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Asymptotic Estimates Related to an Integro

Differential Equation

Monica De Angelis

University of Naples ”Federico II”, Dep. Math. Appl. ”R.Caccioppoli”,

Via Claudio n.21, 80125, Naples, Italy.

Received: May 22, 2013; Revised: July 9, 2013

Abstract: The paper deals with an integrodifferential operator which models nu-
merous phenomena in superconductivity, in biology and in viscoelasticity. Initial-
boundary value problems with Neumann, Dirichlet and mixed boundary conditions
are analyzed. An asymptotic analysis is achieved proving that for large t, the in-
fluences of the initial data vanish, while the effects of boundary disturbances are
everywhere bounded.

Keywords: initial-boundary problems for higher order parabolic equations; Laplace

transform; superconductivity; FitzHugh-Nagumo model.

Mathematics Subject Classification (2010): 44A10, 35K57, 35A08, 35K35.

1 Introduction

If u = u(x, t), let us consider the following integrodifferential equation

Lu ≡ ut − εuxx + au+ b

∫ t

0

e−β(t−τ) u(x, τ) dτ = F (x, t, u), (1)

where ε, a, b, β are positive constants, x denotes the direction of propagation and t is
the time. According to the meaning of F (x, t, u), equation (1) describes the evolution
of several linear or non linear physical models. For instance, when F = f(x, t), (1) is
related to the following linear phenomena:

• motions of viscoelastic fluids or solids [1–4];

∗ Corresponding author: mailto:modeange@unina.it

c© 2013 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua217
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• heat conduction at low temperature [5–7],

• sound propagation in viscous gases [8].

When F = F (x, t, u), some non linear phenomena involve equation (1) both in supercon-
ductivity and biology.

• Superconductivity – Let u be the difference between the wave functions phases of
two superconductors in a Josephson junction. The equation describing tunnel effects is
the following one:

εuxxt − utt + uxx − αut = sinu − γ, (2)

where constant γ is a forcing term proportional to a bias current, while the ε − term
and the α − term account for the dissipative normal electron current flow, respectively
along and across the junction [9, 10].

Equation (2) can be obtained by (1) as soon as one assumes

a = α − 1

ε
, b = − a

ε
, β =

1

ε
, (3)

and F is such that

F (x, t, u) = −
∫ t

0

e− 1
ε
(t−τ ) [ sen u(x, τ) − γ ] dτ. (4)

Besides, when the case of an exponentially shaped Josephson junction (ESJJ) is con-
sidered, the evolution of the phase inside this junction is described by the third order
equation:

(∂xx − λ∂x ) (εut + u)− ∂t(ut + αu) = sinu − γ, (5)

where λ is a positive constant generally less than one and the terms λuxt and λux
represent the current due to the tapering junction. In particular λux corresponds to
a geometrical force driving the fluxons from the wide edge to the narrow edge. [10–12]
An (ESJJ) provides several advantages with respect to a rectangular junction ( [14] and
reference therein). For instance, in [11] it has been proved that it is possible to obtain
a voltage which is not chaotic anymore, but rather periodic excluding, in this way, some
among the possible causes of large spectral width. It is also proved that the problem
of trapped flux can be avoided. Numerous applications and devices involve Josephson
junctions, for example SQUIDs which are very versatile and can be used in a lot of fields.
(see f.i. [15] and references therein).

Moreover, if u = eλx/2 u, (5) turns into an equation like (2) and hence into (1).

• Biology – Let us consider the FitzHugh-Nagumo system (FHN) which models the
propagation of nerve impulses. [16]:



















∂ u

∂ t
= ε

∂2 u

∂ x2
− v + f(u),

∂ v

∂ t
= b u − β v .

(6)
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Here, u (x, t ) models the transmembrane voltage of a nerve axon at a distance x and
time t, while v (x, t ) is an auxiliary variable acting as a recovery variable. Besides, the
function f(u) has the qualitative form of a cubic polynomial

f(u) = − a u + ϕ(u) with ϕ = u2 ( a+ 1 − u ), (7)

while ε, b, β are non negative and the parameter a, representing the threshold constant,
is generally 0 < a < 1. (see f.i. [17] and references therein)

Denoting by v0 the initial value of v, system (6) (7) can be given the form of the
integrodifferential equation (1) as soon as one puts:

F (x, t, u) = ϕ(u) − v0(x) e
− β t . (8)

In this paper, initial value problems with Neumann, Dirichlet and mixed boundary
conditions for (1) are considered. By means of properties of the fundamental solution
K0(x, t) of the operator L, appropriate estimates are obtained. The function K0(x, t)
has already been determined and analyzed in [18] and an analysis related to a Neumann
boundary problem has been conducted in [19]. The aim of this paper is an asymptotic
analysis for the initial boundary value problem both with Dirichlet conditions and with
mixed conditions. These cases involve x-derivative of theta functions θ(x, t) and θ∗(x, t)
which are determined in Section (3). So, effects of boundary perturbations can be eval-
uated by means of a well known theorem on asymptotic behavior of convolutions. As
an example, according to the equivalence between operator L and the FHN system, an
estimate of the solution related to the reaction-diffusion system (6) is obtained proving
that, for large t, effects determined by boundary disturbance are bounded.

2 Some Models of Superconductivity and Biology

Let T be an arbitrary positive constant and

ΩT ≡ { (x, t) : 0 ≤ x ≤ L ; 0 < t ≤ T.

(I) A first example is related to Neumann boundary conditions (NBC)






















Lu = F (x, t, u), (x, t) ∈ ΩT ,

u(x, 0) = u0(x), x ∈ [0, L],

ux(0, t) = ψ1(t), ux(L, t) = ψ2(t), 0 < t ≤ T.

(9)

In superconductivity, this problem occurs when the magnetic field, proportional to the
phase gradient, is assigned [20,21]. In mathematical biology, it can refer to a two-species
reaction diffusion system subjected to flux boundary conditions [16]. The same conditions
are present in case of pacemakers [22] and are applied also to study distributed (FHN)
systems [23] or to solve FHN systems by means of numerical calculations [24].

(II) Another example concerns Dirichlet boundary conditions (DBC)






















Lu = F (x, t, u), (x, t) ∈ ΩT ,

u(x, 0) = u0(x), x ∈ [0, L],

u(0, t) = g1(t), u(L, t) = g2(t), 0 < t ≤ T.

(10)
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In superconductivity, (10)3 refer to the phase boundary specifications [12–14]. In ex-
citable systems these conditions occur when the behavior of a single dendrite has to be
determined and the voltage level is fixed [22] or when the pulse propagation in a contin-
uum of heart cells is studied [22, 25]. Besides, the Dirichlet problem is also considered
to determine universal attractors both for Hodgkin-Huxley equations and for FHN sys-
tems, [26] and for stability analysis and asymptotic behavior of reaction-diffusion systems
solutions, [27–31], or in hyperbolic diffusion [32].

(III) At last, mixed boundary conditions (MBC) as






















Lu = F (x, t, u), (x, t) ∈ ΩT ,

u(x, 0) = u0(x), x ∈ [0, L],

u(0, t) = h1(t), ux(L, t) = h2(t), 0 < t ≤ T,

(11)

occur in many physical examples both in superconductivity (see,f.i. [33] and references
therein) and in biology, as shown in [16, 22]. In particular, in [34], mixed boundary
conditions are considered in order to give qualitative information concerning both the
threshold problem and the asymptotic behavior of large solutions for the FHN system.

When F = f(x, t) is a linear function, problems (9)-(11) can be solved by Laplace
transformation with respect to t. Let z(x, t) be an arbitrary function admitting Laplace
transform ẑ(x, s)

ẑ(x, s) =

∫ ∞

0

e−st z(x, t) dt = Lt z. (12)

Referring to the parameters a, β, b, ε of the operator L, if

σ2 = s + a +
b

s+ β
, σ̃2 = σ2/ε, (13)

we denote by θ(x, s) and θ∗(x, s) the following Laplace transforms:

θ̂ ( y, σ̃) =
cosh [ σ̃ (L− y) ]

2 ε σ̃ sinh ( σ̃ L )
= (14)

=
1

2
√
ε σ

{

e
−

y
√

ε
σ
+

∞
∑

n=1

[

e
−

2nL+y
√

ε
σ
+ e

−
2nL−y

√

ε
σ

]}

,

θ̂∗ ( y, σ̃) =
sinh [ σ̃ (L− y) ]

2 ε σ̃ cosh ( σ̃ L )
= (15)

=
1

2
√
εσ

{

e
−

y
√

ε
σ
+ 2

∞
∑

n=1

(

e
−

4nL+y
√

ε
σ
+ e

−
4nL−y

√

ε
σ

)

−
∞
∑

n=1

(

e
−

2nL+y
√

ε
σ
+ e

−
2nL−y

√

ε
σ

)}

.

Then the Laplace transform solutions of the linear problems (9)-(11) can be obtained by
means of standard techniques and it results:

• Formal solution for initial boundary problem with (NBC)

û(x, s) =

∫ L

0

[ θ̂ ( |x− ξ|, s ) + θ̂ ( |x+ ξ|, s ) ] [u0( ξ ) + f̂( ξ, s) ] dξ

− 2 ε ψ̂1 (s) θ̂(x, s) + 2 ε ψ̂2 (s) θ̂ (x− L, s ).

(16)
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• Formal solution for (DBC)

û(x, s) =

∫ L

0

[ θ̂ ( |x− ξ|, s ) − θ̂ (x+ ξ, s ) ] [u0( ξ ) + f̂( ξ, s) ] dξ−

− 2 ε ĝ1 (s) θ̂x(x, s) + 2 ε ĝ2 (s) θ̂x (x− L, s ).

(17)

• Formal solution for (MBC)

û(x, s) =

∫ L

0

[ θ̂∗ (x+ ξ, s ) − θ̂∗ ( |x− ξ|, s ) ] [u0( ξ ) + f̂( ξ, s) ] dξ+

− 2 ε ĥ1 (s) θ̂∗x(x, s) + 2 εĥ2 (s) θ̂
∗ (L− x, s ).

(18)

3 K0(x, t) and θ(x, t) Properties

The Neumann boundary value problem has already been solved in [19]. Let us consider
now cases (II) and (III).

Let K0(x, t) be the fundamental solution of the linear operator L defined in (1). It
has already been determined in [18] and one has:

K0(r, t) =
1

2
√
πε

[

e−
r2

4t
−a t

√
t

−
√
b

∫ t

0

e−
r2

4y
−ay

√
t− y

e−β( t− y )J1(2
√

by (t− y) ) dy

]

, (19)

where r = |x| /√ε and Jn(z) is the Bessel function of first kind. Function K0 has
the same basic properties of the fundamental solution of the heat equation, and in the
half-plane ℜe s > max(− a, −β ) it results:

Lt K0 ≡
∫ ∞

0

e−st K0 (r, t) dt =
e− r σ

2
√
ε σ

, (20)

where σ is defined in (13)1.
Among other properties, in [18] the following estimates have been proved:
∫

ℜ

|K0(x− ξ, t)|dξ ≤ e− at +
√
b πte−ω t

∫ t

0

dτ

∫

ℜ

|K0(x − ξ, t)| dξ ≤ β0, (21)

|K0| ≤
e−

r2

4t

2
√
πεt

[ e− at + btE(t) ], (22)

where constants ω, β0 and E(t) are given by:

ω = min(a, β), β0 =
1

a
+ π

√
b

a+ β

2(aβ)3/2
, (23)

E(t) =
e− βt − e− at

a − β
> 0.

Moreover, denoting by

Ki(r, t) =

∫ t

0

e−β ( t−τ) Ki−1 (x, τ ) dτ (i = 1, 2) (24)

kernels K1(x, t) and K2(x, t) have the same properties of K0(x, t). Hence, the following
theorem holds [18]:
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Theorem 3.1 For all the positive constants a, b, ε, β it results:

∫

ℜ

|K1| dξ ≤ E(t);

∫ t

0

dτ

∫

ℜ

|K1| dξ ≤ β1, (25)

∫

ℜ

|K2(x− ξ, t)| dξ ≤ t E(t), (26)

where β1 = (a β)−1.

In order to obtain inverse formulae of (17) and (18), let us apply (20) to (14)(15).
Then, one deduces the following functions which are similar to theta functions:

θ(x, t) =K0(x, t) +

∞
∑

n=1

[K0(x + 2nL, t) + K0(x− 2nL, t) ]

=

∞
∑

n=−∞

K0(x + 2nL, t),

(27)

θ∗(x, t) = 2

∞
∑

n=−∞

K0(x + 4nL, t) −
∞
∑

n=−∞

K0(x + 2nL, t). (28)

Some of the properties of function θ(x, t) have already been evaluated in [19]. Pre-
cisely, denoting by C = 2ε π2/( 6 eL2 ) and letting

C0 =
1

2
√
ε ω

+
b ω− 3/2

4
√
ε |a− β|

[

1 +
C

b
|a− β| + 3C

2ω

]

, (29)

the θ(x, t) function, defined in (27), satisfies the following inequalities:

∫ L

0

|θ(|x− ξ|, t)| dξ ≤ (1 +
√
b π t ) e−ω t , (30)

∫ t

0

dτ

∫ L

0

|θ(|x − ξ|, t)| dξ ≤ β0;

∫ ∞

0

|θ(x, τ)| dτ ≤ C0, (31)

and, it results:

lim
t→∞

θ(x, t) = 0; lim
t→∞

∫ t

0

θ(x, τ) dτ =
1

2 ε σ0

coshσ0 (L− x)

sinh (σ0 L).
, (32)

where σ0 =

√

(

a +
b

β

)

1

ε
.

Furthermore, as for ∂θ
∂x , from (19), it is well-rendered that the x derivative of the integral

term vanishes for x → 0 , while the first term represents the derivative with respect
to x of the fundamental solution related to the heat equation. So, by means of classic
theorems (see,f.i. [35] p. 60), conditions (10)3 are surely satisfied.
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Moreover, one has:

lim
t→∞

∫ t

0

θx(x, τ) dτ =
1

2 ε

sinhσ0 (x − L)

sinh (σ0 L)
,

lim
t→∞

∫ t

0

θ∗x(x, τ) dτ = − 1

2 ε

coshσ0 (L − x)

cosh (σ0 L)
.

(33)

4 Asymptotic Behaviours

When the source term F = f(x, t) is a prefixed function depending only on x and t,
then, initial boundary value problems (10) (11) are linear and can be solved explicitly.
Moreover, when F = F (x, t, u) depends also on the unknown function u(x, t), then
these problems admit integral differential formulations and one has:

• Integro differential equation for problem (10) (DBC):

u(x, t ) =

∫ L

0

[θ (|x− ξ|, t) − θ(x+ ξ, t) ] u0(ξ) dξ −

2 ε

∫ t

0

θx (x, t− τ) g1(τ) dτ + 2 ε

∫ t

0

θx (x− L, t− τ) g2(τ) dτ

+

∫ t

0

dτ

∫ L

0

[ θ (|x− ξ|, t− τ)− θ(x + ξ, t− τ)] F ( ξ, τ, u(x, τ)) dξ.

(34)

• Integro differential equation for (11) (MBC):

u(x, t ) =

∫ L

0

[θ∗ (|x− ξ|, t) − θ∗(x + ξ, t) ] u0(ξ) dξ −

2 ε

∫ t

0

θ∗x (x, t− τ) h1(τ) dτ + 2 ε

∫ t

0

θ∗ (L− x, t− τ) h2(τ) dτ

+

∫ t

0

dτ

∫ L

0

[ θ∗ (|x− ξ|, t− τ)− θ∗(x+ ξ, t− τ)] F ( ξ, τ, u(x, τ)) dξ.

(35)

Now, if BT denotes the Banach space

BT ≡
{

z (x, t ) : z ∈ C (ΩT ), || z || = sup
ΩT

| z (x, t) |, <∞
}

(36)

and D is the following set:

D ≡ {(x, t, u) : (x, t) ∈ ΩT ,−∞ < u <∞,
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then, let us assume the source term F (x, t, u) be defined and continuous on D and
uniformly Lipschitz continuous in (x, t, u) for each compact subset of ΩT . Besides, let F
be a bounded function for bounded u and there exists a constant C such that:

|F (x, t, u1)− F (x, t, u2)| ≤ C |u1 − u2|.

So, by means of standard methods related to integral equations and owing to basic
properties of K0, it is possible to prove that the mappings defined by (34) (35) are a
contraction of BT in BT and so they admit a unique fixed point u(x, t) ∈ BT . [35, 36]

In order to enable a quicker reading, attention will be paid only to the initial boundary
value problem with Dirichlet conditions. However, all the following analysis can be
applied to the mixed problem,too.

At first, let us consider gi = 0 (i = 1, 2) and let

||u0 || = sup
0≤x≤L

|u0 (x ) |, ||F || = sup
ΩT

|F (x, t, u) |.

.
In [18] the following theorem has been proved:

Theorem 4.1 When gi = 0 (i = 1, 2), solution (34), for large t, verifies the fol-

lowing estimate:

|u(x, t)| ≤ 2
[

||F || β0 + ||u0 || (1 +
√
b π t ) e−ω t

]

, (37)

where ω = min (a, β) and β0 is defined by (23)2.

As for contributes of boundary data, the well known theorem will be considered [37]:.

Theorem 4.2 Let h(t) and χ(t) be two continuous functions on [0,∞[. If they satisfy

the following hypotheses

∃ lim
t→∞

χ(t) = χ(∞), ∃ lim
t→∞

h(t) = h(∞), (38)

ḣ(t) ∈ L1[ 0,∞), (39)

then, it results:

lim
t→∞

∫ t

o

χ(t− τ) ḣ(τ) dτ = χ(∞) [ h(∞)− h(0) ]. (40)

According to this, it is possible to state:

Theorem 4.3 Let gi (i = 1, 2) be two continuous functions converging for t→ ∞.
In this case one has:

lim
t→∞

∫ t

0

θx (x, τ) gi (t− τ) d τ = gi,∞
1

2 ε

sinhσ0 (x− L)

sinh σ0 L
, (41)

where σ0 =

√

(

a +
b

β

)

1

ε
.

Proof. Let us apply (40) with h =
∫ t

0
θx(x, τ)dτ and χ = gi (i = 1, 2). Then, (41)

follows by (33)1.
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5 An Example: Estimate for the FitzHugh Nagumo System

When u(x, t) is determined, by means of (6), the v(x, t) component is given by

v (x, t) = v0 e
−β t + b

∫ t

0

e−β ( t−τ ) u(x, τ) dτ. (42)

To achieve the expression of the solution (u, v), let us denote by f1 ∗ f2 the convolution

f1(·, t) ∗ f2(·, t) =

∫ t

0

f1(·, t) f2 (·, t− τ) d τ.

So that, referring to Dirichlet conditions, if

G(x, ξ, t) = θ ( |x− ξ|, t ) − θ (x+ ξ, t ),

and denoting by N(x, t) the following known function depending on the data
(u0, v0, g1, g2):

N(x, t) = −2 ε g1(t) ∗ θx(x, t)+ (43)

+ 2 ε g2(t) ∗ θx(x− L, t) +

∫ L

0

u0 (ξ) G(x, ξ, t) dξ − e− β t ∗
∫ L

0

v0(ξ) G(x, ξ, t) dξ ,

it results:

v (x, t) = v0 e
−β t + b e−β t ∗ N(x, t)

+ b e−β t ∗
∫ L

0

G (x, ξ, t− τ) ∗ ϕ [ ξ, τ, u(ξ, τ)] ]} dξ .
(44)

So, the asymptotic effects due to initial disturbances are vanishing, while the effects
of the source terms are bounded. Indeed, letting

||u0 || = sup
0≤x≤L

|u0 (x ) |, || v0 || = sup
0≤x≤L

| v0 (x ) |,

and

||ϕ || = sup
ΩT

|ϕ (x, t, u) |,

by means of (8) (34) and (44) and owing to the estimates (21)1, (25), (26), the following
theorem holds:

Theorem 5.1 For regular solution (u, v) of the (FHN) model, when g1 = g2 = 0,
the following estimates hold:







|u | ≤ 2 [ ‖u0‖ (1 + π
√
b t) e−ω t + ‖v0‖ E(t) + β0 ‖ϕ‖ ],

|v | ≤ ‖v0‖ e−β t + 2 [ b ( ‖u0‖ + t ‖v0‖ )E(t) + b β1 ‖ϕ‖ ].
(45)
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As for the asymptotic effects of boundary perturbations g1, g2 by means of (41), when
u0 = 0 and F = 0, one has















u = g1,∞
sinhσ0 (L−x)

sinh σ0 L + g2,∞
sinhσ0 x
sinh σ0 L

∣

∣,

v =
b

β

[

g1,∞
sinhσ0 (L−x)

sinh σ0 L + g2,∞
sinhσ0 (x)
sinh σ0 L

]

.

(46)

6 Remarks

• The paper is concerned with the nonlinear integral equation (1) whose kernel is a
Green function with numerous basic properties typical of the diffusion equation.

• Neumann, Dirichlet and mixed boundary conditions are considered, and integro
differential formulations of non linear problems are obtained.

• The asymptotic behavior for initial boundary value problem with Dirichlet con-
ditions is evaluated, showing that effects due to initial disturbances vanish, while the
influences of the source term and boundary perturbations are everywhere bounded.

•The analysis related to Dirichlet conditions can be applied to mixed problem, too.
Indeed, like θ(x, t), also the Green function θ∗(x, t) defined in (15) depends on the fun-
damental solution K0.

• The equivalence among equation (1) and numerous models allow us to apply asymp-
totic theorems to many other problems related to various physical fields.
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Abstract: In the paper a new class of uncertain differential equations based on
the possibility theory is introduced. It is argued that this class is well-suited for
modeling uncertain dynamic processes when the uncertainty has a non-probabilistic
nature, or when the available statistical information is not sufficient for constructing
a reliable stochastic model. The problems of existence and uniqueness of solutions
of the proposed equations are studied and a numerical method for their solution is
provided.
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1 Introduction

The methods of (quantitative) possibility theory [7, 10, 11, 20] allow one to estimate the
level of possibility of some event with respect to possibilities of other events on the
basis of subjective opinions of experts. These methods are useful for reasoning about
uncertain processes and phenomena in cases when the lack of statistical information does
not allow one to apply probabilistic methods, or when uncertainty has a non-probabilistic
nature. The applications such as prognostication of social-economic phenomena, medical
diagnostics, modeling of human-machine systems, etc. often require differential equations
with uncertainty in the structure and/or parameters. However, in these applications the
available statistical information is often rather limited or unreliable (because of absence
of repetitions of the studied phenomena under the same conditions). Therefore, it is
reasonable to apply non-probabilistic uncertainty theories (e.g. possibility theory) in
such cases [4, 20].
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However, to the best of our knowledge, in the context of possibility theory a theory
of uncertain differential equations has not been developed in the literature. In contrast,
in the context of L. Zadeh’s fuzzy set theory, fuzzy differential equations were studied
extensively [2, 3, 8, 13–16, 19]. Such studies often consider either ordinary differential
equations with fuzzy parameters [15], or equations of the evolution of a membership
function [2, 12, 14, 15]. Although these approaches sometimes provide an alternative
to stochastic modeling, they have some drawbacks. Differential equations with fuzzy
parameters do not allow one to describe uncertain dynamic changes in the law of evolution
(right-hand side of equation), because fuzzy parameters do not depend on time. The
equations of evolution of membership function are not direct generalizations of ordinary
differential equations. In most applications differential equations describe an evolution
of the state of a system, but it is not obvious how to convert a state equation into an
equation describing evolution of a membership function.

In this paper we propose a different approach to modeling of uncertain dynamics,
which is based on possibility theory. We argue that it addresses the disadvantages of
fuzzy differential equations described above.

Our class of possibilistic differential equations is based on the notion of a possibilistic
walk process. Such equations can be considered as possibilistic analogs of stochastic Ito
equations which have a wide range of applications in stochastic modeling. We will study
the problems of existence and uniqueness of solutions of these equations and provide a
numerical method for their solution.

2 Preliminaries

We will use the following framework of (quantitative) possibility theory [4, 7]. Let X be
a non-empty set of elementary events and (X,A), A ⊆ 2X be a measurable space. The
elements of A are called (compound) events.

Definition 2.1 A possibility measure is a function P : A → [0, 1] such that

P (
⋃

i∈I
Ai) = sup

i∈I
P (Ai)

for any collection (Ai)i∈I of elements of A such that
⋃

i∈I Ai ∈ A.

Definition 2.2 A necessity measure is a function N : A → [0, 1] such that

N(
⋂

i∈I
Ai) = inf

i∈I
N(Ai) (1)

for any collection (Ai)i∈I of elements of A such that
⋂

i∈I Ai ∈ A.

Definition 2.3 A possibility space is a tuple (X,A, P,N), where P and N are re-
spectively a possibility and necessity measure on the measurable space (X,A).

Definition 2.4 A possibility space (X,A, P,N) is called regular, if P (X) = 1,
N(X) = 1, and N(A) = 1 − P (¬A) for all A ⊆ X (where ¬A denotes the comple-
ment of a set A ⊆ X).

Definition 2.5 A possibility space (X,A, P,N) is called complete, if A = 2X (the
power set of X).
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The assumptions of the regular possibility space are rather standard and are used in
many works on possibility theory [11, 20]. It was shown in the work [5] that a regular
possibility space (X,A, P,N) can be embedded in some complete regular possibility space
(X, 2X , P ′, N ′), where P ′ and N ′ are extensions of P and N . For this reason, in this
article we will consider only complete regular possibility spaces.

Let us fix a complete regular possibility space (X, 2X , P,N) and denote

Xα = {x ∈ X |P ({x}) > α}

for each α ∈ [0, 1]. In particular, X0 is the set of elementary events which have non-zero
possibility.

Let R+ = [0,+∞) and T be a finite or infinite interval in R+. Under our assumption
of completeness of the possibility space we will use the following terminology:

• A possibilistic variable is a (total) function ξ : X → Y ; if Y = R, then ξ is called
a scalar possibilistic variable; if Y = R

d (where d is a natural number), then ξ is
called a vector possibilistic variable.

• The distribution of a possibilistic variable ξ : X → Y is a mapping µξ : Y → [0, 1]
such that µξ(y) = P{x ∈ X | ξ(x) = y}.

• Possibilistic variables ξk : X → Yk, k = 1, 2, ...,m are called non-interactive
(independent), if the distribution µξ1,ξ2,..,ξm of the vector possibilistic variable
(ξ1, ξ2, ..., ξm) satisfies the condition

µξ1,ξ2,..,ξm(u1, u2, ..., um) = min{µξ1(u1), µξ2(u2), ..., µξm(um)}

for all u1 ∈ Y1, u2 ∈ Y2, ..., um ∈ Ym.

• A possibilistic process is a (total) function p : T × X → Y ; if Y = R, then p is
called a scalar process; if Y = R

d, then p is called a vector process.

• A trajectory of a possibilistic process p : T ×X → Y is a mapping t 7→ p(t, x) for
a fixed x ∈ X .

• the distribution of a process p : T ×X → Y is a function Fp : 2T→Y → [0, 1], where

Fp(q) = P ({x ∈ X | ∀t ∈ T p(t, x) = q(t)})

for each function q : T → Y , i.e. Fp(q) is a possibility of the event ”q is a trajectory
of p”.

• An α-trajectory of p (where α ∈ [0, 1)) is a function q : T → Y such that Fp(q) > α,
i.e. q is a trajectory of p with a possibility level greater than α.

