
Nonlinear Dynamics and Systems Theory, 13 (2) (2013) 193–202

Existence and Uniqueness of a Solution of Fisher-KKP

Type Reaction Diffusion Equation

Abdur Raheem ∗

Department of Mathematics and Statistics, Indian Institute of Technology Kanpur,

Kanpur -208016, India.

Received: May 5, 2012; Revised: March 20, 2013

Abstract: In this paper we prove the existence and uniqueness of a strong solution
of a Fisher-KKP type reaction diffusion equation with Dirichlet boundary conditions
using the method of semidiscretization.

Keywords: method of semidiscretization; reaction diffusion equation; strong solu-

tion; A priori estimate.

Mathematics Subject Classification (2010): 35K57, 65N40, 35B45, 35D35.

1 Introduction

In this paper we concerned with the following reaction diffusion equation of KPP-Fisher
type with Dirichlet boundary conditions:

∂u

∂t
=

∂2u

∂x2
+ ku(t, x)[1 − u(t, x)] + f(t, x), t ∈ (0, T ], x ∈ (0, π), (1)

u(x, 0) = u0(x), x ∈ (0, π), (2)

u(0, t) = u(π, t) = 0, t ∈ (0, T ], (3)

where k is a positive constant and u0 ∈ L2(0, π).
Since 1930, various classical types of initial boundary value problem have been investi-

gated by many authors using the method of semidiscretization; see for instance [11,15,16]
and references therein.

The method of semidescretization in time is a very efficient tool in the study of
an approximate solution and its convergence to the solution of the problem. In this
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method we replace the time derivative by the corresponding difference quotients giving
rise to a system of time independent operator equations. With the help of the theory
of semigroups, these systems are guaranteed to have unique solutions. An approximate
solution to the given problem is defined in terms of the solutions of these time independent
systems. After proving a priori estimates for the approximate solution, the convergence
of the approximate solution to a unique strong solution is established.

In this paper my aim is to apply the method of semidiscretization to a reaction
diffusion equation of KPP-Fisher type with Dirichlet boundary conditions. Fisher-KKP
equations are most simple case of nonlinear reaction diffusion equation that was first
shown to have traveling wave front by Fisher [18].

This work is motivated by the work of Fisher [18], in which he has considered the
Fisher-KKP type reaction diffusion equation:

∂u

∂t
= ru(t, x)

[

1− u(t, x)

K

]

+D
∂2u

∂x2
,

where r and D are positive parameters.
Dubey [3], has established the existence and uniqueness of a strong solution for the

following nonlinear nonlocal functional differential equation in a Banach X, using the
method of semidiscretization:

u′(t) +Au(t) = f(t, u(t), ut), t ∈ (0, T ],

h(u0) = φ on [−τ, 0],

where 0 < T < ∞, φ ∈ C0 := C([−τ, 0];X), τ > 0, the nonlinear operator A is
singlevalued and m-accretive defined from the domain D(A) ⊂ X into X , the nonlinear
map f is defined from [0, T ]×X×C0 := C([−τ, 0];X) into X , the map h is defined from
C0 into C0. For u ∈ CT := C([−τ, T ];X), function ut ∈ C0 is given by ut(s) = u(t+s) for
s ∈ [−τ, 0]. Here Ct := C([−τ, t];X) for t ∈ [0, T ] is the Banach space of all continuous
functions from [−τ, t] into X endowed with the supremum norm

‖φ‖t = sup
−τ≤η≤t

‖φ(η)‖, φ ∈ Ct.

Bouziani, Merchri [17] and Lakoud, Chaoui [14] have applied the method of semidis-
cretization to integrodifferential equations, and prove the existence and uniqueness of a
weak solution. For the application of method of semidiscretization to delayed cooperation
diffusion system with Dirichlet boundary conditions, we refer readers to [19]. For the
more applications of Rothe method to integrodifferential equations, parabolic problems,
hyperbolic problems, we refer readers to [9, 10, 12, 13] and references therein.

