Nonlinear Dynamics and Systems Theory, 12 (4) (2012) 383-388

A Compactness Condition for Solutions of Nonlocal Boundary Value Problems of Orders $n = 3, 4 \& 5^{\dagger}$

J. Henderson *

Department of Mathematics, Baylor University, Waco, TX 76798-7328, USA

Received: May 6, 2011; Revised: October 7, 2012

Abstract: For the ordinary differential equation, $y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$, of order n = 3, 4, or 5, it is shown that the existence of unique solutions of certain 4-point nonlocal boundary value problems implies a compactness condition on uniformly bounded sequences of solutions.

Keywords: *boundary value problem; nonlocal; continuous dependence; compactness condition.*

Mathematics Subject Classification (2010): 34B10, 34B15.

1 Introduction

In a recent paper, for $n \ge 3$ and $1 \le k \le n-1$, Henderson [6] studied solutions of the ordinary differential equation,

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)}), \quad a < x < b,$$
(1)

satisfying the (k+2)-point nonlocal boundary conditions,

$$y^{(i-1)}(x_j) = y_{ij}, \ 1 \le i \le m_j, \ 1 \le j \le k, y(x_{k+1}) - y(x_{k+2}) = y_n,$$
(2)

for positive integers m_1, \ldots, m_k such that $m_1 + \cdots + m_k = n - 1$, points $a < x_1 < x_2 < \cdots < x_k < x_{k+1} < x_{k+2} < b$, real values $y_{ij}, 1 \le i \le m_j, 1 \le j \le k$, and $y_n \in \mathbb{R}$. In particular, sufficient conditions were given under which the existence of solutions for 4-point nonlocal boundary value problems for (1), (2), (that is, when k = 2), led to the existence of unique solutions of (k + 2)-point nonlocal boundary value problems for (1), (2), for all $1 \le k \le n - 1$.

Fundamental to that paper's main result was the following list of assumptions on solutions of (1).

 $^{^{\}dagger}$ In memory of Professor Keith W. Schrader, April 22, 1938 – December 27, 2010.

^{*} Corresponding author: mailto:Johnny_Henderson@baylor.edu