We will abbreviate P ({x ∈ X | pred(ξ(x))}) as P{pred(ξ)}, where pred is some
predicate. For example, P{ξ = y} will denote P ({x ∈ X | ξ(x) = y}). Also, we will
usually omit the second argument (elementary event) of a possibilistic process. For
example, P{p(t) = 1} will denote P ({x ∈ X | p(t, x) = 1}).

We will denote by ||.|| the Euclidean norm on R
d.
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Definition 2.6 [4]. A possibilistic variable ξ : X → R
d is called normal, if its

distribution has a form

µξ(y) = ϕ

(

∥

∥

∥
Ξ−1/2(y − y0)

∥

∥

∥

2
)

,

where ϕ : R+ → [0, 1] is a monotonically decreasing function such that limu→+∞ ϕ(u) = 0
and ϕ(0) = 1, y0 is a constant vector (mean value), Ξ is a positive-definite matrix
(covariance-like matrix).

Definition 2.7 [4,20]. A possibilistic walk process w : R+×X → R
d is a possibilistic

process such that:

1. w has non-interactive increments, i.e. for any time moments 0 ≤ t1 < t2 < ... <
tn+1, the possibilistic variables w(ti+1)− w(ti), i = 1, 2, ..., n are non-interactive.

2. For each t0 ≥ 0, t > t0, y, y0 ∈ R
d the transition possibility has a form

P{w(t) = y, w(t0) = y0} = ϕ

(

∥

∥Ξ−1/2(y − y0)
∥

∥

2

t− t0

)

,

where Ξ (a covariance-like matrix of w) is a positive-definite matrix, and ϕ : R+ →
[0, 1] (a distribution function of w) is a monotonically decreasing function such that
limu→+∞ ϕ(u) = 0 and ϕ(0) = 1.

3. w(0, x) = 0.

Possibilistic walk processes can be considered as analogs of stochastic Wiener pro-
cesses. The existence of a possibilistic walk process was established in [6], where it was
proved that for any ϕ such that limu→+∞ ϕ(u) = 0, ϕ(0) = 1 and for any positive-definite
matrix Ξ there exists a possibility space and a possibilistic walk process w such that ϕ
is a distribution function of w and Ξ is a covariance-like matrix of w.

3 Main Result

Let w be a scalar possibilistic walk process with Ξ = 1 and a distribution function
ϕ : R+ → [0, 1]. Let D be a domain in R

d (where d ≥ 1), and a : R+ × D → R
d and

b : R+ ×D → R
d be continuous mappings. Let (t0, y0) ∈ R+ ×D.

We will use the following lemma to construct our class of possibilistic differential
equations:

Lemma 3.1 [6]. For each α ∈ [0, 1], t ∈ R+, and x ∈ Xα, the trajectory t 7→ w(t, x)
is locally absolutely continuous and satisfies the following inequality almost everywhere
on R+ (with respect to Lebesgue measure):

∣

∣

∣

∣

∂w(t, x)

∂t

∣

∣

∣

∣

≤
√

ϕ−1(α).

Consider the following initial-value problem with parameter x ∈ X :

dy(t, x) = a(t, y(t, x))dt + b(t, y(t, x))dw(t, x), (2)

y(t0, x) = y0, (3)
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or the same problem in the integral form:

y(t, x) = y0 +

t
∫

t0

a(s, y(s, x))ds+

t
∫

t0

b(s, y(s, x))dw(s, x). (4)

Definition 3.1 An α-solution (where α ∈ [0, 1)) of the problem (2)-(3) (or the prob-
lem (4)) on an interval I ⊆ R+ is a possibilistic process y : I×X → D such that for each
x ∈ Xα the trajectory t 7→ y(t, x) is locally absolutely continuous and satisfies (2)-(3)
almost everywhere on I (in the sense of Lebesgue measure).

A solution of the problem (2)-(3) is a 0-solution of this problem.

We will use a special notion of uniqueness of solutions:

Definition 3.2 The problem (2)-(3) (or the problem (4)) has a unique α-solution on
I, if it has some α-solution, and each two α-solutions of (2)-(3) on I are equal on the set
I ×Xα. The problem (2)–(3) has a unique solution, if it has a unique 0-solution.

Let us denote by B(y0, r) = {y ∈ R
d | ||y − y0|| ≤ r} a closed ball in R

d.

Theorem 3.1 (About existence and uniqueness of α-solution) Assume
that the functions a(t, y) and b(t, y) are continuous on the set C = I × B(y0, r), where
I = [t0, t0 +∆t], ∆t > 0, r > 0, and satisfy Lipschitz condition with respect to y, i.e.

||a(t, y)− a(t, z)|| ≤ L||y − z||, ||b(t, y)− b(t, z)|| ≤ L||y − z||,

for some constant L > 0 and all t ∈ I, y, z ∈ B(y0, r).
Let α ∈ (0, 1), Ma = max

(t,y)∈C
||a(t, y)||, Mb = max

(t,y)∈C
||b(t, y)||. Then the problem (2)-(3)

has a unique α-solution on [t0, t0 + h), where

h = min

{

1

2L
,

1√
2L 4
√

ϕ−1(α)
,

r

Ma +
√

ϕ−1(α)Mb

,∆t

}

.

Proof. Let us fix a number ǫ ∈ (0, 1) and denote Iǫ = [t0, t0 + ǫh]. Consider the
space Fǫ of all continuous functions f : Iǫ → B(y0, r) such that f(t0) = y0. Let us define
a uniform metric on this space:

ρǫ(f, g) = max
t∈Iǫ

||f(t)− g(t)||.

Because Bǫ(y0, r) is closed, it is a complete subspace of Rd. Then the space of all
continuous (and bounded) functions f : Iǫ → R

d with metric ρǫ is complete. Thus Fǫ is
a (non-empty) complete metric space.

Let us fix an elementary event x0 ∈ Xα and consider the mapping Φǫ : Fǫ → (Iǫ →
R

d) such that

Φǫ(f)(t) = y0 +

t
∫

t0

a(s, f(s))ds+

t
∫

t0

b(s, g(s))dw(s, x0).

For each f ∈ Fǫ the function t 7→ Φǫ(f)(t) is defined and continuous Iǫ, because h ≤ ∆t,
s 7→ a(s, f(s)) and s 7→ b(s, f(s)) are continuous on Iǫ, and the trajectory s 7→ w(s, x0)
is absolutely continuous on Iǫ.
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Also, we have Φǫ(f)(t0) = y0 and for each t ∈ Iǫ,

||Φǫ(f)(t) − y0|| ≤ sup
t∈Iǫ





t
∫

t0

||a(s, f(s))|| ds+
t
∫

t0

||b(s, f(s))||
∣

∣

∣

∣

∂w(s, x0)

∂s

∣

∣

∣

∣

ds



 ≤

≤ ǫh

(

max
(s,y)∈C

||a(s, y)||+
√

ϕ−1(α) max
(s,y)∈C

||b(s, y)||
)

=

= ǫh(Ma +
√

ϕ−1(α)Mb) ≤ ǫr < r

by Lemma 3.1. Thus Φǫ maps Fǫ to itself. Let us prove that Φǫ is a contracting mapping.
The Lipschitz condition implies that

ρǫ(Φǫ(f),Φǫ(g)) ≤ max
t∈Iǫ





t
∫

t0

||a(s, f(s))− a(s, g(s))||ds +

t
∫

t0

||b(s, f(s))− b(s, g(s))||
∣

∣

∣

∣

∂w(s, x0)

∂s

∣

∣

∣

∣

ds



 ≤

≤
(

L+ Lǫh
√

ϕ−1(α)
)

ǫhρ(f, g) ≤

≤ 2Lmax
{

ǫh,
√

ϕ−1(α)(ǫh)2
}

ρ(f, g) ≤ max{ǫ, ǫ2}ρ(f, g),

because h ≤ min

(

1
2L ,

1
√
2L 4

√
ϕ−1(α)

)

. Then the mapping Φǫ is contracting, because

ǫ ∈ (0, 1). By the Banach fixed point theorem, Φ has a unique fixed point. Obviously,
this fixed point is absolutely continuous and satisfies (2)-(3) almost everywhere on Iǫ.
On the other hand, it is easy to see that every absolutely continuous function which
satisfies (2)-(3) almost everywhere on Iǫ is a fixed point of Φǫ. Then because ǫ ∈ (0, 1)
and x0 ∈ Xα are arbitrary, it is straightforward to show that the problem (2)-(3) has a
unique α-solution on [t0, t0 + h) in sense of Definition 3.2. ✷

Theorem 3.2 (About global existence and uniqueness of solution)
Assume that the functions a(t, y) and b(t, y) are continuous on the set C = [t0,+∞)×R

d

and satisfy a local Lipschitz condition with respect to y: there exists a continuous function
L : (0,+∞) → (0,+∞) such that

||a(t, y)− a(t, z)|| ≤ L(r)||y − z||,

||b(t, y)− b(t, z)|| ≤ L(r)||y − z||,
for all t ≥ 0, r > 0, and y, z ∈ B(y0, r). Assume that the functions a(t, y), b(t, y) satisfy
the following growth conditions for some constant K > 0:

||a(t, y)||2 ≤ K
(

1 + ||y||2
)

,

||b(t, y)||2 ≤ K
(

1 + ||y||2
)

.

Then the problem (2)-(3) has a unique solution on [t0; +∞).
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Proof. Let us choose an arbitrary x0 ∈ X0. Then x0 ∈ Xα for some α ∈ (0, 1).
Assume that a function t 7→ y(t, x0) is defined (and continuous) on some segment

I = [t0, t0 + h], h > 0, and satisfies (4) on I. Then

||y(t, x0)− y0|| ≤
t
∫

t0

||a(s, y(s, x0))||ds+
t
∫

t0

||b(s, y(s, x0))||
∣

∣

∣

∣

∂w(s, x0)

∂s

∣

∣

∣

∣

ds.

This inequality, the growth conditions, and Lemma 3.1 imply that

||y(t, x0)− y0|| ≤
(

1 +
√

ϕ−1(α)
)

t
∫

t0

(

1 +K||y(s, x0)||2
)1/2

ds. (5)

Then for all t ∈ I,
||y(t, x0)|| ≤ R(t),

where a scalar function R(t) satisfies the following Cauchy problem:

R(t) = ||y0||+
(

1 +
√

ϕ−1(α)
)

t
∫

t0

(

1 +KR(t)2
)1/2

ds. (6)

It is easy to check that (6) has the following solution defined for all t ≥ t0:

R(t) =
1√
K

sinh
(√

K(1 +
√

ϕ−1(α))(t− t0) + sinh−1(
√
K||y0||)

)

.

Thus any extension of t 7→ y(t, x0) from I = [t0, t0 + h] to [t0, t0 + h′], h′ > h which
satisfies (4) has a norm bounded from above by the function R(t).

For each r > 0 let us denote

h(r) = min

{

1

2L(r)
,

1
√

2L(r) 4
√

ϕ−1(α)
,

r

M(r) +
√

ϕ−1(α)M(r)

}

,

M(r) =
√

K(1 + (r + ||y0||)2).
The growth conditions imply that

max
t≥0,y∈B(y0,r)

||a(t, y)|| ≤ M(r), max
t≥0,y∈B(y0,r)

||b(t, y)|| ≤ M(r).

Then from Theorem 3.1 we have that for each t′0 ≥ t0, r
′ > 0 and y′0 ∈ R

d such that
B(y′0, r

′) ⊆ B(y0, r) the problem (2) together with initial condition y(t′0) = y′0 has a
unique α-solution yr′,t′

0
,y′

0
(t, x) on [t′0, t

′
0 + h(r′)) (because we can choose an arbitrary

∆t > 0 in the statement of Theorem 3.1).
Let us fix an arbitrary τ > t0. Let us construct a finite or infinite sequences of

trajectories y1(t), y2(t), ..., positive numbers r0, r1, r2, ... and time moments t1, t2, ... (t0
is defined as in the statement of this theorem) such that

• r0 = R(τ)− ||y0||+ 1;

• if n ≥ 0 and tn < τ , then
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– tn+1 = tn + h(rn)/2,

– yn+1(t) = yrn,tn,yn(tn)(t, x0) for all t ∈ [tn, tn+1] (here y0(.) = y0),

– rn+1 = r0 − (R(tn+1)− ||y0||).

The sequence (tn) is increasing and (rn) is decreasing (because the function R is strictly
monotone). These sequences may be finite, if (tn) reaches or becomes greater than τ . It
is easy to check by induction on n that the functions y1, y2, ..., yn are indeed correctly
defined and their concatenation is a trajectory which satisfies (2)-(3) on [t0, tn] using the
inclusion B(yn(tn), rn) ⊆ B(y0, r0) which follows from (5) and (6).

If we assume that the sequence (tn) is infinite, then it is bounded from above (by
τ) and the equation tn+1 = tn + h(r0 − R(tn) + ||y0||)/2 holds for all n ≥ 1. Then
because of continuity of the functions h and R, we have h(r0 −R(limn→∞ tn) + ||y0||) =
h(1 + R(τ) − R(limn→∞ tn)) = 0. But this is impossible when limn→∞ tn < τ . Thus
the sequence (tn) is finite or its elements tend to τ . This implies that there exists a
trajectory t 7→ y(t, x0) which satisfies (2)-(3) on [t0, τ).

Because τ > t0, α ∈ (0, 1) and x0 ∈ Xα are arbitrary, we conclude that the problem
(2)-(3) has a unique solution on [t0; +∞) in the sense of Definition 3.1. Uniqueness of
this solution (in sense of Definition 3.2) easily follows from Theorem 3.1. ✷

4 Numerical Solution

Definition 4.1 The (t, α)-cut of a solution of the equation (4) is the set

Y (t, α) = {y(t, x) |x ∈ Xα},

where t ∈ R+, α ∈ [0, 1).

The (t, α)-cut contains all points which can be reached by α-trajectories of a solution
at time t. The family of all cuts of the solution gives a complete description of its
distribution.

Definition 4.2 An estimate of (t, α)-cut of the solution of the equation (4) is a set
Ŷ (t, α) ⊆ R

n such that the (t, α)-cut Y (t, α) is a dense subset of Ŷ (t, α).

By a numerical solution of the equation (4) we mean some numerical representation
of a family of estimates of (ti, αi)-cuts for a finite set of pairs {(ti, αi) | i ∈ I}. The
numerical solution gives information about sets which can be reached by the solution of
(4) with a given level of possibility.

Let us associate with the equation (4) the following dynamical system with scalar
input control u(t):

dz(t) = a(t, z(t))dt+ b(t, z(t))u(t), (7)

z(t0) = y0. (8)

Let us denote by BU(r) the set of all bounded measurable controls u : R+ → R such
that supt |u(t)| ≤ r.

Theorem 4.1 [6]. The set U(t, α) ⊆ R
n of all points which can be reached by the

system (7), (8) at time t by means of controls u ∈ BU
(

√

ϕ−1(α)
)

is an estimate of

(t, α)-cut of the solution of equation (4).
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This theorem reduces the problem of finding numerical solution of the equation (4)
to the problem of finding reachable sets of the controlled system (7), (8). The problem
of finding reachable sets is well studied [1] and can be solved numerically using existing
tools such as dynamic programming.

5 Numeric Example

Let us consider how the results obtained above can be applied to the problem of modeling
dynamics of epidemics. We start with a simple Ross epidemic model [18]. In this model
the population of N individuals is divided into two groups:

• susceptible individuals, S;

• infective individuals, I.

It is assumed that the following statements hold:

(1) the population is homogeneous, there are no births, deaths, immigrations and em-
igrations;

(2) there is no latent period of the infection, recoveries from illness are not taken into
account;

(3) the infection rate is proportional to the fraction of infectives.

The model is described by the following equations:

S(t) = N − I(t), (9)

dI

dt
= aI(t)(N − I(t)), (10)

where S(t) and I(t) are the numbers of susceptible and infective individuals at time t,
N is the total number of individuals (constant), a is a positive constant.

The model (9)-(10) can be improved by taking into account recovery and transmission
of disease from external source as described in [9]. Let us denote by y(t) = I(t)/N the
fraction of infected individuals. The improved model has the form

y′(t) = ay(t)(1− y(t))− by(t) + c(1− y(t)), (11)

where

• a > 0 is the rate of transmission from individual to individual;

• b > 0 is the rate of recovery;

• c > 0 is the rate of transmission from external source.

Although the model (11) is more accurate than (9)-(10), it is still a rather rough
simplification of the real dynamics of epidemics. To take into account inaccuracy of (9),
following [9] let us add a dynamic uncertainty to this model:

dy(t, x) = ay(t, x)(1− y(t, x))dt− by(t, x)dt+ c(1− y(t, x))dt+ σ(y(t))dw(t, x), (12)
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where σ(y) is a function of the form δy(1 − y), δ > 0. This equation differs from
a stochastic epidemic model proposed in [9] in that the uncertainty is modeled by a
possibilistic walk process w(t, x) instead of the Wiener process. This allows one to
estimate the influence of uncertainties on propagation of epidemics on the basis of expert
opinions [11, 20] instead of statistical data (the latter may be very limited for new or
unfamiliar types of infections).

Then we obtain the final possibilistic epidemic model:

dy(t, x) = ay(t, x)(1 − y(t, x))dt− by(t, x)dt+ (13)

+c(1− y(t, x))dt + δy(t)(1− y(t, x))dw(t, x),

y(0, x) = y0.

It is not difficult to check that this problem has a unique solution (to simplify this
task it is sufficient to assume that y always takes values in [0,1], because it represents a
fraction of infected individuals).

The solution y(t, x) is a possibilistic process. Let us find an estimate of α-cut of
y(t, x). Let us apply the system (7)-(8) to the equation (13):

z′(t) = az(t)(1− z(t))− bz(t)+ (14)

+c(1− z(t)) + δz(t)(1− z(t))u(t),

z(0) = y0.

Let us define y1(t), y2(t) as solutions of the following equations:

y′1(t) = ay1(t)(1 − y1(t))− by1(t) + c(1− y1(t))− (15)

−
√

ϕ−1(α)|δy1(t)(1 − y1(t))|, y1(0) = y0,

y′2(t) = ay2(t)(1 − y2(t))− by2(t) + c(1− y2(t))+ (16)

+
√

ϕ−1(α)|δy2(t)(1 − y2(t))|, y2(0) = y0.

It is easy to verify that the segment [y1(t), y2(t)] is a reachable set at time t for the
system (14) with controls u ∈ BU(

√

ϕ−1(α)). So the set [y1(t), y2(t)] is an estimate of
α-cut of the solution of (14) by Theorem [6].

Assume that α > ϕ(a2/δ2). Then non-negative stationary solutions of the equations
(15), (16) are given by the following expressions:

ŷ1(α) =
a− b− c+ δCα +

√

(a− b+ c+ δCα)2 + 4bc

2(a+ δCα)
,

ŷ2(α) =
a− b− c− δCα +

√

(a− b+ c− δCα)2 + 4bc

2(a− δCα)
,

where Cα =
√

ϕ−1(α).
Thus we can accept that for large t, the fraction of infected individuals belongs to

the segment [ŷ1(α), ŷ2(α)] with the level of possibility α.
Let us consider a numerical example.
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Figure 1: The lower and upper bound for the fraction of infected individuals when a = 1. The
horizontal axis represents the possibility level α.

Figure 2: The lower and upper bounds for the fraction of infected individuals for different
values of parameter a.

Example 5.1 Let ϕ(x) = exp(−x), a = 1, b = 0.4, c = 0.01, δ = 0.1. Figure 1 shows
the curves ŷ1 (lower bound) and ŷ2 (upper bound). The horizontal axis represents the
possibility level α. Figure 2 shows the similar curves for different values of a (but the
possibility level α is represented on vertical axis).

Figures 1 and 2 were produced by the following MATLAB [17] program:

function r = f(alpha,a,s)

b = 0.4; c = 0.01;

dC = s * 0.1 * sqrt(-log(alpha));
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r = (a-b-c+dC + sqrt((a-b+c+dC).^2+4*b*c))./(2*(a+dC));

I = 0.01:0.01:1; nul = zeros(length(I));

plot3(f(I,0.4,1),nul+0.4,I, f(I,0.4,-1),nul+0.4,I); hold on

plot3(f(I,1,1),nul+1,I, f(I,1,-1),nul+1,I);

plot3(f(I,2,1),nul+2,I, f(I,2,-1),nul+2,I);

6 Conclusion

In the paper we have studied the problem of modeling of uncertain dynamics using the
methods of possibility theory. We have constructed a new class of uncertain differential
equation with respect to a possibilistic walk process. We have studied the problems of
existence and uniqueness of solutions of these equations and proposed a method which
can be used to solve them numerically.

The obtained results can be used for modeling social-economic and ecological phe-
nomena, medical diagnostic tasks, and other uncertain processes or phenomena in which
available statistical information is not sufficient for constructing a reliable stochastic
model, or the uncertainty has a non-probabilistic nature.
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Abstract: The main objective of this paper is to study solutions of a non-
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1 Introduction

A natural way of generalizing differential equations is allowing the unknown function
to appear with different values of the argument. Thus, differential equations with a
deviating argument are differential equations in which the unknown function and its
derivative appear in different places of the argument. This type of equations arise in
many fields such as the theory of automatic control, the theory of self-oscillating systems,
the problems of long-term planning in economics, the study of problems related with
combustion in rocket motion, a series of biological problems, and many other areas [2].
One of the important examples is the process in fuel injection system for high-speed
diesel engines which can be modeled as differential equations with a deviating argument
of neutral type (see [2]).

The purpose of this work is to study solutions of the following type of neutral equation
in a Banach space (X, ‖ · ‖):

d

dt
[u(t) + g(t, u(a(t)))] +A(t)u(t) = f(t, u(t), u(h(u(t), t))), t > 0;

u(0) = u0,

}

(1)
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where u : R+ → X . Here, we assume that −A(t), for each t ≥ 0, generates an analytic
semigroup of bounded linear operators on X . The continuous functions f , g and h satisfy
suitable conditions in their arguments and the function a : [0, T ] → [0, T ] satisfies the
delay properties.

The plentiful applications motivate the development of the theory of differential equa-
tion with deviating arguments (see e.g. [1,6–9,13,14,17–19] and references cited therein).

Fu and Liu [6] have considered the following abstract neutral functional equation with
infinite delay:

d

dt
[u(t) + f(t, ut)] +A(t)u(t) = g(t, ut), t ∈ (0, T ],

u0 = φ ∈ C0.

Here u(t) takes values in a Banach space X , the family {A(t) : t ∈ [0, T ], T ∈ [0,∞)} of
unbounded linear operators generates a bounded linear evolution operators on X , the
function f : [0, T ] × C0 → X is uniformly Lipschitz continuous in both variables, the
function g : [0, T ]×C0 → X satisfies suitable conditions (here C0 is a phase space defined
appropriately). The existence of a solution has been obtained by the Sadovskii fixed
point principle.

In [8], Haloi et. al. have studied the existence of solutions to the following differential
equation

d

dt
[u(t) + g(t, u(a(t)))] +A(t)[u(t) + g(t, u(a(t)))] = f(t, u(t), u(h(u(t), t))), t > 0;

u(0) = u0.

The main results are obtained by the Banach fixed point theorem without any regularity
assumption on the function g.

Using the Banach fixed point theorem and the Sobolevskĭi-Tanabe theory of parabolic
equations, we prove the existence, uniqueness and asymptotic stability of a solution to
Problem (1). The main results generalize some results of [7], [9], [14] and [19].The work
is organized as follows. In Section 2, we provide preliminaries, assumptions and lemmas
that will be needed for proving the main results. In Section 3, we prove the main results.
Finally, we discuss an example as an application of the abstract results.

2 Preliminaries and Assumptions

This section deals with basic assumptions, preliminaries and lemmas necessary for prov-
ing the main results. For more details, we refer to [4, 12, 15, 16].

Let (X, ‖ · ‖) be a complex Banach space. Let {A(t) : 0 ≤ t ≤ T, 0 ≤ T < ∞} be a
family of linear operators on the Banach space X . We use the following assumptions.

(H1) For each t ∈ [0, T ], A(t) is closed linear operator with domain D(A) of A(t) inde-
pendent of t and dense in X .

(H2) For each t ∈ [0, T ], the resolvent R(λ;A(t)) exists for all Re λ ≤ 0 and there is a
constant C > 0 (independent of t and λ) such that

‖R(λ;A(t))‖ ≤ C

|λ|+ 1
, Re λ ≤ 0, t ∈ [0, T ].
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(H3) For each fixed s ∈ [0, T ], there are constants C > 0 and ρ ∈ (0, 1] such that

‖[A(t)−A(τ)]A(s)−1‖ ≤ C|t− τ |ρ

for any t, τ ∈ [0, T ]. Here C and ρ are independent of t, τ and s.

It is well known that the assumption (H2) implies that for each s ∈ [0, T ], −A(s) generates
a strongly continuous analytic semigroup {e−tA(s) : t ≥ 0} in L(X), where L(X) denotes
the Banach algebra of all bounded linear operators on X . Then there exist positive
constants C and δ such that

‖e−tA(s)‖ ≤ Ce−δt, t ≥ 0; (2)

‖A(s)e−tA(s)‖ ≤ Ce−δt

t
, t > 0, (3)

for all s ∈ [0, T ] [4]. In the remainder of this work, C will denote a constant independent
of s, t.

Theorem 2.1 [4,15] If the assumptions (H1)–(H3) hold, then there exists a unique
fundamental solution {U(t, s) : 0 ≤ s ≤ t ≤ T } to homogeneous Cauchy problem.

Now consider the following inhomogeneous Cauchy problem

d

dt
u(t) +A(t)u(t) = h(t), t > t0 ≥ 0, u(t0) = u0. (4)

Let Cβ([t0, T ];X) denote the space of all X-valued functions h(t), that are uniformly
Hölder continuous on [t0, T ] with exponent β, where 0 < β ≤ 1. Then Cβ([t0, T ];X) is a
Banach space endowed with the norm

‖h‖Cβ([t0,T ];X) = sup
t0≤t≤T

‖h(t)‖+ sup
t,s∈[t0,T ],t6=s

‖h(t)− h(s)‖
|t− s|β .

Then we have the following theorem.

Theorem 2.2 [4, 15] Let the assumptions (H1)–(H3) hold. If h ∈ Cβ([t0, T ];X),
then there exists a unique solution to Problem (4). Furthermore, the solution is given by

u(t) = U(t, t0)u0 +

∫ t

t0

U(t, s)h(s)ds, t0 ≤ t ≤ T,

and u : [t0, T ] → X is a strongly continuously differentiable on (t0, T ].

It follows from the assumptions (H2) that the negative fractional powers of the oper-
ator A(t) is well defined and defined as

A(t)−α =
1

Γ(α)

∫ ∞

0

e−τA(t)τα−1dτ

for α > 0. Then A(t)−α is a one-to-one and bounded linear operator on X [4]. We define
the positive fractional powers of A(t) by A(t)α ≡ [A(t)−α]−1. It can be seen that A(t)α
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is closed linear operator with domain D(A(t)α) dense in X and D(A(t)α) ⊂ D(A(t)β) if
α > β. For 0 < α ≤ 1, let Xα = D(A(0)α) and equip the space Xα with the graph norm

‖x‖α = ‖A(0)αx‖.

Then (Xα, ‖ · ‖α) is a Banach space. If 0 < α ≤ 1, the embeddings X1 →֒ Xα →֒ X are
dense and continuous. For each α > 0, we define X−α = (Xα)

∗, the dual space of Xα,
and endow the space X−α with the natural norm

‖x‖−α = ‖A(0)−αx‖.

