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2 Univ. Lille Nord de France, F-59000 Lille, France,

UVHC, LAMIH, F-59313 Valenciennes, France,

CNRS, UMR 8201, F-59313 Valenciennes, France.

Received: November 17, 2011; Revised: October 7, 2012

Abstract: In this paper, a method for transforming the structure of a class of
underactuated mechanical system from tree to chain structure through a change of
coordinates and control law is proposed. The main goal of this transformation is to
allow apply control design methodologies suited to the chain structure, namely, the
feedback linearization and backstepping. The effectiveness of the proposed transfor-
mation is shown via an example of underactuated system that initially possesses a
tree structure and to which backstepping control was applied. However, the designed
control law presents a singularity that decreases the stability domain. In order to
make the latter global, a hybrid control strategy is adopted allowing to switch the
control near the singularities. The stability proof and simulation results for using the
hybrid switching are given.

Keywords: underactuated mechanical system; CFD; tree structure; chain structure;

systematic backstepping; Tora system; singularity; switching control.

Mathematics Subject Classification (2010): 93C10, 93D15.

∗ Corresponding author: mailto:mohamed.djemai@univ-valenciennes.fr

c© 2012 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua345

mailto: mohamed.djemai@univ-valenciennes.fr
http://e-ndst.kiev.ua


346 A. CHOUKCHOU-BRAHAM, B. CHERKI AND M. DJEMÄI

1 Introduction

Recently, there has been renewed and extensive research interest in the control of un-
deractuated mechanical systems due to their broad applications and due to the large
number of open theoretical problems they present. Many real-life control mechanical
systems including aircrafts, helicopters, spacecrafts, underwater vehicles, mobile robots,
walking robots and flexible systems are examples of underactuated systems. Underactu-
ated systems are systems that have fewer actuators than configuration variables. This
limitation in actuators makes the control design for these systems rather complicated.

As a result, an underactuated system presents challenges which are not found in a
system with full control. For instance, controllability, at least locally, is not easy to
determine. Most underactuated systems are not fully feedback linearizable, and smooth
feedback stabilization to a single equilibrium point is not possible [10]. Furthermore,
there is no general theory that allows the systematic analysis and control design for all
underactuated systems so that, most of time these systems have to be dealt with on a
case by case basis [15]. Consequently, different control strategies have been proposed
in the literature, among them there is the backstepping and forwarding control in [31],
[14], energy and passivity based control in [12], [17], sliding mode control [5], [9] and
observation [23], hybrid and switched control in [28], [41], intelligent and fuzzy control
in [38], [22] just to mention a few.

In [31], underactuated systems are classified into three types according to their control
flow diagram (CFD) which reflects the way generalized forces are transmitted through
components, namely, the chain, tree and isolated point structures. Additionally, the
author proposes a control design strategy for systems with chain structure. However, the
control design issue for other structures is still an open problem.

In this paper, based on the observation that the CFD of a given system is not in-
variant under change of coordinate, we will show that a subclass of tree structure can be
transformed in a chain structure so that the strategy of control for chain structure can
be applied. However, as a result of this transformation, one assumption that was laid in
the control scheme is satisfied only on a certain domain rather than on the whole space.
As a consequence, a singularity in the control law appears which limits the bassin of
attraction. To make this stability global, we propose a hybrid control allowing to switch
through these singularities.

Others strategies and viewpoints for dealing with singularities involve the use of
nilpotent approximations like in [36] and [26].

The outline of the paper is as follows. In Section 2, a standard model for underac-
tuated systems is presented. Next, in Section 3, definitions of the CFD, the chain and
the tree structure are given. In Section 4, the main result on the transformation of the
structure of an underactuated system from tree to chain is presented. In Section 5, the
proposed design procedure is applied to stabilize the so-called Tora system. Finally, the
hybrid control that permits to switch near the singularities is presented.

2 Dynamics of Underactuated Systems

It is well-known that classical Lagrangian mechanics provides dynamical model of un-
deractuated systems. In this paper, we consider mechanical systems with configuration
vector q ∈ Q, which is an n-dimensional manifold, and with a Lagrangian:

L = K − V =
1

2
q̇TM(q)q̇ − V (q), (1)
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where K is the kinetic energy, V(q) is the potential energy and M(q) is the inertia matrix
of the system which is symmetric and positive definite.