By literature, it is clear that method of semidiscretization is applicable in many
physical, mathematical, biological problems modeled by partial differential equations.

The plan of the rest paper is as follows. In Section 2, we state some basic results
and definitions that will be used in the next sections. In Section 3, we state the main
result. In the last section, we state and prove all the lemmas that are required to prove
the main result and at the end of this section, we prove the main result.

2 Preliminaries

We define
BR(0) = {u ∈ L2(0, π) : ‖u‖ ≤ R}.
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Now we define a function F : (0, T ]×BR(0) → BR(0) by

F (t, χ)(x) = kχ[1− χ](x) + f(t, x).

Consider that H := L2[0, π] is the real Hilbert space of all real-valued square-integrable
functions on the interval [0, π], let the linear operator A be defined by

D(A) := {u ∈ H : u′′ ∈ H,u(0) = u(π) = 0}, Au = −u′′.

Then we know that −A is the infinitesimal generator of a C0-semigroup S(t), t ≥ 0 of
contractions in H .

If we identify u : (0, T ] → H , by u(t)(x) = u(t, x), and f : (0, T ] → H by f(t)(x) =
f(t, x), then (1)-(3) reduce to:

∂u(t)

∂t
+ Au(t) = F (t, u(t)), (4)

u(0) = u0. (5)

Lemma 2.1 There exists a constant LF (R) > 0 such that

‖F (t, χ1)− F (t, χ2)‖ ≤ LF (R)‖χ1 − χ2‖,

for all χ1, χ2 ∈ BR(0), t ∈ (0, T ].

Proof. Now for any χ1, χ2 ∈ BR(0) and t ∈ (0, T ], we have

‖F (t, χ1)− F (t, χ2)‖22
=

∫ π

0

|F (t, χ1)(x)− F (t, χ2)(x)|2dx

=

∫ π

0

|kχ1(1 − χ1)(x) − kχ2(1− χ2)(x)|2dx

≤ k2
∫ π

0

(|χ1(x)− χ2(x)|2 + |χ2

2
(x)− χ2

1
(x)|2)dx

≤ k2
∫ π

0

|χ1(x) − χ2(x)|2(1 + |χ1(x) + χ2(x)|2)dx

≤ k2
∫ π

0

|χ1(x) − χ2(x)|2dx
∫ π

0

(1 + |χ1(x) + χ2(x)|2)dx

≤ k2‖χ1 − χ2‖22(π + ‖χ1 + χ2‖2)
≤ k2(π + 2R2)‖χ1 − χ2‖22.

This implies that

‖F (t, χ1)− F (t, χ2)‖2 ≤ L′
F (R)‖χ1 − χ2‖2,

where L′
F (R) = k

√
π + 2R2. ✷

Lemma 2.2 If f satisfies a Lipschitz-like condition, i.e., there exists a constant k1 >

0 such that
‖f(t)− f(s)‖ ≤ k1 | t− s |, ∀t, s ∈ (0, T ],

then F also satisfies a Lipschitz condition in (0, T ], i.e.,

‖F (t, χ)− F (s, χ)‖ ≤ k1 | t− s |, ∀t, s ∈ (0, T ].
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Remark 2.1 From Lemma 2.1 and Lemma 2.2, we conclude that F satisfies a local
Lipschitz condition, i.e., there exists a constant LF (R) > 0 such that

‖F (t, χ1)− F (s, χ2)‖ ≤ LF (R)[|t− s|+ ‖χ1 − χ2‖2], ∀t, s ∈ (0, T ], ∀χ1, χ2 ∈ BR(0).

Definition 2.1 Let X be a Banach space and let X∗ be its dual. For every x ∈ X

we define the duality map J as:

J(x) = {x∗ : x∗ ∈ X∗ and (x∗, x) = ‖x‖2 = ‖x∗‖2},

where (x∗, x) denotes the value of x∗ at x.