Then (X−α, ‖ · ‖−α) is a Banach space. The following assumptions are necessary for
proving the main results. For 0 < α ≤ 1, let Vα and Vα−1 be open sets in Xα and
Xα−1 respectively. For each u ∈ Vα and u1 ∈ Vα−1, there are closed balls such that
Bα ≡ Bα(u, r) ⊂ Vα and Bα−1 ≡ Bα−1(u1, r1) ⊂ Vα−1 for r > 0 and r1 > 0.

(H4) There exist constants Lf ≡ Lf(t, u, u1, r, r1) > 0 and 0 < θ1 ≤ 1 such that the
nonlinear continuous function f : [0, T ]× Vα × Vα−1 → X satisfies

‖f(t, x, x1)− f(s, y, y1)‖ ≤ Lf (|t− s|θ1 + ‖x− y‖α + ‖x1 − y1‖α−1) (5)

for all x, y ∈ Bα, x1, y1 ∈ Bα−1 and for all s, t ∈ [0, T ].

(H5) There exist constants Lh ≡ Lh(t, u, r) > 0 and 0 < θ2 ≤ 1 such that the continuous
function h : Vα × [0, T ] → [0, T ] satisfies

|h(x, t) − h(y, s)| ≤ Lh(‖x− y‖α + |t− s|θ2), (6)

h(·, 0) = 0 (7)

for all x, y ∈ Bα and for all s, t ∈ [0, T ].

(H6) There exists constant Lg ≡ Lg(t, u1, r1) > 0 such that the continuous function
g : [0, T ]× Vα−1 → X1 satisfies

‖g(t, x1)− g(s, y1)‖1 ≤ Lg{|t− s|+ ‖x1 − y1‖α−1} (8)

for all x1, y1 ∈ Bα−1 and t, s ∈ [0, T ].

(H7) The function a : [0, T ] → [0, T ] has the following properties:

(i) a satisfies the delay property a(t) ≤ t for all t ∈ [0, T ].

(ii) The function a is Lipschitz continuous; that is, there exists a positive constant
La such that

|a(t)− a(s)| ≤ La|t− s| for all t, s ∈ [0, T ],

La‖A(0)α−2‖ < 1.

We will use the following lemmas in the subsequent sections.

Lemma 2.1 [5, Lemma 1.1] Let h ∈ Cβ([t0, T ];X). Define F : Cβ([t0, T ];X) →
C([t0, T ];X1) by

Fh(t) =
∫ t

t0

U(t, s)h(s)ds, t0 ≤ t ≤ T.

Then F is a bounded mapping and ‖Fh‖C([t0,T ];X1) ≤ C‖h‖Cβ([t0,T ];X) for some constant
C > 0.
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Lemma 2.2 [10, Lemma 2] Let 0 < α ≤ 1 and f ∈ C([t0, T ];Xα). Define

w(t) =

∫ t

t0

U(t, s)f(s)ds, t0 ≤ t ≤ T.

Then w ∈ C([t0, T ];X1) ∩ C1((t0, T ];X) and
dw(t)

dt
+A(t)w(t) = f(t), t0 < t ≤ T.

3 Main Results

In this section, we prove the main results on the existence, uniqueness and asymptotic
stability of a solution to Problem (1). Let I denote the interval [0, T0] for some positive
number T0 to be determined later. For 0 ≤ α ≤ 1, let Cα denote the space of allXα-valued
continuous functions on I, endowed with the sup-norm ‖ · ‖∞, where

‖φ‖∞ = sup
t∈I

‖φ(t)‖α, φ ∈ C(I;Xα).

Let

Yα ≡ CLα
(I;Xα−1) = {ψ ∈ Cα : ‖ψ(t)− ψ(s)‖α−1 ≤ Lα|t− s| for all t, s ∈ I},

where Lα is a positive constant to be specified later. Then Yα is a Banach space endowed
with the sup-norm of Cα.

Definition 3.1 A continuous function u : I → Xα is said to be a mild solution to
Problem (1) if

(i) g(·, ·) ∈ X1;

(ii) u satisfies the following integral equation

u(t) = U(t, 0)[u(0) + g(0, u0)]− g(t, u(a(t))) +

∫ t

0

U(t, s)A(s)g(s, u(a(s)))ds

+

∫ t

0

U(t, s)f(s, u(s), u(h(u(s), s)))ds, t ∈ I;

(iii) u(0) = u0.

Definition 3.2 A continuous function u : I → X is said to be a solution to Problem
(1) if u satisfies the following:

(i) u(·) + g(·, u(a(·))) ∈ CLα
(I;Xα−1) ∩C1((0, T0);X) ∩ C(I;X);

(ii) u(·) ∈ X1 and g(·, u(a(·))) ∈ X1;

(iii)
d

dt
[u(t) + g(t, u(a(t)))] +A(t)u(t) = f(t, u(t), u(h(u(t), t))) for all t ∈ (0, T0);

(iv) u(0) = u0.
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Let u0 ∈ Xα and let r > 0 be chosen small enough such that the assumptions (H4)–
(H6) hold for the closed balls Bα = Bα(u0, r) and Bα−1 = Bα−1(u0, r). Let K > 0 and
0 < η < β − α be fixed constants. Let

S =
{

v ∈ Cα ∩ Yα : v(0) = u0,

sup
t∈I

‖v(t)− u0‖α ≤ r, ‖v(t)− v(s)‖α ≤ K|t− s|η for all s, t ∈ I
}

.

It can be seen that the set S is a non-empty, closed and bounded subset of Cα. Based on
the ideas of Friedman [4], Fu and Liu [6] and Gal [7], we have the following theorem on
existence and uniqueness of a local solution to Problem (1).

Theorem 3.1 For 0 < α < β ≤ 1, let u0 ∈ Xβ. If the assumptions (H1)–(H7) hold,
then there exist a positive number T0 ≡ T0(α, u0) and a unique solution u(t) to Problem
(1) on the interval [0, T0].

Proof. For each v ∈ S and t ∈ I, we define a map H by

Hv(t) = U(t, 0)[u0 + g(0, u0)]− g(t, v(a(t))) +

∫ t

0

U(t, s)A(s)g(s, v(a(s)))ds

+

∫ t

0

U(t, s)fv(s)ds,

where fv(t) = f(t, v(t), v(h(v(t), t))). If v ∈ S, then the assumptions (H4) and (H5)
imply that fv(t) is Hölder continuous on I of exponent γ = min{θ1, θ2, η}. Also for
v ∈ S, it is clear from the assumptions (H6) and (H7) that A(t)g(t, v(a(t))) is Hölder
continuous on I of exponent η. Thus by Lemma 2.1, the map H is well defined and it can
be seen that Hv ∈ Cα. We will claim that H maps from the set S into S for sufficiently
small T0 > 0. Indeed, if t1, t2 ∈ I with t2 > t1, then we have

‖Hv(t2)−Hv(t1)‖α−1

≤ ‖[U(t2, 0)− U(t1, 0)][u0 + g(0, u0)]‖α−1

+ ‖g(t2, v(a(t2))) − g(t1, v(a(t1)))‖α−1

+

∥

∥

∥

∥

∫ t2

0

U(t2, s)A(s)g(s, v(a(s)))ds −
∫ t1

0

U(t1, s)A(s)g(s, v(a(s)))ds

∥

∥

∥

∥

α−1

+

∥

∥

∥

∥

∫ t2

0

U(t2, s)fv(s)ds−
∫ t1

0

U(t1, s)fv(s)ds

∥

∥

∥

∥

α−1

. (9)

Since the inclusion X → Xα−1 is bounded, we get the following estimate for first
term on the right hand side of (9) ( cf. [4, see Lemma II. 14.1]) as

‖[U(t2, 0)− U(t1, 0)][u0 + g(0, u0)]‖α−1 ≤ C1‖u0 + g(0, u0)‖α(t2 − t1), (10)

where C1 is some positive constant.
Similarly, the assumptions (H6) and (H7) imply the following estimate

‖g(t2, v(a(t2)))− g(t1, v(a(t1)))‖α−1 ≤ C2|t2 − t1|, (11)

where C2 = ‖A(0)α−2‖Lg(1 + LaLα).
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Using [4, Lemma II. 14.4], we get the following estimates for the third and fourth
term on the right hand side of (9) as

∥

∥

∥

∥

∫ t2

0

U(t2, s)A(s)g(s, v(a(s)))ds −
∫ t1

0

U(t1, s)A(s)g(s, v(a(s)))ds

∥

∥

∥

∥

α−1

≤ C3Mg(t2 − t1)(| log(t2 − t1)|+ 1), (12)

Mg = sup
t∈[0,T ]

‖g(t, v(a(t)))‖1 and C3 is some positive constant, and

∥

∥

∥

∥

∫ t2

0

U(t2, s)fv(s)ds−
∫ t1

0

U(t1, s)fv(s)ds

∥

∥

∥

∥

α−1

≤ C4Nf (t2 − t1)(| log(t2 − t1)|+ 1), (13)

where Nf = sup
t∈[0,T ]

‖fv(t)‖ and C4 is some positive constant.

Using estimates (10), (11), (12) and (13) in inequality (9), we get

‖Hv(t2)−Hv(t1)‖α−1 ≤ Lα|t2 − t1|, (14)

where Lα = max
{

C1‖u0 + g(0, u0)‖α,
‖A(0)α−2‖Lg

1− ‖A(0)α−2‖La
, C3Mg(| log(t2 − t1)| +

1), C4Nf (| log(t2 − t1)|+ 1)
}

.

For sufficiently small T0 > 0, we will show that

sup
t∈I

‖H(v)(t)− u0‖α ≤ r.

Since u0+g(0, u0) ∈ Xα, we can choose sufficiently small T1 > 0 such that ( cf. [4, Lemma
II.14.1]),

‖[U(t, 0)− I][u0 + g(0, u0)]‖α ≤ r

4
for all t ∈ [0, T1]. (15)

Also, it is clear from the assumptions (H6) and (H7) that we can choose T2 > 0 small
enough such that

‖g(t, v(a(t)))− g(0, u0)‖α ≤ r

4
for all t ∈ [0, T2]. (16)

Let K1 := sup
0≤t≤T

‖f(t, u0, u0)‖.

We choose T3 > 0 such that

(

C5

1− α
Lf [(1 + LαLh)r + T θ2

3 ] +
C5K1

1− α

)

T 1−α
3 ≤ r

4
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for some positive constant C5. Now from the assumptions (H4) and (H5), we have for
t ∈ [0, T3]

∥

∥

∥

∥

∫ t

0

U(t, s)f(s, v(s), v(h(v(s), s)))ds

∥

∥

∥

∥

α

≤ C5Lf

∫ t

0

(t− s)−α
[

‖v(s)− u0‖α + ‖v([h(v(s), s)]) − u0‖α−1

]

ds

+ C5K1

∫ t

0

(t− s)−αds

≤ C5Lf

∫ t

0

(t− s)−α
[

‖v(s)− u0‖α + Lα|h((v(s), s)) − h(u(0), 0)|
]

ds

+ C5K1

∫ t

0

(t− s)−αds

≤ C5Lf

∫ t

0

(t− s)−α
[

‖v(s)− u0‖α + Lα|h((v(s), s)) − h(u(0), 0)|
]

ds

+
C5K1δ

1−α

1− α

≤ C5Lf

∫ t

0

(t− s)−α[r + LαLh(‖v(s)− u0‖α + sθ2)]ds+
C5K1T

1−α
3

1− α

≤ C5Lf [(1 + LαLh)r + T θ2
3 ]

∫ t

0

(t− s)−αds+
C5K1T

1−α
3

1− α

≤
(

C5

1− α
Lf [(1 + LαLh)r + T θ2

3 ] +
C5K1

1− α

)

T 1−α
3 (17)

for some positive constant C5. Let K2 = sup
t∈[0,T ]

‖g(t, u0)‖1. We choose T4 > 0 small

enough such that

C6

(

LgLαLaT4 +K2

)T 1−α
4

1− α
≤ r

4

for some positive constant C6. Using the assumptions (H6) and (H7), we get

∥

∥

∥

∥

∫ t

0

U(t, s)A(s)g(s, v(a(s)))ds

∥

∥

∥

∥

α

≤ C6

∫ t

0

(t− s)−α
(

Lg(1 + LαLa)s+ ‖g(s, u0)‖1
)

ds

≤ C6

(

Lg(1 + LαLa)T4 +K2

)T 1−α
4

1− α
, (18)

where C6 is a positive constant. Combining estimates (15), (16), (17) and (18), we obtain

sup
t∈[0,T5]

‖Hv(t)− u0‖α ≤ r,

where T5 = min{T1, T2, T3, T4}.
It remains to show

‖Hv(t+ h)−Hv(t)‖α ≤ Khη
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for some K > 0 and 0 < η < 1. Let T6 > 0 be a sufficiently small number. If 0 ≤ α <
β ≤ 1, 0 ≤ t ≤ t+ h ≤ T6, then we have for t ∈ [0, T6]

‖Hv(t+ h)−Hv(t)‖α
≤ ‖[U(t+ h, 0)− U(t, 0)][u0 + g(0, u0)‖α
+ ‖g(t+ h, v(a(t+ h)))− g(t, v(a(t)))‖α

+

∥

∥

∥

∥

∥

∫ t+h

0

U(t+ h, s)A(s)g(s, v(a(s)))ds −
∫ t

0

U(t, s)A(s)g(s, v(a(s)))ds

∥

∥

∥

∥

∥

α

+

∥

∥

∥

∥

∥

∫ t+h

0

U(t+ h, s)f(s, v(s), v(h(v(s), s)))ds −
∫ t

0

U(t, s)f(s, v(s), v(h(v(s), s)))ds

∥

∥

∥

∥

∥

α

.

(19)

The bellow estimates follow from [4, Lemma II.14.1 and Lemma II.14.4],

‖[U(t+ h, 0)− U(t, 0)][u0 + g(0, u0)]‖α ≤ C7‖u0 + g(0, u0)‖βhβ−α; (20)

∥

∥

∥

∥

∥

∫ t+h

0

U(t+ h, s)A(s)g(s, v(a(s)))ds −
∫ t

0

U(t, s)A(s)g(s, v(a(s)))ds

∥

∥

∥

∥

∥

α

≤ C8Mgh
1−α(1 + | log h|); (21)

∥

∥

∥

∥

∥

∫ t+h

0

U(t+ h, s)f(s, v(s), v(h(v(s), s)))ds −
∫ t

0

U(t, s)f(s, v(s), v(h(v(s), s)))ds

∥

∥

∥

∥

∥

α

≤ C9Nfh
1−α(1 + | log h|), (22)

where C7, C8 and C9 are some positive constants. Again form the assumption (H6) and
(H7), it is clear that

‖g(t+ h, v(a(t+ h)))− g(t, v(a(t)))‖α ≤ C10Lg(1 + LαLa)h (23)

for some constant C10. Combining estimates (20), (21), (22) and (23), we get for t ∈
[0, T6],

‖Hv(t+ h)−Hv(t)‖α
≤ hη

[

C7‖u0 + g(0, u0)‖βT β−α−η
6 + C10Lg(1 + LαLa)h

1−η

+ C8MgT
1−α−η
6 (1 + | log h|) + C9NfT

ν
6 h

1−α−η−ν(| log h|+ 1)
]

for any ν > 0, ν < 1− α− η. Hence, for sufficiently small T6 > 0 , we have

‖Hv(t+ h)−Hv(t)‖α ≤ Khη

for t ∈ [0, T6] and for some K > 0. Thus, we have shown that H maps from the set S
into S.

We will now claim that the map H is a strict contraction. We choose T7 > 0 such
that

Lg‖A(0)−1‖+ CLg‖A(0)−1‖T
1−α
7

1− α
+ CLf (2 + LαLh)

T 1−α
7

1− α
≤ 1

2
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for some positive constant C. Using the assumptions (H4)–(H7) and [15, inequality (1.65),
page 23], we have for t ∈ [0, T7] and v1, v2 ∈ S,

‖Hv1(t)−Hv2(t)‖α
≤ Lg‖A(0)−1‖‖v1 − v2‖∞

+ CLg‖A(0)−1‖
∫ t

0

(t− s)−α‖v1(a(s)) − v2(a(s))‖αds

+ CLf

∫ t

0

(t− s)−α(‖v1(s)− v2(s)‖α + ‖v1([h(v1(s), s)])− v2([h(v2(s), s)])‖α−1)ds

≤ Lg‖A(0)−1‖‖v1 − v2‖∞

+ CLg‖A(0)−1‖‖v1 − v2‖∞
T 1−α
7

1− α
+ CLf(2 + LαLh)

T 1−α
7

1− α
‖v1 − v2‖∞ (24)

for a positive constant C. Thus, the choice of T7 implies that the map H is a strict
contraction. Since S is a complete metric space, by the Banach fixed-point theorem,
there exists v ∈ S such that Hv = v. Thus Problem (1) has a unique mild solution on
[0, T0] where T0 = min{T1, T2, T3, T4, T5, T6, T7}

From Lemma 2.1 and Theorem 2.2, it follows that v ∈ C1((0, T0);X). Thus v is a
solution to Problem (1) on [0, T0]. �

Next we will prove the following theorem that gives the existence of a global solution
to Problem (1).

Theorem 3.2 Let the assumptions (H1)–(H7) hold. If there are continuous nonde-
creasing real valued functions k1(t), k2(t) and k3(t) such that

‖f(t, x, y)‖ ≤ k1(t)(1 + ‖x‖α + ‖y‖α−1), (25)

|h(x, t)| ≤ k2(t)(1 + ‖x‖α), (26)

‖g(t, y)‖1 ≤ k3(t)(1 + ‖y‖α−1), (27)

for all t ≥ 0, x ∈ Xα and y ∈ Xα−1, then Problem (1) has a unique solution and the
solution exists for all t ∈ [0, T ], T ∈ [0,∞) for each u0 ∈ Xβ, where 0 < α < β ≤ 1.

Proof. It follows from Theorem 3.1 that there exists a T0 ∈ (0, T ] and a unique local
solution u(t) on t ∈ [0, T0] to Problem (1) is given by

u(t) = U(t, 0)[u0 + g(0, u0)]− g(t, u(a(t))) +

∫ t

0

U(t, s)A(s)g(s, u(a(s)))ds

+

∫ t

0

U(t, s)f(s, u(s), u(h(u(s), s)))ds, t ∈ [0, T0].

If

‖u(t)‖α ≤ C̃

for all t ∈ [0, T0] and for some constant C̃ that is independent of t, then the solution
u(t) to Problem (1) may be continued further to the right of T0. Thus to show global
existence of the solution u(t), it is enough to show that ‖u(t)‖α is bounded as t ↑ T.



252 RAJIB HALOI

Let k1(T ) = sup
t∈[0,T ]

k1(t), k2(T ) = sup
t∈[0,T ]

k2(t) and k3(T ) = sup
t∈[0,T ]

k3(t). Form the

assumptions (H4)− (H7), (25), (26) and (27), we get for t ∈ [0, T0],

‖u(t)‖α ≤ ‖U(t, 0)[u0 + g(0, u0)]‖α

+ ‖g(t, u(a(t)))‖α +

∥

∥

∥

∥

∫ t

0

U(t, τ)A(τ)g(τ, u(a(τ)))dτ

∥

∥

∥

∥

α

+

∥

∥

∥

∥

∫ t

0

U(t, τ)f(τ, u(τ), u(h(u(τ), τ)))dτ

∥

∥

∥

∥

α

≤ ‖Aα(0)A−β(t)Aβ(t)U(t, 0)A(0)−βA(0)β [u0 + g(0, u0)]

+ k3(T )‖A(0)α−1‖
(

1 + ‖A(0)−1‖ sup
s∈[0,t]

‖u(s)‖α
)

+ k3(T )

∫ t

0

(t− τ)−α
(

1 + ‖A(0)−1‖ sup
ζ∈[0,τ ]

‖u(ζ)‖α
)

dτ

+ k1(T )

∫ t

0

(t− τ)−α
[

(1 + ‖u(τ)‖α + Lα|h(u(τ), τ) − h(u0, 0)|+ ‖u0‖α−1

]

dτ

≤
(

C‖u0 + g(0, u0)‖β + k3(T )‖A(0)α−1‖L̃+ k1(T )‖u0‖α−1

∫ t

0

(t− τ)−αdτ
)

+
(

k3(T )‖A(0)α−1‖L̃+ k1(T )(1 + Lαk2(T ))
)

∫ t

0

(t− τ)−α
(

1 + sup
ζ∈[0,τ ]

‖u(ζ)‖α
)

dτ,

where L̃ = max{1, ‖A(0)−1‖}. Thus we have

sup
s∈[0,t]

‖u(s)‖α ≤ L̃1 + M̃1

∫ t

0

(t− τ)−α(1 + sup
ζ∈[0,τ ]

‖u(ζ)‖α))dτ,

where

L̃1 =

(

C‖u0 + g(0, u0)‖β + k3(T )‖A(0)α−1‖L̃+ k1(T )‖u0‖α−1

∫ t

0 (t− τ)−αdτ
)

(1− k3(T )‖A(0)α−2‖) ,

M̃1 =

(

k3(T )‖A(0)α−1‖L̃+ k1(T )(1 + Lαk2(T ))
)

(1− k3(T )‖A(0)α−2‖) .

Applying Gronwall’s Lemma, we get that ‖u(t)‖α is bounded as t ↑ T. �

Next we give a theorem of existence of solutions to Problem (1) under more smooth-
ness condition on the function f and u0. Denote D(A(0)) by X1. Equipped this space
X1 with the graph norm

‖x‖1 := (‖x‖2 + ‖A(0)x‖2) 1
2 .

Then ‖ · ‖1 that is equivalent to the usual norm ‖A(0) · ‖.
Let V1 and V be open sets in X1 and X , respectively. For each u ∈ V1 and u1 ∈ V ,

there are closed balls B1 ≡ B1(u, r) and B ≡ B(u1, r1) such that B1 ⊂ V1 and B ⊂ V
for some r, r1 > 0. We make the following stronger assumptions.

(H4)
′ There exist constants Lf ≡ Lf(t, u, u1, r, r1) > 0 and 0 < θ1 ≤ 1, such that the
nonlinear function f : [0, T ]× V1 × V → Xα satisfies

‖f(t, x, x1)− f(s, y, y1)‖α ≤ Lf (|t− s|θ1 + ‖x− y‖1 + ‖x1 − y1‖), (28)
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for all x, y ∈ B1, x1, y1 ∈ B, for all s, t ∈ [0, T ] and α ∈ (0, 1).

(H5)
′ There exist constants Lh ≡ Lh(t, u1, r1) > 0 and 0 < θ2 ≤ 1, such that h :
V1 × [0, T ] → [0, T ] satisfies

|h(x, t)− h(y, s)| ≤ Lh(‖x− y‖1 + |t− s|θ2), (29)

h(·, 0) = 0, (30)

for all x, y ∈ B1 and for all s, t ∈ [0, T ].

(H6)
′ There exists constant Lg ≡ Lg(t, u1, r1) > 0 such that the continuous function
g : [0, T ]× V → X1 satisfies

‖g(t, x)− g(s, y)‖1 ≤ Lg{|t− s|+ ‖x− y‖}, (31)

for all x, y ∈ B and t, s ∈ [0, T ].

Then we have the following theorem on the existence and uniqueness of a solution to
Problem (1).

Theorem 3.3 Let u0 ∈ X1 and let the assumptions (H1)–(H3), (H4)
′ –(H6)

′ and
(H7) hold. Then there exist a positive number T0 and a unique solution u(t) to Problem
(1) on the interval I ≡ [0, T0] such that u ∈ CL(I;X) ∩C1((0, T0);X) ∩ C(I;X), where

CL(I;X) = {ψ ∈ C(I;X1) : ‖ψ(t)− ψ(s)‖ ≤ L|t− s| for all t, s ∈ I}
for some constant L > 0. Moreover, we assume that there are positive constants k4(t),
k5(t) and k6(t) such that

‖f(t, x, y)‖α ≤ k4(t)(1 + ‖x‖1 + ‖y‖) for 0 < α < 1, (32)

|h(x, t)| ≤ k5(t)(1 + ‖x‖1), (33)

‖g(t, y)‖1 ≤ k6(t)(1 + ‖y‖) (34)

for all t ≥ 0, x ∈ X1 and y ∈ X. Then the unique solution of (1) exists for all t ≥ 0.

Proof. We define a map P by

Pv(t) = U(t, 0)[u0 + g(0, u0)]− g(t, v(a(t))) +

∫ t

0

U(t, s)g(s, v(a(s)))ds

+

∫ t

0

U(t, s)f(s, v(s), v(h(v(s), s)))ds

for each t ∈ I = [0, T0] and for each v ∈ C(I, B1). By Lemma 2.2, the map P from
C(I, B1) into C(I;X1) is well defined.

Let

S =
{

y ∈ C(I;X1) ∩ CL(I;X) : y(0) = u0, sup
t∈I

‖y(t)− u0‖1 ≤ r
}

.

It is clear that S is nonempty, closed, and bounded subset of C(I;X1)∩CL(I;X). Thus
S is a complete metric space. It can be proved that the map P : S → S is a contraction
mapping. The proof can be obtained by the same argument as in the proof of Theorem
3.1 and Theorem 3.2, so we omit the details of the proof. �

We now prove the asymptotic stability of a solution to Problem (1) that is based on
ideas of Friedman [3] and Webb [19].
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Theorem 3.4 Let the assumptions (H1)–(H7) hold and u0 ∈ Xβ , where 0 < α <
β ≤ 1. Then there exists a continuous solution u(t) to Problem (1) on [0, T0] for some
T0 > 0.

In addition, suppose that there exist continuous functions ǫ1 and ǫ2 that map [0,∞)
into [0,∞), and there exist constants c4 > 0 and c5 > 0 such that

‖f(t, u(t), u(h(u(t), t)))‖ ≤ c4(ǫ1(t) + ‖u(t)‖α + ‖u(t)‖α−1) for 0 < α < 1, (35)

‖g(t, u(a(t)))‖1 ≤ c5(ǫ2(t) + ‖u(t)‖α−1), (36)

for t ≥ 0. Then

(i) if ǫ1(t) and ǫ2(t) are bounded on [0,∞), then ‖u(t)‖α is bounded on [0,∞);

(ii) if ǫ1(t) and ǫ2(t) are of O(eσt) for some −1 < σ < 0, then ‖u(t)‖α = O(eσt);

(iii) if ǫ1(t) and ǫ2(t) are of o(1), then ‖u(t)‖α = o(1).

Proof. It can be seen that there exists 0 < θ < δ (cf. [4, see page 176]) such that

‖A(t)γU(t, 0)‖ ≤ C

tγ
e−θt, if t > 0, (37)

for any 0 ≤ γ ≤ 1 and some constant C > 0. The solution to Problem (1) is given by

u(t) = U(t, 0)[u0 + g(0, u0)]− g(t, u(a(t))) +

∫ t

0

U(t, s)A(s)g(s, u(a(s)))ds

+

∫ t

0

U(t, s)f(s, u(s), u(h(u(s), s)))ds,

for t ∈ I. Now, for t > 0, put ϕ(t) = eθt‖u(t)‖α. Using (37) in the solution of (1), we
obtain

ϕ(t) ≤ Ct−α‖u0 + g(0, u0)‖+ c5‖A(0)α−1‖
(

‖A(0)−1‖ϕ(t) + eθtǫ2(t)
)

+ Cc5

∫ t

0

eθs(t− s)−α
(

ǫ2(s) + ‖A(0)−1‖‖u(s)‖α
)

ds

+ Cc4

∫ t

0

eθs(t− s)−α
[

ǫ1(s) + ‖u(s)‖α + ‖u(s)‖α−1

]

ds

≤ Ct−α‖u0 + g(0, u0)‖+ c5‖A(0)α−1‖
(

‖A(0)−1‖ϕ(t) + eθtǫ2(t)
)

+ C

∫ t

0

[

c4ǫ1(s) + c5ǫ2(s)
]

eθs(t− s)−αds

+ C
[

c4(1 + ‖A(0)−1‖) + c5‖A(0)−1‖
]

∫ t

0

(t− s)−αϕ(s)ds.

