(z1+0.5z2)z2+
d22

det D
(z2+0.5z1)φ(z1)−0.25z2

1
−0.5z2

2

z2+0.5z1
for z2 6= −0.5z1,

0 for z2 = −0.5z1.
(21)

 

Figure 2: Time response of z1 (the pendulum angle).
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Figure 3: Time response of z2 (rate of the pendulum angle).

Figure 4: Time response of u (the motor torque input).

To check theoretical results, the closed loop system with controller (21) was simulated.
The parameters of the system were chosen as d11 = 0.004571, d22 = d12 = d21 =
2.495 × 10−5, m̄ = 0.35841 that are physical parameters of the system located at the
Automatic Control Dept., Lund Institute of Technology [15]. The initial conditions are

z1 (0) = 1, z2 (0) = 0.1, z3 (0) = z4 (0) = 0.

Figures 2 and 3 show the time responses of z1 and z2 in the closed loop system, respec-
tively. As seen, the closed loop system shows quite fast convergence of z1 and z2 to zero.
Also, the time response of controller (21) is shown in Figure 4.

4 Conclusion

In this paper, the problem of partial stabilization which has various applications in many
of dynamic systems was considered and a general approach for stabilization of a nonlinear
system with respect to a part of system’s states was proposed. It was shown that in
partial stabilization, the control input vector can be simplified by reducing its control
variables. The reduced input vector was designed based on partial control Lyapunov
function in a way that the asymptotic stabilization of a part of system’s states was
achieved. The proposed method was used in designing the partial controller for reaction
wheel pendulum.
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Abstract: In this paper an adaptive critic based wavelet neural network (WNN)
based tracking control strategy for a class of uncertain systems in continous time is
proposed. The adaptive critic WNN controller comprises two WNNs: critic WNN
and action WNN. The critic WNN is approximating the strategic utility function,
whereas the action WNN is minimizing both the strategic utility function and the
unknown nonlinear dynamic estimation errors. Adaptation laws are developed for
the online tuning of wavelets parameters. The uniformly ultimate boundedness of
the closed-loop tracking error is verified even in the presence of WNN approximation
errors and bounded unknown disturbances, using the Lyapunov approach and with
novel weight updating rules. Finally some simulations are performed to verify the
effectiveness and performance of the theoretical development.

Keywords: wavelet neural networks; optimal control; adaptive control; reinforce-
ment learning; Lyapunov functional.

1 Introduction

Typical control strategies are based on a mathematical model that captures as much
information as possible about the plant to be controlled. The ultimate objective is not to
design the best controller for the plant model, but for the real time plant. This objective
is addressed by robust control theory by including in the model a set of uncertainties.
Robust control techniques are applied to the plant model, augmented with uncertainties
and candidate controllers, to analyze the stability of the actual system. This is a powerful
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tool for practical controller design, but designing a controller that remains stable in the
presence of uncertainties limits the aggressiveness of the resulting controller, and can
result in suboptimal control performance [1, 2].

In this paper, the robust control techniques are combined with a reinforcement learn-
ing algorithm to improve the performance of robust controller while maintaining the
stability of the system. Reinforcement learning is a class of algorithms for solving multi-
step, sequential decision problems by finding a policy for choosing sequences of actions
that optimize the sum of some performance criterion over time [3]– [7].

In recent years, learning-based control methodology using Neural networks (NNs)
has become an alternative to adaptive control since NNs are considered as general tools
for modeling nonlinear systems [17]. Work on adaptive NN control using the universal
NN approximation property is now pursued by several groups of researchers. By using
neural network (NN) as an approximation tool, the assumptions on linear parameterized
nonlinearities in adaptive controller designing aspects have greatly been relaxed. It also
broadens the class of the uncertain nonlinear systems which can be effectively dealt by
adaptive controllers. However there are some difficulties associated with NN based con-
troller. The basis functions are generally not orthogonal or redundant; i.e., the network
representation is not unique and is probably not the most efficient one and the conver-
gence of neural networks may not be guaranteed. Also the training procedure for NN
may be trapped in some local minima depending on the initial settings. Wavelet neural
networks are the modified form of the NN having the properties of space and frequency
localization properties leading to a superior learning capabilities and fast convergence.
Thus WNN based control systems can achieve better control performance than NN based
control systems [8]– [10].

Adaptive actor-critic WNN-based control has emerged as a promising WNN approach
due to its potential to find approximate solutions to dynamic programming [11]– [14].
In the actor-critic WNN based control a long-term system performance measure can be
optimized, in contrast to the short-term performance measure used in classical adaptive
and WNN control. While the role of the actor is to select actions, the role of the
critic is to evaluate the performance of the actor. This evaluation is used to provide
the actor with a signal that allows it to improve its performance, typically by updating
its parameters along an estimate of the gradient of some measure of performance, with
respect to the actor’s parameters. The critic WNN approximates a certain strategics
utility function that is similar to a standard Bellman equation, which is taken as the
long-term performance measure of the system. The weights of action WNN are tuned
online by both the critic WNN signal and the filtered tracking error. It minimizes the
strategic utility function and uncertain system dynamic estimation errors so that the
optimal control signal can be generated [3].

This paper deals with the designing of reinforcement learning WNN based adaptive
tracking controller for a class of uncertain nonlinear systems. WNN are used for approx-
imating the system uncertainty as well as to optimize the performance of the control
strategy.

The paper is organized as follows. Section 2 deals with the system preliminaries,
system description is given in Section 3. WNN based controller designing aspects are
discussed in Section 4. Section 5 describes the tuning algorithm for actor-critic wavelets.
The stability analysis of the proposed control scheme is given in Section 6. Effectiveness
of the proposed strategy is illustrated through an example in Section 7 while Section 8
concludes the paper.
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2 System Preliminaries

2.1 Wavelet neural network

Wavelet network is a type of building block for function approximation. The building
block is obtained by translating and dilating the mother wavelet function. Corresponding
to certain countable family ofam and bn, wavelet function can be expressed as{

a−d/2m ψ

(
x− bn
am

)
: m ∈ Z, n ∈ Zd

}
. (1)

Consider
am = am0 , bn = na−m0 b0,m ∈ Z, n ∈ Zd. (2)

The wavelet in (1) can be expressed as

ψmn =
{
a
−md/2
0 ψ

(
a−m0 x− nb0

)
: m ∈ Z, n ∈ Zd

}
, (3)

where the scalar parameters a0 and b0 define the step size of dilation and translation
discretizations (typically a0=2 and b0=1) and x = [x1, x2, ..., xn]

T ∈ Rn is the input
vector.

Output of an n dimensional WNN with m wavelet nodes is

f =
∑
m∈Z

∑
n∈Zd

αmnψmn. (4)

3 System Description

Consider a nonlinear system of the form

ẋ1 = x2,
ẋ2 = x3,
...
ẋn = f(x) + u,
y = x1,

(5)

where x = [x1, x2, ..., xn]
T
, u, y are state variable, control input and output respectively.

f = [f1, f2, ..., fn]
T

: <n+1 → <n are smooth unknown, nonlinear functions of state
variables.

Rewriting the system (5) as

ẋ = Ax+B(f(x) + u(t)),
y = Cx,

(6)

where

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1
0 0 0 . . . 0

 , B =


0
0
0
...
1

 , C =
[

1 0 0 . . . 0
]
.
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The objective is to formulate a state feedback control law to achieve the desired
tracking performance. The control law is formulated using the transformed system (6).

Let ȳd = [yd, ẏd, . . . ,
n−1
yd ]T be the vector of desired tracking trajectory. The following

assumptions are taken for the systems under consideration.

Assumption 3.1 Desired trajectory yd (t) is assumed to be smooth, continuous Cn

and available for measurement.

4 Basic Controller Design Using Filtered Tracking Error

Define the state tracking error vector ê(t) as

ê(t) = x̂(t)− ȳd(t). (7)

The filter tracking error is defined as

r̂ = Kê,

where K = [k1, k2, . . . kn−1, 1] is an appropriately chosen coefficient vector such that
ê→ 0 exponentially as < → 0. Differentiating it along the trajectory of the systems, we
get

˙̂r = Keê+ f(x) + u− n
yd . (8)

Applying the feedback linearization method, the control law is defined as

u = (
n
yd−f̂(x)−Keê− r̂), (9)

where Ke = [0, k1, k2, . . . , kn−1]. Substituting (9) in (8),

˙̂r = −r̂ + f̃(x). (10)

Stability of the system (6) with the proposed control strategy will be analyzed in the
subsequent section.

5 Adaptive WNN Controller Design

A novel strategic utility function is defined as the long-term performance measure for
the system. It is approximated by the WNN critic signal. The action WNN signal is
constructed to minimize this strategic utility function by using a quadratic optimization
function. The critic WNN and action WNN weight tuning laws are derived. Stability
analysis using the Lyapunov direct method is carried out for the closed-loop system (6)
with novel weight tuning updates.

5.1 Strategic utility function

The utility function p(k) = [pi(k)]mi=1 ∈ <m is defined on the basis of the filtered tracking
error r̂ and is given by [3]:

pi(k) = 0, if r̂2i ≤ η,
pi(k) = 1, if r̂2i> η,

(11)
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where pi(k) ∈ <, i = 1, 2, . . . ,m and η ∈ < is the predefined threshold, p(k) can be
considered as the current performance index. The long term system performance measure
Q′(k) ∈ <m can be defined using the binary utility function as

Q′(k) = αNp(k + 1) + αN−1p(k + 2) + . . .+ αk+1p(N) + . . . , (12)

where α ∈ < and 0 <α< 1 and N is the horizon. Above equation may be rewritten as

Q(k) = min
u(k)
{αQ(k − 1)− αN+1p(k)}.

This measure is similar to standard Bellman’s equation [15].

5.1.1 Critic WNN

Q′(k)is approximated by the critic WNN by defining the prediction error as

ec(k) = Q̂(k)− α(Q̂(k − 1)− αNp(k)), (13)

where Q̂(k) = ŵT1 (k)φ1(vT1 x(k)) = ŵT1 (k)φ1(k), ec(k) ∈ <m, Q̂(k) ∈ <m is the critic
signal, w1(k) ∈ <n1×m and v1 ∈ <nm×n1 represent the weight estimates, φ1(k) ∈ <n1is
the wavelet activation function and n1 is the number of nodes in the wavelet layer. The
objective function to be minimized by the critic NN is defined as:

Ec(k) =
1

2
eTc (k)ec(k). (14)

The weight update rule for the critic NN is a gradient-based adaptation, which is given
by [3]

ŵ1(k + 1) = ŵ1(k) + ∆ŵ1(k),

where

∆ŵ1(k) = α1

[
−∂Ec(k)

∂ŵ1(k)

]
(15)

or

ŵ1(k + 1) = ŵ1(k)− α1φ1(k)×(ŵT1 (k)φ1(k) + αN+1p(k)− αŵT1 (k − 1)φ1(k − 1))T ,
(16)

where α1 ∈ < is the WNN adaptation gain. The critic WNN weights are tuned by the
reinforcement learning signal and discounted values of critic WNN past outputs.