Lemma 2.3 ( [1], Theorem 1.4.3) If −A is the infinitesimal generator of a C0-
semigroup of contractions then A is m-accretive, i.e.,

(Au, J(u)) ≥ 0 for u ∈ D(A),

where J is the duality mapping and R(I + λA) = X for λ > 0, I is the identity operator
on X and R(.) is the range of an operator.

Lemma 2.4 ( [2], Lemma 2.5(a)) If −A is the infinitesimal generator of a C0-
semigroup of contractions, Xn ∈ D(A), n = 1, 2, 3, ....., Xn → u ∈ H and ‖AXn‖ are
bounded, then u ∈ D(A) and AXn ⇀ Au.

A function u ∈ C([0, T ], H) such that

u(t) = S(t)u0 +

∫ t

0

S(t− s)F (s, u(s))ds, if t ∈ [0, T ].

is called a mild solution of (4)-(5).

By a strong solution of (4)-(5) we mean a function u ∈ C([0, T ], X) such that u(t) ∈
D(A) for a.e. t ∈ [0, T ], u is differentiable a.e. on [0, T ] and

u′(t) +Au(t) = F (t, u(t)), a.e. t ∈ [0, T ].

3 Main Result

Theorem 3.1 Under the conditions of Lemma 2.1 and Lemma 2.2, problem (4)-(5)
has a unique strong solution on the interval [0, t0], 0 < t0 < T which can be uniquely
continued either on [0,T], or on the maximal interval of existence [0, tmax[, 0 < tmax ≤ T.

If 0 < tmax < T, then

lim
t↑tmax

‖u(t)‖ = ∞.

We will prove this result by using the method of semidiscretization.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 13 (2) (2013) 193–202 197

4 Discretization and A priori Estimates

To apply the method of semidiscretization we divide the interval [0, t0] into the subinter-
vals of length hn = t0

n
and replace (4) and (5) by the following approximate equations

un
j − un

j−1

hn

+Aun
j = F (tnj , u

n
j−1

), (6)

un
0

= u0. (7)

Existence of a unique un
j ∈ H, satisfying (6) and (7) is a consequence of Lemma 2.3.

Now we construct Rothe’s sequence

un(t) = un
j−1

+
un
j − un

j−1

hn

(t− tnj ), t ∈ [tnj−1
, tnj ]. (8)

Also, we construct a sequence of step functions:

Xn(t) =

{

u0, if t = 0,
un
j , if t ∈ (tnj−1

, tnj ].
(9)

Now we state and prove the following two lemmas which are required to prove the
main result.

Lemma 4.1 There exists a constant C1 (independent of n, j and hn) such that ‖un
j −

u0‖ ≤ C1 (note that here C1 is a generic constant that may have different value in the
same discussion).

Proof. Substituting j = 1 in (6), we get

un
1
− un

0

hn

+Aun
1
= F (tn

1
, un

0
).

Subtracting Au0 from both sides and applying J(un
1
− u0) on both sides, we get

(

un
1
− u0

hn

, J(un
1
− u0)

)

+ (A(un
1
− u0), J(u

n
1
− u0)) = (F (tn

1
, u0), J(u

n
1
− u0))

−(Au0, J(u
n
1
− u0)).

Using Lemma 2.3 and the definition of duality map, we get

1

hn

‖un
1
− u0‖2 ≤ ‖F (tn

1
, u0)‖‖un

1
− u0‖+ ‖Au0‖‖un

1
− u0‖

=⇒ ‖un
1
− u0‖ ≤ hn[‖F (tn

1
, u0)‖+ ‖Au0‖].

Using Remark 2.1, we can obtain

‖F (tn
1
, u0)‖ ≤ ‖F (tn

1
, u0)− F (0, u0)‖+ ‖F (0, u0)‖

≤ LF (R)|tn
1
|+ ‖F (0, u0)‖

≤ LF (R)t0 + ‖F (0, u0)‖.
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Using the above inequality, we get

‖un
1
− u0‖ ≤ hn[LF (R)t0 + ‖F (0, u0)‖+ ‖Au0‖]

≤ t0[LF (R)t0 + ‖F (0, u0)‖+ ‖Au0‖] = C1.

