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1 Introduction

The stability problem of nonlinear time-varying systems has attracted the attention of
several authors and has produced many important results [8], [11], [12], [13] and [14]
and the references therein. The problem of state trajectory control for nonlinear systems
by output feedback has received much attention. For systems with non-periodically
time-varying parameters, an output feedback control design is proposed in [4] for linear
time-varying systems based on the gradient algorithm. In [5], a new design is proposed for
the state feedback control of multivariable linear time-varying systems. The new design
is based on inversion state transformation and a forward differential Riccati equation.

The condition that we impose on the globally stabilizing state feedback control law is
that it does not vanish asymptotically for large values. Then, we will give a separation
principle based on analysis results for cascaded systems, as done for instance in [1] ,
[2], [3], [6], [7], [9] and [10]. However, in contrast to [11] we stress that our results will
be formulated for time-varying systems and hence are applicable to tracking problems.
Moreover as mentioned above, in [15] the author imposes the more restrictive assumption
ISS. Our cascades criteria lead to milder conditions.

The main contribution of this paper is the separation principle of nonlinear systems
by a linear output feedback under a generalized conditions. A practical stability approach
is obtained. Furthermore, we give an example to show the applicability of our result
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2 General Definitions

We consider the system

ẋ(t) = F (t, x), x(t0) = x0, (1)

where t ∈ R+, x ∈ R
n is the state. The function F : [0,+∞[×R

n −→ R
n is piecewise

continuous in t and locally Lipschitz in x.

We now introduce the notions of uniform boundedness and uniform ultimate bound-
edness of a trajectory of (1) (see [8]).

Definition 2.1 The system (1) is uniformly bounded if for all R1 > 0, there exists a
R2 = R2(R1) > 0, such that for all t0 ≥ 0

‖x0‖ ≤ R1 ⇒ ‖x(t)‖ ≤ R2, ∀t ≥ t0.

Definition 2.2 The system (1) is uniformly ultimately bounded if there exists R > 0,
such that for all R1 > 0, there exists a T = T (R1), such that for all t0 ≥ 0

‖x0‖ ≤ R1 ⇒ ‖x(t)‖ ≤ R, ∀t ≥ t0 + T.

Let r ≥ 0 and Br = {x ∈ R
n/‖x‖ ≤ r}. First, we give the definition of uniform

stability and uniform attractivity of Br.

Definition 2.3 (Uniform stability of Br) (i) Br is uniformly stable if for all ε > r,
there exists δ = δ(ε) > 0, such that for all t0 ≥ 0

‖x0‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ t0.

(ii) Br is globally uniformly stable if it is uniformly stable and the solutions of system
(1) are globally uniformly bounded.

Definition 2.4 (Uniform attractivity of Br) Br is globally uniformly attractive, if
for all ε > r and c > 0, there exists T (ε, c) > 0, such that for all t0 ≥ 0

‖x(t)‖ < ε, ∀t ≥ t0 + T (ε, c), ‖x0‖ < c.

Definition 2.5 The system (1) is globally uniformly practically asymptotically sta-
ble if there exists r ≥ 0, such that Br is globally uniformly stable and globally uniformly
attractive.

Definition 2.6 Br is globally uniformly exponentially stable if there exist γ > 0 and
k ≥ 0, such that for all t0 ∈ R+ and x0 ∈ R

n

‖x(t)‖ ≤ k‖x0‖ exp(−γ(t− t0)) + r.

The system (1) is globally practically uniformly exponentially stable if there exists r > 0,
such that Br is globally uniformly exponentially stable.
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3 Basic Results

We consider now the following dynamical system

{

ẋ(t) = A(t)x(t) +B(t)u(t) + f(t, x(t)),

y(t) = C(t)x(t),
(2)

where x(t) ∈ R
n is the system state, y(t) ∈ R

p is the system output, u(t) ∈ R
m is the

control input and A(t) ∈ R
n×n, B(t) ∈ R

n×m, C(t) ∈ R
p×n are matrices whose elements

are bounded continuous or piecewise continuous functions of time. The function f(t, x)
is continuous, locally Lipschitz in x and there exists a non negative constant f0, such
that

‖f(t, 0)‖ ≤ f0, ∀t ≥ 0.