5.1.2 Action WNN

The output of the action NN is to approximate the unknown nonlinear function f(x(k))
and to provide an optimal control signal to be the part of the overall input u(k) as

f̂(k) = ŵT2 (k)φ2(vT2 x(k)) = ŵT2 (k)φ2(k), (17)

where ŵ2(k) ∈ <n2×m and v2 ∈ <nm×n2 represent the matrix of weight estimate, φ2(k) ∈
<n2 is the activation function, n2 is the number of nodes in the hidden layer. Suppose
that the unknown target output-layer weight for the action WNN is w2 then we have

f(k) = wT2 (k)φ2(vT2 x(k))ε2(x(k)) = wT2 (k)φ2(k)ε2(x(k)), (18)
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Figure 1: Block diagram of the closed loop system.

where ε2(x(k)) ∈ <m is the WNN approximation error. Combining (17) and (18),

f̃(k) = f̂(k)− f(k) = (ŵ2(k)− w2)Tφ2(k)− ε2(x(k)), (19)

where f̃(k) ∈ <m is the functional estimation error. The action WNN weights are tuned
by using the functional estimation errorf̃(k)and the error between the desired strategic
utility functionQd(k) ∈ <m and the critic signal Q̂(k) as shown in figure 2. Define

ea(k) = f̃(k) + (Q̂(k)−Qd(k)). (20)

The objective is to make the utility function Qd(k) zero at every step. Thus (20) becomes

ea(k) = f̃(k) + Q̂(k). (21)

The objective function to be minimized by the action NN is given by

Ea(k) =
1

2
eTa (k)ea(k). (22)

The weight update rule for the action NN is also a gradient based adaptation, which is
defined as

ŵ2(k + 1) = ŵ2(k) + ∆ŵ2(k),

where

∆ŵ2(k) = α2

[
−∂Ea(k)

∂ŵ2(k)

]
(23)
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or
ŵ2(k + 1) = ŵ2(k)− α2φ2(k)(Q̂(k) + f̃(k))T , (24)

where α2 ∈ < is the WNN adaptation gain.
The WNN weight updating rule in (24) cannot be implemented in practice since the
nonlinear function f(x(k)) is unknown. However, using (10), the functional estimation
error is given by

f̃(k) = ˙̂r + r̂. (25)

Substituting (25) into (24), ŵ2(k + 1) = ŵ2(k)− α2φ2(k)(Q̂(k) + ˙̂r − r̂)T .
Here the weight update for the action WNN is tuned by the critic WNN output, current
filtered tracking error, and a conventional outer-loop signal as shown in Figure 2.

6 Stability Analysis

Consider a Lyapunov functional of the form

V =
1

2
r̂2. (26)

Differentiating it along the trajectories of the system, we have

V̇ = r̂(Keê+K(f̂(x̂) + u(t)− vr −
n
y
d
).

By the substitution of control law u(t) in the above equation,

V̇ = r̂(−Kr̂ + f̃(x̂)− vr).

V̇ ≤ −Kr̂2 + |r̂|
∣∣∣f̃(x̂)

∣∣∣− r̂vr).
Substituting the robust control term vr = − (ρ2+1)r̂

2ρ2 in the above equation, we get

V̇ ≤ −s1r̂2 + s2(|r̂|
∣∣∣f̃(x̂)

∣∣∣)2,
where s1 = (K + K

2 ) and s2 =
Kρ2

2 . The system is stable as long as

s1r̂
2 ≥ s2(|r̂|

∣∣∣f̃(x̂)
∣∣∣)2. (27)

7 Simulation Results

Simulation is performed to verify the effectiveness of proposed reinforcement learning
WNN based control strategy. Consider a system of the form

ẋ1 = x2,
ẋ2 = 0.01x1 sinx2 + u,
y = x1.

(28)

System belongs to the class of uncertain nonlinear systems defined by (5) with n = 2.
The proposed controller strategy is applied to this system with an objective to solve
the tracking problem of system. The desired trajectory is taken as yd = 0.5 sin t +



286 M. SHARMA AND A. VERMA

0.1 cos 0.5t + 0.3. Initial conditions are taken as x (0) = [0.5, 0]
T

. Attenuation levels
for robust controller are taken as 0.01. Controller gain vector is taken as k = [35, 5].
Wavelet networks with discrete Shannon’s wavelet as the mother wavelet is used for
approximating the unknown system dynamics. Wavelet parameters for these wavelet
networks are tuned online using the proposed adaptation laws. Initial conditions for all
the wavelet parameters are set to zero. Simulation results are shown in Figure 1. As
observed from the figures, system response tracks the desired trajectory rapidly.
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Figure 2: System output and tracking error.

8 Conclusion

A reinforcement learning WNN based adaptive tracking control strategy is proposed for a
class of systems with unknown system dynamics. Adaptive wavelet networks are used for
approximating the unknown system dynamics. Adaptation laws are developed for online
tuning of the wavelet parameters. The stability of the overall system is guaranteed by
using the Lyapunov functional. The theoretical analysis is validated by the simulation
results.
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Abstract: Sum of ratios optimization is an interesting field of research. This pa-
per presents a solution method for sum of linear ratios multiobjective programming
(SOLR – MOP) problem using the fuzzy goal programming technique. Each member-
ship function of fuzzy objectives is approximated into linear function by using first
order Taylor’s theorem about the vertex of the feasible region where the objective
function has maximum value. Then the resulted approximated linearized member-
ship functions may be used for the formulation of fuzzy goal programming. So the
problem is solved using fuzzy goal programming technique. The efficiency of the
method is measured by numerical examples.

Keywords: multiobjective programming; fractional programming; fuzzy multiobjec-
tive fractional programming; sum of ratio fractional program; fuzzy goal programming.
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1 Introduction

Ratio criteria are used to measure the efficiency of a system in any different fields of
engineering and management sciences. The ratio optimization problem is called the
fractional programming. These may be applied to different disciplines such as financial
sector, inventory management, production planning, banking sector and others. Ba-
sically it is used for modeling real life problems with one or more objectives such as
debt/equity, profit/cost, inventory/sales, actual cost/standard cost, output/employees,
nurses/patients ratios etc. with respect to some constraints.
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The ratio optimization problem with linear functions and linear constraints is called
linear fractional programming (LFP) problem. If these problems have more than one
objective then the problem is known as multiobjective linear fractional programming
(MOLFP) problem.

If the ratio optimization problem has sum of linear ratios (ratios of affine functions),
then the fractional programming problem (LFP) is known as sum of linear ratios pro-
gramming (SOLR-P) problem.

A general sum of linear ratios programming (SOLR-P) problem is defined in the
following way:

Max F (x) = Max







p
∑

j

fj(x)

mj(x)







= Max

p
∑

j

cT0jx+ α0j

dT0jx+ β0j

subject to

x ∈ S, x ≥ 0, (1)

where p ≥ 2, x, c0j , d0j ∈ Rn, α0j , β0j ∈ R.

The feasible region S is a nonempty, compact, convex set in Rn. The function fj(x) =
cT0jx + α0j , and mj(x) = dT0jx + β0j are positive for all x ∈ S. Note that under these
assumptions, the global maximum for problem (1) is attained by at least one point in S.

If we take more than one objectives in problem (1), then the problem is known as sum
of linear ratios multiobjective programming (SOLR-MOP) problem, mathematically it
can be written as:

MaxF (x) = [F1(x), F2(x), . . . Fk(x)],where

Fi(x) =

p
∑

j

fij(x)

mij(x)
, (2)

x ∈ S, x ≥ 0, p ≥ 2, x, cij , dij ∈ Rn, αij , βij ∈ R.

and fij(x) = cTijx + αij , mij(x) = dTijx + βij are positive for all x ∈ S, where S =
{x : Ax (≤, =, ≥) b, x ≥ 0, x ∈ Rn, b ∈ Rm, A ∈ Rm×n}, (i = 1, 2, . . . , k, j =
1, 2, . . . , p)∀ x ∈ S. Here, S is assumed to be non-empty compact convex set in Rn and
all Fi(x) having continuous partial derivative in the feasible region S.

Sum of ratios fractional program was one of the least researched fractional program
until about 1990. During last decade, interest in these programs has become especially
strong. This is because, from a practical point of view, the sum of ratios fractional pro-
grams have numerous applications in the fields as discussed above but still multiobjective
sum of ratios problem has least attention.

Various solution approaches have been proposed in the literature for sum of ratios
fractional program. In [6], Cambini et. al. proposed a simplex type finite algorithm for
the case p = 2 in problem (1) and find the global optimal solution. Later, Konno et.
al.[13] proposed a finite parametric simplex type algorithm for the solution of linear sum
of fractional programs. They give the minimization of the sum of two ratios.

In [4], Benson presented a branch- and - bound algorithm for globally solving the
nonlinear sum of ratios problem. The algorithm has reduced the computational diffi-
culty by conducting branch - and - bound search in Rp space rather than Rn space and
the algorithm is applied in numerical examples for verification. Benson [3] proposed
a branch - and - bound algorithm using the concave envelopes for the same problem.
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In the algorithm, upper bounds are computed by maximizing concave envelopes of a
sum of ratios function over intersection of the feasible region of the equivalent problem
with rectangular sets systematically subdivided as branch and bound search procedure.
The convergence of the algorithm is also presented and computational advantage is also
highlighted. Other algorithms are also presented by Benson in [2, 23, 25].

In [8], Shen et. al. solved the sum of convex - convex ratios problem with non-convex
feasible region. They used a branch bound scheme where the Lagrange duality theory
is used to obtain lower bounds and the convergence of the algorithm is also proved.
Shen and Wang [5] proposed also a branch bound algorithm for globally solving the sum
of ratios with coefficients. They reduced the problem in equivalent sequence of linear
programming problem by utilizing linearization technique.

In [10], Dür et. al. gave a branch bound solution algorithm for sum of ratios prob-
lem using rectangular partitions in Euclidean space of dimension p. For the bounding
procedures, they used dual constructions and the calculation of efficient points of a cor-
responding multiobjective optimization problem.

Jaberipour and Khorram [11] proposed a harmony search algorithm for solving a sum
- of - ratios problem. They also presented the numerical examples for demonstration,
effectiveness and robustness of the proposed method and they claimed that all the solution
obtained by their method are superior to those obtained by other methods.

In [16], Kuno developed a branch- and- bound algorithm for maximizing a sum of p ≥
2 linear ratios on a polytope. They embedded the problem in 2p-dimensional space and
constructed the bounding operations. The operations are carried out in p-dimensional
space and rectangular branch bound method is used to find the solution. They also
discussed the convergence criteria and also reviewed some computational results.

Konno and Yamashita [15] proposed a method to minimize the sums and products of
linear fractional functions. They developed efficient deterministic algorithms for globally
minimizing the sum and the product of several linear fractional functions over a polytope
using outer approximation algorithm in given problem. They showed that the Charnes
Cooper transformation plays an essential role in solving these problems. Also a simple
bounding technique using linear multiplicative programming techniques has remarkable
effects on structured problems.