The Euler-Lagrange equation of motion is given by:

M(q)q̈ +H(q, q̇) = F (q)u, (2)

whereH(q, q̇) contains Coriolis, centrifugal and gravity terms and F (q) is identity matrix.
Suppose that q = col(q1, q2) ∈ Q1×Q2 where the dimension of the manifold Qi is denoted
by ni = dim(Qi) for i = 1, 2 and n1 + n2 = n; then, the system (2) can be written as:

m11(q)q̈1 +m12(q)q̈2 + h1(q, q̇) = τ1,
m21(q)q̈1 +m22(q)q̈2 + h2(q, q̇) = τ2.

(3)

The τi’s are the control inputs satisfying the conditions of either one of the following
actuation modes:

A1) τ = τ2 ∈ ℜn2 is the control input and τ1 ≡ 0;

A2) τ = τ1 ∈ ℜn1 is the control input and τ2 ≡ 0.

In both of the above cases, system (3) is an underactuated system. The actuation modes
A1 and A2 are important due to their applications in robotics. The Acrobot [33], the
Tora system [39] are actuated according to mode A1, while the Pendubot [34] and, the
cart-pole system [25] are actuated according to mode A2.

3 Control Flow Diagram

In [31] a Control Flow Diagram (CFD) is constructed for each mechanism to represent the
interaction forces among the degrees of freedom. Each CFD will be comprised of three
possible sructutres: chain (Figure 1(a)), tree (Figure 1(b)) or isolated point (Figure 1(c)).

(a) (b) (c)

Figure 1: CFD structures for an underactuated system with 2 degrees of freedom.

In terms of these structures a precise definition of the degree of complexity is given.
It was shown that the chain structure is the least complex, where both, feedback lin-
earization technique [20] and backstepping strategy [29] can be applied. A system with
tree structure is more difficult to control since we need to control certain configuration
variables in parallel; that is, one control input must control more than one degree of free-
dom simultaneously. For systems with isolated points, certain control goal are difficult to
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achieve because the control input have no influence on some variables at certain states.
Control design for the last two classes is currently under investigation.
From the above discussions, it is clear that if we can transform the tree structure (or at
least a subclass of tree structure) to a chain structure, then we will considerably simplify
the control design for this class of systems.

4 Systems with Chain Structure

The configuration variables in a chain structure affect each other in a serial way. The
most general representation of this serial connection is a triangular form given by Seto
and Baillieul in [31]:

q̈i = Ni(q1, · · · , qi+1, q̇1, · · · , q̇i+1), i = 1, · · · , n− 1, (4)

q̈n = Nn(q, q̇) +G(q, q̇)u,

where G(q, q̇) 6= 0, Ni(.)i = 1, · · · , n − 1 are smooths functions and either ∂Ni

∂q̇i+1
6= 0 or

∂Ni

∂q̇i+1
= 0 but ∂Ni

∂qi+1
6= 0 ∀(q, q̇) ∈ ℜ2n.

The former condition ensures the conrollability of the system while the latter one
ensures the connection between the degrees of freedom.

Note that the chain structure proposed here is different from the chained form systems
studied in [1], generally represented by the following configuration:

ξ̈1 = u1, (5)

ξ̈2 = u2,

ξ̈3 = ξ2u1.

In [31], Seto and Baillieul propose a systematic backstepping control strategy which
globally asymptotically stabilize systems in chain structure (4). However, few underatu-
ated systems are naturally in this form, the only examples we found are the mass sliding
on a cart system [31] and the robot with joint elasticity [7]. Most of the underatuated
systems are either in tree structure as the Acrobot, the Tora system, the Inverted pendu-
lum, or in isolated point as the Ball and Beam system [16], as far as simple systems with
two degrees of freedom are considered. As there is no systematic procedure for dealing
with tree structure and isolated point, such structures are generally studied on a case by
case basis.

In the next section, we propose to transform a subclass with tree structure into a
chain structure so that the well established backstepping design procedure associated
with chain structure can be applied.