The corresponding nominal system is described by

{

ẋ(t) = A(t)x(t) +B(t)u(t),

y(t) = C(t)x(t),
(3)

3.1 Stabilization

We prove in this subsection the stabilization of system (2) by a state feedback control
candidate. It is assumed that the system (3) is uniformly controllable (see [5]).

Definition 3.1 The pair (A(t), B(t)) is uniformly controllable if there exist ∆ and
another constant α depending on ∆, such that the controllability grammian I(t −∆, t)
satisfies

I(t−∆, t) =

∫ t

t−∆

ψ(t−∆, τ)B(τ)BT (τ)ψT (t−∆, τ)dτ ≥ αI > 0,

in which ψ(t, τ) is the state transition matrix A(t) and is defined by

∂ψ(t, t0)

∂t
= A(t)ψ(t, t0), ψ(t, t) = I,

ψ(t, t0)ψ(t0, s) = ψ(t, s)

and
ψ(t0, t) = ψ−1(t, t0).

We find from [5] the state feedback gain K(t), such that the control input

u(t) = K(t)x(t) (4)

with
K(t) = R−1

1 (t)B
T
(t)P (t),

where P (t) is the solution of the forward differential Riccatti equation

Ṗ (t) = −AT
(t)P (t)− P (t)A(t) +R1(t)− P (t)B(t)R−1

2 (t)B
T
(t)P (t), P (0) = P0 > 0,

(5)
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in which
A(t) = −T (x)A(t)T−1(x), B(t) = T (x)B(t),

with

T (x) = I − 2
x(t)xT (t)

xT (t)x(t)
,

R1(t) > 0, R2(t) > 0 and R1(t), R2(t), R
−1
1 (t), R−1

2 (t) are all uniformly bounded.

Proposition 3.1 (see [6]) Consider the system (3) and the state feedback control (4)
and (5), if the system (3) is uniformly controllable, the closed-loop system is globally
exponentially stable.

Notice that, the system (3) in closed-loop with the linear feedback u(t) = K(t)x(t)
is globally exponentially stable, then from [6] we have for all positive definite symmetric
matrix Q1(t),

Q1(t) ≥ c1I > 0, ∀t ≥ 0,

there exists a positive definite symmetric matrix P1(t),

0 < c2I < P1(t) < c3I, ∀t ≥ 0,

which satisfies

AT
K(t)P1(t) + P1(t)AK(t) + Ṗ1(t) = −Q1(t), where AK(t) = A(t) +B(t)K(t). (6)

Now, we prove the global practical uniform stabilizability of (2). We shall suppose
the following.
(A1) Assume that

‖f(t, x)− f(t, y)‖ ≤ γ(t)‖x− y‖+ δ(t) + ε, ∀t ≥ 0, ∀ x, y ∈ R
n, (7)

where γ : R+ −→ R and δ : R+ −→ R are continuous non-negative functions with

∫ +∞

0

γ(s) ds ≤Mγ < +∞

and
∫ +∞

0

δ2(s) ds ≤Mδ < +∞.

Theorem 3.1 Under assumption (A1), the system (3) in closed-loop with the linear
feedback u(t) = K(t)x(t) is globally practically uniformly exponentially stable.

Proof. Let us consider the Lyapunov function V (t, x(t)) = xT (t)P1(t)x(t). The
derivative of V along the trajectories of system (2) is given by

V̇ (t, x(t)) ≤ −
(

c1
c3

− 2c3γ(t)

c2

)

V (t, x(t)) + 2
c3√
c2
(δ(t) + f0 + ε)

√

V (t, x(t)).

Use the following change v(t) =
√

V (t, x(t)). Then, v(t) satisfies the following estimation

v(t) ≤ v(t0)e
−

∫ t

t0

α(s) ds
+

c3√
c2







∫ t

t0

(δ(s) + f0 + ε)e

∫ s

t0

α(τ) dτ
ds






e
−

∫ t

t0

α(s) ds
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with

α(t) =
c1
2c3

− c3γ(t)

c2
·

A simple computation shows that,







∫ t

t0

(δ(s) + f0 + ε)e

∫ s

t0

α(τ) dτ
ds






e
−

∫ t

t0

α(s) ds
≤
(

√

c3Mδ

c1
+ 2(f0 + ε)

c3
c1

)

e

c3Mγ

c2 .