In [14], Konno and Fukaisi presented a practical algorithm for solving low rank linear
multiobjective programming problems and minimize the sum of product of two linear
functions and also solved low rank linear fractional programming problems as minimiza-
tion of sum of linear fractional functions over a polytope. Recently Gao et. al. [22]
gave the extension of branch bound algorithm as maximization of sum of nonlinear ra-
tios problem. They also presented the complexity of the problem and discussed some
numerical experiments on the extended algorithm.

In [26], Gao and Shi presented a comprehensive review on branch - and bound al-
gorithms for solving sum of ratios problem and they made a comparison between two
branch-and bound approaches for solving the sum-of ratios problem. They also modify
the algorithm for nonlinear sum-of ratios problem.

Multiobjective programming problems have been extensively studied for several
decades and the research is based on the theoretical background. As a matter of fact
many ideas and approaches have their foundation in the theory of fractional program-
ming. Multiobjective linear fractional programming problems using fuzzy set theory has
been studied in [19, 21, 27, 28 ]. Luhandjula [28] has given a solution method for MOLFP
using linguistic approach. Dutta, Rao and Tewari [27] modified linguistic approach of
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Luhandjula [28] to solve MOLFP using fuzzy set theoretic approach. Recently, Güzel
and Sivri [20] have given Taylor series approach to solve MOLFP and in [16], they de-
veloped another approach. Toksari [21], developed an algorithm to solve FMOLFP by
Taylor series approach and he linearized the membership functions instead of objection
functions.

Fuzzy set theory becomes the efficient tool for solving various types of non-linear
systems [30, 31, 32].

Our objective in this paper is to propose a simple method to the solution of sum
of linear ratio multiobjective programming (SOLR-MOP)(2) problem using fuzzy goal
programming approach. In this approach, each membership function associated with
each objective of SOLR – MOP is approximated into linear function and then it is solved
by fuzzy goal programming method. In the proposed article, we have attempted to handle
multiobjective case for sum of linear ratios using fuzzy goal programming approach which
is not attempted in the literature. The proposed algorithm is applied to three numerical
examples.

2 Sum of Linear Ratios Fuzzy multiobjective Programming Problem
(SOLR-FMOP)

If an uncertain aspiration level is introduced to each of the objectives of SOLR-MOP, then
these fuzzy objectives are called fuzzy goals. The sum of linear ratios fuzzy multiobjective
programming (SOR-FMOP) problem can be defined as

Find X(x1, x2, .....xn) such that

Fi(x) / gi or Fi(x) ' gi ∀ (i = 1, 2, . . . , k, j = 1, 2, . . . , p) (3)

subject to

x ∈ S = {x ∈ Rn, Ax(≤,=,≥)b, x ≥ 0with b ∈ Rm, A ∈ Rm×n},

Fi(x) =

p
∑

j

cTijx+ αij

dTijx+ βij

,

where gi is the aspiration level of the ith objective Fi and /, ' indicate fuzziness of the
aspiration level. The membership function µi(x) must be described for each fuzzy goal.
A membership function can be explained as given below.
If Fi(x) / gi, then

µi(x) =



















1, if Fi(x) ≤ gi,

ti − Fi(x)

ti − gi
, if gi ≤ Fi(x) ≤ ti,

0 if Fi(x) ≥ ti.

(4)

If Fi(x) ≥ gi, then

µi(x) =



















1, if Fi(x) ' gi,

Fi(x) − ti

gi − ti
, if ti ≤ Fi(x) ≤ gi,

0 if Fi(x) ≤ ti,

(5)
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and ti and ti are the upper tolerance limit and lower tolerance limit, respectively, for the
ith fuzzy goal. Then the problem (3) is called sum of linear ratios fuzzy multiobjective
programming problem ( SOLR-FMOP ).

3 Goal Programming

The concept of goal programming (GP) was first introduced by Charnes and Cooper
in 1961 [7] as a tool to resolve infeasible linear programming problems. Thereafter,
significant methodological development of GP was made by Ignizio [18] and others. The
overall purpose of GP is to minimize the deviations between the achievement of goals
and their aspiration levels. A typical GP is expressed as follows

Minimize

k
∑

i=1

|Fi(x)− gi|

subject to (6)

x ∈ X = {x ∈ Rn; Ax ≤ b, x ≥ 0},

where Fij is the linear function of the ith goal and gi is the aspiration level of the ith

goal.
Let Fi(x)− gi = d+i − d−i , d−i , d

+
i ≥ 0. Problem (6) can be formulated as follows

Minimize

k
∑

i=1

(d+i + d−i )

subject to

Fi(x) − d+i + d−i − gi = 0, i = 1, 2, . . . k, (7)

d+i , d
−
i ≥ 0, x ∈ X = {x ∈ Rn; Ax ≤ b, x ≥ 0},

where d−i ≥ 0, d+i ≥ 0 are, respectively under - and over - deviations of the ith goal.
Problem (7) has been applied to solve many real world problems.

3.1 Fuzzy goal programming

In fuzzy goal programming approaches, the highest degree of membership function is 1.
So, for the defined membership function in (4) and (5), the flexible membership goals
with aspiration levels 1 can be expressed as

Fi(x) − ti

gi − ti
+ d−i − d+i = 1 or

ti − Fi(x)

ti − gi
+ d−i − d+i = 1, (8)

where d−i ≥ 0, d+i ≥ 0 with d+i .d
−
i = 0 are, respectively, under - and over -deviations

from the aspiration levels.
In conventional GP, the under- and over-deviational variables are included in the

achievement function or minimized and that depends upon the type of the objective
functions to be optimized.

In this approach, only the under - deviational variable d−i is required to achieve the
aspired levels of the fuzzy goals. It may be noted that any over - deviation from fuzzy goal
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indicates the full achievement of the membership value. Recently, B. B. Pal. et.al [19]
proposed an efficient goal programming (GP) method for solving fuzzy multiobjective
linear fractional programming problems.

4 Mathematical Modeling of Problem

We consider the sum of linear ratios multiobjective programming (SOLR-MOP) problem
of the form:

MaxF (x) = {F1(x), F2(x), . . . , Fk(x) }

Fi(x) =

p
∑

j

cTijx+ αij

dTijx+ βij

, (9)

where dTijx+ βij > 0, ∀ (i = 1, 2, . . . , k, j = 1, 2, . . . p)

subject to

x ∈ S = {Ax ≤ b, x ≥ 0, x, cTij , d
T
ij , ∈ Rn, b ∈ Rm,

A = (m× n) matrix, αij , βij , ∈ R}.

Assume fuzzy aspiration level gi and tolerance limit (ti, ti) for each objective func-
tion Fi(x). We construct the membership function for each objective function using
Zimmermann max-min approach [29]. Then the problem (9) becomes

Find X(x1, x2, . . . , xn)

so as to satisfy

Fi(x) / gi

or (10)

Fi(x) ' gi

subject to x ∈ S = {x ∈ Rn, Ax ≤ b, x ≥ 0 with b ∈ Rm, A ∈ Rm×n}

and Fi(x) =

p
∑

j

cTijx+ αij

dTijx+ βij

, where dTijx+ βij > 0, ∀ i and j,

where gi is the aspiration level of the ith objective function Fi(x). The membership
function µi(x), described for each fuzzy goal, is given by equation (4) and equation (5).
Suppose that all Fi(x) and all of their partial derivatives of order less than or equal to
n+1 are continuous on the feasible region S. So the membership functions µi(x) of each
Fi(x) are having same property in the feasible region.

The proposed algorithm can be explained in three steps and linear approximation of
membership functions is motivated by Toksari [21].

Step 1: Determine the vertex of the feasible region, x∗
q = { x∗

q1, x
∗
q2, . . . , x

∗
qn} for

which the ith membership function is maximized associated with the ith objective
Fi(x), ∀ i = 1, 2, . . . , k and j = 1, 2, . . . , p, where n is the number of variable and q
is finite.

Step 2: Transform each fractional membership function into linear membership func-
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tion by using first order Taylor’s theorem

µi(x) = µ̃i(x) ∼= µi(x
∗
q) + [(x1 − x∗

q1)
∂µi(x

∗
q)

∂x1
+ (x2 − x∗

q2)
∂µi(x

∗
q)

∂x2
+ . . . (11)

+ (xn − x∗
qn)

∂µi(xq∗)

∂xn

] +O(h2),

µi(x) = µ̃i(x) ∼= µi(x
∗
q) +

n
∑

j=1

[(xj − x∗
qj)

∂µi(x
∗
q)

∂x
j

] +O(h2), (12)

where, if Fi(x) / gi, then

µi(x) =



















1, if Fi(x) ≤ gi,

ti − Fi(x)

ti − gi
, if gi ≤ Fi(x) ≤ ti,

0 if Fi(x) ≥ ti.

(13)

If Fi(x) ≥ gi, then

µi(x) =



















1, if Fi(x) ≥ gi,

Fi(x)− ti

gi − ti
, if ti ≤ Fi(x) ≤ gi,

0 if Fi(x) ≤ ti.

subject to

x ∈ X = {Ax ≤ b, x ≥ 0, x, cTij , d
T
ij , ∈ Rn, b ∈ Rm,

A = (aij)m×n, αij , βij , ∈ R}.

Now in (12), these are linearized approximated membership function of fuzzy objectives.
Then the problem can be solved by assuming fuzzy goals.

Step 3: Find x∗ = {x∗
1, x

∗
2, . . . , x

∗
n} using fuzzy goal formulation. Apply fuzzy goal

programming approach for the linearized membership functions µ̃i(x) in (12) of Fi. The
flexible membership goals with aspiration levels 1 can be expressed as

µ̃i(x) + d−i − d+i = 1, (14)

where d−i , d
+
i ≥ 0, with d+i d

+
i = 0 are respectively under- and over- deviations from the

aspiration levels.
Now the fuzzy goal programming formulation can be obtained as

Minimize

k
∑

i=1

d−i

subject to

µ̃i(x)− d+i + d−i = 1, i = 1, 2, . . . k (15)

d+i , d
−
i ≥ 0

x ∈ S = {x ∈ Rn; Ax ≤ b, x ≥ 0} with d+i .d
+
i = 0.

In the problem (15), S is a non empty convex bounded set having feasible points .
The LPP (15) can be solved easily, which gives the efficient solution of (SOLR-MOP)
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(3). The values of membership functions at the optimal point gives the satisfaction level
(degree) of objective function to the solution.

5 Numerical Examples

Example 1: Consider a SOLR-MOP with two objective functions:

Max

{

x1 + 2x2

2x1 + x2 + 5
+

9x1 + 2x2

7x1 + 3x2 + 1
,

2x1 + 3x2 + 5

x1 + 1
+

5x1 + 4x2

x1 + x2

}

subject to

x1 − x2 ≥ 2,

4x1 + 5x2 ≤ 25, (16)

x1 + 9x2 ≥ 9,

x1 ≥ 5,

x1, x2 ≥ 0.

It is observed that fij ≥ 0, mij ≥ 0, (i = 1, 2 and j = 1, 2) for each x in the feasible
region.

If the fuzzy aspiration levels of the two objectives are 1.806, and 7.83, then find x in
order to satisfy the following fuzzy goals:

(

x1 + 2x2

2x1 + x2 + 5
+

9x1 + 2x2

7x1 + 3x2 + 1

)

' 1.806,

(

2x1 + 3x2 + 5

x1 + 1
+

5x1 + 4x2

x1 + x2

)

' 7.83.