5 Transformation from Tree Structure to Chain Structure

The construction of CFD for a given system depends on its coordinates, specially on the
choice of generalized coordinates and the external forces. Thus, the CFD is not invariant
under coordinate transformation. This simple observation leads us to search for a change
of coordinates in order to transform the CFD. Thus, we consider underactuated systems
satisfying the following assumptions:
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Assumptions 1

B1) q2 is the actuated variable (case A1).

B2) the considered system possesses a kinetic symmetry property, that is the inertia
matrix depends only on the variable q2 so that M(q) = M(q2).

B3) the quantity m−1
11 (q2)m12(q2) is integrable.

It is important to note that these assumptions are satisfied by a broad class of un-
deractuated systems. Our main result is presented in the next theorem.

Theorem 5.1 Assumming that Assumptions B1)-B3) hold, then an underactuated
system with tree structure can be transformed in a system with chain structure.

Proof. The proof can be broken down in two parts: first, we will show how an
underactuated system can be partially linearized. Next, we will show how the linearized
system can be expressed under a chain form.

In [32], Spong shows that all underatuated systems can be partially linearized using
the following change of control law:

τ = α(q)u + β(q, q̇) (6)

which transforms the dynamics of (3) into

q̇1 = p1, (7)

ṗ1 = f(q, p) + g0(q)u,

q̇2 = p2,

ṗ2 = u,

where α(q) is an m×m positive definite symmetric matrix and

g0(q) = −m−1
11 (q)m12(q).

In fact, from the first line of (3), for τ1 = 0 we have

q̈1 = −m−1
11 (q)h1(q, q̇)−m−1

11 (q)m12q̈2

which yields the expression for g0(q). Substituting this in the second line of (3), we get

(m22(q)−m21(q)m
−1
11 (q)m12(q))q̈2 + h2(q, q̇)−m21(q)m

−1
11 (q)h1(q, q̇) = τ

thus, defining

α(q) = m22(q)−m21(q)m
−1
11 (q)m12(q),

β(q, q̇) = h2(q, q̇)−m21(q)m
−1
11 (q)h1(q, q̇),

and observing that α(q) is positive definite and symmetric complete the first part of the
proof.

However, after applying this change of control law, the new control input u appears
both in linear and nonlinear subsystems. This means that (7) has a tree structure. The
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idea is to decouple the linear and nonlinear subsystems so that the system (7) will be in
a triangular form.

According to [25], an underactuated system which satisfies the preceding assumptions
can be transformed in a strict feedback normal form. In fact, the following change of
coordinates:

qr = q1 + γ(q2), (8)

pr = m11(q2)p1 +m12(q2)p2 :=
∂L

∂q̇1
,

transforms the dynamics of the system (7) into a cascade nonlinear system in strict
feedback form:

q̇r = m−1
11 (q2)pr, (9)

ṗr = g(qr, q2),

q̇2 = p2,

ṗ2 = u,

where

γ(q2) =

∫ q2

0

m−1
11 (θ)m12(θ) dθ, g(qr, q2) = −

∂V (q)

∂q1
.

The so obtained system is also in a triangular form. More precisely, in a chain structure,
since the control appears in the last equation and each variable affects the other in a
serial way. Hence, the tree structure is transformed in a chain structure.

Remark 5.1 For case A2 (i.e. q2 is not actuated) there is an other change of co-
ordinates to transform the initial system but the obtained normal form is not in strict
feedback form. It means that some tree structure could not be transformed in chain
structure as the cart pole system, the pendubot, the rotating pendulum and others.

In the next section, we will illustrate this procedure design by an example.

6 Application

The problem of controlling the Tora (Translational oscillator with rotational actuator)
system was introduced first by Wan, Brenstein and Coppola at the University of Michi-
gan [39] and has attracted much attention of control theorists recently; since it exhibits
nonlinear interaction between the translational and rotational motions. As a result,
it has been extensively used as a benchmark for nonlinear controllers for cascade sys-
tems; namely for passivity based approaches [19], integrator backstepping procedure [39],
sliding mode and robust controllers [24], dynamic surface control [27], Tensor product
distributed compensation and linear matrix inequality based controller [3], speed gradi-
ent [13] and even fuzzy controller with [18]. In the best of our knowledge, this work is
the first one where a switched control is applied to the Tora system. As a matter of fact,
this constitutes the second contribution of the present paper.