Consequently, we have

ϕ(t) ≤ {C0t
−α‖u0 + g(0, u0)‖ + C0e

θtǫ2(t) + C0

∫ t

0

eθs(t− s)−α
[

c4ǫ1(s) + c5ǫ2(s)
]

ds}

+ C0

∫ t

0

(t− s)−αϕ(s)ds, (38)
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where C0 =
max

{

C, c5‖A(0)α−1‖, C
[

c4(1 + ‖A(0)−1‖) + c5‖A(0)−1‖
]

}

(1− c5‖A(0)α−1‖‖A(0)−1‖) . Denote

χ(t) = C0t
−α‖u0 + g(0, u0)‖+ C0e

θtǫ2(t) + C0

∫ t

0

eθs(t− s)−α
[

c4ǫ1(s) + c5ǫ2(s)
]

ds.

Then it is clear that

χ(t) ≤ C0t
−α‖u0 + g(0, u0)‖+ C0e

θtǫ2(t) + C̃eθt sup
0≤s<∞

{c4ǫ1(s) + c5ǫ2(s)},

for some constant C̃ > 0. By the method of iteration, we get from (38) that

ϕ(t) ≤ χ(t) +

∫ t

0

[

∞
∑

0

(t− s)j−1−jα[Γ(1 − α)]j

Γ(j − jα)

]

χ(s)ds.

Since the series in the bracket is bounded by D1(t − s)−α exp[D2(t − s)1−α] for some
constants D1, D2 > 0, it follows that, for t ≥ 1 and for any λ > 0,

ϕ(t) ≤ D3e
λt‖u0 + g(0, u0)‖+D4e

θtǫ2(t) +D5e
θt sup

0≤s<∞

{c4ǫ1(s) + c5ǫ2(s)},

where D3, D4 and D5 are some positive constants. Thus, for any 0 < θ0 < θ, we get

‖u(t)‖α ≤ D3e
−θ0t‖u0 + g(0, u0)‖+D4ǫ2(t) +D5 sup

0≤s<∞

{c4ǫ1(s) + c5ǫ2(s)}. (39)

Thus the proof follows from the inequality (39). �

Remark 3.1 If A(t) is a self adjoint positive definite operator in a Hilbert space X ,
then Theorem 3.1 and Theorem 3.2 can be strengthened. The assumptions (H1), (H2)
and (H3) imply that for 0 ≤ γ ≤ 1 and for all s, t ∈ [0, T ] [11, page 185],

‖A(t)γA(s)−γ‖ ≤ C‖A(t)A(s)−1‖γ ≤ ˜C1, (40)

where C,˜C1 > 0 are constants. Then Theorem 3.1 and Theorem 3.2 can be proved with
less regularity assumption on u0.

4 Example

Consider the following problem with a deviating argument

∂

∂t
[w(t, x) + g(t, w(a(t), x))] +

∂2

∂x2
w(t, x) + b(t, x)w(t, x)

= H(x,w(t, x)) +G(t, x, w(t, x));
w(t, 0) = w(t, 1), t > 0;
w(0, x) = w0(x), x ∈ (0, 1),



















(41)

where b(t, x) is a continuous function in x and uniformly Hölder continuous function in

t. Here H(x,w(t, x)) =

∫ x

0

K(x, y)w(g̃(t)|w(t, y)|, y)dy for all (t, x) ∈ (0,∞) × (0, 1).

Assume that g̃ : R+ → R+ is locally Hölder continuous in t with g̃(0) = 0 and K ∈
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C1([0, 1] × [0, 1];R). The function G : R+ × [0, 1] × R → R is measurable in x, locally
Hölder continuous in t, locally Lipschitz continuous in u, uniformly in x.

Let X = L2((0, 1);R), A(t)u(t)(x) = − ∂2

∂x2
u(t, x) − b(t, x)u(t, x). Then X1 =

D(A(0)) = H2(0, 1) ∩ H1
0 (0, 1) and X1/2 = D((A(0))1/2) = H1

0 (0, 1). Then the fam-
ily {A(t) : t > 0} satisfies the assumptions (H1)–(H3) on each bounded interval [0, T ] (
see [4, 6]).

Put w(t, ·) ≡ u(t), then Problem (41) can be written as

d

dt
[u(t) + g(t, u(a(t)))] +A(t)u(t) = f(t, u(t), u(h(u(t), t))), t > 0;

u(0) = u0.

}

(42)

We define f : R+ ×H1
0 (0, 1)×H−1(0, 1) → L2(0, 1) by

f(t, φ, ψ) = H(x, ψ) +G(t, φ)

for φ ∈ H−1(0, 1) ≡ H1
0 (0, 1) and ψ ∈ H1

0 (0, 1) Here H : H1
0 (0, 1) → L2(0, 1) is defined

as H(x, ψ(x, t)) =

∫ x

0

K(x, y)ψ(y, t)dy for x ∈ (0, 1) and ψ ∈ H1
0 (0, 1). Then it can be

proved that f satisfies the assumption (H4) for α = 1
2 . We assume h : H1

0 (0, 1)× R+ →
R+ defined by h(φ(x, t), t) = g̃(t)|φ(x, t)| satisfies the assumption (H5) for α = 1

2 ( see
Gal [7]). We also assume that the function g : R+ × L2(0, 1) → H1

0 (0, 1) satisfies the
assumption (H6) for α = 1

2 . We can take the function a(t) where a(t) = kt for t ∈ [0, T ]
and 0 < k ≤ 1. Thus, we can apply our the results to study the existence, uniqueness
and asymptotic stability of a solution to Problem (41).
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Abstract: We examine the synchronization transition of a pair of unidirectionally
coupled gyroscope. Based on Lyapunov stability theory and linear matrix inequal-
ities (LMI), some necessary and sufficient criteria for stable synchronous behaviour
are obtained and an exact analytic estimate of the threshold for complete chaos syn-
chronization is derived. Finally, numerical simulation results are presented to validate
the feasibility of the theoretical analysis.

Keywords: chaos synchronization; nonlinear gyroscope; linear matrix inequality;
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1 Introduction

In the last two decades, an intensive research activity has been devoted to the study
of dynamics of coupled and driven chaotic systems. Despite the considerable body of
knowledge that has already been gained and established, research on coupled nonlinear
systems still remains an active field. In view of the importance of the classical results
from the dynamics of driven or coupled harmonic oscillators in science and technology,
the question of which phenomena emerge when chaotic oscillators are coupled or somehow
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driven or perturbed has been and is still of great interest. The most relevant and widely
studied phenomena until now are the synchronization [1–5] and the suppression of chaos
[2, 4–8]. Due to the potential applications in various areas of science and technology,
synchronization between two dynamical system has stimulated a wide range of research
activity and many effective methods have been presented [1, 9–11].

In the past, research on chaos synchronization and its applications has intensively
focused on the autonomous chaotic systems such as Lorenz, Chen, Rössler etc, but re-
cently, the dynamics and synchronization of non-autonomous chaotic systems such as
Duffing oscillator, gyroscopes, etc have witnessed tremendous research interest due to
their potential applications in engineering and life sciences [12–18]. In particular, the
gyroscopes, from a purely scientific viewpoint show strange and interesting properties,
and from engineering viewpoint, they have great utility in the navigation of rockets, air-
crafts, spacecrafts and in the control of complex mechanical system. In the past years,
the gyroscope has been found with rich phenomena [12, 19, 20], for example, when sub-
jected to harmonic vertical base excitations, it exhibits a variety of interesting dynamical
behaviours that span the range from regular to chaotic motions [11, 12, 20–22].

The synchronization of the symmetric gyroscope model presented in Ref. [12] has
been achieved using different methods, for example, four different kinds of one way cou-
pling [12], active control [23], backstepping design [13, 24], fuzzy logic controller [25],
sliding mode control [26, 27], sliding based fuzzy control [28] and so on. Very recently,
synchronization of uncertain gyros was considered in [29]. Among the above methods,
it is well known that linear feedback method provides simple control inputs for syn-
chronization and has lately been employed to achieve stable synchronization in various
unidirectionally coupled systems including, double well Duffing oscillators (DDOs) [30],
parametrically excited Duffing oscillators [31] and the gyroscope. However, a crucial
issue is the assessment of stability analysis for feedback controlled system and the de-
termination of appropriate feedback gains that would guarantee stable synchronization.
Since the beginning of the studies on synchronization of chaotic systems, the stability of
synchronous motion was considered the most crucial question needed to be addressed, in
order to furnish the proper conditions for a laboratory verification of theoretical findings.
The problem of stability can be tackled in different ways and different criteria could be
established, depending on specific conditions of interest.

One of the most popular and widely used criterion is the conditional Lyapunov ex-
ponents, which constitute average measurements of expansion or shrinkage of small dis-
placements along the synchronized trajectory. However, it has been shown that neg-
ativity of the conditional Lyapunov exponents is not a sufficient condition for a stable
synchronized state due to some unstable invariant sets in the stable synchronization man-
ifold [32]. Whether this condition is necessary or not has remained an open issue (see [33]
and references therein), and needs to be studied further. In [30], we proposed a linear
state error feedback approach based on Lyapunov stability theory and Linear Matrix In-
equality (LMI) [34], to analyze the stability of the synchronized state and also determine
sufficient criteria for stable synchronous behaviour. This method is used because, it is
known that many engineering optimization problem can be easily translated into linear
matrix inequality (LMI) problems and a wide variety of problems arising in system and
control theory can be reduced to a few standard convex or quasi-convex optimization
problems involving LMI. The resulting optimization problem can be solved numerically
with very high efficiency [35]. Moreover, the Lyapunov methods which are traditionally
applied to the analysis of system stability, can just as well be used to determine thresh-
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old coupling, kth, at which complete synchronization could be reached in master-slave
or mutually coupled oscillators. Critical coupling for the on-set of stable synchroniza-
tion in coupled or driven oscillators is relevant for various scientific and technological
applications [36].

In this paper, we consider the synchronization of unidirectionally coupled gyroscopes.
We propose a novel stability criterion using Lyapunov stability theory and linear ma-
trix inequality (LMI) to determine the threshold coupling, kth, at which full and stable
synchronous behaviour could be reached in the master-slave coupled gyroscope. The
advantage of our method is that the coupling parameters of the system can be obtained
at the same time by solving the LMI without predetermining them to check the crite-
rion. Furthermore, the LMI can be easily solved by various optimization algorithms.
The sufficient criteria can be applied to directly design the coupling strength resulting in
the synchronization. The rest of the paper is structured as follows: in the next section,
we present the synchronization scheme, while Section 3 is devoted to synchronization
threshold and stability criteria, Section 4 is devoted to numerical results and discussions
and the paper is concluded in Section 5.

2 Model and Synchronization Preliminaries

Here, we consider the motion of the symmetric gyro with linear-plus-cubic damping given
as [12]

θ̈ + α2 (1− cos θ)2

sin3 θ
− β sin θ + c1θ̇ + c2θ̇

3 = (f sinωt) sin θ,

where f sinωt is a parametric excitation, c1θ̇ and c2θ̇
3 are linear and nonlinear damping,

respectively and α2 (1−cos θ)2

sin3 θ
− β sin θ is a nonlinear resilence force. After necessary

transformation, the gyroscope equation in non-dimensional form can be written as

ẋ1 = x2, (1)

ẋ2 = −α2 (1− cosx1)
2

sin3 x1

− c1x2 − c2x
3
2 + (β + f sinωt) sinx1,

where

α =
βφ

I1
=

I3ωz

I1
, c1 =

D1

I1
, c2 =

D1

I1
, β =

Mgl

I1
, f =

Mgl

I1
. (2)

The nonlinear gyro given by Eq. (1) exhibits varieties of dynamical behaviour in-
cluding chaotic motion displayed in Figure 1 for the following parameters α2 = 100, β =
1, c1 = 0.5, c2 = 0.05, ω = 2, and f = 35.5 as given in [12].

By letting η(t) = β + f sinωt and using the first two terms of the Taylor series

expansion of (1−cosx1)
2

sin3 x1
, system (1) can be written as:

ẋ1 = x2,

ẋ2 = −α2x1

4
− α2x3

1

12
− c1x2 − c2x

3
2 + η(t) sinx1. (3)

To facilitate the present analysis, we express system (3) in the following vector form:

ẋ = Ax− f(x) +G(x), (4)
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Figure 1: (a) The Poincaré map and (b) phase portrait showing a chaotic attractor of nonlinear
gyroscope with the following parameters α

2 = 100, β = 1, c1 = 0.5, c2 = 0.05, ω = 2, and
f = 35.5.

where x = (x1, x2)
T ∈ R2 are state space variables and

A =

(

0 1
−α2

4 −c1

)

, f(x) = α

(

0 0

−α2x3
1

12 −c2x
3
2

)

, G(x) = η

(

0
sinx1

)

.

In order to examine the synchronization between two unidirectional coupled gyro-
scopes, we construct a master-slave synchronization scheme for two identical chaotic
gyroscopes by linear state error feedback controller in the following form:

M : ẋ = Ax− f(x) +G(x),

S : ẏ = Ay − f(y) +G(x) + u(t),

C : u(t) = K(x− y), (5)

where u = K(x−y) is the linear state feedback control input and K ∈ R2×2 is a constant
control matrix that determines the strength of the feedback into the response system.
By defining the synchronization error variable as the difference between the relevant
dynamical variables given by

e = x− y, (6)

we obtain the error dynamics for the master-slave system (5) as:

ė = (A−K +M(x,y) +G(x1, y1))e, (7)

where

M(x,y) =

(

0 0

−α2m1(x1,y1)
12 −c2m2(x2, y2)

)

,

m1(x1, y1) = x2
1 + x1y1 + y21 , m2(x2, y2) = x2

2 + x2y2 + y22 ,

G(x1, y1) = η

(

0 0
g(x1, y1) 0

)

, g(x1, y1) = − (sinx1 − sin y1)

x1 − y1
. (8)
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In the absence of the control matrix K Eq. (7) would have an equilibrium at (0, 0). Our
aim is to choose the appropriate coupling matrix K such that the trajectories of the
master system x(t) and slave one y(t) satisfy

lim
t→∞

||e|| = lim
t→∞

||x(t) − y(t)|| = 0, (9)

where || ∗ || represents Euclidean norm of a vector.

3 Threshold and Criteria for Synchronization

Here, we have employed the Lyapunov’s direct method and linear matrix inequality
(LMI) [37] to establish some criteria for global chaos synchronization in the sense of error
system (7). The classical method of Lyapunov stability theory which employs Lyapunov
functionals was known for the analysis and synthesis of synchronization dynamics of
coupled and driven oscillators (e.g see Refs. [38,39]). In addition to the familiar approach
of analyzing and synthesizing the synchronization behaviour of coupled systems; the
present paper employed the Lyapunov direct method to obtain the threshold coupling at
which the two systems become completely synchronized.

To begin with, we have applied the following assumption and lemma to prove the
main theorem of this paper.

Assumption. The chaotic trajectory of the master gyroscope (1) is bounded i.e. for
any bounded initial condition x(0) within the defining domain of the drive system, there
exists a positive real constant, σ, such that |(x(t)| ≤ σ ∀t ≥ 0.

Remark 1 This assumption is reasonable and valid in the context of bounded feature
of chaotic attractors [40].

Lemma 1 For g(x1.y1) defined earlier, the inequality

|g(x1, y1)| ≤ 1 (10)

holds.
Proof. By the differential mean-value theorem:

sinx1 − sin y1 = (x1 − y1) cosφ, φ ∈ (x1, y1) or φ ∈ (y1, x1) (11)

so that,

g(x1, y1) =
−(sinx1 − sin y1)

x1 − y1
= −(cosφ). (12)

Hence, the inequality (10) holds.
Next, we proceed by utilizing the stability theory on time-varied systems [34] to derive

sufficient criteria for global chaos synchronization in the sense of the error system (7).
The following theorem is related to the general control matrix

K =

(

k11 k12
k21 k22

)

∈ R2×2. (13)

Theorem 1 The master-slave system (4) achieves global chaos synchronization if a
symmetric positive matrix

P =

(

p11 p12
p12 p22

)

(14)
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and a coupling matrix K ∈ R2×2 defined in (13) are chosen such that for any t > 0

Ω1 = −p11k11 − p12k21 + |p12|ωβ < 0, (15)

Ω2 = p12(1 − k12)− p22(k22 + c1 + 3c2σ
2
2) < 0, (16)

4Ω1.Ω2 > L2, (17)

L =
[

|p11(1− k12)− p12(k11 + k22 + c1 + 3c2σ
2
2)− p22k21|p22ωβ

]

,

where ωβ = β + |f |+ α2σ2
1

4 − α2

4 .
Proof. Let us assume a quadratic Lyapunov function of the form:

V (e) = eTPe, (18)

where P is a positive definite symmetric matrix defined in (14). The derivative of the
Lyapunov function with respect to time, t, along the trajectory of the error system (7)
is of the form:

V̇ (e) = ėTPe+ eTPė. (19)

Substituting Eq. (7) into the system (19), we have

V̇ (e) = eT
[

(A−K+M+G)TP+P(A−K+M+G)
]

e (20)

V̇ (e) < 0, if
λ = (A−K +M +G)TP+P(A−K+M+G) < 0, (21)

that is

λ =

(

µ11 µ12

µ12 µ22

)

, (22)

where µ11 = −2p11k11+2p12

(

ηg −
(

α2

4 + α2m1

12 + k21

))

, µ12 = p11(1−k12)−p12(k11+

k22 + c1 + c2m2) + p22

(

ηg −
(

α2

4 + α2m1

12 + k21

))

and µ22 = 2p12(1 − k12) − 2p22(c1 +

c2m2 + k22) respectively. The symmetric matrix in (22) is negative definite if and only if

−2p11k11 + 2p12L
α < 0, (23)

2p12(1− k12)− 2p22(c1 + c2m2 + k22) < 0, (24)

4L1L2 − L3 > 0, (25)

where Lα = ηg −
(

α2

4 + α2m1

12 + k21

)

,

L1 = [p12L
α − p11k11] ,

L2 = [p12(1 − k12)− p22(c1 + c2m2 + k22)] ,

L3 = [p11(1 − k12)− p12(k11 + k22 + c1 + c2m2) + p22L
α]2 .

It follows from the Assumption that for all t ≥ 0,

|m1(x1, y1)| = |x2
1 + x1y1 + y21 | ≤ 3σ2

1 ,

|m2(x2, y2)| = |x2
2 + x2y2 + y22 | ≤ 3σ2

2

|η(t)| = b|β + f sinωt| ≤ β + |f |.
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Since the matrix P is positive definite, we have p11p22 − p212 > 0, so that −2p11k11 +
2p12L

α ≤ −2p11k11 − 2p12k21 + |2p12|Lα ≤ 2Ω1,

|p11(1 − k12) − p12(k11 + k22 + c1 + c2m2) + p22

[

ηg −
(

α2

4 + α2m1

12 + k21

)]

| ≤ |p11(1 −

k12)− p12(k11 + k22 + c1 + 3c2σ
2
2)− p22k21|+ p22

(

η − α2

4 +
α2σ2

1

4

)

.

The inequalities (23)-(25) hold if the inequalities (15)-(17) are satisfied. This completes
the proof.

For the purpose of applications, it is necessary that the simplest possible synchro-
nization controllers are employed. Hence, the following corollaries can be obtained from
the main theorem of this paper.

Corollary 1 If the coupling matrix is defined by K = diag{k1, k2} and the symmetric
positive definite matrix P is as defined in (24) such that

k1 >
|p12|

(

β + |f |+ α2σ2
1

4 − α2

4

)

p11
, (26)

k2 >
p12 − (c1 + 3c2σ

2
2)p22

p22
, (27)

4[|p12|
(

β + |f |+ α2σ2
1

4
− α2

4

)

− p11k1][p12 − p22(k2 + c1 + 3c2σ
2
2)] >

[

|(p11 − p12(k1 + k2 + c1 + 3c2σ
2
2)|+ p22

(

β + |f |+ α2σ2
1

4
− α2

4

)]2

, (28)

then the master-slave system (4) achieves global chaos synchronization.
Proof. The inequalities (26) - (28) can be obtained according to the inequalities

(15)-(17) with k11 = k1, k22 = k2 and k12 = k21 = 0.
Corollary 2 The master-slave system (4) achieves global chaos synchronization if

the coupling matrix K = diag{k, k} and the positive symmetric matrix P defined in (14)
are chosen such that

k = max

(

|p12|(β + |f |+ α2σ2
1

4 − α2

4 )

p11
,

p12 − (c1 + 3c2σ
2
2)p22

p22

)

≥ 0, (29)

4(p11p22 − p212)k
2 − 4k[2p22|p12|

(

β + |f |+ α2σ2
1

4 − α2

4

)

+p11(p12 − (c1 + 3c2σ
2
2)p22))− |p12(p11 − (c1 + 3c2σ

2
2)p12|]

+4|p12|
(

β + |f |+ α2σ2
1

4 − α2

4

)

(p12 − (c1 + 3c2σ
2
2)p22)

−
[

|p11 − (c1 + 3c2σ
2
2)p12|+ p22

(

β + |f |+ α2σ2
1

4 − α2

4

)]2

> 0.

(30)

Proof. Letting k1 = k2 = k in the partial synchronization conditions (26) and (27),
the inequality (29)) can be obtained.

For k > 0 given by (29), we have
[

|p11 − p12(2k + c1 + 3c2σ
2
2)|+ p22

(

β + |f |+ α2σ2
1

4 − α2

4

)]2

≤
[

|p11 − (c1 + 3c2σ
2
2)p12|+ 2k|p12|+ p22

(

β + |f |+ α2σ2
1

4 − α2

4

)]2

.

Hence, the inequality (30) can be realised by partial synchronization criterion (28)
with k1 = k2 = k. Since p11p22 − p212 > 0, the solution k to the inequality (30) exists.
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Remark 2 We select the elements of the positive symmetric matrix P as p12 =

0, p11 = p22

(

β + |f |+ α2σ2
1

4 − α2

4

)

, and obtain the following algebraic synchronization

criterion via the inequalities (29) and (30).

K = diag{k, k},

k >

√

(c1 + 3c2σ2
2)

2 + 4
(

β + |f |+ α2σ2
1

4 − α2

4

)

− (c1 + 3c2σ
2
2)

2
= k1th. (31)

Corollary 3 The synchronization scheme (5) achieves global chaos synchronization
if the control matrix K = diag{k, 0} and a symmetric positive definite matrix P given in
(14) are selected such that

k > b
|p12|γ
p11

, (32)

np12 − (c1 + 3c2σ
2
2)p22 < 0, (33)

k[|p12(p11 − (c1 + 3c2σ
2
2)p12)|+ |p12|p22γ − 2((c1 + 3c2σ

2
2)p22 − p12)p11]

p212k
22 + 4|p12|((c1 + 3c2σ

2
2)p22 − p12)γ + [|p11 − (c1 + 3c2σ

2
2)p12|+ p22γ]

2 < 0,
(34)

where γ = β + |f |+ α2σ2
1

4 − α2

4 .
Remark 3 We select the symmetric positive definite matrix

P = p22

(

γ 0
0 1

)

with p22 > 0.
The following synchronization criterion is gained based on the criteria (31)-(34).

K = diag{k, 0}, k >
β + |f |+ α2σ2

1

4 − α2

4

2(c1 + 3c2σ2
2)

. (35)

4 Results and Discussion

In this section, we present numerical simulation results to confirm the obtained criteria.
We utilized the fourth order Runge-Kutta routine with the following initial conditions
(x1(0), y1(0)) = (1.0,−1.0), (x2(0), y2(0)) = (1.0,−1.2), a time-step of 0.001 and fixing
the parameter values of α2 = 100, β = 1, c1 = 0.5, c2 = 0.05, ω = 2, and f = 35.5 as in
Figure 1, to ensure chaotic motion, we solved the master-slave system (4) with the control
matrices as defined in Eqs. (31) and (35). The simulation results obtained reveal that the
trajectory of the master gyroscope depicted in Figure 1 is bounded and the error dynamics
shown in Figure 2 oscillate chaotically with time when the two systems are decoupled.
The partial variables x1 and x2 of the chaotic attractor satisfy x1(t) = x2(t) < 1.25 for
any t ≥ 0. Thus we find out that the constant σ1 = σ2 = 1.25.

The critical coupling at which complete synchronization could be observed is vital
for many scientific and technological applications because it provides useful information
regarding the operational regime for optimal performance in coupled systems. In Figure
3, we displayed a simulation result of average error, Eave, against coupling, k, and noticed
that as k increases and as full synchronization is approached, Eave → 0 asymptotically
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Figure 2: Average error, Eave, as a function of time for the uncoupled systems with the same
parameters as in Figure 1.

at the threshold coupling, kth ≈ 5.98. Then for all k > kth, Eave = 0 and remains stable
as t → ∞ implying that the oscillators are completely synchronized. Interestingly, we
noticed that by direct calculations of Eq. (31) for the control matrix K = diag{k, k},
k > kth = 6.18. Thus the obtained criterion is in good agreement with numerical
simulation result.

Figure 3: Average Error dynamics, Eave, as a function of the coupling strength, k. Here the
parameters of the system are as in Figure 1.

Using the criterion defined by Eq. (31), one readily obtains a coupling matrix K =
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diag{6.18, 6.18} by which the master-slave system (4) achieves chaos synchronization.
Figure 4 shows the synchronization for k = 6.2. Finally, we depict the simulation results
for the second case in which we choose constant control matrix K = diag{k, 0}, such that
k > 34.43 which satisfies the condition in Eq. (35). The simulation results displayed in
Figure 4 confirmed that complete synchronization is achieved for k = 35.0 > kth. Notice
that in both cases, the synchronization is already reached at t = 1.0, showing an excellent
transient performance.

Figure 4: Chaos synchronization of two linearly coupled gyroscopes with the coupling strength
K = diag{6.20, 6.20} and K = diag{35.0, 0}.

5 Conclusions

In this paper an analytical method based on Lyapunov stability theory and linear matrix
inequality (LMI) have been utilized to examine the stability of synchronized dynamics
and thus determine the threshold coupling, kth, at which stable synchronization regime
could be observed in master-slave parametrically excited gyroscope. The criteria obtained
in this paper are in algebraic form and could be easily employed for designing the feedback
control gains that would guarantee complete and stable synchronization. Finally, we have
presented numerical simulation results to verify the effectiveness of the obtained criteria.
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1 Introduction

Calculus on time scales was introduced by Hilger (see [6]), as a theory which is under-
going rapid development as it provides a unifying structure for the study of differential
equations in the continuous case and the study of difference equations in the discrete case.
Some preliminary definitions and theorems on time scales can be found in books [3, 4]
which are excellent references for calculus of time scales. Also, there is much attention
paid to the study of multipoint boundary value problem (see [1, 2, 7–13]).

In [5] the following m-point boundary value problem on time scales was studied

u△∇(t) + q(t)f(u(t)) = 0, t ∈ [0, T ]T,

u∆(0) =

m−2
∑

i=1

biu
∆(ξi), u(T ) =

m−2
∑

i=1

aiu(ξi),
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where ai, bi ≥ 0 (i = 1, 2, ...,m− 2), and ξi ∈ (0, ρ(T ))T with 0 < ξ1 < ξ2 < ... < ξm−2 <
ρ(T ). And the existence of at least two positive solutions of the above problem was
established by means of a fixed point theorem in a cone.