The tolerance limits for the two fuzzy goals are (1.620, 7.05) respectively. The member-
ship functions for the two fuzzy goals are

µ1(x) =



















1, if F1(x) ≥ gi,

Fi(x)− ti

gi − ti
, if ti ≤ Fi(x) ≤ gi,

0, if Fi(x) ≤ ti.

i.e.

µ1(x) =



























1, if F1(x) ≥ 1.806,
(

x1 + 2x2

2x1 + x2 + 5
+

9x1 + 2x2

7x1 + 3x2 + 1

)

− 1.620

0.19
, if 1.620 ≤ F1(x) ≤ 1.806,

0, if F1(x) ≤ 1.620.

(17)

µ2(x) =



























1, if F2(x) ≥ 7.83,
(

2x1+3x2+5
x1+1 +

5x1 + 4x2

7x1 + 3x2 + 1

)

− 7.05

0.78
, if 7.05≤F2(x)≤7.83,

0, if F2(x) ≤ 7.05.

(18)
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Expand the membership functions µ1(x) about point (5, 0.44) and µ2(x) about point
(5, 1)

µ1(x) ∼= µ̃1(x) = µ1(5, 0.44) + (x1 − 5)
∂µ1(5, 0.44)

∂x1
+ (x2 − 0.44)

∂µ1(5, 0.44)

∂x2
,

µ1(x) ∼= µ̃1(x) = 0.14x1 + 0.54x2 + 0.06, (19)

µ2(x) ∼= µ̃2(x) = µ2(5, 1) + (x1 − 5)
∂µ2(5, 1)

∂x1
+ (x2 − 1),

∂µ2(5, 1)

∂x2
,

µ2(x) ∼= µ̃2(x) = −0.18x1 + 0.50x2 + 1.4. (20)

Now apply the fuzzy goal programming technique:

Minimize (d−1 + d−2 )

subject to

µ̃1(x)− d+1 + d−1 = 1, (21)

µ̃2(x)− d+2 + d−2 = 1,

d−1 , d
+
1 , d

−
2 , d

+
2 ≥ 0,

x ∈ S = {x ∈ Rn; Ax ≤ b, x ≥ 0} with d+1 .d
+
1 = 0 andd+2 .d

+
2 = 0.

Thus new LPP is obtained

Minimize (d−1 + d−2 )

subject to

0.14x1 + 0.54x2 − d+1 + d−1 = 0.94, (22)

−0.18x1 − 0.50x2 − d+2 + d−2 = −0.4,

x1 − x2 ≥ 2,

4x1 + 5x2 ≤ 25,

x1 + 9x2 ≥ 9,

x1 ≥ 5,

x1, x2 ≥ 0, with d+1 .d
+
1 = 0 and d+2 .d

+
2 = 0.

The optimal solution of the above problem is given by x1 = 5, x2 = 1, d−1 = 0, d+1 =
0.30, d−2 = 0, d+2 = 0 and the membership values are µ1 = 0.12, µ2 = 1. The optimal
solution of the problem (22) is at the point (5, 1) and minimum value is 0. The point
(5, 1) is the efficient solution of the given original problem in the feasible region with
optimal values of the functions F1 = 1.643, F2 = 7.83. The membership function values
at (5, 1) indicate that goals F1 and F2 are satisfied 12% and 100% respectively, for the
obtained solution.
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Example 2: Let us consider a SOLR - MOP with three objective functions

Max {F1(x) =
x1 + 4x2

2x1 + x2 + 1
+

9x1 + 2x2

x1 + 3x2 + 1
+

x1 + 3x2

x2 + 1
, (23)

F2 =
3x1 + 8x2

x1 + x2 + 3
,+

x1 + 2x2

2x1 + 3x2 + 2
+

x1 + 2x2

3x1 + x2 + 2
}

subject to

x1 − x2 ≥ 5,

4x1 + 5x2 ≤ 25, (24)

x1 ≥ 5,

x1, x2 ≥ 0.

If the fuzzy aspiration levels of two objectives are (9.08, 2.76) respectively, then find
x in order to satisfy the following goals:

F1(x) ' 9.08, F2(x) ' 2.76. (25)

The tolerance limits for the three fuzzy goals are (8.79, 2.51) respectively. The member-
ship functions for the two fuzzy goals are given by

µ1(x) =



























1, if F1(x) ≥ 9.08,

x1+4x2

2x1+x2+1 +
9x1 + 2x2

x1 + 3x2 + 1
+

x1 + 3x2

x2 + 1
− 8.79

0.29
, if 8.79 ≤ F1(x) ≤ 9.08,

0 if F1(x) ≤ 8.79.

(26)

µ2(x)=



























1, if F2(x) ≥ 2.76,

3x1+8x2

x1+x2+3 ,+
x1 + 2x2

2x1 + 3x2 + 2
+

x1 + 2x2

3x1 + x2 + 2
− 2.51

0.25
, if2.51≤F2(x)≤2.76,

0 if F2(x) ≤ 2.51.

(27)

Both membership functions are expanded by using first order Taylor’s theorem about
the point (6.25, 0) in the feasible region. The linearized forms of membership functions
are obtained

µ1(x) ∼= µ̃1(x) = 0.68x1 + 4.47x2 − 3.25, (28)

µ2(x) ∼= µ̃2(x) = 0.48x1 + 3.09x2 − 2. (29)

Now apply the fuzzy goal programming technique and the new LPP is obtained

Minimize (d−1 + d−2 )

subject to

0.68x1 + 4.47x2 − d+1 + d−1 = 4.25, (30)

0.48x1 + 3.09x2 − d+2 + d−2 = 3,

x1 − x2 ≥ 5,

4x1 + 5x2 ≤ 25,

x1 ≥ 5,

x1, x2 ≥ 0. with d+1 .d
+
1 = 0 and d+2 .d

+
2 = 0.
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The alternate optimal solution is obtained but the best minimum value is 0 at x1 =
5.56, x2 = 0.56, d−1 = 0, d+1 = 0.51, d−2 = 0.01, d+2 = 0 and the membership values
are µ1 = 0, µ2 = 1. So the optimal solution of problem (31) is at (5.56, 0.56). The
point (5.56, 0.56) is the efficient solution of the given original problem in the feasible
region with optimal values of the functions F1 = 7.93, F2 = 3.12. The membership
function values at (5.56, 0.56) indicate that goals F1 and F2 are satisfied 0% and 100%
respectively, for the obtained solution.

Example 3: Let us consider a SOLR - MOP with three objective functions

Max {F1(x) =
x1

x2 + 1
+

x2

2x1 + 3
,

F2(x) =
x2 + 4

x1 + 2x2 + 1
+

x1 + 2

3x1 + x2 + 2
,

F3(x) =
x1 + 2x2

x1 + 3x2 + 2
+

5x1 + x2

2x1 + 5x2 + 3
}

subject to

x1 ≤ 6,

x2 ≤ 6, (31)

2x1 + x2 ≤ 9,

−2x1 + x2 ≤ 5,

x1 − x2 ≤ 5,

x1, x2 ≥ 0.

If the fuzzy aspiration levels of the three objectives are (4.5, 5, 2.57) respectively,
then

F1(x) ' 4.5, F2(x) ' 5, F3(x) ' 2.57. (32)

The tolerance limits for the two fuzzy goals are 0, 0.86, 0 respectively. The membership
functions for the three fuzzy goals are

µ1(x) =



























1, if F1(x) ≥ 4.5,

x1

x2 + 1
+

x2

2x1 + 3
− 0

4.5
, if 0 ≤ F1(x) ≤ 4.5,

0, if F1(x) ≤ 0.

(33)

µ2(x) =



























1, if F2(x) ≥ 5,

x2 + 4

x1 + 2x2 + 1
+

x1 + 2

3x1 + x2 + 2
− 0.86

4.14
, if 0.86 ≤ F2(x) ≤ 5,

0 if F2(x) ≤ 0.86.

(34)

µ3(x) =



























1, if F3(x) ≥ 2.57,

x1 + 2x2

x1 + 3x2 + 2
+

5x1 + x2

2x1 + 5x2 + 3
− 0

2.57
, if 0 ≤ F3(x) ≤ 2.57,

0, if F3(x) ≤ 0.

(35)
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By expanding the first order Taylor’s theorem for membership functions µ1, µ2 and µ3

about points (4.5, 0), (0, 0) and (4.5, 0) respectively in the feasible region:

µ1(x) ∼= µ̃1(x) = 0.22x1 − 4.22x2 + 0.01, (36)

µ2(x) ∼= µ̃2(x) = 1.33x1 − 1.69x2 + 1, (37)

µ3(x) ∼= µ̃3(x) = 0.059x1 − 0.71x2 + 0.74. (38)

Apply fuzzy goal programming technique, the new LPP is obtained

Minimize (d−1 + d−2 + d−3 )

subject to

0.22x1 − 4.22x2 − d+1 + d−1 = 0.99,

1.33x1 − 1.69x2 − d+2 + d−2 = 0,

0.059x1 − 0.71x2 − d+3 + d−3 = 0.26,

x1 ≤ 6,

x2 ≤ 6, (39)

2x1 + x2 ≤ 9,

−2x1 + x2 ≤ 5,

x1 − x2 ≤ 5,

x1, x2 ≥ 0, with d+1 .d
+
1 = 0, d+2 .d

+
2 = 0 and d−3 .d

+
3 = 0.

Optimal solution of the problem (40) is at the point x1 = 4.5, x2 = 0, d−1 = 0, d−2 =
0, d−3 = 0, d+1 = 0, d+2 = 5.99 d+3 = 0.01 and the minimum value is 0. The efficient
solution of the given problem is x1 = 4.5, x2 = 0, F1 = 4.5, F2 = 0.86, F3 = 2.57 and
the membership values are µ1 = 1, µ2 = 0, µ3 = 1. The membership function values at
(4.5, 0) indicate that goals F1, F2 and F3 are satisfied 100%, 0% and 100% respectively,
for the obtained solution.

6 Conclusion

In this paper, a new algorithm has been proposed to optimize sum of linear ratios multiob-
jective programming (SOLR-MOP)problem using fuzzy set theory and goal programming
method. Most of the reported work is based on the single objective optimization. So, the
proposed algorithm is a simple procedure to optimize sum of linear ratios in multiobjec-
tive case. This reduces computational complexity as compared to the previous reported
work.
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Abstract: In this work the controllability problem for a class of semilinear control
system with nonlocal initial conditions is considered. Under some simple conditions
the relation between the reachable set of semilinear system and that of its corre-
sponding linear system is established. In particular, approximate controllability of
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application of the proposed result.
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1 Introduction

Let (X, ‖ · ‖) be a Banach space and Ct = C([−τ, t]; X), τ > 0, 0 ≤ t ≤ T < ∞, be
a Banach space of all continuous functions from [−τ, t] into X endowed with the norm
||φ||Ct

= sup
−τ≤η≤t

||φ(η)||. Now, consider the following nonlocal semilinear delay control

system

x′(t) = Ax(t) +Bu(t) + f(t, x(t), xb(t)) on (0, T ],

h(x) = φ on [−τ, 0], (1)

where the state variable x(·) takes values in Banach space X and the control function
u(·) belongs to Y = L2([0, T ];U), the Banach space of admissible control functions with
a Banach space U . Standing assumptions on system operators are as follows:
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(H1) A : X ⊃ D(A) → X is a linear operator such that it generates a C0-semigroup onX ,
denoted by S(t) : t ≥ 0. Let M ≥ 1 and ω ≥ 0 be such that ||S(t)|| ≤ Meωt; t ≥ 0.