The Tora system, depicted in Figure 2, consists of a platform that can oscillate
without damping in the horizontal plane. On the platform a rotating eccentric mass is
actuated by a DC motor whose motion applies a force to the platform which can be used
to damp the translational oscillations. Assuming that the motor torque is the control
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variable, our task is to find a control law that stabilizes both rotation and translation to
the rest. This implies the Tora is an underactuated mechanical system.

Note that this system possesses 2 degrees of freedom (q1, q2) where q1 is the unactu-
ated variable and q2 is the actuated one. The Euler-Lagrange equation of motion for the

Figure 2: The Tora system.

Tora system is given by:

(m1 +m2)q̈1 +m2r cos(q2)q̈2 −m2r sin(q2)q̇
2
2 + kq1 = 0, (10)

m2r cos(q2)q̈1 + (m2r
2 + I2)q̈2 +m2gr sin(q2) = τ,

where m1 is the mass of the cart, m2 is the mass of the eccentric mass, r is the radius
of the rotation, k is the spring constant, g is the gravity acceleration and τ is the torque
input.

The system (10) can be rewritten as:

q̈1 =
1

detM(q2)
(−m2r cos(q2)τ + gm2

2r
2
2 cos(q2) sin(q2) (11)

−(m2r
2 + I2)(kq1 −m2r sin(q2)q̇

2
2)),

q̈2 =
1

detM(q2)
((m1 +m2)τ − (m1 +m2)m2gr sin(q2)

+m2r cos(q2)(kq1 −m2r sin(q2)q̇
2
2)),

with detM(q2) = (m1 +m2)(m2r
2 + I2)− (m2r cos(q2))

2.
The associated CFD to (11) is given by Figure 3 which is in tree structure. After a

partial linearization using change of control input:

τ = α(q)u + β(q, q̇) (12)

with

α(q2) = (m2r
2 + I2)−

(m2r cos(q2))
2

m1 +m2
∀q2 ∈ [−π, π],

β(q, q̇) = m2gr sin(q2)−
m2r cos(q2)

m1 +m2
(kq1 −m2r sin(q2)q̇

2
2).

The dynamics of the Tora becomes



352 A. CHOUKCHOU-BRAHAM, B. CHERKI AND M. DJEMÄI

Figure 3: Tora system CFD.

q̇1 = p1, (13)

ṗ1 = f0(q, p) + g0(q)u,

q̇2 = p2,

ṗ2 = u,

with

f0(q, p) =
(m2r sin(q2))p2 − kq1

m1 +m2
, g0 =

m2r cos(q2)

m1 +m2
.

Note that M(q) = M(q2), that the Tora system is actuated according to mode A1
and the function γ(q2) can be calculated explicitly as

γ(q2) =

∫ q2

0

m2r cos(θ)

m1 +m2
dθ =

m2r sin(q2)

m1 +m2

so all the assumptions B1-B3 are verified. Thus, the global change of coordinates:

qr = q1 +
m2r sin(q2)

m1 +m2
, (14)

pr = (m1 +m2)p1 +m2r cos(q2)p2,

transforms the dynamics of the Tora system into cascade nonlinear system in strict
feedback form:

q̇r =
1

(m1 +m2)
pr, (15)

ṗr = −kqr + kγ(q2),

q̇2 = p2,

ṗ2 = u.

The system (15) can be written as:

q̈r = −
k

m1 +m2
qr +

km2r

(m1 +m2)2
sin(q2), (16)

q̈2 = u,

which is in the form of a chain structure. The associated CFD to (16) is given by Figure
4 Hence, the change of control (12) and the coordinates transformation (14) transform
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Figure 4: CFD of the transformed Tora system.

the tree structure of the Tora system into a chain structure.

Next, as the Tora is now expressed as a chain structure, we can then apply the
procedure proposed by Seto and Baillieul in [31], to design the control law that globally
asymptotically stabilizes the system. In order to apply this procedure, one must first
verify the following assumptions:

Assumptions 2

C1) Ni(0) = 0, i = 1, · · · , n.

C2) For each i = 1, · · · , n − 1, Ni(.) are smooth functions with bounded states
q1, · · · , qi, q̇1, · · · , q̇i, the boundedness of the function Ni implies the boundedness
of the states qi+1 and q̇i+1.