Zhao and Ge [13] studied the following m-point boundary value problem on time
scales

(φp(u
△))∇(t) + h(t)f(t, u(t), u∆(t)) = 0, t ∈ (0,∞)T,

u(0) =

m−2
∑

i=1

αiu(ηi), u∆(+∞) =

m−2
∑

i=1

βiu
∆(ηi),

where αi, βi ≥ 0 (i = 1, 2, ...,m − 2), and ηi ∈ (0,∞)T with σ(0) < η1 < η2 < ... <
ηm−2 < +∞. They established new criteria for the existence of at least three unbounded
positive solutions by using Avery-Peterson’s fixed point theorem.

Ji, Bai and Ge [7] studied the following singular multipoint boundary value problem
on time scales

(φp(u
′))′(t) + a(t)f(u(t)) = 0, t ∈ (0, 1),

u′(0) =

m−2
∑

i=1

αiu(ξi), u′(1) =

m−2
∑

i=1

αiu(ηi),

where 0 < ξ1 < ξ2 < ... < ξm−2 < 1, 0 < η1 < η2 < ... < ηm−2 < 1, ξi < ηi, αi > 0 for
i = 1, 2, ...,m− 2. By using fixed point index theory and the Legget-Williams fixed point
theorem, sufficent conditions for the existence of countably many positive solutions are
established.

Sun, Wang and Fan [10] studied the nonlocal boundary value problem with p-
Laplacian of the form

(φp(u
△))∇(t) + h(t)f(t, u(t)) = 0, t ∈ [t1, tm]T,

u∆(t1)−
n
∑

j=1

θju
∆(ηj)−

m−2
∑

i=1

εiu(ξi) = 0, u∆(tm) = 0,

where 0 ≤ t1 ≤ ξ1 ≤ ξ2 ≤ ... ≤ ξm−2 ≤ tm and 0 ≤ t1 ≤ η1 ≤ η2 ≤ ... ≤ ηm−2 ≤ tm and
εi > 0, θi ≥ 0 for i = 1, 2, ...,m and j = 1, 2, ..., n. By using the Four functionals fixed
point theorem and Five Functionals fixed point theorem, they obtained the existence
criteria of at least one positive solution and three positive solutions.

Inspired by the mentioned works, in this paper we consider the following m-point
boundary value problem (BVP) with p-Laplacian

(φp(x
△))∇(t) + h(t)f(t, x(t), x∆(t)) = 0, t ∈ [0, 1]T, (1)

x∆(0)−
m−2
∑

i=1

αix(ξi) = 0, x∆(1) +

m−2
∑

i=1

αix(ηi) = 0, (2)

where T is a time scale, φp(s) = |s|p−2s for p > 1, (φp)
−1(s) = φq(s), and

1

p
+

1

q
= 1.

We assume that the following conditions are satisfied:
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(H1) 0 < ξ1 < ξ2 < ... < ξm−2 < ρ(1), 0 < η1 < η2 < ... < ηm−2 < ρ(1), ξi < ηi, αi > 0

for i = 1, 2, ...,m− 2,

m−2
∑

i=1

αiξi < 1 and [

m−2
∑

i=1

αi(1− ξi)]
2 +

m−2
∑

i=1

αi(1− ξi) < 1,

(H2) f ∈ C([0, 1]T × [0,∞)× (−∞,∞), (0,∞)),

(H3) h ∈ Cld([0, 1]T, [0,∞)).

By using Avery-Peterson fixed point theorem, we establish the existence of at least
three positive solutions for the BVP (1)-(2). The remainder of this paper is organized as
follows. Section 2 is devoted to some preliminary lemmas. We give and prove our main
result in Section 3.

2 Preliminaries

To prove the main result in this paper, we will employ several lemmas. These lemmas
are based on the BVP

(φp(x
△))∇(t) + y(t) = 0, t ∈ [0, 1]T, (3)

x∆(0)−
m−2
∑

i=1

αix(ξi) = 0, x∆(1) +
m−2
∑

i=1

αix(ηi) = 0. (4)

Lemma 2.1 Let (H1)− (H3) hold. Then for y ∈ Cld[0, 1]T, the BVP (3)-(4) has the

unique solution

x(t) =

φq(Ax) +

m−2
∑

i=1

αi

∫ 1

ξi

φq(Ax −
∫ s

0

y(τ)∇τ)△s

m−2
∑

i=1

αi

−
∫ 1

t

φq(Ax −
∫ s

0

y(τ)∇τ)△s, (5)

where Ax satisfies

φq(Ax) + φq

(

Ax −
∫ 1

0

y(s)∇s
)

+

m−2
∑

i=1

αi

∫ ηi

ξi

φq

(

Ax −
∫ s

0

y(τ)∇τ
)

△s = 0. (6)

Moreover, there exists a unique Ax ∈ (0,
∫ 1

0 y(s)∇s) satisfying (6).
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Proof. Integrating (3) from 0 to t, we have

x△(t) = φq

(

φp(x
△(0))−

∫ t

0

y(s)∇s
)

. (7)

Integrating (7) from t to 1, we get

x(t) = x(1)−
∫ 1

t

φq

(

Ax −
∫ s

0

y(τ)∇τ
)

△s, (8)

where Ax = φp(x
△(0)). Setting t = ξi in (8) we have

x(ξi) = x(1)−
∫ 1

ξi

φq

(

Ax −
∫ s

0

y(τ)∇τ
)

△s, i = 1, 2, 3, ...,m− 2

and
m−2
∑

i=1

αix(ξi) =

m−2
∑

i=1

αix(1)−
m−2
∑

i=1

αi

∫ 1

ξi

φq

(

Ax −
∫ s

0

y(τ)∇τ
)

△s

then

x(1) =

φq(Ax) +

m−2
∑

i=1

αi

∫ 1

ξi

φq

(

Ax −
∫ s

0

y(τ)∇τ
)

△s

m−2
∑

i=1

αi

. (9)

Substituting (9) into (8) we see that x(t) satisfies (5) on [0, 1]T. (4) boundary conditions
satisfy

x△(0) + x△(1) =

m−2
∑

i=1

αix(ξi)−
m−2
∑

i=1

αix(ηi)

φq(Ax) + φq

(

Ax −
∫ 1

0

y(s)∇s
)

=

m−2
∑

i=1

αi(x(ξi)− x(ηi))

=

m−2
∑

i=1

αi

(

−
∫ 1

ξi

φq

(

Ax −
∫ s

0

y(τ)∇τ
)

△s+
∫ 1

ηi

φq

(

Ax −
∫ s

0

y(τ)∇τ
)

△s
)

= −
m−2
∑

i=1

αi

∫ ηi

ξi

φq

(

Ax −
∫ s

0

y(τ)∇τ
)

△s.

So that BVP (3)-(4) has a solution x(t) where Ax satisfies (6).

For any x ∈ C△
ld [0, 1]T, define

Hx(c) = φq(c) + φq

(

c−
∫ 1

0

h(s)f(s, x(s), x△(s))∇s
)

+

m−2
∑

i=1

αi

∫ ηi

ξi

φq

(

c−
∫ s

0

h(τ)f(τ, x(τ), x△(τ))∇τ
)

△s.
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Then Hx : R → R is continuous and strictly increasing. Hx(0) < 0,

Hx

(
∫ 1

0

h(s)f(s, x(s), x△(s))∇s
)

> 0, imply the existence of a unique

c = Ax ∈ (0,

∫ 1

0

h(s)f(s, x(s), x△(s))∇s) such that Hx(Ax) = 0. ✷

Lemma 2.2 If (H1)− (H3) hold, then for x ∈ C△
ld [0, 1]T, the unique solution x(t) of

BVP (3)-(4) has the following properties:

(i) x(t) is concave on [0, 1]T,
(ii) x(t) > 0.

Proof. Suppose that x(t) is a solution of BVP (3)-(4), then
(i) (φp(x

△))∇(t) = −h(t)f(t, x(t), x∆(t)) ≤ 0, φp(x
△) is nonincreasing so that x△(t) is

nonincreasing. This implies that x(t) is concave.

(ii) We have x∆(0) =

m−2
∑

i=1

αix(ξi) = φq (Ax) > 0 and

x∆(1) = φq

(

Ax −
∫ 1

0

h(s)f(s, x(s), x△(s))∇s
)

< 0. Furthermore, we get

α1x(ξ1)− α1x(0) = α1

∫ ξ1

0

x∆(s)∆s ≤ α1ξ1x
∆(0) = α1ξ1

m−2
∑

i=1

αix(ξi)

α2x(ξ2)− α2x(0) = α2

∫ ξ2

0

x∆(s)∆s ≤ α2ξ2x
∆(0) = α2ξ2

m−2
∑

i=1

αix(ξi).

If we continue like this, we have

αm−2x(ξm−2)− αm−2x(0) = αm−2

∫ ξm−2

0

x∆(s)∆s ≤ αm−2ξm−2x
∆(0)

= αm−2ξm−2

m−2
∑

i=1

αix(ξi).

Using (H1), we obtain

m−2
∑

i=1

αix(ξi)−
m−2
∑

i=1

αix(0) ≤
m−2
∑

i=1

αix(ξi)

m−2
∑

i=1

αiξi <

m−2
∑

i=1

αix(ξi),

which implies that x(0) > 0. Similarly,

α1x(1)− α1x(η1) = α1

∫ 1

η1

x∆(s)∆s ≥ α1(1 − η1)x
∆(1) = −α1(1 − η1)

m−2
∑

i=1

αix(ηi),

α2x(1)− α2x(η2) = α2

∫ 1

η2

x∆(s)∆s ≥ α2(1 − η2)x
∆(1) = −α2(1 − η2)

m−2
∑

i=1

αix(ηi).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 13 (3) (2013) 270–285 275

If we continue like this, we have

αm−2x(1)− αm−2x(ηm−2) = αm−2

∫ 1

ηm−2

x∆(s)∆s ≥ αm−2(1 − ηm−2)x
∆(1)

= −αm−2(1− ηm−2)
m−2
∑

i=1

αix(ηi).

Using (H1), we have

m−2
∑

i=1

αix(1) > 0, x(1) > 0. Therefore, we get x(t) > 0, t ∈ [0, 1]T. ✷

Let E = C△
ld [0, 1]T, then E is a Banach space with the norm

‖x‖ = max{ sup
t∈[0,1]T

|x(t)|, sup
t∈[0,1]T

|x∆(t)|}

and choose the cone P ⊂ E denoted by

P = {x ∈ E : x(t) ≥ 0, x∆(0) =
m−2
∑

i=1

αix(ξi), x(t) is concave on [0, 1]T}.

Define the operator T : P → E by

Tx(t) =

φq(Ax) +
m−2
∑

i=1

αi

∫ 1

ξi

φq(Ax −
∫ s

0

h(τ)f(τ, x(τ), x△(τ))∇τ)△s

m−2
∑

i=1

αi

−
∫ 1

t

φq(Ax −
∫ s

0

h(τ)f(τ, x(τ), x△(τ))∇τ)△s. (10)

Lemma 2.3 If (H1) holds, then supt∈[0,1]T x(t) ≤ M supt∈[0,1]T |x∆(t)| for x ∈ P ,
where

M = 1 +
1

m−2
∑

i=1

αi(1− ξi)

. (11)

Proof. For x ∈ P, one arrives at

x(1)− x(0) ≤ x(ξi)− x(0)

ξi
.

Hence,
m−2
∑

i=1

αi(1− ξi)x(0) ≤
m−2
∑

i=1

αix(ξi).
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By x∆(0) =

m−2
∑

i=1

αix(ξi), we get

x(0) ≤ 1
m−2
∑

i=1

αi(1− ξi)

x∆(0).

Hence

x(t) =

∫ t

0

x△(s)△s+ x(0)

≤ tx△(0) + x(0)

≤ tx△(0) +
1

m−2
∑

i=1

αi(1− ξi)

x△(0)

≤ [1 +
1

m−2
∑

i=1

αi(1− ξi)

]x△(0)

= Mx∆(0),

i.e,

sup
t∈[0,1]T

x(t) ≤Mx∆(0) =M sup
t∈[0,1]T

x∆(t) ≤M sup
t∈[0,1]T

|x∆(t)|.

The proof is complete. ✷

From Lemma 2.3, we obtain

‖x‖ = max{ sup
t∈[0,1]T

|x(t)|, sup
t∈[0,1]T

|x∆(t)|}

≤ max{M sup
t∈[0,1]T

|x△(t)|, sup
t∈[0,1]T

|x∆(t)|}

≤ M sup
t∈[0,1]T

|x△(t)|.

Lemma 2.4 For x ∈ C△
ld [0, 1]T, let Ax satisfy (6) corresponding to x. Suppose that

(H1)− (H3) hold, then Ax : C△
ld [0, 1]T −→ R is continuous about x.

Proof. Suppose {xn} ∈ C△
ld [0, 1]T with xn −→ x0 ∈ C△

ld [0, 1]T, then there exists r0
such that

max{‖x0‖, sup
n∈N−{0}

‖xn‖} < r0.

Let An (n = 0, 1, ...) be constants decided by (6) corresponding to xn (n = 0, 1, 2, ...).
By (H2), we get that f(t, u, v) is bounded on [0, 1]T × [0, r0]

2. Set

Br0 = sup{f(t, u, v) : (t, u, v) ∈ [0, 1]T × [0, r0]
2}.
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Since
∫ 1

0

h(s)f(s, x(s), x∆(s))∆s ≤ Br0

∫ 1

0

h(s)∆s = Br0Λ,

where Λ =

∫ 1

0

h(s)∆s, An ∈ [0,

∫ 1

0

h(s)f(s, x(s), x∆(s))∆s] ⊆ [0, Br0Λ], which means

{An} is bounded. Suppose that sequence {An} does not convergence, then there exist

two subsequences {A(1)
nk

}, {A(2)
nk

} of {An} with A
(1)
nk

−→ c1, A
(2)
nk

−→ c2, and c1 6= c2.
Combining (H2) and using the Lebesgue’s dominated convergence theorem, we get

φq(c1) = − lim
nk→+∞

φq(A
(1)
nk

−
∫ 1

0

h(s)f(s, xnk
(s), x∆nk

(s))∇s)

− lim
nk→+∞

m−2
∑

i=1

αi

∫ ηi

ξi

φq(A
(1)
nk

−
∫ s

0

h(τ)f(τ, xnk
(τ), x∆nk

(τ))∇τ)∆s

= −φq( lim
nk→+∞

A(1)
nk

− lim
nk→+∞

∫ 1

0

h(s)f(s, xnk
(s), x∆nk

(s))∇s

−
m−2
∑

i=1

αi

∫ ηi

ξi

φq( lim
nk→+∞

A(1)
nk

− lim
nk→+∞

∫ s

0

h(τ)f(τ, xnk
(τ), x∆nk

(τ))∇τ)∆s

= −φq(c1 −
∫ 1

0

h(s)f(s, x0(s), x
∆
0 (s))∇s

−
m−2
∑

i=1

αi

∫ ηi

ξi

φq(c1 −
∫ s

0

h(τ)f(τ, x0(τ), x
∆
0 (τ))∇τ)∆s.

Since sequence {An} is unique, we get c1 = A0. Similarly c2 = A0. So c1 = c2, which is

a contradiction. Therefore An −→ A0 for xn −→ x0, which means Ax : C△
ld [0, 1]T −→ R

is continuous. The proof is complete. ✷

Lemma 2.5 Suppose that (H1)− (H3) hold, then T : P −→ P is completely contin-

uous.

Proof. We divide the proof into three steps.

Step 1. We show that TP ⊂ P . For x ∈ P, by (H1)− (H3), we have (Tx)(t) ≥ 0 and

(Tx)△(0) =

m−2
∑

i=1

αi(Tx)(ξi).

If t ∈ [0, 1]T is left scattered, then

(Tx)∆∇(t) =
(Tx)∆(t)− (Tx)∆(ρ(t))

t− ρ(t)
≤ 0

on t ∈ [0, 1]T. If t ∈ [0, 1]T is left dense, then

(Tx)∆∇(t) = lim
s→t

(Tx)∆(t)− (Tx)∆(s)

t− s
≤ 0

on t ∈ [0, 1]T. Hence Tx is nonnegative, concave on [0, 1]T, i.e., TP ⊂ P .
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Step 2. We show that T : P −→ P is continuous. Let xn −→ x as n −→ +∞ in P ,
then there exists r0 such that

max{‖x‖, sup
n∈N−{0}

‖xn‖} < r0.

By (H2), we get that f(t, u, v) is bounded on [0, 1]T × [0, r0]
2. Set

Br0 = sup{f(t, u, v) : (t, u, v) ∈ [0, 1]× [0, r0]
2}.

We get

|φp((Txn)∆(t))− φp((Tx)
∆(t))|

= |Axn
−
∫ t

0

h(s)f(s, xn(s), x
∆
n (s))∇s −Ax −

∫ t

0

h(s)f(s, x(s), x∆(s))∇s|

≤ |Axn
−Ax|+

∫ t

0

h(s)|f(s, xn(s), x∆n (s))− f(s, x(s), x∆(s))|∇s

≤ |Axn
−Ax|+ 2Br0Λ = 2Br0Λ + 2Br0Λ = 4Br0Λ.

Therefore by the Lebesgue’s dominated convergence theorem, we have

|φp((Txn)∆(t))− φp((Tx)
∆(t))| −→ 0 as n −→ +∞.

By using Lemma 2.3 we get

0 ≤ ‖(Txn)(t) − (Tx)(t)‖ ≤M sup
t∈[0,1]T

|(Txn)∆(t)− (Tx)∆(t)| −→ 0 as n −→ +∞.

Hence T is continuous.
Step 3. We show that T : P −→ P is relatively compact. Let Ω be any bounded set

of P . Then there exists L > 0 such that ‖x‖ ≤ L for all x ∈ Ω. Set

BL = sup{f(t, u, v) : (t, u, v) ∈ [0, 1]× [0, r0]
2}.

For x ∈ Ω, we have

‖Tx‖ = max{ sup
t∈[0,1]T

Tx(t), sup
t∈[0,1]T

|(Tx)∆(t)|}

≤ M(Tx)△(0)

≤ Mφq(Ax) ≤Mφq(BLΛ).

Hence TΩ is uniformly bounded.
Now we show that TΩ is locally equicontinuous on [0, 1]T. For t1, t2 ∈ [0, 1]T and

x ∈ Ω, we may assume that t2 > t1.

|φp((Tx)∆(t1))− φp((Tx)
∆(t2))|

= |Ax −
∫ t1

0

h(s)f(s, x(s), x∆(s))∇s−Ax +

∫ t2

0

h(s)f(s, x(s), x∆(s))∇s|.

Hence,
|φp((Tx)∆(t1))− φp((Tx)

∆(t2))| −→ 0 as t1 −→ t2.
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Since

sup
t∈[0,1]T

|(Tx)∆(t1)− (Tx)∆(t2)| −→ 0 as t1 −→ t2,

we get

‖(Tx)(t1)− (Tx)(t2)‖ −→ 0 as t1 −→ t2.

Hence TΩ is locally equicontinuous on [0, 1]T. From step 1− 3, we get
T : P −→ P is completely continuous. The proof is complete. ✷

3 Existence of Three Positive Solutions

Let γ and θ be nonnegative continuous convex functionals on a cone P , α be nonnegative
continuous concave functional on P and ψ be nonnegative continuous functional on P .
Then for positive real numbers a, b, c and d, we define the following convex sets

P (γ, d) = {x ∈ P : γ(x) < d},

P (γ, α, b, d) = {x ∈ P : b ≤ α(x), γ(x) ≤ d},

P (γ, θ, α, b, c, d) = {x ∈ P : b ≤ α(x), θ(x) ≤ c, γ(x) ≤ d},

R(γ, ψ, a, d) = {x ∈ P : a ≤ ψ(x), γ(x) ≤ d}.

Theorem 3.1 (Avery-Peterson’s Fixed Point Theorem) [13] Let P be a cone in a real

Banach space E. Assume that there exist two positive number M and d, two nonnegative

continuous convex functionals γ and θ on P , a nonnegative continuous concave functional

α on P and a nonnegative continuous functional ψ on P such that ψ(λx) ≤ λψ(x) for

all 0 ≤ λ ≤ 1 and

α(x) ≤ ψ(x), ‖x‖ ≤Mγ(x)

for all x ∈ P (γ, d). Suppose that T : P (γ, d) −→ P (γ, d) is completely continuous and

there exist three positive numbers a, b and c with a < b such that

(S1) {x ∈ P (γ, θ, α, b, c, d)|α(x) > b} 6= ∅ and α(Tx) > b for x ∈ P (γ, θ, α, b, c, d);

(S2) α(Tx) > b for x ∈ P (γ, α, b, d) with θ(Tx) > c;

(S3) 0 6∈ R(γ, ψ, a, d) and ψ(Tx) < a for x ∈ R(γ, ψ, a, d) with ψ(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ P (γ, d) such that

γ(xi) ≤ d, i = 1, 2, 3, ψ(x1) < a, a < ψ(x2) with α(x2) < b, α(x3) > b.

Set

Ω =

∫ ν

w

h(τ)∇τ,

and define the maps

γ(x) = sup
t∈[0,1]T

|x∆(t)|, ψ(x) = θ(x) = sup
t∈[0,1]T

x(t), α(x) = min
t∈[w,v]T

x(t). (12)
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Theorem 3.2 Assume (H1)− (H3) hold. Let

2b

w

1
∑m−2

i=1 αi

[

m−2
∑

i=1

αi + 1−
m−2
∑

i=1

αiξi

]

< c < d,

max

{

ξi,
1

∑m−2
i=1 αi

[

2

m−2
∑

i=1

αi −
m−2
∑

i=1

αiξi +

m−2
∑

i=1

αi(1 − ξi)

m−2
∑

i=1

αi(ηi − ξi)− 1

]

,

2b

c

1
∑m−2

i=1 αi

[

m−2
∑

i=1

αi + 1−
m−2
∑

i=1

αiξi

]}

< w < ν <
1

2

and suppose that f satisfies the following conditions

(A1) f(t, u, v) ≤ 1
2Λφp(d) for (t, u, v) ∈ [0, 1]T × [0,Md]× [0, d];

(A2) f(t, u, v) > 1
Ωφp(

b
A ) for (t, u, v) ∈ [w, v]T × [b, c]× [0, d];

(A3) f(t, u, v) < 1
2Λφp(

a
M ) for (t, u, v) ∈ [0, 1]T × [0, a]× [0, d];

where M, Λ are defined as in (11) and Lemma 2.4 respectively, and

A = 1
m−2
∑

i=1

αi

[(

1 +
∑m−2

i=1 αi(w − ξi)
)

1
2+

∑m−2

i=1
αi(ηi−ξi)

−
∑m−2

i=1 αi(1− ξi)
]

.

Then the BVP (1)-(2) has at least three positive solutions x1 x2 and x3 such that

γ(xi) ≤ d, i = 1, 2, 3, ψ(x1) < a, a < ψ(x2) with α(x2) < b, α(x3) > b.

Proof. The boundary value problem (1)-(2) has a solution x = x(t) if and only
if x solves the operator equation x = Tx. Thus we set out to verify that the operator
T satisfies Avery-Peterson’s fixed point theorem which will prove the existence of three
fixed point of T. Now the proof is divided into four steps.

Step 1 : We will show that (A1) implies that

T : P (γ, d) −→ P (γ, d).

For x ∈ P (γ, d), there is γ(x) = supt∈[0,1]T |x∆(t)| ≤ d. From Lemma 2.3,

sup
t∈[0,1]T

x(t) ≤M sup
t∈[0,1]T

|x∆(t)| ≤Md,

then the condition (A1) implies

f(t, x(t), x∆(t)) ≤ φp(d)

2Λ
.
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On the other hand, for x ∈ P, we get

γ(Tx) = sup
t∈[0,1]T

|(Tx)∆(t)|

= sup
t∈[0,1]T

|φq(Ax −
∫ t

0

h(s)f(s, x(s), x∆(s))∇s)|

≤ φq(Ax +

∫ 1

0

h(s)f(s, x(s), x∆(s))∇s)

≤ φq(2

∫ 1

0

h(s)f(s, x(s), x∆(s))∇s)

≤ φq(
φp(d)

Λ

∫ 1

0

h(s)∇s) = d.

Step 2. We show that condition (S1) in Theorem 3.1 holds. We take

x(t) =
c

2

1−∑m−2
i=1 αiξi

1−∑m−2
i=1 αiξi +

∑m−2
i=1 αi

[

∑m−2
i=1 αi

1−∑m−2
i=1 αiξi

t+ 1]

for t ∈ [0, 1]T. By (12), we get

γ(x) = supt∈[0,1]T
|x∆(t)| = c

2

∑m−2

i=1
αi

1−
∑m−2

i=1
αiξi+

∑m−2

i=1
αi

< d,

ψ(x) = θ(x) = supt∈[0,1]T x(t) = x(1) = c
2 < c,

α(x) = mint∈[w,v]T x(t) = x(w) > b.
Hence {x ∈ P (γ, θ, α, b, c, d : α(x) > b} 6= Ø.
Since

φq(Ax) = φq

(
∫ 1

0

h(s)f(s, x(s), x∆(s))∇s −Ax

)

+

m−2
∑

i=1

αi

∫ ηi

ξi

φq

(
∫ s

0

h(τ)f(τ, x(τ), x∆(τ))∇τ −Ax

)

∆s

≥ φq

(
∫ 1

0

h(s)f(s, x(s), x∆(s))∇s
)

− φq(Ax)

+

m−2
∑

i=1

αi

∫ ηi

ξi

φq

(
∫ s

0

h(τ)f(τ, x(τ), x∆(τ))∇τ
)

∆s

−
m−2
∑

i=1

αi

∫ ηi

ξi

φq(Ax)∆s

≥ φq

(
∫ 1

0

h(s)f(s, x(s), x∆(s))∇s
)

− φq(Ax)

−
m−2
∑

i=1

αi(ηi − ξi)φq(Ax),

we have
[

2 +

m−2
∑

i=1

αi(ηi − ξi)

]

φq(Ax) ≥ φq

(
∫ 1

0

h(s)f(s, x(s), x∆(s))∇s
)

.
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Hence, we get

φq(Ax) ≥
1

2 +

m−2
∑

i=1

αi(ηi − ξi)

φq

(
∫ 1

0

h(s)f(s, x(s), x∆(s))∇s
)

. (13)

Case 1. If α(Tx) = min
t∈[w,ν]T

Tx(t) = Tx(w) holds then from (10), (13) and (A2), we

obtain

Tx(w) =
1

m−2
∑

i=1

αi

[

φq(Ax) +

m−2
∑

i=1

αi

∫ 1

ξi

φq

(

Ax −
∫ s

0

h(τ)f(τ, x(τ), x∆(τ))∇τ
)

∆s

]

+

∫ w

1

φq(Ax −
∫ s

0

h(τ)f(τ, x(τ), x∆(τ))∇τ)∆s

=
1

m−2
∑

i=1

αi

[

φq(Ax) +

m−2
∑

i=1

αi

∫ w

ξi

φq

(

Ax −
∫ s

0

h(τ)f(τ, x(τ), x∆(τ))∇τ
)

∆s

]

≥ 1
m−2
∑

i=1

αi

[

φq(Ax) +

m−2
∑

i=1

αi

∫ w

ξi

φq(Ax)∆s

−
m−2
∑

i=1

αi

∫ w

ξi

φq

(
∫ s

0

h(τ)f(τ, x(τ), x∆(τ))∇τ
)

∆s

]

≥ 1
m−2
∑

i=1

αi

[

φq(Ax) +

m−2
∑

i=1

αi(w − ξi)φq(Ax)

−
m−2
∑

i=1

αi

∫ 1

ξi

φq

(
∫ 1

0

h(τ)f(τ, x(τ), x∆(τ))∇τ
)

∆s

]

=
1

m−2
∑

i=1

αi

[(

1 +

m−2
∑

i=1

αi(w − ξi)

)

φq(Ax)−

−
m−2
∑

i=1

αi(1− ξi)φq

(
∫ 1

0

h(τ)f(τ, x(τ), x∆(τ))∇τ
)

]

≥ 1
m−2
∑

i=1

αi













(

1 +

m−2
∑

i=1

αi(w − ξi)

)

1

2 +

m−2
∑

i=1

αi(ηi − ξi)
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−
m−2
∑

i=1

αi(1− ξi)

]

φq

(
∫ 1

0

h(τ)f(τ, x(τ), x∆(τ))∇τ
)

= Aφq

(
∫ 1

0

h(τ)f(τ, x(τ), x∆(τ))∇τ
)

> Aφq

(
∫ ν

w

h(τ)
1

Ω
φp

(

b

A

)

∇τ
)

= A
b

A
φq(

1

Ω

∫ ν

w

h(τ)∇τ) = b.