(H2) b : [0, T ] → [0, T ] is a map such that it satisfies the property b(t) ≤ t, ∀t ∈ [0, T ].
For a continuous function x ∈ CT and t ∈ [0, T ], xb(t) ∈ C0 and is defined by
xb(t)(θ) = x(b(t) + θ); θ ∈ [−τ, 0].

(H3) h : C0 → C0, and there exists a function χ ∈ C0 such that h(χ) = φ.

(H4) Nonlinear map f : [0, T ]×X × C0 → X is continuous in first variable and satisfies
the Lipschitz-like condition in second and third argument, that is, there exists some
constant l > 0 such that ‖f(t, x(t), yb(t))− f(t, v(t), wb(t))‖ ≤ l(‖x− v‖CT

+ ‖y −
w‖CT

) for all x, y, v, w ∈ CT and t ∈ [0, T ].

(H5) B : U → X is a bounded linear operator.

Semilinear differential equation (1) can be seen as an abstract formulation for many
control systems described by partial or functional differential equations. Here, nonlocal
condition is generally more practical for the physical measurements as compared to the
classical condition. The importance of nonlocal conditions has been discussed in the pio-
neering work by Byszewski and Lakshmikantham [6,7]. Nonlocal conditions were used by
Deng in [10] to describe, for instance, the diffusion phenomenon of a small amount of gas
in a transparent tube. It is a well known fact that the problem of controllability of semi-
linear systems in infinite-dimensional spaces can be converted into solvability problem of
a functional operator equation in appropriate Banach spaces, and fixed-point theory has
been widely used in the literature to establish this solvability; [2,9,14,15]. These concepts
has been extended to infinite-dimensional semilinear delay control systems with local or
nonlocal initial conditions, among others, we refer to the papers [5, 17, 19, 21, 23, 24, 26]
for local conditions and papers [3, 4, 13, 16] for nonlocal conditions.

The purpose of this paper is to compare the trajectory reachable set of nonlinear
system (1) to the trajectory reachable set of its corresponding linear system [f = 0
in (1)] and this is motivated by the paper of Naito and Park [19] and Ryu, Park, and
Kwun [21]. In particular, approximate controllability of system (1) is shown provided the
corresponding linear system is controllable. In the proof of the main controllability result
in the next section, we do not require any inequality condition, compactness of S(t), and
uniform-boundedness of f . In this respect, this paper relaxes some restrictions made by
earlier authors if an another simple condition is satisfied by the system operators. In the
last section, theory is illustrated with some examples.

2 The Main Results

Let us first consider the following functional delay differential system:

{ x′(t) = Ax(t) + f(t, x(t), xb(t)), t ∈ (0, T ],
h(x) = φ, on [−τ, 0].

(2)

Definition 2.1 A solution function x ∈ CT of the integral equation

x(t) =
{ χ(t), t ∈ [−τ, 0],

S(t)χ(0) +
∫ t

0 S(t− s)f(s, x(s), xb(s))ds, t ∈ [0, T ],
(3)

is called a mild solution of problem (2).
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The existence and uniqueness of the mild solution of (2) is discussed in the following
theorem, and the proof is motivated by the work of Bahuguna and his coworkers, see
[1, 11].

Theorem 2.1 If assumptions (H1)-(H4) are satisfied, then there exists a mild solu-
tion of (2) on [0, T ] for some T > 0. Moreover, the mild solution is unique if and only
if χ is unique.

Proof. We choose a T > 0 such that 2lTMeωT < 1. Define a map F from CT into
itself by

(Fx)(t) =
{ χ(t), t ∈ [−τ, 0],

S(t)χ(0) +
∫ t

0
S(t− s)f(s, x(s), xb(s))ds, t ∈ [0, T ].

(4)

It is clear that F is well defined and assumption (H3) ensures a fixed point of F on
t ∈ [−τ, 0]. Now we show that F is a contraction for the case when t ∈ [0, T ]. For this
purpose, consider any x, y ∈ CT , then we have

||(Fx)(t) − (Fy)(t)||X ≤ ||
∫ t

0

S(t− s)(f(s, x(s), xb(s))− f(s, y(s), yb(s)))ds||X

≤ 2lTMeωT ||x− y||CT
. (5)

Since 2lTMeωT < 1, F is a contraction on CT and hence by Banach Contraction Principle
F has a unique fixed point. Obviously, the uniqueness of χ in (H3) reveals the uniqueness
of the mild solution. 2

From the above result, a mild solution of the control system (1) can be written as
follows

x(t) =
{ χ(t), t ∈ [−τ, 0],

S(t)χ(0) +
∫ t

0
S(t− s)[Bu(s) + f(s, x(s), xb(s))]ds, t ∈ [0, T ].

(6)

Note that, mild solution (6) depends on control functions u(·). The solution of (6)
under a control u(·), denoted by x(·;u), is called the trajectory (state) function of (1)
under u(·). The set of all possible trajectories, denoted by

Kα(f) := {x(·;u) ∈ C([α, T ]; X) : u ∈ L2([0, T ];U), 0 < α ≤ T } (7)

is called the trajectory reachable set of system (1). In particular, the set of all possible
terminal states, denoted by

KT (f) := {x(T ;u) ∈ X : u ∈ L2([0, T ];U)} (8)

is called the reachable set of system (1) at terminal time T .

Definition 2.2 System (1) is said to be approximate controllable on [0, T ] if
KT (f) = X , where KT (f) stands for the closure of KT (f) in X .

Now, we define two functions F : CT → L2([0, T ];X) and B1 : Y → L2([0, T ];X ] as
(Fx)(t) = f(t, x(t), xb(t)), (B1u)(t) = Bu(t).

Theorem 2.2 Under assumptions (H1)-(H5) and R(F ) ⊆ R(B1), we have Kα(f) ⊇
Kα(0).
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Proof. Let x(·) ∈ Kα(0), there exists a control u ∈ Y such that

x(t) =
{ χ(t), t ∈ [−τ, 0],

S(t)χ(0) +
∫ t

0
S(t− s)Bu(s)ds, t ∈ [0, T ].

(9)

Due to range condition, for a given ǫ > 0 ∃ w ∈ Y such that

‖Fx−B1w‖L2([0,T ];X) ≤ ǫ. (10)

Now, let y(·) be mild solution of (1) corresponding to control u− w. Then

x(t) − y(t) =

∫ t

0

S(t− s)Bw(s)ds−
∫ t

0

S(t− s)f(s, y(s), yb(t))ds

=

∫ t

0

S(t− s)(B1w − Fx)(s)ds+

∫ t

0

S(t− s)(Fx− Fy)(s)ds. (11)

Using (H4) and (10) we have

‖x(t)− y(t)‖ ≤ MeωT

∫ t

0

‖(B1w − Fx)(s)‖ds+MeωT

∫ t

0

‖(Fx− Fy)(s)‖ds

≤ MeωT
√
Tǫ+ 2MleωT

∫ t

0

||x− y||CT
ds.

(12)

This implies

||x− y||CT
≤ MeωT

√
Tǫ+ 2MleωT

∫ t

0

||x− y||CT
ds. (13)

Now, using Gronwall’s inequality it can be shown that

||x− y||CT
≤ MeωT

√
Tǫ exp(2lTMeωT ). (14)

From the above inequality it is clear that ||x − y||CT
can be made arbitrary small by

choosing suitable w. Hence the theorem is proved. 2

Corollary 2.1 Under assumptions of the above theorem, system (1) is approximate
controllable if its corresponding linear system is approximate or exact controllable.

Proof. The proof is a particular case of Theorem 2.2 at α = T . 2

Remark 2.1 Fixed-point theory arguments make it necessary to assume uniform
boundedness of nonlinear term f with certain inequality condition involving various sys-
tem parameters, and/or compactness of semigroup T (t). But, these conditions (specially
inequality conditions) are not easy to verify in many situations. In this paper these
conditions are replaced with a range condition R(F ) ⊂ R(B1). Note that this range
condition is satisfied trivially for the system (1) if B is the identity operator. Obviously,
Theorem 2.2 gives the controllability of system (1) when b(t) = t in the case of constant
delay, and this case is explained in Example 3.1.
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3 Application

Example 3.1 Consider the following mathematical model

∂

∂t
y(t, x) =

∂2

∂x2
y(t, x) + u(t, x) + (

∫ 1

0

y(t, x)dx)y(t, x)

+ (

∫ 1

0

y(t− τ, x)dx)y(t − τ, x), 0 ≤ x ≤ 1, t ∈ [0, T ], (15)

y(t, 0) = y(t, 1) = 0, t ∈ [0, T ],

1

τ

∫ 0

−τ

e2sy(s, x)ds = y0(x), 0 ≤ x ≤ 1,

where y(t, .), u(t, .), y0 ∈ L2(0, 1). If we take

(1) X = L2(0, 1) as the state space and y(t, ·) = {y(t, x) : 0 ≤ x ≤ 1} as the state.

(2) input trajectory u(t, .) as the control and U = L2(0, 1) as the control space. Note
that, here X = U .

(3) A : D(A) ⊂ X → X defined by A(z) = d2z
dx2 with domain D(A) =

H2(0, 1)
⋂

H1
0 (0, 1). Then A is an infinitesimal generator of a C0-semigroup of

bounded linear operators; see [8].

(4) B = I.

(5) b(t) = t, and yb(t)(θ) ≡ y(t− τ, ·) (so this is a constant time-delay case).

(6) f : [0, T ]×X × C0 → X , T > 0 defined by

f(t, y(t, ·), yb(t)) = (

∫ 1

0

y(t, x)dx)y(t, ·) + (

∫ 1

0

y(t− τ, x)dx)y(t − τ, ·),

where 0 ≤ x ≤ 1, t ∈ [0, T ]. It is not hard to see that f satisfies (H4).

(7) h(z)(θ) = g(z) for z ∈ C0, θ ∈ [−τ, 0]; φ(θ) = y0. Here, g : C0 → X is such that

g(z)(x) = 1
τ

∫ 0

−τ
e2sz(s, x)ds. For this definition of h, we can find a function χ ∈ C0,

given by χ(θ) = 1
k
y0 on [−τ, 0] with k =

∫ τ

0
1
τ
e−2sds 6= 0, such that

h(χ)(θ) =
1

τ

∫ 0

−τ

e2s(
1

k
y0)ds = y0 = φ(θ), that is, h(χ) = φ.

Then (15) resembles control system (1) and has a mild solution (6) on [−τ, T ]. Now take
Y := L2([0, T ];L2(0, 1)), B1 = I : Y → Y , F : CT → Y as (Fz)(t) = f(t, z(t), zb(t)).