C3) Either ∂Ni

∂q̇i+1
6= 0 or ∂Ni

∂q̇i+1
= 0 but ∂Ni

∂qi+1
6= 0 ∀(q, q̇) ∈ ℜ2n.

C4) For any ∂Ni

∂q̇i+1
6= 0 , the nonlinear system

Ni(0, · · · , 0, qi+1, 0, · · · , 0, q̇i+1) = 0 is globally asmptotically stable at the origin, or
when ∂Ni

∂q̇i+1
= 0 but ∂Ni

∂qi+1
6= 0, the nonlinear system

Ni(0, · · · , 0, qi+1, 0, · · · , 0) = 0 is globally asmptotically stable at the origin.

Assumption C1 is a necessary condition for the origin to be an equilibrium point of
the closed loop system. C2 is necessary to avoid the peaking phenomenon, C3 ensures
the connection between degrees of freedom of the system and C4 is equivalent to the
condition on the global asymptotic stability of the zero dynamics.

Then, the procedure is defined as follows. Let q̄1 = [q1, q̇1]
T , b = [0, 1]T , P is a

positive definite matrix with all elements being positive and Ni, Nn and G are variables
defined in (4). The sequences ei, Gi and Wi are defined as:

e1 = q̄T1 Pb, G1 = 1, W1 = 0,

for i = 1, · · · , n− 1,

ei+1 = GiNi +Wi + kiei,

Gi+1 = ∂Ni

∂q̇i+1
Gi,

Wi+1 =
∑i+1

j=1
∂ei+1

∂qj
q̇j +

∑i
j=1

∂ei+1

∂q̇j
Nj + ei,






if ∂Ni

∂q̇i+1
6= 0;

(17)
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ei+1 = Gi+1q̇i+1 +W(i+1)1 + k(i+1)1e(i+1)1,
e(i+1)1 = GiNi +Wi + kiei,

Gi+1 = ∂Ni

∂qi+1
Gi,

Wi+1 =
∑i+1

j=1
∂ei+1

∂qj
q̇j +

∑i

j=1
∂ei+1

∂q̇j
Nj + e(i+1)1,

W(i+1)1 =
∑i

j=1(
∂e(i+1)1

∂qj
q̇j +

∂e(i+1)1

∂q̇j
Nj) + ei,







if ∂Ni

∂q̇i+1
= 0;

and k(i+1)1, ki, i = 1, · · ·n− 1, kn are positive constants.
The control law is chosen according to the following theorem.

Theorem 6.1 [31] Under assumptions C1-C4, the system (4) is globally asymptot-
ically stable at the origin if the control law is chosen as

u = −(GnNn + wn + knen)(GnG)−1. (18)

The application of the above control scheme to the Tora system leads to the following
control law:

unL = −
(m1 +m2)

2

k cos(q2)
(c1q̇r +

k

(m1 +m2)2
q̇2(c2 cos(q2)− q̇2) + c3qr + c4 sin(q2)), (19)

where c1, c2, c3, c4 are positive constants. Clearly the obtained control law is simple and
easy to implement. In addition, the rate of convergence can be controlled by adjusting
the gain constants ci.

Nevertheless, this control is valid for any q2 6= (2k + 1)π/2. This is a consequence
of the fact that assumption C3, is not always verified ∀(q, q̇) ∈ ℜ2n, since for the Tora
system ∂Ni

∂qi+1
6= 0 only for q2 6= (2k + 1)π/2.

This means that the control has singularities that make the bassin of attraction not
the entire space and hence the stability is not global.

One solution to avoid divergence of the states is to adjust the gains such that the
trajectories are kept near the equilibrium. However, keeping trajectories near the equi-
librium will imply little effort but will induce large settling time. Moreover, if the initial
conditions of q2 are chosen greater or equal to π/2, the states and the control will diverge
due to the singularity; therefore, this solution must be discarded.

In the next section, we present a solution to make the asymptotic stability global; i.e.
a control system that is valid for any initial conditions.