Thus we get Tx(w) > b.
Case 2. If α(Tx) = min

t∈[w,ν]T
Tx(t) = Tx(ν) holds then from (10), (13) and (A2), we

get

Tx(ν) ≥ 1
m−2
∑

i=1

αi













(

1 +

m−2
∑

i=1

αi(ν − ξi)

)

1

2 +

m−2
∑

i=1

αi(ηi − ξi)

−
m−2
∑

i=1

αi(1− ξi)

]

φq

(
∫ 1

0

h(τ)f(τ, x(τ), x∆(τ))∇τ
)

≥ Aφq

(
∫ 1

0

h(τ)f(τ, x(τ), x∆(τ))∇τ
)

> Aφq

(
∫ ν

w

h(τ)
1

Ω
φp

(

b

A

)

∇τ
)

= b.

Hence we get Tx(ν) > b.
Therefore we get α(Tx) > b for all x ∈ P (γ, θ, α, b, c, d). Consequently, condition (S1)

in Theorem 3.1 is satisfied.
Step 3.We prove that (S2) in Theorem 3.1 holds. Since x is nonnegative and concave

on [0, 1]T, we obtain

x(w) = x

[ 1
w (1 + t)− 1

1
w (1 + t)

1
1
w (1 + t)− 1

+
1

1
w (1 + t)

t

]

≥
1
w (1 + t)− 1

1
w (1 + t)

x

(

1
1
w (1 + t)− 1

)

+
1

1
w (1 + t)

x(t)

≥ w

1 + t
x(t) ≥ w

2
x(t).

Therefore x(w) ≥ w
2 supt∈[0,1]T x(t) = w

2 θ(x). Similarly x(ν) ≥ ν
2 θ(x) >

w
2 θ(x) holds.

Hence
α(x) ≥ w

2
θ(x), x ∈ [0, 1]T.

Then we get

α(Tx) ≥ w

2
θ(Tx) >

w

2
c >

w

2

2b(L+ 1)

wL

= b

(

∑m−2
i=1 αi

1−
∑m−2

i=1 αi

+ 1

)

1−∑m−2
i=1 αiξi

∑m−2
i=1 αi

> b
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for x ∈ P (γ, α, b, d) with θ(Tx) > c.
Step 4. Finally, we prove that (S3) in Theorem 3.1 is satisfied. Since ψ(0) = 0 < a,
0 6∈ R(γ, ψ, a, d). Suppose that x ∈ R(γ, ψ, a, d) with ψ(x) = a, then by (A3) and Lemma
2.3 we get

ψ(Tx) = sup
t∈[0,1]

Tx(t)

≤ M sup
t∈[0,1]

|(Tx)∆(t)|

≤ Mφq

[

2

∫ 1

0

h(s)f(s, x(s), x∆(s))∇s
]

< Mφq

[

2

∫ 1

0

h(s)
1

2Λ
φp(

a

M
)∇s

]

< M
a

M
φq(

1

Λ

∫ 1

0

h(s)∇s) = a.

Consequently condition (S3) in Theorem 3.1 holds. From steps 1 − 4 together with
Theorem 3.1 we get that the boundary value problem (1)-(2) has at least three positive
solutions x1, x2, x3 such that

sup
t∈[0,1]T

|x∆i (t)| ≤ d, i = 1, 2, 3, sup
t∈[0,1]T

x1(t) < a,

a < sup
t∈[0,1]T

x2(t) with min
t∈[w,ν]T

x2(t) < b, min
t∈[w,ν]T

x3(t) > b.

The proof is complete. ✷

Example 3.1 Let T = { 1
2n+1 : n ∈ N} ∪ {0, 1}. Consider the following problem

(φ3(x
△))∇(t) + 8f(t, x(t), x∆(t)) = 0, t ∈ [0, 1]T, (14)

x∆(0) =
1

4
x(

1

10
) +

1

6
x(

1

5
), x∆(1) = −1

4
x(

1

3
)− 1

6
x(

1

2
), (15)

where

f(t, u, v) =

{

t[60u7 + ( v
103 )

4], u ≤ 1, 0 ≤ v, v ∈ T;
t[60 + ( v

103 )
4], u > 1, 0 ≤ v, v ∈ T.

It is easy to verify that (H1)− (H3) hold. Choose a = 1
10 , b = 1, c = 40, d = 43, w =

1
4 , v = 1

3 . Then by simple calculations, we can obtain that

M =
163

43
, Λ = 8, A =

4181

12650
, Ω =

2

3
.

So the nonlinear term f satisfies

f(t, u, v) ≤ 60 + ( 43
103 )

4 = 60.00000342 <
φp(d)
2Λ = 115.5625, (t, u, v) ∈ [0, 1]T × [0, 163]×

[0, 43],
f(t, u, v) ≥ 20 > φ3(

b
2A ) = 16.43184338, (t, u, v) ∈ [ 14 ,

1
3 ]T × [1, 40]× [0, 43],
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f(t, u, v) < 60. 1
107 + ( 43

103 )
4 = 0.000009418801 < 1

2Λφp(
a
M ) = 0.0000434952, (t, u, v) ∈

[0, 1]T × [0, 1
10 ]× [0, 43].

Therefore the conditions in Theorem 3.2 are all satisfied. So BVP (14)-(15) has at
least three positive solutions x1, x2, x3 such that

sup
t∈[0,1]T

|x∆i (t)| ≤ 43, i = 1, 2, 3, sup
t∈[0,1]T

x1(t) <
1

10
,

1

10
< sup

t∈[0,1]T

x2(t) with min
t∈[ 1

4
, 1
3
]T
x2(t) < 1, min

t∈[ 1
4
, 1
3
]T
x3(t) > 1.
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Abstract: In this paper a novel Huang-Hilbert Transform (HHT) based adaptive
tracking control strategy is proposed for a class of uncertain systems subjected to
actuator saturation. HHT is used in this work for the online feature extraction of the
uncertainties in the systems which are approximated by Wavelet Neural Networks
(WNNs). Adaptation laws are developed iteratively using the Intrinsic Modal Func-
tions (IMF) for the online tuning of wavelets parameters. The uniformly ultimate
boundedness of the closed-loop tracking error is verified even in the presence of WNN
approximation errors and bounded unknown disturbances, using the Lyapunov ap-
proach and with novel weight updating rules. Finally some simulations are performed
to verify the effectiveness and performance of the theoretical development.

Keywords: Hilbert-Huang transform; empirical mode decomposition; intrinsic mode

function; wavelet neural networks; adaptive control; Lyapunov functional.

1 Introduction

In many practical systems, the system model always contains some uncertain elements;
these uncertainties may be due to additive unknown internal or external noise, envi-
ronmental influence, nonlinearities such as hysteresis or friction, poor plant knowledge,
reduced-order models, and uncertain or slowly varying parameters. The analytical study
of adaptive nonlinear control systems involving online approximation structures has
evolved considerably during the last decade [1–3] The design of online approximation
based controllers can be broken up into two stages: first, the unknown nonlinearity is
represented by some online approximators. Hence, the designer needs to choose a specific
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adaptive network configuration, including the general structure of the online approxima-
tor, the number of layers (in case of multi layer neural networks), the number of adjustable
weights, etc. In the second stage, the designer needs to develop an appropriate feedback
control law for updating the adjustable weights.

Characteristics of practical actuators are in general nonlinear, usually described by
the nonlinearities such as saturation, hysteresis, backlash etc. Nonlinear behavior of the
actuator causes the detuning of plant as well as controller parameters which may lead to
the poor performance or even may cause the destabilization of the system. Out of these
nonlinearities saturation is the frequently encountered nonlinearity and is addressed by
several researchers [4, 5].

In recent years, learning-based control methodology using Neural networks (NNs)
has become an alternative to adaptive control since NNs are considered as general tools
for modeling nonlinear systems. Work on adaptive NN control using the universal NN
approximation property is now pursued by several groups of researchers [6, 7]. By using
neural network (NN) as an approximation tool, the assumptions on linear parameterized
nonlinearities in adaptive controller designing aspects have greatly been relaxed. It also
broadens the class of the uncertain nonlinear systems which can be effectively dealt by
adaptive controllers. However there are some difficulties associated with NN based con-
troller. The basis functions are generally not orthogonal or redundant; i.e., the network
representation is not unique and is probably not the most efficient one and the conver-
gence of neural networks may not be guaranteed. Also the training procedure for NN
may be trapped in some local minima depending on the initial settings. Wavelet neural
networks are the modified form of the NN having the properties of space and frequency
localization properties leading to a superior learning capabilities and fast convergence.
Thus WNN based control systems can achieve better control performance than NN based
control systems [6–9].

Recently, a new signal analysis approach, Hilbert-Huang transform (HHT), is pro-
poses by Huang et. al. [10, 11]which is a combination of empirical mode decomposition
(EMD) and Hilbert spectral analysis (HSA). By EMD, a signal is decomposed into a se-
ries of mono-component modes defined as intrinsic mode functions (IMFs), and Hilbert
transform can thus be applied to each IMF to obtain the instantaneous frequency and the
instantaneous magnitude. Unlike Fourier series representation in which base functions
are always sinusoidal functions, HHT adopts different IMFs to describe various signals,
resulting in adaptive base functions. Also HHT is valid for nonlinear and nonstationary
signals. Because of the distinct characteristics of HHT, it has attracted considerable
research interest in exploring its potential as a frequency identification tool.

A straightforward method could be that, after application of HHT to a signal, com-
parisons are made between Fourier spectra of the obtained IMFs and that of the original
signal to find out the relationships between IMFs and vibration modes. Then by com-
puting the amplitude weighted average frequencies based on the Hilbert spectra, modal
frequencies can be identified. Besides, Yang et al. [12] proposed a method in which, be-
fore they are analyzed by HHT, the signals are processed by some pre-selected bandpass
filters, the thresholds of which are determined by referring to the Fourier spectra of the
signals. Efficacious as they are, these two HHT-based frequency identification methods
however have to rely on some a priori information about the natural frequencies to be
identified, whether by comparing Fourier spectra of original signals and those of the IMFs
or by selecting the thresholds of the bandpass filters. From a practical point of view, it
is difficult to obtain some a priori information about the frequencies of random signals.



288 M. SHARMA AND A. VERMA

So the theoretical Eigen analysis techniques are not appropriate to provide a sufficiently
accurate estimation of natural frequencies. That is, frequency information is usually un-
available before identification procedures are carried out. Koh et al. [13] and Chhoa et
al. [14] introduced a criterion that the IMF component with the highest energy compared
to other IMF components most probably represents the fundamental frequency of the
system. The criterion was applied to experimental signals collected from the real time
systems and successfully identified the IMFs related to the fundamental frequencies. Due
to noise contamination, however, the fundamental frequency of a system may relegate
from one IMF to the next IMF during the time range of the signal [15], and the identi-
fication of the relationships between IMFs and multiple physical vibration modes might
be more involved as a modal frequency may be contained along specific segments of the
whole time duration of one or more IMFs.

The major limitation of HHT and EMD is that the signal under analysis must be
known so that its maxima and minima can be calculated. But in this work, the nonlinear
function present in the dynamics of the system is uncertain in nature. To overcome this
problem we have proposed a technique to estimate the uncertain function by WNN
first and then through iterative EMD algorithm, the uncertain function is approximated
very accurately. Multiple WNNs are cascaded to solve this problem. Every layer has
different number of nodes and different tuning laws derived by gradient descent rule. The
output of each WNN is used for the derivation of the adaptive tuning laws of the next
cascaded WNN. This process is repeated until the residue becomes zero, which means
the approximation is best possible. This novel technique of using HHT and EMD to
approximate the features of an uncertainties present in the nonlinear systems has never
been cited in the literature to the best of the knowledge of authors and hence reflects
the contribution of this work.

This paper deals with the designing of HHT based wavelet adaptive tracking controller
for a class of uncertain nonlinear systems. WNN are used for approximating the system
uncertainty as well as to optimize the performance of the control strategy. HHT algorithm
generates the features of these uncertainties to be fed to the consecutive WNN.

The paper is organized as follows: Section 2 deals with the system preliminaries,
system description is given in Section 3. WNN based controller designing aspects are
discussed in Section 4. Section 5 describes the proposed HHT based wavelet adaptive
controller design. The stability analysis of the proposed control scheme is given in Section
6. Effectiveness of the proposed strategy is illustrated through an example in Section 7
while Section 8 concludes the paper.

2 System Preliminaries

2.0.1 Actuator Saturation

The output of an actuator u(t)with input v(t) subjected to the condition of saturation
is defined as

u =







umax, v ≥ umax,
v, umin < v < umax,
umin, v ≤ umin,

(1)

where umax and umin are upper and lower saturation limits as shown in Figure 1.

For symmetric actuator saturation umin = −umax part of the control effort which can
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v

max
u

min
u

�

Figure 1: Saturation function.

not be implemented under this condition is defined as

∆u =







umax − v, v ≥ umax,
0, umin < v < umax,
umin − v, v ≤ umin,

(2)

where ∆u describes the effect of actuator saturation and can be effectively approximated
by using a wavelet neural network.

2.0.2 Wavelet neural network

Wavelet network is a type of building block for function approximation. The building
block is obtained by translating and dilating the mother wavelet function. In contrast
to conventional wavelets, a biased wavelet has a nonzero mean and can better reproduce
signal components that are in the low-frequency region on the time-frequency plane since
the nonzero mean enlarges low-frequency gain. Output of a biased n dimensional wavelet
network with m nodes is

f = αTϕ (x,w, c) + βTφ (x,w, c) , (3)

where x = [x1, x2, ..., xn]
T ∈ Rn is the input vector, ϕ = [ϕ1, ϕ2,..., ϕm]

T ∈ ℜm and φ =

[φ1, φ2,..., φm]T ∈ ℜmare wavelet and bias functions respectively; w = [w1, w2, ..., wm]T ∈
Rmxn and c = [c1, c2,..., cm]

T ∈ Rmxn are dilation and translation parameters respec-

tively ; α = [α1, .., αm]T ∈ Rm and β = [β1, .., βm]T ∈ Rm are weights of wavelet and
bias function respectively.

Let f∗ be the optimal function approximation using an ideal wavelet approximator
then

f = f∗ +∆ = α∗Tϕ∗ + β∗Tφ∗ +∆, (4)

where ϕ∗ = ϕ (x,w∗, c∗) and φ∗ = φ (x,w∗, c∗), α∗, β∗, w∗, c∗ are the optimal parameter
vectors of α, β, w, c respectively and ∆ denotes the approximation error and is assumed
to be bounded by |∆| ≤ ∆∗, in which ∆∗ is a positive constant.
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Optimal parameter vectors needed for best approximation of the function are difficult
to determine so define an estimate function as

f̂ = α̂T ϕ̂+ β̂T φ̂, (5)

where ϕ̂ = ϕ (x, ŵ, ĉ) , φ̂ = φ (x, ŵ, ĉ) and α̂, β̂, ŵ, ĉ are the estimates of α∗, β∗, w∗, c∗

respectively. Define the estimation error as

f̃ = f − f̂ = f∗ − f̂ +∆ =αT ϕ̃+ α̂T ϕ̃+ α̃T ϕ̂+ β̃T φ̃+β̂T φ̃+β̃T φ̂+∆, (6)

where α̃ = α∗−α̂, β̃= β∗−β̂,ϕ̃= ϕ∗−ϕ̂,φ̃= φ∗−φ̂.
By properly selecting the number of nodes, the estimation error f̃ can be made

arbitrarily small on the compact set so that the bound
∥

∥

∥
f̃
∥

∥

∥
=f̃m holds for all x ∈ ℜ.

Use Taylor expansion linearization technique to transform the nonlinear function
into a partially linear form as a step towards the derivation of online tuning laws for the
wavelet parameters to achieve the favorable estimation of system dynamics

ϕ̃ = AT
1 w̃ +BT

1 c̃+ h1φ̃ = AT
2 w̃ +BT

2 c̃+ h2, (7)

where w̃ = w∗ − ŵ, c̃ = c∗ − ĉ and h1, h2 are the vectors of higher order terms and

A1 =
[

dϕ1

dw , dϕ2

dw , ..., dϕm

dw

]∣

∣

∣

w=ŵ
, A2 =

[

dφ1

dw , dφ2

dw , ..., dφm

dw

]∣

∣

∣

w=ŵ
,

B1 =
[

dϕ1

dc , dϕ2

dc , ..., dϕm

dc

]∣

∣

∣

c=ĉ
, B2 =

[

dφ1

dc , dφ2

dc , ..., dφm

dc

]∣

∣

∣

c=ĉ
,

with
dϕ̂i

dw =
[

0...0 dϕ̂i

dw1i
, dϕ̂i

dw2i
, ..., dϕ̂i

dwni

, 0...0
]T

,

dϕ̂i

dc =
[

0...0 dϕ̂i

dc1i
, dϕ̂i

dc2i
, ..., dϕ̂i

dcni

, 0...0
]T

,

dφ̂i

dw =
[

0...0, dφ̂i

dw1i
, dφ̂i

dw2i
, ..., dφ̂i

dwni

, 0...0
]T

,

dφ̂i

dc =
[

0...0, dφ̂i

dc1i
, dφ̂i

dc2i
, ..., dφ̂i

dcni

, 0...0
]T

.

Substituting (7) into (6)

f̃ = α̃T
(

ϕ̂−AT
1 ŵ −BT

1 ĉ
)

+ w̃T
(

A1α̂+A2β̂
)

+ c̃T
(

B1α̂+B2β̂
)

+β̃T
(

φ̂−AT
2 ŵ −BT

2 ĉ
)

+ ε,
(8)

where the uncertain term is given by the following expression

ε = α∗Th1 + α̃TAT
1 w

∗ + α̃TBT
1 c

∗ + β∗Th2 + β̃TAT
2 w

∗ + β̃TBT
2 c

∗.

2.0.3 Hilbert-Huang Transform

This section briefly summarizes the principles and procedures of HHT. HHT is an adap-
tive data analysis method designed for analyzing non-stationary signals. In HHT, the
signal is decomposed into a finite small number of components, called Intrinsic Mode
Functions (IMF). This process of decomposition is called Empirical Mode Decompo-
sition (EMD). Presented by Huang et al. [8], HHT essentially consists of two steps:
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empirical mode decomposition and Hilbert spectral analysis. By EMD, a complicated
signal is decomposed into a series of simple oscillatory modes, designated as intrinsic
mode functions, and a residue. Hilbert spectral analysis is then invoked for each IMF to
obtain the instantaneous frequencies and the instantaneous magnitudes, which comprise
the Hilbert-Huang spectrum of the signal.

i. Empirical Mode Decomposition (EMD) The EMD decomposes the signal in terms
of IMFs, each of which is a mono-component function. Given an arbitrary signal x(t)
following the EMD method, sifting processes are used to extract the IMFs. In a typical
single sifting process, the local maxima are first identified and connected by cubic spline

functions, resulting in an upper envelope u
(1)
1 (t) of the signal. A lower envelope l

(1)
1 (t)

is similarly obtained based on local minima. Then a function m
(1)
1 (t) is defined as the

mean of the upper and lower envelopes. Finally, subtracting the mean function m
(1)
1 (t)

from signal x(t), the first iterate h
(1)
1 (t), or the first proto-IMF is obtained. The above

procedures are iterated until the proto-IMF h
(k+1)
1 (t) converges to the first IMF q1 if the

following conditions are satisfied:

• For h
(k+1)
1 (t), the number of extrema and the zeros differ at most by 1.

• The difference between the mean m
(k)
1 (t) and zero is within the pre-selected toler-

ance.

The above sifting process is shown in (9)

m
(k+1)
1 =

u
(k+1)
1 + l

(k+1)
1

2
h
(k+1)
1 = hk

1 −m
(k+1)
1 , (9)

where k = 0, 1, 2, . . .and h0
1 = x. One kind of iteration stopping criterion is that the

value of standard deviation SD is less than a preselected value, where SD is defined as

SDk =
∑

i

(h(k+1)(ti)− h(k)(ti))
2

(h(k)(ti))
2 (10)

or

SDk =

∑

i

(h(k+1)(ti)− h(k)(ti))
2

∑

i

(h(k)(ti))
2 . (11)

The shifting process is stopped, when SDk becomes smaller than a pre-determined
value. Once the shifting process is stopped, the first IMF q1 can be obtained, which
contains the finest scale or the shortest period component of the signal. After separating
q1 from the original signal x(t), the residue of the signal is obtained

x(t) − q1 = r1. (12)

A new sifting process is applied to r1, which leads to the second IMF q2 and the
residue r2:

r1 − q2 = r2 (13)

Similarly, for nth IMF,
rn−1 − qn = rn. (14)
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The sifting processes are iterated until rn becomes a constant, a monotonic function,
or a function with only one extremum. Therefore, by EMD, the original signal x(t) is
denoted as

x(t) =

n
∑

i=1

qi + rn. (15)

Thus the decomposition of a signal in n-empirical modes is achieved. The components
of the EMD are physically meaningful, as the characteristic scales are defined by the
physical data. The instantaneous frequency can be computed by finding the Hilbert
Transform of the IMF components.

ii. Feature Extraction using Hilbert-Huang Transform.
The features of the disturbance signals are extracted by finding the energy of the

IMFs which are derived from each of the disturbance waveforms. Let q1, q2, q3 be the
first three IMF components and E1, E2 and E3 be their corresponding energies. Energy
of the IMF is calculated using the following equations

E1 = ‖q1‖2, (16)

E2 = ‖q2‖2, (17)

E3 = ‖q3‖2. (18)

3 System Description

Consider a nonlinear system of the form

ẋ1 = x2,
ẋ2 = x3,
...
ẋn = f(x) + gu,
y = x1,

(19)

where x = [x1, x2, ..., xn]
T
, u, y are state variable, control input and output respectively.

f(x) is a smooth unknown, nonlinear function of state variables.
Rewriting the system (19) as

ẋ = Ax+B(f(x) + u(t)),
y = Cx,

(20)

A =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1
0 0 0 . . . 0















, B =















0
0
0
...
1















, C =
[

1 0 0 . . . 0
]

.

Using the actuator saturation defined in Section 2 system (20) can be transformed to

ẋ = Ax+B(δ(x) + (v +∆u)),
y = Cx,

(21)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 13 (3) (2013) 286–298 293

where δ(x, ȳd) = f(x) + ∆u. Let ȳd = [yd, ẏd, . . . ,
n−1
yd ]T be the vector of desired track-

ing trajectory. The objective is to formulate a state feedback control law to achieve
the desired tracking performance simultaneously nullifying the effect of actuator satura-
tion. The control law is formulated using the transformed system (21). The following
assumptions are taken for the systems under consideration.

Assumption 3.1 Desired trajectory yd (t) is assumed to be smooth, continuous Cn

and available for measurement.

4 Basic Controller Design Using Filtered Tracking Error

Define the state tracking error vector e(t) as

e(t) = x(t) − ȳd(t). (22)

The filter tracking error is defined as

r = Ke, (23)

where K = [k1, k2, . . . kn−1, 1] is an appropriately chosen coefficient vector such that
e → 0exponentially as ℜ → 0.

Applying the feedback linearization method, the control laws for every iteration level
are defined in the subsequent section.

5 Proposed Adaptive WNN Controller Design

A novel adaptive control strategy is proposed in this section which uses WNN to approx-
imate the nonlinear uncertainties δ(x) present in the systems through HHT algorithm. A
separate WNN network with different number of nodes and different adaptation laws is
implemented for every iteration level of HHT algorithm. The tuning laws for the WNN
at various iterations are derived as follows.

The cost function derived for the tuning of WNN parameters using (23) is given by

S =
1

2
ṙT ṙ. (24)

Using the gradient descent algorithm, the online tuning laws for the WNN parameters
are

α̇ = −η ∂S
∂α = −ηṙ ∂ṙ

∂α ,

ẇ = −η ∂S
∂w = −ηṙ ∂ṙ

∂w ,

ċ = −η ∂S
∂c = −ηṙ ∂ṙ

∂c .

(25)

i. First iteration.
Assuming q1be the WNN approximation for the first EMD, the control law can be

derived as

u = (
n
yd −

Kee

kn
− r − q1), (26)

where Ke = [0, k1, k2, . . . , kn−1].
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From (23), we get

ṙ = Kee+ kn(δ + u+
n
yd). (27)

And the online tuning laws for the first WNN are given by

α̇1 = η1knṙ
∂q1
∂α1

,

ẇ1 = η1knṙ
∂q1
∂w1

,

ċ1 = η1knṙ
∂q1
∂c1

.

(28)

ii. Second iteration.
Assuming q2 be the WNN approximation for the second EMD, the control law can

be derived as

u = (
n
yd −

Kee

kn
− r − q1 − q2). (29)

Also the corresponding online tuning laws for WNN are derived as

α̇2 = η2knṙ
∂q2
∂α2

ẇ2 = η2knṙ
∂q2
∂w2

,

ċ2 = η2knṙ
∂q2
∂c2

.

(30)

iii. nth iteration.
Similarly assuming qnbe the WNN approximation for the nth EMD, the final control

law can be derived as

u = (
n
yd−

Kee

kn
− r − (

n
∑

i=1

qi)). (31)

Also the corresponding online tuning laws for WNN are derived as

α̇n = ηnknṙ
∂qn
∂αn

,

ẇn = ηnknṙ
∂qn
∂wn

,

ċn = ηnknṙ
∂qn
∂cn

.

(32)

Stability of the system (21) with the proposed control strategy will be analyzed in
the next section.

5.0.4 Stability Analysis

Consider a Lyapunov functional of the form [16]

V =
1

2
r2. (33)

Differentiate it along the trajectories of the system,

V̇ = r(Kee+K(δ(x) + u(t)− vr −
n
yd).

By the substitution of control law u(t) in the above equation, we get

V̇ = r(−Kr + δ̃(x)− vr),
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where δ̃(x) is the error between the actual value and the approximated value of

V̇ ≤ −Kr2 + |r|
∣

∣

∣
δ̃(x)

∣

∣

∣
− rvr).