Then it is clear that R(F ) ⊂ R(B1). Since the corresponding linear system is approx-
imate controllable; [8], system (15) is approximate controllable due to Theorem 2.2.
Mathematical model (15) may be seen as the population dynamics, see [12], where

y(t, .) represents the population density at time t and the term ∂2

∂x2 y(t, x) describes the
internal migration. Moreover, the continuous functions B,D : [0, T ] → R+ given by

B(t) =
∫ 1

0 y(t− τ, x)dx and D(t) =
∫ 1

0 y(t, x)dx, represent average birth and death rates,
respectively, τ is the delay due to pregnancy, and source term u(t, x) represents a control.
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Example 3.2 Consider the control system governed by the following semilinear heat
equation

∂y(t, x)

∂t
=

∂2y(t, x)

∂x2
+Bu(t, x)

+ f(t, y, yb(t)); 0 < t < T, 0 < x < π, −τ ≤ θ ≤ 0,

y(t, 0) = y(t, π) = 0, t ∈ [0, T ], (16)

with the same initial condition as in the above example, where y(t, .), y0 ∈ L2(0, π).
Then (16) can be converted into (1), if we take:

(1) X = L2(0, π) as the state space and y(t, .) = {y(t, x) : 0 ≤ x ≤ π} as the state.

(2) input trajectory u(t, .) as the control.

(3) A : D(A) ⊂ X → X defined by A(z) = d2z
dx2 with domain D(A) =

H2(0, π)
⋂

H1
0 (0, π). Then, D(A) = X and A is an infinitesimal generator of a

C0-semigroup of bounded linear operators; see [8]. Further, if we take {φn(x) =
(2/π)1/2 sin(nx); 0 6 x 6 π;n ∈ N}, then {φn} is an orthonormal basis of X and
φn is an eigenfunction corresponding to the eigenvalue λn = −n2 of operator A.
Then the C0-semigroup generated by A has eλnt as the eigenvalues and φn as their
corresponding eigenfunctions.

(4) U = {u : u =
∑∞

n=2 unφn :
∑∞

n=2 u
2
n < ∞}, with norm |u|U = (

∑∞
n=2 u

2
n)

1/2 as the
control space. B is a continuous linear map from U to X defined as

Bu = 2u2φ1 +

∞
∑

n=2

unφn for u =

∞
∑

n=2

unφn ∈ U.

(5) b(t) = k| sin t|, k ∈ (0, 1) or b(t) = t2

1+t2
.

(6) h and χ are the same as in Example 3.1.

It shows that (16) has a mild solution (6) on [−τ, T ] provided f is Lipschitz con-
tinuous. Although, the same example has been discussed in [9, 18, 27] (with or with-
out delay and under local conditions), but approximate controllability was proved un-
der restrictions such as the uniform boundedness on f or some inequality constraints.
This paper shows that the approximate controllability also follows for non-uniform
bounded function f without having to satisfy any inequality constraint and without
using the compactness of C0-semigroup. For example, consider the function f given by
f(t, z, zb(t)) = α(‖z‖CT

+ ‖zb(t)‖C0
)(φ3(x) + φ4(x)), where α is a positive constant. Here

f is Lipschitz and R(F ) ⊆ R(B1). Moreover, this example shows that time-varying affer-
effect and generalized nonlocal conditions can also be handled by the theorem proved in

the previous section. In the above example b(t) = k| sin t|, k ∈ (0, 1) or b(t) = t2

1+t2
is a

theoretical construction but many physical and biological processes include time-varying
affereffect phenomena in their inner dynamics, see [20].

Example 3.3 Consider the system of infinite ordinary differential equations:

dx(t)

dt
= Ax(t) + u(t) + f(t, x(t), xb(t)),

l
∑

i=1

cix(θi) = x0, (17)

where x(t) = (x1(t), x2(t), . . .) ∈ l2. Then (17) resembles control system (1), if we take



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 12 (3) (2012) 303–310 309

(1) X = l2 as the state space and x(t) as the state.

(2) input u(t) = (u1(t), u2(t), . . .) as the control and U = l2 as the control space. Note
that, here X = U .

(3) A is a self-adjoint operator onX defined by Aei = λiei where {ei} is an orthonormal
basis of X and {λi}is a decreasing sequence of positive numbers such that lim

i→∞
λi =

λ0 > 0. Then A is an infinitesimal generator of a C0-semigroup of bounded linear

operators defined by T (t)x =

(

eλ1tx1, e
λ2tx2, . . .

)

.

(4) B = I and b is the same as in Example 3.2.

(5) f is defined by f(t, x(t), xb(t)) = (f1(t, x(t), xb(t)), f2(t, x(t), xb(t)), . . .), 0 ≤ t ≤ T .

(6) h(z)(θ) = g(z) for z ∈ C0, θ ∈ [−τ, 0]; φ(θ) = x0. Here, g : C0 → X is such that

g(z) =
∑l

i=1 ciz(θi);−τ ≤ θ1 < θ2 < · · · < θl ≤ 0. For this definition of h, we can

find a function χ ∈ C0, given by χ(θ) = 1
k
x0 on [−τ, 0] with k =

∑l

i=1 ci.

The approximate controllability of the linear system corresponding to (17) has been
proved by Triggiani [25]. In [22], the approximate controllability of (17) (without delay
and with local Cauchy condition) has been shown via the solvability of some operator
equations under the following conditions:

(i) The linear system is approximate controllable,
(ii) A generates a compact semigroup T (t),
(iii) The nonlinear operator f(t, x) satisfies the Lipschitz condition,
(iv) The operator f satisfies the growth condition ‖f(x(t))‖X ≤ a‖x(t)‖X + b,

(v) System constants satisfy the constraint eλ1T
√
T

2 ·
√

2MbT (e2MbT − 1) <
e2Tλ0−1

2eλ1T
√
Tλ0

, where ‖T (t)‖ ≤ eλ1τ = M for 0 ≤ t ≤ T .

But due to Theorem 2.2, it follows that the system (17) is approximate controllable
only under the above conditions (i) and (iii) for nonlinear operators those satisfy the
range condition, e.g. f is defined as f1(t, x(t), xb(t)) = a‖x‖ + b‖xb(t)‖ + c; a, b, and
c are positive constants and fi(t, x(t), xb(t)) = 0 for all i = 2, 3, . . .. This shows that
the inequalities such as (v) above, assumed by earlier author are not required to be
considered.
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1 Introduction

We study the third-order m-point boundary value problems (MPBVP) on time scales
with p-Laplacian,

(Φp(u
△∇))∇(t) + p(t)f(t, u(t)) = 0, t ∈ [0, T ]Tk∩Tk2 , (1)

u△∇(ρ(0)) = 0, u△(T ) = 0, u(ρ(0)) = B(

m−2
∑

1

αiu
△(ξi)), (2)

where Φp is p-Laplacian operator, i.e. Φp(s) = |s|p−2s, p > 1 and (Φp)
−1 = Φq with

1
p
+ 1

q
= 1. Here ρ(0) < ξ1 < ξ2 < ... < ξm−2 < σ(T ).

(H1) αi ∈ [0,∞), i = 1, 2, 3... and f : [0, T ]× [0,∞) → [0,∞) is left-dense continuous
function,
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(H2) p : [0, T ] → [0,∞) is left-dense continuous function,

(H3) B : R → R is continuous and satisfies the existence of B0 ≥ B1 > 0 such that
B0s ≤ B(s) ≤ B1s, for s ∈ [0,∞).

A time scale T is a nonempty closed subset of R. We make the blanket assumption
0, T are points in T. By an interval [0, T ], we always mean the intersection of the real
interval [0, T ] with the given time scale; that is [0, T ] ∩T. For t < supT and r > inf T,
define the forward jump operator σ and the backward jump operator ρ, respectively,
σ(t) = inf{τ ∈ T|τ > t} ∈ T, ρ(r) = sup{τ ∈ T|τ < r} for all t, r ∈ T. If σ(t) > t, t is
said to be right scattered, and if ρ(r) < r, r is said to be left scattered. If σ(t) = t, t is
said to be right dense, and if ρ(r) = r, r is said to be left dense. If T has a right scat-
tered minimum m, define Tk = T−{m}; otherwise set Tk = T. If T has a left scattered
maximum M , define Tk = T−{M}; otherwise set Tk = T. Some basic definitions and
theorems on time scales can be found in the books [4, 5].

p-Laplacian problems with two point, three point and multi point boundary condi-
tions for ordinary differential equations and difference equations have been studied by
several authors (see [6, 10, 16] and the references therein). Recently, there has been much
attention paid to the existence of positive solution for second-order and third-order non-
linear boundary value problems on time scales [1, 2, 9, 11, 12, 15, 17, 18]. However, to the
best of our knowledge, there are not many results concerning third-order p-Laplacian
dynamic equations on time scales.

In [8], Yanging Guo, Changlang Yu, Jufang Wang considered the existence of three
positive solutions for the following m-point boundary value problems on infinite intervals

(ϕp(x
′(t)))′ + φ(t)f(t, x(t), x′(t)) = 0, 0 < t <∞, (3)

x(0) =

m−2
∑

1

aix
′(ηi), lim

t→∞
x′(t) = 0. (4)

They used Avery–Henderson fixed-point theorem on a cone to prove the existence of
three positive solutions to the (3)− (4) nonlinear problems.

In [15], Sihua Liang, Jihui Zhang, Zhiyong Wang prove the existence of three positive
solutions for the following second order m-point boundary value problems

(Φ(p(t)u△(t)))∇ + a(t)f(u(t)) = 0, t ∈ [0, T ]Tk∩Tk
, (5)

u(0)−B0

(

m−2
∑

1

aiu
△(ξi)

)

= 0, u△(T ) = 0. (6)

for some dynamic equations on time scales using Legget–Williams fixed-point theorem.
In [11], Zhimin He obtained the existence of at least double positive solutions of the

following three-point boundary value problems

(Φp(u
△∇))∇ + a(t)f(u(t)) = 0, t ∈ [0, T ], (7)

u(0)−B0(u
△(η)) = 0, u△(T ) = 0, (8)

or

u△(0) = 0, u(T ) + B1(u
△(η) = 0, (9)
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by using double fixed-point theorem.
In [9], Wei Hang, Maoxing Liu considered the third-order nonlinear problem such

that

(Φp(u
△∇))∇ + a(t)f(u(t)) = 0, t ∈ [0, T ], (10)

αu(0)− βu△(0) = 0, u(T ) =

m−2
∑

1

aiu(ξi), u
△∇(0) = 0. (11)

They used the fixed-point theorem which is given by V.Lakshmikantham in [7] to
prove the existence of at least one nontrivial solution to the nonlinear problem (10)−(11).

Motivated by the results [15], in this paper, we will study the existence of multiple
positive solutions of third-order p-Laplacian MPBVP (1)− (2).

The aim of this paper is to establish some simple criteria for the existence of positive
solutions of the p-Laplacian MPBVP (1) − (2). This paper is organized as follows:
In Section 2 we first present some properties of the solution of the linear p-Laplacian
MPBVP corresponding to (1) − (2). In Section 3, we state the fixed-point theorems
in order to prove main results and we get the existence of at least one, two and three
positive solutions for nonlinear p-Laplacian MPBVP (1)− (2).