To prove this lemma, we will use induction method, for this we assume that

‖un
i − u0‖ ≤ C1, i = 1, · · · , j − 1.

We have to show that

‖un
j − u0‖ ≤ C1.

Subtracting Au0 from both sides of (6), and applying J(un
j − u0), we get

(

un
j − u0

hn

, J(un
j − u0)

)

+ (A(un
j − u0), J(u

n
j − u0))

=

(

un
j−1

− u0

hn

, J(un
j − u0)

)

+ (F (tnj , u
n
j−1

), J(un
j − u0))− (Au0, J(u

n
j − u0)).

Using Lemma 2.3 and the definition of duality map, we get

1

hn

‖un
j − u0‖2 ≤ 1

hn

‖un
j−1

− u0‖‖un
j − u0‖+ ‖F (tnj , u

n
j−1

)‖‖un
j − u0‖

+‖Au0‖‖un
j − u0‖

=⇒ ‖un
j − u0‖ ≤ ‖un

j−1
− u0‖+ hn[‖F (tnj , u

n
j−1

)‖ + ‖Au0‖].

By using induction hypothesis, we obtain

‖un
j − u0‖ ≤ C1 + t0[‖F (tnj , u

n
j−1

)‖ + ‖Au0‖].

Using Remark 2.1, we get

‖F (tnj , u
n
j−1

)‖ ≤ ‖F (tnj , u
n
j−1

)− F (0, u0)‖+ ‖F (0, u0)‖
≤ LF (R)[|tnj |+ ‖un

j−1
− u0‖] + ‖F (0, u0)‖

≤ LF (R)[t0 + C1] + ‖F (0, u0)‖.

Using the above inequality, we get

‖un
j − u0‖ ≤ C1 + t0[LF (R)(t0 + C1) + ‖F (0, u0)‖ +Au0].

This completes the proof of the lemma. ✷

Lemma 4.2 There exists a constant C2 (independent of n, j and hn) such that
∥

∥

∥

un
j −un

j−1

hn

∥

∥

∥
≤ C2 (note that here C2 is a generic constant that may have different value

in the same discussion).

Proof. As in the previous lemma, we can show that
∥

∥

∥

∥

un
1
− un

0

hn

∥

∥

∥

∥

≤ [LF (R)t0 + ‖F (0, u0)‖+ ‖Au0‖].
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We will prove this result by induction. For this we assume that
∥

∥

∥

∥

un
i − un

i−1

hn

∥

∥

∥

∥

≤ C2, i = 1, · · · , j − 1.

We have to show that
∥

∥

∥

∥

un
j − un

j−1

hn

∥

∥

∥

∥

≤ C2.

Subtracting from (6) the same equation written for j − 1, and applying J(un
j − un

j−1
) on

both sides, we get
(

un
j − un

j−1

hn

, J(un
j − un

j−1
)

)

≤
(

un
j−1

− un
j−2

hn

, J(un
j − un

j−1
)

)

+(F (tnj , u
n
j−1

)− F (tnj−1
, un

j−2
), J(un

j − un
j−1

)).

Using Lemma 2.3 and the definition of duality map, we get
∥

∥

∥

∥

un
j − un

j−1

hn

∥

∥

∥

∥

≤
∥

∥

∥

∥

un
j−1

− un
j−2

hn

∥

∥

∥

∥

+ ‖F (tnj , u
n
j−1

)− F (tnj−1
, un

j−2
)‖.

By using induction hypothesis, we get
∥

∥

∥

∥

un
j − un

j−1

hn

∥

∥

∥

∥

≤ C2 + ‖F (tnj , u
n
j−1

)− F (tnj−1
, un

j−2
)‖.