Substitute the robust control term vr = − (ρ2+1)r
2ρ2 in the above equation,

V̇ ≤ −s1r
2 + s2(|r|

∣

∣

∣
δ̃(x)

∣

∣

∣
)2,

where s1 = (K + K
2 ) and s2 =

Kρ2

2 . The system is stable as long as

s1r
2 ≥ s2(|r|

∣

∣

∣
δ̃(x)

∣

∣

∣
)2. (34)
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Figure 2: Desired trajectory, actual trajectory, tracking error and control effort after first
iteration level.

5.0.5 Simulation results

Simulation is performed to verify the effectiveness of proposed HHT-WNN based control
strategy. Consider a system of the form

ẋ1 = x2,
ẋ2 = x3,
ẋ3 = x4,
ẋ4 = 0.01x1 sinx2 + u,
y = x1.

(35)
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Figure 3: Desired trajectory, actual trajectory, tracking error and control effort after second
iteration level.
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Figure 4: Desired trajectory, actual trajectory, tracking error and control effort after third
iteration level.
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Figure 5: Desired trajectory, actual trajectory, tracking error and control effort after fourth
iteration level.

The system belongs to the class of uncertain nonlinear systems defined by (21) with
n = 4. The proposed controller strategy is applied to this system with an objective to
solve the tracking problem of system. Four iteration levels are used for the simulation.
The desired trajectory is taken as yd = 0.5 sin t. Initial conditions are taken as x (0) =

[0.3, 0, 0, 0]T . Attenuation levels for robust controller are taken as 0.01. Controller gain
vector is taken as (31). Wavelet networks with Mexican Hat wavelet as the mother
wavelet is used for approximating the unknown system dynamics. Wavelet parameters
for these wavelet networks are tuned online using the proposed adaptation laws. Initial
conditions for all the wavelet parameters are set to zero. Simulation results are shown in
Figures 2–5. As observed from the figures, system response tracks the desired trajectory
rapidly in consecutive iterations and after the fourth iteration the trajectory is perfectly
tracked. This reflects the efficiency of the proposed control strategy.

6 Conclusion

A novel HHT based Wavelet adaptive tracking control strategy is proposed for a class
of systems with unknown system dynamics and actuator saturation. Adaptive wavelet
networks are used for approximating the unknown system dynamics. HHT algorithm is
used for the better online feature extraction of uncertainties present in the dynamics of
the system. Adaptation laws are developed for online tuning of the wavelet parameters.
The stability of the overall system is guaranteed by using the Lyapunov functional. The
theoretical analysis is validated by the simulation results.
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Abstract: In this paper, we are interested in the existence of periodic solutions and
approximative solutions to the Hamiltonian system ẋ = JH

′(t, x) when H is non-
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1 Introduction

Let G : R
n −→ R be a continuously differentiable function such that G′ : R

n −→
G′(Rn) be an homeomorphism. Let A be a matrix of order n and h : R −→ R

n be
a continuous T− periodic (T > 0) function with zero mean value. Consider the non-
coercive Hamiltonian

H(t, r, p) = G(p−Ar) + h(t) · (r, p).

Here x.y is the usual inner product of x, y ∈ R
2n. We are interested in the boundary

value problem
ẋ = JH ′(t, x) (H)

with
x(0) = x(T ). (C)

The goal of this work is to prove the existence of solutions to the problem (H)(C) and
to approximate these solutions.
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For T and h given, we define the dual action integral ϕ : E −→ R ∪ {+∞} as

ϕ(v) =
1

2

∫ T

0

Jv · πvdt +

∫ T

0

H∗
0 (v − h)dt,

where H0(r, p) = G(p−Ar), H∗
0 is the Fenchel’s transformation of H0 and E is the closed

subspace of L2(0, T ;R2n) defined by:

E =

{

v ∈ L2(0, T ;R2n)/

∫ T

0

v(t)dt = 0

}

.

Under some suitable assumptions on G, we will prove, in Section 2, that the problem
(H)(C) has at least one solution and is equivalently to the following problem:

find v ∈ E such that 0 ∈ ∂̄ϕ(v), (R)

where we introduce the notation ∂̄ to distinguish the sub differential in E and in
L2(0, T ;R2n). In Section 3, we will introduce some problems (HN )(CN ), (RN ), (PN )
defined in a finite dimensional space and related together by a discret dual action prin-
ciple. In Section 4, we will study the existence of solutions to problem (PN ), which
give solutions to problem (RN ). In Section 5, we will study some convergence problems
related to this discretisation. We want to know if the differences system (HN ) is near to
system (H) for example for a very large integer N . In Section 6, we will give an example
of application and in Section 7, we will conclude this work.

2 Existence of Periodic Solutions

Let G : Rn −→ R be a continuously differentiable convex function, A be a symmetric
matrix of order n and h : R −→ R

2n be a continuous T -periodic function with zero mean
value on [0, T ]. Consider the assumptions:

Assumption 2.1
lim

|x|−→∞
G(x) = +∞. (G1)

Assumption 2.2 There exist α ∈]0, π
T (1+|A|2) [ and β ≥ 0 such that

∀x ∈ R
n, G(x) ≤ α

2
|x|2 + β, (G2),

where |A| is the usual norm of A. Consider the non-coercive sub-quadratic Hamiltonian:

H(t, r, p) = G(p−Ar) + h · (r, p).

We are interested in the existence of solutions for the boundary value problem

ẋ = JH ′(t, x) (H)

with
x(0) = x(T ), (C)

where H ′ is the derivative of H with respect to the second variable x and J is the
standard (2n× 2n) symplectic matrix:

J =

(

0 −In
In 0

)

,

where In is the identity matrix of order n.
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Example 2.1 Consider a relativistic particle with a very small charge e and rest
mass m0, subject to a uniform constant magnetic field B and a uniform electric field
E(t). The energy expressed as a function of (t, r, p), i.e. a Hamiltonian, is given by

H(t, r, p) = c
[

m2
0c

2 +
∣

∣

∣
p− e

2
B(t) ∧ r

∣

∣

∣

2 ] 1
2 − E(t).r,

where c is the velocity of light, p the usual mechanical momentum of particle and r is its
position. The particle motion is described by the associated Hamiltonian system (H).

The function
H0(r, p) = G(p−Ar)

is convex and its Fenchel’s transformation H∗
0 is given for all (s, q) ∈ R

n × R
n by (see

[7])

H∗
0 (s, q) =

{

G∗(q), if s+A∗q = 0,
+∞, if s+A∗q 6= 0.

Consider the functional

ψ(y) =

∫ T

0

[
1

2
Jẏ.y +H∗

0 (ẏ − h)]dt (2.1)

defined over the space
{y ∈ H1(0, T ;R2n)/y(0) = y(T )}.

Note that, from the periodicity condition:

∀ξ ∈ R
2n, ψ(y + ξ) = ψ(y),

the true variable in (2.1) is ẏ and we can choose for y any primitive we like. The only
condition on ẏ is:

ẏ ∈ L2(0, T ;R2n) and

∫ T

0

ẏdt = 0.

In other terms, we have
ψ(y) = ϕ(ẏ),

where ϕ is the functional

ϕ(v) =

∫ T

0

[
1

2
Jv · πv +H∗

0 (v − h)]dt

defined on the space

E = {v ∈ L2(0, T ;R2n)/

∫ T

0

v(t)dt = 0},

where πv is the primitive of v with zero mean value:

d

dt
(πv) = v and

∫ T

0

(πv)(t)dt = 0

or also

(πv)(t) =

∫ t

0

v(s)ds− 1

T

∫ T

0

∫ r

0

v(s)dsdr.
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This allows to introduce the following problem:

find v ∈ E such that 0 ∈ ∂̄ϕ(v). (R)

The problems (R) and (H)(C) are related by a dual action principle.

Theorem 2.1 (Dual action principle). Assume that the function G satisfies (G1),
(G2) and let v ∈ E. Then the two following assertions are equivalent:
(i) v is a solution of problem (R),
(ii) there exists a constant ξ in R

2n such that the function x(t) = Jπv(t)+ξ is a solution
of problem (H)(C).

Proof. To prove this theorem, we need the following lemma.
Consider the functional

g(v) =

∫ 0

T

H∗
0 (v − h)dt, v ∈ E,

we have

Lemma 2.1 The sub-differential of g|E in a point v ∈ E where g has finite value, is
given by

∂̄g(v) = {u ∈ L2(0, T ;R2n)/∃ξ ∈ R
2n, u(t) + ξ ∈ ∂H∗

0 (v(t) − h(t)) a.e.}.

Proof. If u ∈ L2(0, T ;R2n), v ∈ E and ξ ∈ R
2n are such that u(t) + ξ ∈ ∂H∗

0 (v(t) −
h(t)) a.e, we prove easily that u is in ∂̄g(v). Reversely, it is clear that

∂̄g(v) = ∂(g + δE)(v),

where

δE(v) =

{

0, if v ∈ E,
+∞, elsewhere.

Since it is clear that ∂δE(v) is the set of constant functions and it is well known that
(see [3])

∂g(v) = {u ∈ L2(0, T ;R2n)/u(t) ∈ ∂H∗
0 (v(t) − h(t)) a.e.},

the result will be proved if we have

∂(g + δE)(v) = ∂g(v) + ∂δE(v).

Let us establish that ∂(g + δE)(v) = ∂g(v) + ∂δE(v). It is enough to prove that g∗∇δ∗E
is exact (see [1]). By identifying the set of constant functions to R

2n, we see that

δ∗E = δR2n .

We deduce that for all u in L2:

(g∗∇δ∗E)(u) = inf
x∈R2n

∫ T

0

H0(u − h+ x)dt

and by (G2), we obtain

0 ≤ (g∗∇δ∗E)(u) ≤
∫ T

0

H0(u − h)dt ≤ α(1 + |A|2)||u− h||2L2 + βT. (2.2)
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By convexity and (2.2), we conclude that g∗∇δ∗E is continuous (see [3]).
Now, let us write u = (r, p) and h = (h1, h2), we have (g∗∇δ∗E)(u) = infξ∈Rn F (ξ), where

F (ξ) =

∫ T

0

G(p− h2 −A(r − h1) + ξ)dt.

By properties of G, it is easy to see that F is continuous and lim|ξ|−→∞ F (ξ) = +∞.
Consequently F achieves its minimum on R

n and then g∗∇δ∗E is exact. On the other
hand, g and δE are convex, l.s.c and propers, therefore for all v in E where g is finite,
we have

∂̄g(v) = ∂g(v) + R
2n.

The proof of Lemma 2.1 is complete.

Let v ∈ E be such that
0 ∈ ∂̄ϕ(v). (2.3)

This is equivalent to
0 ∈ −Jπv + ∂̄g(v). (2.4)

By Lemma 2.1, formula (2.4) is equivalent to the existence of ξ ∈ R
2n satisfying

J(πv)(t) + ξ ∈ ∂H∗
0 (v(t) − h(t)) a.e. (2.5)

Let us put x(t) = Jπv(t) + ξ. By Fenchel’s reciprocity, formula (2.5) can be rewritten as

v(t) − h(t) = H ′
0(x(t))

or
ẋ(t) = JH ′(t, x(t))

and it is clear that x is T− periodic. Then x is a solution of problem (H)(C) and Theorem
2.1 is proved.

Now, we associate with (R) the problem:

find v̄ ∈ E such that inf
v∈E

ϕ(v) = ϕ(v̄). (P)

The problem (P) allows to give a solution of problem (R).

Theorem 2.2 Assume assumptions (G1), (G2) hold, then problem (H)(C) has at
least one solution.

The proof of Theorem 2.2 follows immediately from Lemma 2.1 and the following
lemma.

Lemma 2.2 Problem (P) possesses a solution: there exists a point v̄ ∈ E such that

min
E

ϕ = ϕ(v̄).

Proof. By using assumption (G2) and going through the conjugate, we verify that

∀y ∈ R
2n, H∗

0 (y) ≥ 1

2α(1 + |A|2)
|y|2 − β. (2.6)
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On the other hand, by Wirtinger’s inequality and using Fourier expansion, we have

∀v ∈ E, ||πv||L2 ≤ T

2π
||v||L2 . (2.7)

We deduce from (2.6), (2.7) and Hölder’s inequality that

∀v ∈ E,ϕ(v) ≥ 1

2
[

1

α(1 + |A|2)
− T

2π
]||v||L2 − βT. (2.8)

Now, let (vk) be a minimising sequence, then by (2.8), (vk) is bounded. Since the space
E is reflexive, then there exists a subsequence (vkp

) weakly convergent to a v̄ ∈ E.
It is well known that the functional g introduced above is l.s.c, so we have

lim inf
p−→∞

∫ T

0

H∗
0 (vkp

− h)dt ≥
∫ T

0

H∗
0 (v̄ − h)dt. (2.9)

Elsewhere, the operator π is compact, so

πvkp
−→ πv̄, in  L2

and then

lim
p−→∞

∫ T

0

Jvkp
· πvkp

dt =

∫ T

0

Jv̄ · πv̄dt. (2.10)

Consequently, we deduce from (2.9) and (2.10) that

min
E

ϕ = ϕ(v̄).

3 A Discrete Dual Action Principle

Giving a period T > 0 and a forcing h, we have defined in the previous section the
space E = L2

0(0, T ;R2n) and the functional ϕ : E −→ R̄. We will write a problem (RN )
obtained by writing (R) not in L2 but in a finite dimensional space. This will allow us,
having put a differences system (HN ) and a constraint (CN ), to establish a ”discrete dual
action principle” connecting (RN ) to (HN )(CN ).

Notations. For x ∈ R
nN , we will adopt the following agreement writing:







x = (x1, x2, ..., xn), where xi ∈ R
N ,

x = (x1, x2, ..., xN ), where xj ∈ R
n,

xji ∈ R, i = 1, 2, ..., n, j = 1, 2, ..., N.

This allows us to define the space

EN = {v = (r, p) ∈ R
2nN/

N
∑

j=1

rj =
N
∑

j=1

pj = 0}.

Let us define on R the sequence (tj)j=1,2,...,N by

{

t1 = 0, tN+1 = T,
tj+1 − tj = δ = T

N , ∀j = 1, 2, ..., N.
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With any vector x ∈ R
nN , we can associate a step function x̃ from R into R

n, which will
be, by construction, T− periodic, as follows:

{

x̃(t) = xj , ∀t ∈ [tj , tj+1[, ∀j = 1, 2, ..., N ;
x̃(t+ kT ) = x̃(t), ∀t ∈ [0, T [, ∀k ∈ Z.

Then we can write ϕ applied to any element v = (r, p) of R2nN . We will denote by ϕN (v)
its value (the index N in ϕ is to recall that we have calculated ϕ for elements of R2nN ).
We obtain

ϕN (v) =
δ2

2

N
∑

j=1

j
∑

k=1

Jvj · vk + δ

N
∑

j=1

H∗
0 (vj − hj).

The vector hj is obtained by discretising h with respect to (tj)j=1,2,...,N , which is possible
since h is T− periodic.

Definition 3.1 We recall the problem (RN ):

find v ∈ EN such that 0 ∈ ∂̄ϕN (v). (RN )

Definition 3.2 We will denote by wN = (rN , pN ) the continuous piecewise linear
functions, defined with respect to (tj)j=1,2,...,N . For these functions, we define the dif-
ferences system

−J wN (tj+1) − wN (tj)

tj+1 − tj
= H ′

0(
wN (tj+1) + wN (tj)

2
) + h(tj), j = 1, ..., N. (HN )

Then we look for wN satisfying (HN ) and the constraint

wN (0) = wN (T ). (CN )

Theorem 3.1 (Discrete dual action principle). Assume G satisfies (G1), (G2).
Then for v ∈ EN the following two assertions are equivalent:
(i) v is a solution of (RN ),
(ii) there exists a constant ξN in R

2N such that the function

wN (t) = J

∫ t

0

ṽ(τ)dτ + ξN

is a solution of (HN )(CN ), where ṽ is defined with respect to v as above.

Proof. 1) The function wN defined in (ii) is a continuous linear piecewise function
as in Definition 3.2.
2) Given the definition of EN , it is clear that wN satisfies condition (CN ) if and only if
v belongs to this space, since

∫ T

0

ṽ(τ)dτ =

N
∑

j=1

∫ tj+1

tj
ṽ(τ)dτ = δ

N
∑

j=1

vj .

3) In the following, we will need the next result:
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Lemma 3.1 Let

F (v) =
N
∑

j=1

H∗
0 (vj),

then we have
∂F (v) = {u ∈ R

2nN/uj ∈ ∂H∗
0 (vj), ∀j = 1, ..., N},

where u = (u1, ..., uN).

Proof. We have

u ∈ ∂F (v) ⇐⇒ ∀x ∈ R
2nN/F (x) ≤ F (v) + (x− v) · u

⇐⇒ ∀x ∈ R
2nN ,

N
∑

j=1

H∗
0 (xj) ≤

N
∑

j=1

H∗
0 (vj) +

N
∑

j=1

(xj − vj) · uj

=⇒ ∀j = 1, ..., N, ∀xj ∈ R
2n, H∗

0 (v1) + ...+H∗
0 (xj) + ...+H∗

0 (vN )

≤
N
∑

j=1

H∗
0 (vj) + (xj − vj) · uj

=⇒ ∀j = 1, ..., N, ∀xj ∈ R
2n, H∗

0 (xj) ≤ H∗
0 (vj) + (xj − vj) · uj

=⇒ ∀j = 1, ..., N, uj ∈ ∂H∗
0 (vj).

Reversely, if ∀j = 1, ..., N, uj ∈ ∂H∗
0 (vj), then

∀j, ∀xj ∈ R
2n, H∗

0 (xj) ≤ H∗
0 (vj) + (xj − vj) · uj

=⇒ ∀x ∈ R
2nN ,

N
∑

j=1

H∗
0 (xj) ≤

N
∑

j=1

H∗
0 (vj) +

N
∑

j=1

(xj − vj) · uj

=⇒ ∀x ∈ R
2nN , F (x) ≤ F (v) + (x− v) · u

=⇒ u ∈ ∂F (v).

Now, consider the functional

ϕN (v) = QN (v) + δ

N
∑

j=1

H∗
0 (vj − hj)

defined over the space EN , with

QN(v) =
δ2

2

N
∑

j=1

j
∑

k=1

Jvj · vk.

We have

QN (v) =
δ2

2
[Jv2 · v1 + ...+ JvN · v1] + terms without v1,

so
∂QN

∂v1
=
δ2

2
[Jv2 + Jv3 + ...+ JvN ] = −δ

2

2
Jv1.
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Similarly for 2 ≤ j ≤ N ,

QN (v) =
δ2

2
[Jvj .(v1 + ....+ vj−1) + (Jvj+1 + ...+ JvN ).vj ] + terms without vj ,

so
∂QN

∂vj
=
δ2

2
[−J(v1 + ...+ vj−1) + J(vj+1 + ...+ vN )]

=
δ2

2
[−J

j−1
∑

k=1

vk − J

j
∑

k=1

vk] = −δ
2

2
J(2

j−1
∑

k=1

vk + vj).

Therefore

∂ϕN (v) = {u ∈ R
2nN/∀j = 1, ..., N, uj ∈ −δ

2

2
(2

j−1
∑

k=1

vk + vj) + δ∂H∗
0 (vj − hj)}.

4) By writing

∂ϕN (v) =

{

0, if v ∈ EN ,
+∞, elsewhere,

we have

∂̄ϕN (v) = ∂(ϕN + δEN
)(v),

where we introduce the notation ∂̄ to distinguish the sub-differentials in EN and in R
2nN .

Lemma 3.2 We have

∂̄ϕN (v) = ∂ϕN (v) + ∂δEN
(v).

Proof. By writing

gN (v) =

N
∑

j=1

H∗
0 (vj − hj),

it is enough to prove that ∂̄gN (v) = ∂gN (v) + ∂δEN
(v). It is clear that ∂̄gN(v) = ∂(gN +

δEN
)(v). The result will be proved if we have

∂(gN + δEN
)(v) = ∂gN (v) + ∂δEN

(v).

For this, it is enough to prove that g∗N∇δ∗EN
is exact. We have δ∗EN

= δE⊥

N
. Let us

determine E⊥
N . We have

u = (r, p) ∈ E⊥
N ⇐⇒ ∀v ∈ EN , u · v = 0 ⇐⇒ ∀(s, q) ∈ EN ,

N
∑

j=1

(sj · rj + qj · pj) = 0

=⇒ [∀i 6= j = 1, ..., N, ∀si, sj ∈ R
n, si + sj = 0 =⇒ si · ri + sj · rj = 0]

=⇒ [∀i 6= j = 1, ..., N, ∀si ∈ R
n, si · (ri − rj) = 0]

=⇒ ∀i, j = 1, ..., N, ri = rj .
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Similarly, ∀i, j = 1, ..., N, pi = pj . Therefore we have

(r, p) ∈ E⊥
N =⇒ r1 = ... = rN , p1 = ... = pN .

Reversely, if (r, p) ∈ R
2nN is such that r1 = ... = rN and p1 = ... = pN , then

∀(s, q) ∈ EN , (s, q) · (r, p) =

N
∑

j=1

sj · rj +

N
∑

j=1

qj · pj = (

N
∑

j=1

sj) · r1 + (

N
∑

j=1

qj) · p1 = 0.

Therefore, we have

E⊥
N =

{

(r, p) ∈ R
2nN/r1 = ... = rN , p1 = ... = pN

}

.

For u in R
2nN , we have

(g∗N∇δ∗EN
)(u) = inf

u1+u2=u
(g∗N (u1) + δ∗EN

(u2)) = inf
ξ∈E⊥

N

g∗N (u+ ξ) = inf
ξ∈E⊥

N

N
∑

j=1

H0(uj + ξj)

= inf
(x,y)∈R2n

N
∑

j=1

H0(uj + (x, y)) = inf
(x,y)∈R2n

N
∑

j=1

G(uj2 −Auj1 + y −Ax) = inf
x∈Rn

K(x),

where uj = (uj1, u
j
2) and

K(x) =

N
∑

j=1

G(uj2 −Auj1 + x).

Since K is continuous and goes to infinity as |x| −→ ∞, then K achieves its minimum
on R

n. The proof of Lemma 3.2 is complete.
We have ∂δEN

(v) = E⊥
N then ∂̄ϕN (v) = ∂ϕN (v) + E⊥

N . Consequently, we have

u ∈ ∂̄ϕN (v) ⇐⇒ u ∈ ∂ϕN (v) + E⊥
N

⇐⇒ ∃ξ ∈ R
2n/

{

u1 ∈ −δ2

2 Jv1 + ξ + δ∂H∗
0 (v1 − h1)

uj ∈ −δ2

2 J(2
∑j−1

k=1 v
k + vj) + ξ + δ∂H∗

0 (vj − hj), ∀j = 2, ..., N.

5) v is a critical point of ϕN if and only if there exists a constant ξN ∈ R
2n such that

{

0 ∈ −δ2

2 Jv̄1 − ξN + δ∂H∗
0 (v̄1 − h1),

0 ∈ −δ2

2 J(2
∑j−1

k=1 v̄
k + vj) − ξN + δ∂H∗

0 (v̄j − hj), ∀j = 2, ..., N.

⇐⇒ ∃ξN ∈ R
2n such that

{

ξN + δ
2Jv̄

1 ∈ ∂H∗
0 (v̄1 − h1),

ξN + δ
2J(2

∑j−1
k=1 v̄

k + vj) ∈ ∂H∗
0 (v̄j − hj), ∀j = 2, ..., N.

Let us associate with v ∈ R
2nN , the step function ṽ and the continuous piecewise linear

function wN defined by

wN (t) = J

∫ t

0

ṽ(τ)dτ + ξN .
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In particular, we have

wN (tj+1) = J

∫ tj+1

0

ṽ(τ)dτ + ξN = J

j
∑

k=1

∫ tk+1

Tk

ṽ(τ)dτ + ξN = δJ

j
∑

k=1

vk + ξN ,

which implies
{

wN (tj+1) − wN (tj) = δJṽ(tj),

wN (tj+1) + wN (tj) = 2[ δ2 (2J
∑j−1

k=1 ṽ(tk) + ṽ(tj)) + ξN ].

Therefore we have
{

wN (tj+1) − wN (tj) = δJṽ(tj),
wN (tj+1) + wN (tj) ∈ 2∂H∗

0 (vj − hj).

This yields

wN (tj+1) + wN (tj)

2
∈ ∂H∗

0 (−J wN (tj+1) − wN (tj)

tj+1 − tj
− h(tj)).

By using Fenchel’s reciprocity formula, we obtain

−J wN (tj+1) − wN (tj)

tj+1 − tj
= H

′

0(
wN (tj+1) + wN (tj)

2
) + h(tj).

4 Existence Results

To resolve the problem (HN )(CN ), it suffices, by using Section 3, to find a point v̄ of
R

2nN solution of (RN ), i.e.

find v̄ ∈ EN such that 0 ∈ ∂̄ϕN (v̄). (RN )

For this, we can study the existence of a minimum to the associate problem

find v̄ ∈ EN satisfying inf
v∈EN

ϕN (v) = ϕN (v̄). (PN )

Assume that G and h satisfy the assumptions of Section 2.

Remark 4.1 In Section 3, we have seen that we can associate with a point v in R
2nN

a step function ṽ defined from R into R
2n by the relations:

{

(i) ṽ(t) = vj , ∀t ∈ [tj , tj+1[, ∀j = 1, ..., N,
(ii) ṽ(t+ kT ) = ṽ(t), ∀k ∈ Z, ∀t ∈ [0, T [.

(4.1)

It is easy to see that the restriction ṽ|[0,T ] of ṽ to [0, T ] is in L2(0, T ;R2n).

Definition 4.1 1) Denote by FN the subset of L2(0, T ;R2n) defined by

FN = {ω ∈ L2(0, T ;R2n)/ω verifies (4.1)},

where






(i) ω is defined for all t ∈ [0, T ],
(ii) ω(t) = ωj , ∀t ∈ [tj , tj+1[, ∀j = 1, ..., N,
(iii) ω(T ) = ω1 = ω(0).
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Firstly, remark that FN is a closed subspace of L2(0, T ;R2n).
2) Denote by ηN the function defined from R

2nN into FN

ηN (v) = ṽ|[0,T ], v ∈ R
2nN .

Remark that
ϕN (v) = ϕ(ηN (v)).

Lemma 4.1 The function ηN establishes a diffeomorphism between FN and R
2nN ,

so we can identify R
2nN with FN .

Proof. Since the partition (tj)j=1,...,N is fixed, then ηN is a differentiable linear map
and we can verify easily that it is invertible.

Lemma 4.2 R
2nN can be provided with the topology obtained by diffeomorphism from

the topology induced from L2(0, T ;R2n) on FN .

Proof. It is a consequence from the fact that FN is a closed subspace of L2(0, T ;R2n).

Remark 4.2 By denoting ‖.‖2 the norm in L2(0, T ;R2n) and |.|2n the norm in R
2n,

we have the equality

‖ηN (v)‖2 = [
1

N

N
∑

j=1

∣

∣vj
∣

∣

2

2n
]
1
2 .

The right quantity defines a norm in R
2nN , we will denote it by |.|2,N . With these

notations, ηN appears as an isometry from (L2(0, T ;R2n), ‖.‖2) into (R2nN , |.|2,N).

Theorem 4.1 Under assumptions (G1), (G2), the problem (PN ) has, for all integer
N , a solution vN .

Proof. By identifying R
2nN to FN , the proof is the same as that of the general case

(P). It is based on the following estimate:

∀v ∈ R
2nN , ϕN (v) ≤ 1

2
[

1

α(1 + |A|2 − T

2π
] ‖ηN (v)‖22 − βT

or also

∀v ∈ R
2nN , ϕN (v) ≤ 1

2
[

1

α(1 + |A|2)
− T

2π
] |v|22,N − βT.