Thus, we obtain

v(t) ≤ v(t0)e

c3Mγ

c2 e
−

c1
2c3

(t− t0)
+

c3√
c2

(

√

c3Mδ

c1
+ 2(f0 + ε)

c3
c1

)

e

c3Mγ

c2 .

It follows that

‖x(t)‖ ≤
√

c3
c2
e

c3Mγ

c2 ‖x0‖e
−

c1
2c3

(t− t0)
+
c3
c2

(

√

c3Mδ

c1
+ 2(f0 + ε)

c3
c1

)

e

c3Mγ

c2 .

This implies the global uniform exponential stability of Bκ with

κ =
c3
c2

(

√

c3Mδ

c1
+ 2(f0 + ε)

c3
c1

)

e

c3Mγ

c2 .

Hence, the system (2) in closed-loop with the linear feedback u(t) = K(t)x(t) is globally
practically uniformly exponentially stable.✷

3.2 Conception of the observer

For the concept of observer, we aim at simplifying the design of this system by exploiting
the linear form of the nominal system. The system (3) is assumed to be uniformly
observable (see [5]).

Definition 3.2 The pair (A(t), C(t)) is uniformly observable if there exist ∆ and
another constant α depending on ∆, such that the observability grammian J(t − ∆, t)
satisfies

J(t−∆, t) =

∫ t

t−∆

ψ(t−∆, τ)C(τ)CT (τ)ψT (t−∆, τ)dτ ≥ αI > 0,

in which ψ(t, τ) is the state transition matrix A(t).

Definition 3.3 (Practical exponential observer) A practical exponential ob-
server for (2) is a dynamical system which has the following form

˙̂x(t) = F (t, x̂(t), u(t))− L(t)(C(t)x̂(t)− y(t)), (8)

where L(t) is the gain matrix and the error equation with e(t) = x̂(t)− x(t), is given by

ė(t) = F (t, x̂(t), u(t))− F (t, x(t), u(t)) − L(t)C(t)e(t) (9)
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a Luenberger observer which is expected to produce an estimation of the state in the
sense of global practical exponential stability. It means that, the system (9) is globally
practically uniformly exponentially stable and the following estimation holds:

‖e(t)‖ ≤ λ1‖e(t0)‖ e−λ2(t− t0) + r, ∀ t ≥ t0,

with λ1, λ2, r > 0.

To design an observer, we shall consider the system

˙̂x = A(t)x̂(t) +B(t)u(t) + f(t, x̂(t)) − L(t)(C(t)x̂(t)− y(t)), (10)

where x̂(t) is the state estimate of x(t) and L(t) ∈ R
n×p is the observer feedback gain

to be determined so that x̂(t) tends to x(t) exponentially. One such design is the well
known Kalman filter design ( [3]), in which the observer feedback gain L(t) is chosen as

L(t) = Q(t)CT (t)V −1
2 (t), (11)

where Q(t) satisfies a forward differential Riccati equation

Q̇(t) = A(t)Q(t)+Q(t)AT (t)+V1(t)−Q(t)CT (t)V −1
2 (t)C(t)Q(t), Q(0) = Q0 > 0, (12)

in which V1(t) > 0, V2(t) > 0 and V1(t), V2(t), V
−1
1 (t), V −1

2 (t) are all uniformly bounded.
The error equation is given by

ė(t) = ˙̂x(t)− ẋ(t) = (A(t) − L(t)C(t))e(t) + f(t, x̂(t))− f(t, x(t)). (13)

Proposition 3.2 (see [9]) Consider the system (3) and the observer (11) and (12).
If (A(t), C(t)) is uniformly observable, the closed-loop system is globally exponentially
stable.

Notice that, if the system (3) in closed-loop with the observer (11) and (12) is globally
uniformly exponentially stable, then for all positive definite symmetric matrix Q2(t),

Q2(t) ≥ b1I > 0, ∀t ≥ 0,

there exists a positive definite symmetric matrix P2(t),

0 < b2I < P2(t) < b3I, ∀t ≥ 0,

which satisfies

AT
L(t)P2(t) + P2(t)AL(t) + Ṗ2(t) = −Q2(t), where AL(t) = A(t)− L(t)C(t). (14)

Theorem 3.2 Under assumption (A1), the system (10) is a practical exponential
observer for the system (2).