7 Switching Through Singularities

The idea is to use a hybrid control law which switches between the designed control
law (19) away from singularities and another control law that will be designed close the
singularities. Control techniques based on switching between different controllers have
been applied extensively in recent years [35, 40, 41]. The importance of such control
stems from the existence of systems that cannot be asymptotically stabilized by a single
continuous feedback control law.

Now, we must design the second control law and the procedure we used is very
simple. The idea is to use the Jacobian linearized system around the singularity point to
calculate a linear control law that will be applied near singularities. Once the trajectories
go through the neighborhood of singularities, we come back to the nonlinear control law
to achieve global asymptotic stabilization of all the states.
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7.1 Expression of the linear control law

The linearized model of the Tora system around (qr, pr, q2, p2) = (0, 0, π/2, 0) is given
by:

δ̇qr =
1

(m1 +m2)
δpr, (20)

δ̇pr = −kδqr,

δ̇q2 = δp2,

δ̇p2 = δu.

The new problem that appears now is that the subsystem (δqr, δpr) is not controllable;
fortunately, it is stable. Due to Borckett in [4], if the uncontrollable modes are stable,
the whole system can still be stabilized.

The linear control law is given by:

uL = −Kx, (21)

where x = [δq2, δp2]
T and K = [K1 K2] is a matrix gain fixed either by LQR or by pole

placement approaches.

Remark 7.1 Note that, even the uncontrolled modes of the linearized system around
the singularity point are stable, it does not mean that the whole system is stable. Indeed,
if any control is applied to the Tora system, all trajectories will go to infinity since 1

cosq2
becomes very large.

The application in simulation of this switched control to the Tora system with the
parameters m1 = 10kg,m2 = 1kg, k = 5N/m, r = 1m, I = 1kg/m, shows the effective-
ness of the proposed procedure, see Figure 5. In fact, even for hard initial conditions
like the singularity point q2 = π/2 (Figure 6) or a far initial point q2 = π (Figure 7),
the proposed control law still stabilizes the system. The switch from one control to the
other is orchestrated by the state q2, so that, while |q2| is out of the interval π

2 ± e, the
nonlinear control unL is applied and when |q2| goes through this interval, we switch to
the linear control uL )Figure 8). The size of this interval is directly related to the control
effort. In fact, we have noted that small value of e (around 0.2 or 0.3) (Figure 9) leads
to more important effort than larger value of e (like 0.5 or 0.6) (Figure 5). This is due to
the fact that with a large interval, we do not allow cos(q2) to become too small in order
to avoid great value for unl.

7.2 Stability proof of the hybrid control

Mathematically, a switched system can be described by a differential equation of the
form:

ẋ = fp(x), p ∈ P , (22)

where P is an index set and let σ(t) = p = {1, 2} be a switching signal. We are assuming
here that the individual subsystems have the origin as a common equilibrium point
fp(0) = 0.

Remark 7.2 A necessary condition for asymptotic stability under arbitrary switch-
ing is that all of the individual subsystems are asymptotically stable. However, this
condition is not sufficient [21]. Nevertheless, if switching among asymptotically stable
subsystems is slow enough, one would intuitively expect a stable response.



356 A. CHOUKCHOU-BRAHAM, B. CHERKI AND M. DJEMÄI

Figure 5: States trajectories and control input of the Tora system for the initial condition
(q1, q2, p1, p2) = (1, 0, 0, 0).

It is easy to see that if the family of systems (22) has a common Lyapunov function
V such that ∇V (x)fp(x) < 0 for all x 6= 0 and all p ∈ P , then the switched system is
asymptotically stable for any switched signal σ [21]. Hence, one possible approach to
prove the stability of the hybrid system is to find a common Lyapunov function for the
family (22). If we can not find such function, one tool for proving stability in such cases
employs multiple Lyapunov functions (see [2], [8] and the references therein). Since the
individual subsystems in the family (22) are assumed to be asymptotically stable, there
is a family of Lyapunov functions [Vp : p ∈ P ] such that the value of Vp decreases on
each interval where the p− th subsystem is active. Then, the switched system is globally
asymptotically stable if for every p the value of Vp at the end of each such interval exceeds
the value at the end of the next interval on which the p− th subsystem term is active [21]

For the Tora system, these functions are given by:
VnL = 1

2 q̄
T
1 P q̄1 +

1
2e

2
21 +

1
2e

2
2 for the nonlinear subsystem,

VL = 1
2 x̃

TRx̃ for the linearized subsystem,
where q̄1, P , e21 and e2 are variables defined in the sequences of the control scheme (17),
x̃ = (δqr, δpr, δq2, δp2) is the vector of coordinates of the linearized system and R is a
symmetric positive definite matrix.