2 Preliminaries and Lemmas

To prove main results, we will give several lemmas and the following lemmas are
based on the linear p-Laplacian MPBVP

(Φp(u
△∇)∇(t) + h(t) = 0, t ∈ [0, T ]Tk∩Tk2 , (12)

u△∇(ρ(0)) = 0, u(ρ(0)) = B(

m−2
∑

1

aiu
△(ξi)), u

△(T ) = 0. (13)

Lemma 2.1 For h ∈ Cld([0, T ] × R), the problems (12) and (13) have the unique

solution

u(t) = B(

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

h(τ)∇τ)∇s) +
∫ t

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

h(τ)∇τ)∇s)△r. (14)

Proof. From the equation (12) we can easily obtain

u△∇(s) = −Φq(

∫ s

ρ(0)

h(τ)∇τ), u△(t) =

∫ T

t

Φq(

∫ s

ρ(0)

h(τ)∇τ)∇s

Therefore, we have

u(t) = u(ρ(0)) +

∫ t

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

h(τ)∇τ)∇s)△r.

Applying the boundary conditions (2.13) we have

u(t) = B(

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

h(τ)∇τ)∇s) +
∫ t

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

h(τ)∇τ)∇s)△r.
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It is easy to see that the p-Laplacian MPBVP (Φp(u
△∇(t))∇ = 0, u△∇(ρ(0)) = 0,

u(ρ(0)) = B(

m−2
∑

1

aiu
△(ξi)) = 0, u△(T ) = 0 has only the trival solution. Thus u is the

unique solution of (12) and (13). The proof is complete. 2

Let X denote Banach space Cld([ρ(0), T ], [0,∞)) with the norm ‖u‖ = sup |u(t)|,
t ∈ [ρ(0), T ]. Define the cone P ⊂ X by

P = {u ∈ X : u(t) > 0, u△(t) > 0, t ∈ [ρ(0), T ], u is concave}. (15)

For u ∈ P define the operator L by

Lu(t) = B(

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)

+

∫ t

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r. (16)

Obviously, from the definition of L we have Lu(t) ≥ 0 and for t ∈ [ρ(0), T ] we get

(Lu)△(t) =

∫ T

t

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s ≥ 0.

As

(Lu)△∇(t) = −Φq(

∫ t

ρ(0)

p(τ)f(τ, u(τ))∇τ) ≤ 0,

then Lu is concave. Therefore L : P → P and ‖Lu‖ = sup |Lu(t)| = Lu(T ) for
t ∈ [ρ(0), T ].

Also it is easy to check that L is a completely continuous operator by a standard
application of the Arzela-Ascoli theorem.

Lemma 2.2 If u ∈ P and ‖u‖ = sup |u(t)|, t ∈ [ρ(0), T ], then

u(t) ≥ t− ρ(0)

T − ρ(0)
‖u‖. (17)

Proof. It can be easily shown by the similar way as in Lemma 3.1 in the reference
[14].

3 Existence of Positive Solutions

In this section we will prove the existence of multiple positive solutions of our problem.
We will need also the following Krasnoselkii’s fixed-point theorem to prove the existence
of at least one positive solution of p-Laplacian MPBVP (1)–(2).

Theorem 3.1 [13] Let X be a Banach space and P ⊂ X be a cone. Assume Ω1

and Ω2 are open bounded subsets of P with 0 ∈ P, Ω1 ⊂ Ω2, and let

L : P ∩ (Ω2\Ω1) → P be a completely continuous operator such that either

(i) ‖Lu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1, ‖Lu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2;

or

(ii) ‖Lu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω1, ‖Lu‖ ≤ ‖u‖ for P ∩ ∂Ω2 hold.

Then L has a fixed point in P ∩ (Ω2\Ω1).
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Theorem 3.2 Assume conditions (H1) − (H3) are satisfied. In addition, suppose

there exist numbers 0 < r < R <∞ such that

(i) f(τ, u(τ)) ≤ Φp(
u

k1
), if 0 ≤ u ≤ r,

and

(ii) f(τ, u(τ)) ≥ Φp(
u

k2
), if R ≤ u ≤ ∞,

where

k1 = B1

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)∇τ)∇s +
∫ T

ρ(0

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)∇τ)∇s)△r,

k2 =

∫ T

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)Φp(
τ

T
)∇τ)∇s)△r.

Then the p-Laplacian MPBVP (1)− (2) has at least one positive solution.

Proof. Define the cone P as in (15). It is also easy to check that L : P → P is
completely continuous and LP ⊂ P . If u ∈ P with ‖u‖ = r then we get

‖Lu‖ ≤ B(

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)|f(τ, u(τ))|∇τ)∇s)

+

∫ T

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)|f(τ, u(τ))|∇τ)∇s)△r

≤ B1

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)Φp(
u

k1
)∇τ)∇s

+

∫ T

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)Φp(
u

k1
)∇τ)∇s)△r

=
u

k1
[B1

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)∇τ)∇s

+

∫ T

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)∇τ)∇s)△r]

= ‖u‖.

So if we set

Ω1 = {u ∈ Cld([ρ(0), T ], [0,∞)) : ‖u‖ < r},

then ‖Lu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1.
Let us now set

Ω2 = {u ∈ Cld([ρ(0), T ], [0,∞)) : ‖u‖ < R},
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then for u ∈ P with ‖u‖ = R, we have

‖Lu‖ = |B(

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)

+

∫ T

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r|

≥
∫ T

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)|f(τ, u(τ))|∇τ)∇s)△r

≥
∫ T

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)Φp(
u

k2
)∇τ)∇s)△r

≥
∫ T

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)Φp(
τ

T

‖u‖
k2

)∇τ)∇s)△r

=
‖u‖
k2

[

∫ T

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)Φp(
τ

T
)∇τ)∇s)△r

= ‖u‖.

Hence ‖Lu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2. Thus by the first part of Theorem 3.1, L has a
fixed point u ∈ P ∩ (Ω2\Ω1).

Therefore the p-Laplacian MPBVP (1) − (2) has at least one positive solution. 2

Applying the following Avery–Henderson fixed point theorem, we will prove the ex-
istence of at least two positive solutions to the p-Laplacian MPBVP (1)− (2).

Theorem 3.3 [3] Let P be a cone in a real Banach space X. Set

P (ψ, z) = {u ∈ P : ψ(u) < z}
If η and ψ are increasing, nonnegative continuous functionals on P, let θ be a nonnegative

continuous functional on P with θ(0) = 0 such that, for some positive constants z and γ
ψ(u) ≤ θ(u) ≤ η(u) and ‖u‖ ≤ γψ(u)

for all u ∈ P (ψ, z). Suppose that there exist positive numbers x < y < z such that

θ(λu) ≤ λθ(u) for all 0 < λ < 1 and u ∈ ∂P (θ, y).
If L : P (ψ, z) → P is completely continuous operator satisfying

(i) ψ(Lu) > z for all u ∈ ∂P (ψ, z)
(ii) θ(Lu) < y for all u ∈ ∂P (θ, y)
(iii) P (η, x) 6= ∅ and η(Lu) > x for all u ∈ ∂P (η, x). Then L has at least two fixed

points u1 and u2 such that

x < η(u1) with θ(u1) < y and y < θ(u2) with ψ(u2) < z.

Theorem 3.4 Assume (H1)− (H3) hold. Suppose there exist positive numbers x <
F
E
y < (ξ1−ρ(0))F

(T−ρ(0))E z such that the function f satisfies the following conditions:

(i) f(s, u) > Φp(
z
D
) for s ∈ [ξ1, T ] and u ∈ [z, T−ρ(0)

ξ1−ρ(0)z],

(ii) f(s, u) < Φp(
y
E
) for s ∈ [ρ(0), T ] and u ∈ [0, T−ρ(0)

ξ1−ρ(0)y],

(iii) f(s, u) > Φp(
x
F
) for s ∈ [ρ(0), ξm−2] and u ∈ [0, T−ρ(0)

ξm−2−ρ(0)x].

for some positive constants D, E and F. Then p-Laplacian MPBVP (1)− (2) has at least
two positive solutions u1 and u2 such that

u1(ξ1) < y and u1(ξm−2) > x, u2(ξ1) > y and u2(ξ1) < z.
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Let us define the positive constants D, E and F such that

D = B0

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ ξ1

ρ(0)

p(τ)∇τ)∇s +
∫ ξ1

ρ(0)

(

∫ T

ξ1

Φq(

∫ ξ1

ρ(0)

p(τ)∇τ)∇s)△r,

E = B1

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ T

ρ(0)

p(τ)∇τ)∇s +
∫ ξ1

ρ(0)

(

∫ T

ρ(0)

Φq(

∫ T

ρ(0)

p(τ)∇τ)∇s)△r,

F = B0

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ ξm−2

ρ(0)

p(τ)∇τ)∇s +
∫ ξm−2

ρ(0)

(

∫ T

ξm−2

Φq(

∫ ξm−2

ρ(0)

p(τ)∇τ)∇s)△r.

Proof. Define the cone P as in (15). We know L is completely continuous and
LP ⊂ P . Let the nonnegative increasing continuous functionals ψ, θ and η be defined on
the cone by
ψ(u) = minu(t) = u(ξ1), t ∈ [ξ1, ξm−2],
θ(u) = maxu(t) = u(ξ1), t ∈ [ρ(0), ξ1],
η(u) = maxu(t) = u(ξm−2), t ∈ [ρ(0), ξm−2].

For each u ∈ P , ψ(u) = θ(u) ≤ η(u). In addition for each u ∈ P

ψ(u) = u(ξ1) ≥
ξ1 − ρ(0)

T − ρ(0)
‖u‖. (18)

Also θ(0) = 0 and we have θ(λu) = λθ(u) and for u ∈ P and λ ∈ [0, 1] .
We now verify that all conditions of Theorem 3.3 are satisfied.

If u ∈ ∂P (ψ, z) then ψ(u) = mint∈[ξ1,ξm−2]u(t) = u(ξ1) = z. So we have u(t) ≥ z, for

t ∈ [ξ1, T ], and from (18) z ≤ u(t) ≤ ‖u‖ ≤ T−ρ(0)
ξ1−ρ(0)z for t ∈ [ξ1, T ]. Then assumption (i)

implies f(s, u) > Φp(
z
D
) for s ∈ [ξ1, T ].

Since Lu ∈ P we get

ψ(Lu) = Lu(ξ1)

= B(
m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)

+

∫ ξ1

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r

> B0

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s

+

∫ ξ1

ρ(0)

(

∫ T

ξ1

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r

> B0

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ ξ1

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s

+

∫ ξ1

ρ(0)

(

∫ T

ξ1

Φq(

∫ ξ1

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r
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>
z

D
{B0

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ ξ1

ρ(0)

p(τ)∇τ)∇s

+

∫ ξ1

ρ(0)

(

∫ T

ξ1

Φq(

∫ ξ1

ρ(0)

p(τ)∇τ)∇s)△r}

= z.