Proof. Let us consider the Lyapunov function Y (t, e(t)) = eT (t)P2(t)e(t). The deriva-
tive of Y along the trajectories of system (13) is given by

Ẏ (t, e(t)) ≤ −
(

b1
b3

− 2b3
b2
γ(t)

)

Y (t, e(t)) + 2
b3√
b2
(δ(t) + ε)

√

Y (t, e(t)).
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Use the following change y(t) =
√

Y (t, e(t)). Then, y(t) satisfies the following estimation

y(t) ≤ y(t0)e
−

∫ t

t0

β(s) ds
+

b3√
b2







∫ t

t0

(δ(s) + ε)e

∫ s

t0

β(τ) dτ
ds






e
−

∫ t

t0

β(s) ds

with

β(t) =
b1
2b3

− b3γ(t)

b2
·

A simple computation shows that,







∫ t

t0

(δ(s) + ε)e

∫ s

t0

β(τ) dτ
ds






e
−

∫ t

t0

β(s) ds
≤
(

√

b3Mδ

b1
+ 2ε

b3
b1

)

e

b3Mγ

b2 .

Thus, we obtain

y(t) ≤ y(t0)e

b3Mγ

b2 e
−

b1
2b3

(t− t0)
+

b3√
b2

(

√

b3Mδ

b1
+ 2ε

b3
b1

)

e

b3Mγ

b2 .

Hence,

‖e(t)‖ ≤
√

b3
b2
e

b3Mγ

b2 ‖e(t0)‖e
−

b1
2b3

(t− t0)
+
b3
b2

(

√

b3Mδ

b1
+ 2ε

b3
b1

)

e

b3Mγ

b2 .

This implies the global uniform exponential stability of Bη with

η =
b3
b2

(

√

b3Mδ

b1
+ 2ε

b3
b1

)

e

b3Mγ

b2 .

We deduce that, the system (13) is globally practically exponentially stable. Hence, the
system (10) is a practical exponential observer for the system (2).✷

3.3 Separation principle

Now, we obtain a separation principle for (2). We consider the system (2) controlled by
the linear feedback control u(t) = K(t)x̂(t) and estimated with the observer (10).

Theorem 3.3 Under assumption (A1), the system

{

˙̂x(t) = A(t)x̂(t) +B(t)u(t) + f(t, x̂(t)) − L(t)C(t)e(t),

ė(t) = (A(t)− L(t)C(t))e(t) + f(t, x̂(t))− f(t, x(t)),
(15)

is globally practically uniformly exponentially stable.



142 H. DAMAK, I. ELLOUZE AND M.A. HAMMAMI

Proof. In order to study the stabilization problem via an observer, we consider the
system

˙̂x(t) = ψ(t, x̂(t))− L(t)C(t)e(t), (16)

where
ψ(t, x̂(t)) = (A(t) +B(t)K(t))x̂(t) + f(t, x̂(t)).

Let us consider the Lyapunov function v(t, x̂(t)) =
√

x̂T (t)P1(t)x̂(t), which satisfies

√
c2‖x̂(t)‖ ≤ v(t, x̂(t)) ≤ √

c3‖x̂(t)‖,

∂v

∂t
(t, x̂(t)) +

∂v

∂x̂(t)
ψ(t, x̂(t)) ≤ −α(t)v(t, x̂(t)) + c3√

c2
(δ(t) + f0 + ε)

and
∥

∥

∥

∥

∂v

∂x̂
(t, x̂(t))

∥

∥

∥

∥

≤ c3√
c2
,

where

α(t) =
c1
2c3

− c3γ(t)

c2
·

The derivative of v along the trajectories of system (16) is given by

v̇(t, x̂(t)) ≤ −α(t)v(t, x̂(t)) + c3√
c2

(δ(t) + f0 + ε)

+
c3√
c2

‖L(t)C(t)‖







√

b3
b2

e

b3Mγ

b2 ‖e(t0)‖e
−

b1
2b3

(t− t0)

+
b3
b2

(

√

b3Mδ

b1
+ 2ε

b3
b1

)

e

b3Mγ

b2






.

Since L(t)C(t) is bounded for all t ≥ t0, then there exists R1 > 0, such that

‖L(t)C(t)‖ ≤ R1, ∀t ≥ t0 ≥ 0.