In a previous work [6], we give the proof that VnL is a Lyapunov function for the
nonlinear subsystem under unL control. We first recall briefly this proof and then give
the one related to the linearized subsystem under uL control.

In [31], the authors did not give the proof of Theorem 6.1 and refer the reader to
the proof given for the adaptive case for system with parametric uncertainties in [30].
Moreover, the proof there is given only for the control derived from the first sequences
in (17). We propose to give the proof of Theorem 6.1 for system with no parametric
uncertainties and for the case when the control is derived from the second sequences in
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Figure 6: States trajectories and control input of the Tora system for the initial condition
(q1, q2, p1, p2) = (1, π

2
, 0, 0).

(17) since for the Tora system ∂Ni

∂q̇i+1
= 0 but ∂Ni

∂qi+1
6= 0.

Proof. As the Tora system possesses two degrees of freedom, we limit the proof
to the case n = 2. For each degree of freedom qi, qi+1 can be considered as a ”control
variable” which governs the behavior of qi. Hence, we determine a reference position qr2
for q2 such that when q2 → qr2, q1 will behave as desired.
Step 1 i = 1.

When ∂N1

∂q̇2
= 0 and ∂N1

∂q2
6= 0, we obtain the differential equation

q̈1 = N1(q1, q2, q̇1) (23)

and define a reference position qr2 as qr2 = q2−N1− k1q1− k2q̇1. The error between the
reference and the actual position is given by
e21 = q2 − qr2 = N1 + k1q1 + k2q̇1 ⇒ N1 = e21 − k1q1 − k2q̇1. Define

q̄1 =

(
q1
q2

)

, A =

(
0 1

−k1 −k2

)

, b =

(
0
1

)

,

where k1 and k2 are chosen such that q̈1 + k2q̇1 + k1q1 = 0 is asymptotically stable at
(q1, q̇1) = (0, 0). This implies the existence of a positive definite matrix P such that
ATP + PA = −Q < 0. Applying the above definitions to (23), we get

˙̄q1 = Aq̄1 + be21.

Consider the following Lyapunov function

V11 =
1

2
(q̄T1 P q̄1 + e221) (24)



358 A. CHOUKCHOU-BRAHAM, B. CHERKI AND M. DJEMÄI

Figure 7: States trajectories and control input of the Tora system for the initial condition
(q1, q2, p1, p2) = (1, π, 0, 0).

The time derivative V̇ is given by

V̇11 = −
1

2
q̄T1 Qq̄1 + q̄T1 Pbe21 + e21 ˙e21,

if e1 = q̄T1 Pb and ν11 = 1
2 q̄

T
1 Qq̄1, then

V̇11 = −ν11 + e21(ė21 + e1)

= −ν11 + e21(Ṅ1 + k1q̇1 + k2q̈1 + e1)

= −ν11 + e21(
∂N1

∂q1
q̇1 +

∂N1

∂q2
q̇2 +

∂N1

∂q̇1
q̈1 +

∂N1

∂q̇2
q̈2

+k1q̇1 + k2q̈1 + e1)

= −ν11 + e21((
∂N1

∂q1
− k1)q̇1 +

∂e21
∂q2

q̇2 + (
∂e21
∂q̇1

− k2)q̈1

+k1q̇1 + k2q̈1 + e1)

= −ν11 + e21(
∂N1

∂q2
︸ ︷︷ ︸

def
= G2

q̇2 +
∂e21
∂q1

q̇1 +
∂e12
∂q̇1

N1 + e1
︸ ︷︷ ︸

def
= W21

)

= −ν11 + e21(G2q̇2 +W21).

Note that, we cannot reach u through q̇2 but rather through q̈2. Hence, we add a step
where we determine a reference velocity q̇r2 for q̇2 such that e21(G2q̇2 + W21) is made
nonpositive q̇r2 = q̇2 −G2q̇2 −W21 − k21e21.
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Figure 8: Switching regions for the control.