Hence condition (i) of Theorem 3.3 is satisfied.
Secondly, we show that (ii) of Theorem 3.3 is fulfilled. For this, we select u ∈ ∂P (θ, y).

Then
θ(u) = max

t∈[ρ(0),ξ1]
u(t) = u(ξ1) = y.

We know from (2.17)

0 ≤ u(t) ≤ T − ρ(0)

ξ1 − ρ(0)
y,

for t ∈ [ρ(0), T ]. Then assumption (ii) implies

f(s, u) < Φp(
y

E
),

for s ∈ [ρ(0), T ]. Therefore

θ(Lu) = Lu(ξ1)

= B(

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)

+

∫ ξ1

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r

< B1

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ T

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s

+

∫ ξ1

ρ(0)

(

∫ T

ρ(0)

Φq(

∫ T

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r

<
y

E
{B1

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ T

ρ(0)

p(τ)∇τ)∇s

+

∫ ξ1

ρ(0)

(

∫ T

ρ(0)

Φq(

∫ T

ρ(0)

p(τ)∇τ)∇s)△r}

= y.

Then condition (ii) of Theorem 3.3 holds.
Finally, we verify that (iii) of Theorem 3.3 is also satisfied.

Since 0 ∈ P and x > 0, P (η, x) 6= ∅, that η(0) = 0 < x. Now let u ∈ ∂P (η, x). Then

η(u) = max
t∈[ρ(0),ξm−2]

u(t) = u(ξm−2) = x.

We know from (2.17)

0 ≤ u(t) ≤ T − ρ(0)

ξm−2 − ρ(0)
x,
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for t ∈ [ρ(0), ξm−2]. Then assumption (iii) implies f(s, u) > Φp(
x
F
) for s ∈ [ρ(0), ξm−2].

As before, we get

η(Lu) = Lu(ξm−2)

= B(

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)

+

∫ ξm−2

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r

> B0

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ ξm−2

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s

+

∫ ξm−2

ρ(0)

(

∫ T

ξm−2

Φq(

∫ ξm−2

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r

>
x

F
{B0

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ ξm−2

ρ(0)

p(τ)∇τ)∇s

+

∫ ξm−2

ρ(0)

(

∫ T

ξm−2

Φq(

∫ ξm−2

ρ(0)

p(τ)∇τ)∇s)△r}

= x.

Since all conditions of Theorem 3.3 are satisfied, the p-Laplacian MPBVP (1)− (2) has
at least two positive solutions u1 and u2 such that

x < η(u1), θ(u1) < y and y < θ(u2), ψ(u2) < z. 2

We will use the following Legget-Williams fixed point theorem to prove the existence
of at least three positive solutions to the p-Laplacian MPBVP (1)− (2).

Theorem 3.5 [14]Let P be a cone in a Banach space X. Set

P (γ, c) = {u ∈ P : γ(u) < c}.
Let α, β and γ be three increasing nonnegative and continuous functionals on P, satis-

fying for some c > 0 and A > 0 such that

γ(u) ≤ β(u) ≤ α(u), ‖u‖ ≤ Aγ(u),
for all u ∈ P (γ, c). Suppose there exist a completely continuous operator L : P (γ, c) → P
and 0 < a < b < c such that

(i) γ(Lu) < c for all u ∈ ∂P (γ, c);
(ii) β(Lu) > b for all u ∈ ∂P (β, b) ;
(iii) P (α, a) 6= ∅ and α(Lu) < a for all u ∈ ∂P (α, a).

Then L has at least three fixed points u1, u2, u3 ∈ P (γ, c) such that

0 ≤ α(u1) < a < α(u2), β(u2) < b < β(u3), γ(u3) < c.

Theorem 3.6 Assume that conditions (H1) − (H3) are satisfied. Suppose there

exist positive numbers a < b < c such that function f satisfies the following conditions:

(i) f(s, u) < Φp(
c
E
) for all u ∈ [0, T−ρ(0)

ξ1−ρ(0)c],
(ii) f(s, u) > Φp(

fracbD) for all u ∈ [0, T−ρ(0)
ξ1−ρ(0)b],
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(iii) f(s, u) < Φp(
a
G
) for all u ∈ [0, T−ρ(0)

ξm−2−ρ(0)a].

Then there exist at least three positive solutions u1, u2, u3 of p-Laplacian MPBVP

(1.1)− (1.2) such that

0 ≤ α(u1) < a < α(u2), β(u2) < b < β(u3), γ(u3) < c.

For notational convenience, we denote G by

G = B1

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ T

ρ(0)

p(τ)∇τ)∇s +
∫ ξm−2

ρ(0)

(

∫ T

ρ(0)

Φq(

∫ T

ρ(0)

p(τ)∇τ)∇s)△r

and also we will take the constants D and E as in Theorem 3.4.

Proof. We define completely continuous operator L by (2.16). Let u ∈ ∂P (γ, c) then
Lu(t) ≥ 0 for t ∈ [0, T ]. We know that L : P (γ, c) → P . Let the nonnegative increasing
continuous functionals γ, β and α be defined on the cone by

γ(u) = maxu(t) = u(ξ1), t ∈ [ρ(0), ξ1],
β(u) = minu(t) = u(ξ1), t ∈ [ξ1, ξm−2],
α(u) = maxu(t) = u(ξm−2), t ∈ [ρ(0), ξm−2].

For each u ∈ P we have

γ(u) = β(u) ≤ α(u), γ(u) = u(ξ1) ≥
ξ1 − ρ(0)

T − ρ(0)
‖u‖.

We now show that all the conditions of Theorem 3.5 are satisfied. To make use of
property (i) of Theorem 3.5, we choose u ∈ ∂P (γ, c). Then γ(u) = maxt∈[ρ(0),ξ1] u(t) =

u(ξ1) = c. If we recall that ‖u‖ ≤ T−ρ(0)
ξ1−ρ(0)γ(u) =

T−ρ(0)
ξ1−ρ(0)c, we have for all t ∈ [ρ(0), T ]

0 ≤ u(t) ≤ T − ρ(0)

ξ1 − ρ(0)
c.

Then assumption (i) of Theorem 3.6 implies f(s, u) < Φp(
c
E
) for all s ∈ [ρ(0), T ],

γ(Lu) = Lu(ξ1)

= B(

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)

+

∫ ξ1

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r

< B1

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ T

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s

+

∫ ξ1

ρ(0)

(

∫ T

ρ(0)

Φq(

∫ T

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r

<
c

E
{B1

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ T

ρ(0)

p(τ)∇τ)∇s

+

∫ ξ1

ρ(0)

(

∫ T

ρ(0)

Φq(

∫ T

ρ(0)

p(τ)∇τ)∇s)△r}

= c.
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Hence condition (i) of Theorem 3.5 is satisfied.
Secondly we show that (ii) of Theorem 3.5 is fulfilled. For this, we select u ∈ ∂P (β, b).

Then β(u) = mint∈[ξ1,ξm−2] u(t) = u(ξ1) = b. This means u(t) > b t ∈ [ξ1, T ] and since

u ∈ P , we have b ≤ u(t) ≤ ‖u‖ ≤ T−ρ(0)
ξ1−ρ(0)b for all u ∈ P . So we have

b ≤ u(t) ≤ T − ρ(0)

ξ1 − ρ(0)
b,

for all t ∈ [ξ1, T ]. Then assumption (ii) of Theorem 3.6 implies f(s, u) > Φp(
b
D
) for all

s ∈ [ξ1, T ],

β(Lu) = Lu(ξ1)

= B(

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)

+

∫ ξ1

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r

> B0

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ ξ1

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s

+

∫ ξ1

ρ(0)

(

∫ T

ξ1

Φq(

∫ ξ1

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r

>
b

D
[B0

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ ξ1

ρ(0)

p(τ)∇τ)∇s +
∫ ξ1

ρ(0)

(

∫ T

ξ1

Φq(

∫ ξ1

ρ(0)

p(τ)∇τ)∇s)△r]

= b.

Then condition (ii) of Theorem 3.5 holds.

Finally we verify that (iii) of Theorem 3.5 is also satisfied. We note that u(t) ≡ a
2

is a member of P (α, a) and α(u) = a
2 < a for t ∈ [ρ(0), T ]. So P (α, a) 6= ∅. Now let

u ∈ ∂P (α, a), then α(u) = a. This implies that 0 ≤ u(t) ≤ a for t ∈ [ρ(0), ξm−2]. Note

that ‖u‖ ≤ T−ρ(0)
ξm−2−ρ(0)α(u) =

T−ρ(0)
ξm−2−ρ(0)a for all t ∈ [ρ(0), ξm−2 ]. So

0 ≤ u(t) ≤ T − ρ(0)

ξ1 − ρ(0)
a,

for all s ∈ [ρ(0), ξm−2]. As before, we get
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α(Lu) = Lu(ξm−2)

= B(

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)

+

∫ ξm−2

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r

< B1

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ T

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s

+

∫ ξm−2

ρ(0)

(

∫ T

ρ(0)

Φq(

∫ T

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r

<
a

G
{B1

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ T

ρ(0)

p(τ)∇τ)∇s

+

∫ ξm−2

ρ(0)

(

∫ T

ρ(0)

Φq(

∫ T

ρ(0)

p(τ)∇τ)∇s)△r}

= a.

The condition (iii) of Theorem 3.5 is satisfied. Therefore Theorem 3.5 implies that L has
at least three fixed points which are positive solutions u1, u2, u3 ∈ P (γ, c) such that

0 ≤ α(u1) < a < α(u2), β(u2) < b < β(u3), γ(u3) < c.

The proof of Theorem 3.6 is complete. 2

We can illustrate our result which is given in Theorem 3.4 in the following example.

Example 3.1 Let T= [0, 1] ∪ [2, 3]. We consider the following p-Laplacian dynamic
equation:

(Φp(u
△∇))∇(t) + p(t)f(t, u(t)) = 0, t ∈ [0, 3]

Tk∩Tk2 (19)

satisfying the boundary conditions

u△∇(0) = 0, u△(3) = 0, u(0) =

2
∑

1

αiu
△(ξi), (20)

where p = q = 2, α1 = α2 = 1
2 , m = 4, p(t) ≡ 1, B0 = B1 = 1 and

f(t, u) = f(u) =







u
2

104 + 6
10 , 0 ≤ u ≤ 103,

100.6 + 2(u− 103) , u > 103.

Taking x = 1, y = 10, z = 104, ξ1 = 1
2 , ξ2 = 5

2 ; it is easy to see that

D = 15
8 , E = 12, F = 10, x < F

E
y < F

6E z and then f(u) satisfies

f(u) > Φ2(
z

D
) = 5334 u ∈ [104, 6× 104],

f(u) < Φ2(
y

E
) = 0.84 u ∈ [0, 60],

f(u) > Φ2(
x

F
) = 0.1 u ∈ [0,

6

5
].
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The use of Theorem 3.4 implies four point BVP (19)− (20) has at least two positive
solutions u1, u2 satisfying

u1(
1
2 ) < 10 and u1(

5
2 ) > 1, u2(

1
2 ) > 10 and u2(

5
2 ) < 104. 2
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