Then

v̇(t, x̂(t)) ≤ −α(t)v(t, x̂(t)) + λ‖e(t0)‖e
−

b1
2b3

(t− t0)
+

c3√
c2
δ(t) +R

with

λ =
c3√
c2
R1

√

b3
b2

e

b3Mγ

b2

and

R =
c3√
c2
(f0 + ε) +

b3c3
b2
√
c2
R1

(

√

b3Mδ

b1
+ 2ε

b3
b1

)

e

b3Mγ

b2 .

Using the following change

y(t) = v(t)e

∫ t

t0

α(s) ds
,
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we obtain

y(t) ≤ y(t0) +
c3√
c2

∫ t

t0

δ(s)e

∫ s

t0

α(τ) dτ
ds+ λ‖e(t0)‖

∫ t

t0

e
−

b1
2b3

(s− t0)
e

∫ s

t0

α(τ) dτ
ds

+R

∫ t

t0

e

∫ s

t0

α(τ) dτ
ds.

Then

v(t) ≤ v(t0)e
−

∫ t

t0

α(s) ds
+

c3√
c2







∫ t

t0

δ(s)e

∫ s

t0

α(τ) dτ
ds






e
−

∫ t

t0

α(s) ds

+ λ‖e(t0)‖







∫ t

t0

e
−

b1
2b3

(s− t0)
e

∫ s

t0

α(τ) dτ
ds






e
−

∫ t

t0

α(s) ds

+R







∫ t

t0

e

∫ s

t0

α(τ) dτ
ds






e
−

∫ t

t0

α(s) ds
.

A simple computation shows that

v(t) ≤ v(t0)e

c3Mγ

c2 e
−

c1
2c3

(t− t0)
+

c3√
c2

√

c3Mδ

c1
e

c3Mγ

c2

+ λ‖e(t0)‖
2b3c3

c1b3 − b1c3
e

c3Mγ

c2 e
−

b1
2b3

(t− t0)
+ 2

Rc3
c1

·

Let

θ = min

(

c1
2c3

,
b1
2b3

)

·

Then

v(t) ≤ √
c3‖x̂0‖e

c3Mγ

c2 e−θ(t− t0) +
2λb3c3

c1b3 − b1c3
e

c3Mγ

c2 ‖e(t0)‖ e−θ(t− t0)

+
c3√
c2

√

c3Mδ

c1
e

c3Mγ

c2 + 2
Rc3
c1

·

Let

k = max

(√
c3,

2λb3c3
c1b3 − b1c3

)

.

Hence,

‖x̂(t)‖ ≤ k√
c2
e

c3Mγ

c2 (‖x̂0‖+ ‖e(t0)‖) e−θ(t− t0) +
c3
c2

√

c3Mδ

c1
e

c3Mγ

c2 + 2
Rc3
c1
√
c2
·

Then, the cascade system (15) is globally practically uniformly exponentially stable. ✷
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Example 3.1 Consider the system

{

ẋ(t) = A(t)x(t) +B(t)u(t) + f(t, x(t)),

y(t) = C(t)x(t)
(17)

with x(t) = (x1(t), x2(t))
T ,

A(t) =

(

0 0
0 −1

)

, B(t) =

(

1
e−2t

)

,

C(t) =
(

1 e−2t
)

and

f(t, x(t)) = e−ktx(t) +

(

1
0

)

, k > 0.

The proposed control (4) is then applied to the system with the following design param-
eters P (0) = I, R1(t) = I, R2(t) = I in (5). The matrix P (t) is calculated by solving the
Ricatti equation (5). The function f(t, x(t)) is continuous and satisfies assumption (A1)
because

∫ +∞

0

e−kt =
1

k
, k > 0.

We conclude that the system (2) can be globally practically uniformly exponentially
stable. The observer feedback gain L(t) is chosen as (11) by solving the Riccati equation
(12). We conclude that the system (10) is a practical exponential observer for the system
(17). Thus, Theorem 3.3 is satisfied. We conclude that, the system (15) is globally
uniformly practically exponentially stable.

4 Conclusion

This paper presents a separation principle for a class of nonlinear controls systems. It is
shown that the system can be globally exponentially stabilizable by means of an estimated
state feedback control given by an observer design.
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