Figure 9: States trajectories and control input of the Tora system for the initial condition
(q1, q2, p1, p2) = (1, 0, 0, 0) and e = 0.2.
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The error between the reference and the actual velocity is given by
e2 = q̇2 − q̇r2 = G2ẋ2 +W21 + k21e21 ⇒ G2q̇2 +W21 = e2 − k21e21, then

V̇11 = −ν11 + e21(e2 − k21e21)

= −ν11 − k21e
2
21 + e21e2

= −ν1 + e21e2

with ν1 = ν11 + k21e
2
21.

To compensate for e2, we modify the scalar function V11 as V1 = V11 +
1
2e

2
2. Differ-

entiating V1, we obtain

V̇1 = V̇11 + e2ė2

= −ν1 + e21e2 + e2ė2

= −ν1 + e2(ė2 + e21)

= −ν1 + e2(
∂e2
∂q1

q̇1 +
∂e2
∂q2

q̇2 +
∂e2
∂q̇1

q̈1 + e21
︸ ︷︷ ︸

def
= W2

+
∂e2
∂q̇2
︸︷︷︸

G2

q̈2)

= −ν1 + e2(G2q̈2 +W2)

= −ν1 + e2(G2(N2 +Gu) +W2).

Finally, the expression of the Lyapunov derivative is

V̇1 = −ν1 + e2(G2N2 +G2Gu+W2). (25)

In order to make V̇1 nonpositive, it is enough to choose u such that

e2(G2N2 +G2Gu +W2) = −k2e
2
2. (26)

Thus the expression of the control law that globally asymptotically stabilizes the system
is given by

u = −(GnNn + wn + knen)(GnG)−1.

Note that, GnG is invertible since both Gn and G are different from 0 by assumptions
(G 6= 0 to ensure controllability and Gn 6= 0 because of Gn definition in sequences (17)
and of assumption C3).

Step 2 i = 2.

The final Lyapunov function is given by V2 = V1 such that V̇2 = −ν2 − k2e
2
2.

In this work, we take VnL = V2 as the Lyapunov function of the nonlinear subsystem.
Next, as the subsystem (20) is linear, we can choose a Lyapunov function of the form

VL =
1

2
x̃TRx̃.

If the matrix R is chosen diagonal then, VL can be expressed as:

VL =
1

2
(R1x̃

2
1 +R2x̃

2
2 +R3x̃

2
3 +R4x̃

2
4).
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Differentiating VL, we obtain:

V̇L = R1x̃1
˙̃x1 +R2x̃2

˙̃x2 +R3x̃3
˙̃x3 + R4x̃4

˙̃x4

= (
R1

m1 +m2
−R2k)x̃1x̃2 + (R3 −K1R4)x̃3x̃4 −K2R4x̃

2
4.

(27)

If the elements of the matrix R are chosen so that the conditions
{

R1

m1+m2
= R2k,

R3 = K1R4,

are verified. Then
V̇L = −K2R4x̃

2
4.

The use of the LaSalle invariance principle finishes the proof.
The analysis of the stability of switched control is very difficult by means of analytical

tools, so, often we are bounded to use numerical calculations [11]. The energy profile of
the switched control is illustrated in Figure 10.

Figure 10: Energy profile of the switched system.

According to this figure, the Lyapunov functions VnL and VL satisfy the above con-
dition and hence we can conclude that the Tora system is globally asmptotically stable.

8 Conclusion

In this paper, a transformation methodology for a class of underactuated system with
tree structure to another underactuated system with chain structure is proposed by using
a change of control and coordinates; so that control design strategies pertaining to the
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last structure can be applied. This transformation is possible under some conditions
on integrability, symmetry property and actuation of certain variables that hold for
broad applications of underactuated systems such as the Acrobot, Tora, Inertia-wheel
pendulum, VTOL aircraft and others. As an illustrating example, the design procedure
has been applied to an underactuated system with initially tree structure. However, as
the obtained control law contains singularities, a hybrid control scheme that switches
between a linear control law, in a neighborhood of the singularities, and a nonlinear
one outside of this neighborhood is presented. Simulation results have shown the good
performance and effectiveness of the proposed control strategy.
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