By using Remark 2.1, we get

‖F (tnj , u
n
j−1

)− F (tnj−1
, un

j−2
)‖ ≤ LF (R)[t0 + C2hn]

≤ LF (R)[t0 + C2t0].

Using the above inequality, we get
∥

∥

∥

∥

un
j − un

j−1

hn

∥

∥

∥

∥

≤ C2 + LF (R)[t0 + C2t0].

This completes the proof of the lemma. ✷

Remark 4.1 By using Lemma 4.1 and Lemma 4.2, we conclude that sequence
{un(t)} is uniformly Lipschitz continuous and un(t)−Xn(t) → 0, as n → ∞, t ∈ (0, t0].

If we denote that
fn(t) = F (tnj , u

n
j−1

),

and using (8) and (9), then (4) reduces to:

d−

dt
Un(t) +AXn(t) = fn(t), t ∈ (0, t0], (10)

where d−

dt
denotes the left derivative in (0, t0].

Also, for t ∈ (0, t0], we have

∫ t

0

AXn(s)ds = u0 − Un(t) +

∫ t

0

fn(s)ds. (11)

Next we prove the convergence of Un to u in C([0, t0], H).
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Lemma 4.3 ( [3], Lemma 3.4) There exists u ∈ C([0, t0], H), such that Un → u

in C([0, t0], H) as n → ∞. Moreover, u is Lipschitz continuous on [0, t0].

Remark 4.2 Clearly Xn(t) ∈ D(A), for each n. As un(t) − Xn(t) → 0 as n →
∞, Xn(t) → u(t) ∈ H. Also ‖AXn‖ are bounded therefore by Lemma 2.4, it is clear
that AXn ⇀ Au.

So for every x∗ ∈ X∗ and t ∈ (0, t0], we have

∫ t

0

(AXn(s), x∗)ds = (u0, x
∗)− (Un(t), x∗) +

∫ t

0

(fn(s), x∗)ds.

Using Lemma 4.3, Remark 4.2 and the bounded convergence theorem, we obtain as
n → ∞,

∫ t

0

(Au(s), x∗)ds = (u0, x
∗)− (u(t), x∗) +

∫ t

0

(F (s, u(s)), x∗)ds. (12)

As Au(t) is Bochner integrable on [0, t0], from (12) we have

d

dt
u(t) +Au(t) = F (t, u(t)), a.e. t ∈ (0, t0]. (13)

Clearly u ∈ C([0, t0];H) and differentiable a.e. on (0, t0] with u(t) ∈ D(A) a.e. on (0, t0]
satisfying (13). Hence u is a strong solution of (6)-(7) on [0, t0].

Now we show the uniqueness of this strong solution. For this we assume that u1

and u2 are two strong solutions of (6)-(7) on the interval [0, t0]. Let u = u1 − u2

(

du(t)

dt
, J(u(t))

)

+ (A(u1(t)− u2(t)), J(u1(t)− u2(t)))

= (F (t, u1(t))− F (t, u2(t)), J(u(t))).

By Lemma 2.3 and by the definition of duality mapping, we get

d

dt
‖u(t)‖2 ≤ ‖F (t, u1(t))− F (t, u2(t))‖‖u(t)‖.

Using Lemma 2.1, we get

d

dt
‖u(t)‖2 ≤ K‖u(t)‖2.

This implies that

‖u(t)‖2 ≤ K

∫ t

0

‖u(t)‖2ds.

Applying Grownwall’s inequality, we get u ≡ 0 on [0, t0]. Hence we get a unique strong
solution on the interval [0, t0].

Strong solution u of (6)–(7) on interval [0, t0] can be extended on the larger interval
[0, t0+ δ], δ > 0 [ [1], Theorem 6.2.2]. Continuing this process, we obtain a unique strong
solution either on the whole interval or on the maximal interval of existence [0, tmax]. If
tmax < ∞, then lim

t↑tmax

‖u(t)‖ = ∞, otherwise we get contradiction [ [1], Theorem 6.1.4].
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