The previous theorem permits to assert that if assumptions (G1), (G2) are satisfied,
then for all integer N , we can find a minimum for ϕN on EN which is also a solution
of (RN ). Therefore, by the discrete dual action principle introduced in Section 3, the
problem (HN )(CN ) has a solution.

Now we define a sequence (v1)l∈N∗ by setting

{

(i) N = 2l,
(ii) vl is a solution of (PN ).

The estimate of the previous theorem permits to state the following lemma:
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Lemma 4.3 Under assumption (G2), there exists a constant M > 0 such that

∀l ∈ N
∗, ‖ηN (v1)‖22 = |v1|22,N ≤M.

Proof. Note that, from the previous results, we have

∀l ∈ N
∗, ϕN (vl) = ϕ(ηN (vl)) ≤

kl
2
‖ηN (vl)‖22 − k2

where k1 = 1
α(1+|A|2) − T

2π and k2 = βT . We have also

∀l′ ≤ l, ϕN (vl) ≤ ϕN (vl′) with N = 2l.

Since
ϕN (vl′ ) = ϕN ′(vl′) with N

′ = 2l
′

,

we get
∀l′ ≤ l, ϕ(ηN (vl)) = ϕN (vl) ≤ ϕN ′(vl′ ).

Therefore, we have

∀l ∈ N
∗,

1

2
k1 ‖ηN (vl)‖22 − k2 ≤ ϕN (vl) ≤ ϕ1(v1).

Since ϕ1(v1) is a constant with respect to l, the proof of Lemma 4.3 is complete.

5 Convergence Results

Under assumptions (G1), (G2), we have proved in the previous section that there exists a
sequence (vl)l∈N∗ of solutions for the problems (PN ) with N = 2l. Consider the sequence
(wl)l∈N∗ of piecewise linear functions defined by

wl(t) =

∫ t

0

ṽl(τ)dτ + ξl

with ξl ∈ R
2n such that

ξl ∈ −δl
2
Jṽl(0) + ∂H∗

0 (ṽl(0) − hl(0)), δl =
T

2l
.

Remark 5.1 Giving the definition of H0, we can assume that ξl is of the type (0, λl)
with λl ∈ R

n. In fact, we have

(r, p) ∈ (a, b) + ∂H∗
0 (s, q) ⇐⇒ (s, q) = H

′

0((r, p) − (a, b))

⇐⇒ (s, q) = (−A∗G′(p− b −A(r − a)), G′(p− b−A(r − a)))

= (−A∗G′(p−Ar − b+Aa), G′(p−Ar − b+Aa))

⇐⇒ (s, q) = H
′

0(−a, p−Ar − b)

⇐⇒ −(a, b) + (0, p−Ar) ∈ ∂H∗
0 (s, q)

⇐⇒ (0, p−Ar) ∈ (a, b) + ∂H∗
0 (s, q).

In the following, we will take ξl of the form (0, λl), λl ∈ R
n, and we will prove that

the associated sequence (wl) has a subsequence strongly convergent in L2(0, T ;R2n) to
a solution w̄ of (H)(C).
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Lemma 5.1 [7] The operator π from L2(0, T ;R2n) into itself, introduced in Section
2, is a Hilbert-Schmidt operator: it transforms quickly convergent sequences to strongly
convergent sequences.

Lemma 5.2 Under assumptions (G1), (G2), there exists a subsequence (wlk) of (wl)
strongly convergent in L2(0, T ;R2n) to w̄. Moreover w̄ is defined in 0 and T and satisfies
w̄(0) = w̄(T ).

Proof. It is easy to verify that the sequence (wl) is included in L2(0, T ;R2n). By
Lemma 4.3, the sequence (ṽl) is bounded in L2(0, T ;R2n), then it possesses a subsequence
(ṽlk) weakly convergent in L2(0, T ;R2n) to a point v̄. In particular (ṽlk) being defined
for all integer k and for all t ∈ [0, T ], the sequence (ṽlk(t)) is convergent in R

2n to v̄(t)
for all t ∈ [0, T ]. Recall that we have defined ξl by

ξl ∈ −δl
2
Jṽl(0) + ∂H∗

0 (ṽl(0) − hl(0)), δl =
T

2l
.

We have

ξl +
δl
2
Jṽl(0) ∈ ∂H∗

0 (ṽl(0) − hl(0))

⇐⇒ ṽl(0) − hl(0) = H
′

0(ξl +
δl
2
Jṽl(0))

= H
′

0

(

(0, λl) +
δl
2
J(ṽ1l (0), ṽ2l )(0))

)

= H
′

0(
δl
2
ṽ2l (0), λl −

δl
2
ṽ1l (0)) ⇐⇒

ṽl(0) − hl(0) =
(

−A∗G′(λl −
δl
2

(ṽ1l (0) +Aṽ2l (0))), G′(λl −
δl
2

(ṽ1l (0) +Aṽ2l (0)))
)

.

Since G′ is an homeomorphism from R
n into G′(Rn) and since (δl) goes to zero in R

as l goes to infinity and (ṽlk(0)) is bounded and converges to v̄(0), the sequence (λlk)
converges to λ̄ in R

n with
λ̄ = (G′)−1(v̄2(0) − h2(0)).

By previous Remarks and Lemma 5.1, we deduce that the sequence (wlk) converges
strongly to w̄ in L2(0, T ;R2n) . Moreover

w̄(t) = J

∫ t

0

v̄(τ)dτ + ξ̄ with ξ̄ = (0, λ̄)

and then, in particular, we have w̄(0) = w̄(T ).

Lemma 5.3 The sequence (ylk) defined by

ylk = ṽlk − Jhlk ∈ L2(0, T ;R2n)

converges strongly in L2(0, T ;R2n) to ȳ = v̄ − Jh.

Proof. It is an immediately consequence of previous lemma’s proof.

Lemma 5.4 With the point wl of L
2(0, T ;R2n), we associate the element ωl of the

same space defined by






ωl(t
j) = 1

2 (wl(t
j+1) + wl(t

j)), ∀j = 1, ..., N,
ωl(0) = ωl(T ),
ωl(t) = ωl(t

j), ∀t ∈ [tj , tj+1[, ∀j = 1, ..., N.

Under assumptions (G1), (G2), the subsequence (ωlk) of (ωl) converges strongly in
L2(0, T ;R2n) to w̄.
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Proof. It suffices to prove

lim
k−→∞

‖ωlk − wlk‖2 = 0. (5.1)

Then we will use the inequality

‖ωlk − w̄‖ ≤ ‖ωlk − wlk‖2 + ‖wlk − w̄‖2

and we conclude by using Lemma 5.2.
We have

‖ωlk − wlk‖
2
2 =

∫ T

0

|ωlk(t) − wlk(t)|2dt,

where |.| denotes |.|2n. On the other hand, we have

‖ωlk − wlk‖22 =

Nk
∑

j=1

∫ tj

tj+1

|ωlk − wlk |2 dt, (5.2)

where Nk = 2lk . In [tj , tj+1[, wlk(t) can be written

∀t ∈ [tj , tj+1[, wlk(t) = wlk(tj) + (t− tj)ṽlk(tj).

Then equality (5.2) becomes

‖ωlk − wlk‖
2
2 =

Nk
∑

j=1

∫ tj

tj+1

∣

∣ωlk(tj) − wlk(tj) − (t− tj)ṽlk(tj)
∣

∣

2
dt.

This yields

‖ωlk − wlk‖22 =

Nk
∑

j=1

∫ tj+1

tj

∣

∣ωlk(tj) − wlk(tj)
∣

∣

2
dt

+2

Nk
∑

j=1

∫ tj+1

tj

∣

∣t− tj ||ṽlk(tj)
∣

∣

∣

∣ωlk(tj) − wlk(tj)
∣

∣ dt+

Nk
∑

j=1

∫ tj+1

tj

∣

∣t− tj
∣

∣

2 ∣
∣ṽlk(tj)

∣

∣

2
dt

≤
Nk
∑

j=1

∫ tj+1

tj

∣

∣ωlk(tj) − wlk(tj)
∣

∣

2
+2

T

Nk

Nk
∑

j=1

[

∫ tj+1

tj

∣

∣ṽlk(tj)
∣

∣

2
dt]

1
2 [

∫ tj+1

tj

∣

∣ωlk(tj) − wlk(tj)
∣

∣

2
dt]

1
2

+(
T

Nk
)2

Nk
∑

j=1

∫ tj+1

tj
|ṽlk(tj)|2dt. (5.3)

The expression ωlk(tj) − wlk(tj) can be written

ωlk(tj) − wlk(tj) =
wlk(tj) + wlk(tj+1)

2
− wlk(tj) =

wlk(tj+1) − wlk(tj)

2
.

But we know that
wlk(tj+1) − wlk(tj)

2
=

1

2
δlk ṽlk(tj).
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Therefore the inequality (5.3) becomes

‖ωlk − wlk‖
2
2 ≤ 9

4
(δlk)2

∫ T

0

∣

∣ṽlk(t)
∣

∣

2
dt. (5.4)

Since δlk = T
Nk

= T 2−lk goes to zero as k goes to infinity and ṽlk is bounded in

L2(0, T ;R2n), the relation (5.1) is proved.
If assumption (G2) is satisfied, Lemma 4.3 permits to write

δlk

∫ T

0

|vlk(t)|2 dt =
T

2lk
[2lk

Nk
∑

j=1

∣

∣

∣
vjlk

∣

∣

∣

2

] ≤ T

2lk
M.

Therefore we can state the following convergence result:

Theorem 5.1 Under assumptions (G1), (G2) and Lemma 5.2 notations, the subse-
quence (ωlk) converges strongly in L2(0, T ;R2n) to a solution w̄ of (H)(C).

Proof. To prove this theorem, we will need the following theorem:

Theorem 5.2 [4] Let A be a monotone maximal operator from its domain D(A) ⊂
L2(0, T ;R2n) into L2(0, T ;R2n). Let (xl) and (yl) be two sequences satisfying

(i) xl ∈ DomA, ∀l ≥ l0,

(ii) yl = A(xl), ∀l ≥ l0,

(iii) (xl) converges weakly to x̄ in L
2(0, T ;R2n),

(iv) (yl) converges weakly to ȳ in L
2(0, T ;R2n),

(v) lim sup
l−→∞

(xlyl) ≤ x̄ȳ.

Then
(j) x̄ ∈ DomA,

(jj) ȳ = A(x̄).

By Section 3, we know that for all integer l, the following system is verified:










(i) wN (tj+1)−wN (tj)
tj+1−tj = J [H

′

0
wN (tj+1)+wN (tj)

2 ) + hj ], ∀j = 1, ..., 2l

and

(ii) wN (tj+1)−wN (tj)
tj+1−tj = vjl , ∀j = 1, ..., 2l.

By using the notations of Lemma 5.3, equation (i) can be rewritten

∀t ∈ [0, T ],−Jyl(t) = H
′

0(ω(t)).

Since the operator ”−J” from R
2n into R

2n is an isometry, we deduce from the previous
Lemmas that the sequences (−Jylk) and (ωlk) as the operator H

′

0 verify assumptions of
the previous Theorem, therefore we can assert that

∀t ∈ [0, T ],−Jȳ(t) = H
′

0(w̄(t))

or also
∀t ∈ [0, T ], v̄(t) = J(H

′

0(w̄(t)) + h(t)),

where

w̄(t) =

∫ t

0

v̄(τ)dτ + (0, λ̄).

Therefore w̄ is a solution of (H)(C).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 13 (3) (2013) 299–315 315

6 Conclusion

In this paper, we first prove the existence of solutions of a problem of non-coercive
convex Hamiltonian systems (H)(C) through the theory of critical point theory and the
dual action principle. Then we associate with (H)(C) a sequence of problems (HN )(CN ),
(RN ), (PN ) defined in a finite dimensional space and related together by a discrete dual
action principle. We prove that problems (HN )(CN ) possess a sequence of solutions which
converges to a solution of problem (H)(C).
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1 Introduction

Blanchard, Host and Maass used open covers to define a complexity function for a con-
tinuous map on a compact metric space, and discussed the equicontinuity and scattering
properties. Subsequently, Yang discussed the relations of F mixing and F scattering of a
continuous map(see [1–3]). We study the complexity of group actions from the viewpoint
of Furstenberg families. The results are as follows: we characterize the F uniform rigidity
and F equicontinuity using topological sequence complexity function, and we establish
the connection between F mixing and F scattering.

Suppose (X,T ) is a semi-dynamical system, where X is a compact metric space, T is
a topological semigroup and contains the unit element.

• Suppose X is a topological space, T is a topological semigroup, if a map

π : X × T → X

satisfies
π(π(x, t), s) = π(x, ts), ∀x ∈ X, ∀t, s ∈ T,
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then we call π a right action of T on X . If the right action π is continuous, then (X,T, π)
is called a semi-dynamical system (abbreviation: (X,T )). Often we write π(x, t) = xt.

• We denote by P the collection of all subsets of T . Subset F of P is called a family,
if P has hereditary upward, i.e., if F1 ⊂ F2 and F1 ∈ F , then F2 ∈ F . The family F is
a proper family when it is a proper subset of P , neither empty nor all of P .

For a family F , we define the dual family:

kF = {F |F ∩ F1 6= ∅, for all F1 ∈ F}
= {F |T \F 6∈ F}.

• For t ∈ T define gt : T → T by gt(s) = ts, ∀s ∈ T, gt is called a translation map. If
for any t ∈ T and any F ∈ F , we have (gt)−1(F ) ∈ F , then a family F is called translation
invariant. Write τF = {F | (gt1)−1(F )∩···∩(gtk )−1(F ) ∈ F , for any finite subset {t1, t2, ··
·, tk} ofT }. Let B be a family of infinite subset of T , if kB · F = {A ∩ F |A ∈ kB, F ∈
F} ⊂ F , then a proper family F is called full.

• Assume that F is a family, x ∈ X . Write ωF(x) =
⋂

F∈kF xF , then ωF(x) is called
a F limit set of x; y ∈ ωF(x), i.e., for any neighborhood U of y,D(x, U) = {t|xt ∈
U} ∈ F , then y is called a F limit point of x. Recall that the continuous action π
on X induces a continuous action π∗ of T on Cu(X,X) by (πt)∗(h) = πt ◦ h. We call
(X,T ) F uniformly rigid, if id ∈ ωF(id),i.e., for any ε > 0, {t|d(πt, id) < ε} ∈ F (where
d(πt, id) = sup{d(πt(x), x)|x ∈ X}).

• Let C = {U1, · · ·, Uk} be an open cover of X . If S is a infinite subset of T , denote
the set of all finite subsets of S by F (S). For A ∈ F (S), denote CA

0 =
∨

t∈A(πt)
−1C. Let

rS(T,C,A) denote the number of sets in a finite subcover of CA
0 with smallest cardinality.

We get a map rS(T,C, ·) : F (S) → Z+, A 7→ rS(T,C,A). rS(T,C, ·) is said to be the
topological complexity function of the cover C along S. Put E = {1, · · ·, k}. One defines
a map ω : T → E, t 7→ ω(t). If x ∈

⋂

t∈S π−1
t Uω(t), then ω is called a CS-name of x.

Denote J∗(ω) =
⋂

t∈T π−1
t Uω(t), J

∗
S(ω) =

⋂

t∈S π−1
t Uω(t). If

⋃

i∈I J
∗
S(ωi) = X , then we

say that the set of CS-names ωi covers X . Let M(T,E) be the set of maps from T to E
and M(S,E) be the set of maps from S to E.

• For any open set U, V of X , if D(U, V ) = {t ∈ T |U ∩ π−1
t V 6= ∅} ∈ F , then (X,T )

is called F transitive. If (X ×X,T ) is F transitive, then (X,T ) is called F mixing; If
for any S ∈ F , and any finite cover C of X by non-dense open sets, we have rS(T,C, ·)
is unbounded, then (X,T ) is called F scattering.

2 F Uniformly Rigid, F Mixing and F Scattering

Lemma 2.1 Suppose T is countable, a finite cover C = (U1, · · ·, Uk) has complexity
bounded by m if and only if there exist ω1, · · ·, ωm ∈ M(T,E) such that

⋃m
i=1 J

∗(ωi) = X.

Proof. Since T is countable, suppose T = {t1, t2, · · ·, tn, · · ·}. Take An = {t1, · · ·, tn},
then rT (T,C,An) ≤ m.

Denote by H(n) the set of m-tuples (υ1, · · ·, υm) of elements of M(T,E) such that
(J∗

An
(υ1), · · ·, J∗

An
(υm)) covers X , the set H(n) is non-empty and a closed subset of

M(T,E)m. If (J∗
An

(υ1), · · ·, J∗
An

(υm)) covers X , then (J∗
An−1

(υ1), · · ·, J∗
An−1

(υm)) covers

X too, hence H(n) ⊆ H(n− 1), the intersection H = ∩∞
n=0H(n) is non-empty, so there

is ω = (ω1, · · ·, ωm) ∈ H . Obviously ∪m
i=1J

∗(ωi) = limn→∞ ∪m
i=1J

∗
An

(ωi) = X .
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Theorem 2.1 Suppose T is a topological group satisfying the second axiom of count-
ability. Then (X,T ) is F uniformly rigid if and only if there is a set S ∈ F containing
a unit element, for any finite cover C of X, rS(T,C, ·) is bounded and CS-names ωi

covering X are k instant.

Proof. ⇒. Since (X,T ) is F uniformly rigid, id ∈ ωF(id). Let ε be a Lebesgue
number of C, then S = {t ∈ T |supx∈Xd(πt(x), x) <

ε
2} ∈ F . Let x1, · · ·, xm ∈ X be such

that the open balls {B(xi,
ε
2 )|i = 1, 2, ···,m} coverX . For any t ∈ S, we have B(xi,

ε
2 )t ⊂

B(xi, ε), and for any 1 ≤ i ≤ m, there is Ul(i) ∈ C such that B(xi, ε) ⊂ Ul(i). Then for

any finite set A of S, we have B(xi,
ε
2 ) ⊂

⋂

t∈A π−1
t Ul(i), suppose the number of Ul(i) is k.

Since {⋂t∈A π−1
t (Ul(i))|i = 1, · · ·,m} is a finite cover of

∨

t∈A π−1
t (C), then rS(T,C,A) ≤

k. By Lemma 2.1, for a countable dense set D of S, we have
⋃k

i=1

⋂

t∈D π−1
t (Ul(i)) = X .

By the denseness of D,
⋃k

i=1

⋂

t∈S π−1
t (Ul(i)) = X .

⇐. If (X,T ) is not F uniformly rigid, then there is ε > 0, such that {t|d(πt, id) <
ε} 6∈ F , then S′ = {t|d(πt, id) ≥ ε} ∈ kF . Let C = {U1, · · ·, Um} be a finite cover by open
balls with radius ε

4 . If there is S ∈ F , for any finite set A of S, we have rS(T,C,A) ≤ k
and CS-names ωi coveringX are instant. Then by Lemma 2.1, there exists a closed cover
{X1, · · ·, Xk} of X , where Xi =

⋂

t∈S π−1
t (Ui′). Because of S ∩ S′ 6= ∅, take t ∈ S ∩ S′,

then d(πt, id) ≥ ε, that is there is xt ∈ X such that d(xtt, xt) ≥ ε. Let xt ∈ Xi, then
xt ∈ Ui′ and for any s ∈ S we have xts ∈ Ui′ that is d(xts, xt) ≤ ε

2 , which contradicts
the assumption d(xtt, xt) ≥ ε.

Theorem 2.2 (X,T ) is F equicontinuous if and only if there is F ∈ F , and for any
finite open cover C, rF (T,C, ·) is bounded.

Proof. The proof is similar to the proof of Proposition 2.2 in [4].

Remark 2.1 In the case T = Z+, F is the family of infinite subsets. If X is rep-
resented as the unit circle in C, then θ̃1 is given by θ̃1(Z) := αz(z ∈ C, |z| = 1) with
α := exp(2πiθ), let θ be irrational, then (X,Z+, θ̃

1) is F equicontinuous.

In the following we discuss the existence ofF equicontinuous point, and the connection
between F mixing and F scattering.

Lemma 2.2 Assume F is a translation invariant proper family, (X,T ) is not kF
mixing if and only if there is a non-empty open set U, V of X and S ∈ F , such that for
any t ∈ S either π−1

t U ∩ U = ∅ or π−1
t V ∩ U = ∅.

Proof. The proof is similar to the proof of Lemma 3.1 of [2].

Theorem 2.3 Assume that F is a translation invariant proper family, if there is
F ∈ F , such that there is a F equicontinuous point x, then (X,T ) is not kF mixing.

Proof. Take y ∈ X and y 6= x, let ε < d(y, x). Since x is a F equicontinuous point,
there is δ, 0 < δ < ε

4 , if d(x, z) < δ, we have d(xt, zt) < ε
4 (∀t ∈ F ). Let U = B(y, δ), V =

B(x, δ), if there is t ∈ F such that π−1
t U ∩ V 6= ∅, then πtV ∩ U 6= ∅, thus πtV ∩ V = ∅,

that is π−1
t V ∩ V = ∅. By Lemma 2.2, (X,T ) is not kF mixing.

Lemma 2.3 If the family F is full, then (X,T ) is F mixing if and only if (X,T ) is
τF transitive.
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Proof. The proof can be found in [4].

Theorem 2.4 Assume that T is commutative, F is full, and (X,T ) is F mixing,
then (X,T ) is kτF scattering.

Proof. For any non-trivial closed cover α = (W1, · · ·,Wn) of X . Let U1, U2, V1, V2

be non-empty open sets of X , since (X,T ) is F mixing,

F = D(U1, U2) ∩D(V1, V2) ∈ F .

Take t ∈ F, let U = U1∩π−1
t U2, V = V1∩π−1

t V2. By Lemma 2.3, (X,T ) is τF transitive,
then D(U, V ) ∈ τF . Because of D(U, V ) ⊂ D(U1, U2) ∩ D(V1, V2), and τF is a family,
then D(U1, U2) ∩D(V1, V2) ∈ τF .

Now we take U, V such that U, V do not simultaneously belong to any element of α.
Let S1 = D(U,U) ∩ D(U, V ) ∈ τF , for any S ∈ kτF there are t1 ∈ S1 ∩ S and

x1, x
′
1 ∈ U such that

x1t1 ∈ U, x′
1t1 ∈ V.

So one takes A1 = {t1}, then rS(T, α,A1) ≥ 2. By the continuity of π, there exists a
neighbourhood U1 ⊂ U of x′

1 such that U1t1 ⊂ V . Let S2 = D(U1, U) ∩D(U1, V ) ∈ τF ,
then there are t2 ∈ S2 ∩ S and x2, x

′
2 ∈ U1 such that

x2t1 ∈ V, x′
2t1 ∈ V, x2t2 ∈ V, x′

2t2 ∈ U.

Obviously t1 6= t2. so we take A2 = {t1, t2} then rS(T, α,A2) ≥ 3. By the continuity
of π, there exists a neighbourhood U2 ⊂ U1 of x′

2 such that U2t1 ⊂ U1. Let S3 =
D(U2, U) ∩D(U2, V ) ∈ τF , then there are t3 ∈ S3 ∩ S and x3, x

′
3 ∈ U2 such that

x3t1 ∈ V, x′
3t1 ∈ V, x3t2 ∈ V, x′

3t2 ∈ U x3t3 ∈ U, x′
3t3 ∈ V.

so one takes A3 = {t1, t2} then rS(T, α,A3) ≥ 4.
Using similar arguments repeatedly, we can get an infinite sequence

{x1, x2, · · ·, xn, · · ·} and {t1, · · ·, tn, · · ·} satisfy

xn ∈ U, i = 1, 2, · · ·,
x1t1 ∈ U, xit1 ∈ V, i = 2, 3, · · ·,
x2t2 ∈ V, xit2 ∈ U, i = 3, 4, · · ·,
x3t3 ∈ U, xit3 ∈ V, i = 4, 5, · · ·,

· · ·
For any N ≥ 1, take AN = {t1, t2, · · ·, tN} then rS(T, α,AN ) ≥ N + 1.

Example 2.1 In the case T = Z+, F is the family of infinite subsets. Let S be a
finite set with at least two elements, say S = {0, · · ·, s− 1} with s ∈ N, s ≥ 2. Consider
S as a finite discrete topological space and put Ω := SZ+ . Endowed with the product
topology. Define a mapping σ : Ω → Ω, (x0, x1, x2, · · ·) 7→ (x1, x2, · · ·). Clearly (Ω, Z+, σ)
is F mixing, then (Ω, Z+, σ) is kτF scattering.
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3 Concluding Remarks

In this paper, we study the complexity of group actions. We characterize the F uniform
rigidity and F equicontinuity using topological sequence complexity function, and we
show that F mixing implies kτF scattering.
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This self-contained monograph is devoted to the problem of stability analysis for
broad classes of systems of nonlinear differential equations. Along with the describing
of classical results, the book presents recently developed novel approaches for stability
investigation of motions of nonlinear systems in critical, in the Lyapunov sense, cases.
The developments in this area are remarkable, from both the theoretical and the practical
point of view.

In Chapter 1, the basic notions and principal results of the differential inequalities
theory and the comparison method are presented. Several classical approaches for the
decomposition and aggregation of complex systems are considered. A special attention
is devoted to stability criteria of linear and nonlinear Wazewskii systems. Furthermore,
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new conditions of ultimate boundedness of solutions for autonomous Wazewskii systems
are proposed.

The absolute stability and absolute ultimate boundedness problems for nonlinear
systems are studied in Chapter 2. The Persidskii-type systems and some of their gener-
alizations are considered. Several approaches for the constructing of Lyapunov functions
for such systems are proposed. By means of these functions, the conditions of absolute
stability and absolute ultimate boundedness are found. Moreover, an emphasis is placed
on the analysis of nonlinear switched systems. To provide the absolute stability or the
absolute ultimate boundedness uniform with respect to a switching law for a system of
such type, it is sufficient to construct a common Lyapunov function for the corresponding
family of subsystems. In the monograph, new conditions in terms of linear inequalities of
a special form are presented to guarantee the existence of common Lyapunov functions.
The problem of the solvability for the obtained inequalities systems is investigated, and
constructive algorithms for finding their solutions are proposed.

Chapter 3 is devoted to the problem of stability analysis of complex (large-scale,
multiconnected) systems by nonlinear approximation. First, classical results by N.N.
Krasovskii and V.I. Zubov on the stability by homogeneous and generalized homogeneous
approximation are presented. Next, the case when a system of the first approximation is
nonlinear and inhomogeneous is studied, and original stability conditions are obtained.
After that, new forms of decomposition and aggregation of complex systems are proposed,
and the effectiveness of their usage for the stability investigation of essentially nonlinear
complex systems is demonstrated. Moreover, the approaches for finding the estimates of
transient times for multiconnected systems in critical cases are developed. Finally, the
problem of stability analysis of equilibrium positions of mechanical systems on the base
of decomposition is studied.

The monograph contains a lot of examples of the applications of obtained results and
proposed approaches in control problems, mechanics and population dynamics.

In summary, this book is valuable for all those who are interested in stability theory
and its applications. It covers a broad spectrum of important topics. The book is well
written and the presentation of the material is well organized. The book is issued only in
Russian, however it will be also definitely interesting for the English-speaking specialists.



Professor V. G. Miladzhanov (1953 – 2013). Obituary

On May 13, 2013 the known scholar, doctor of physical and mathematical sciences,
professor Miladzhanov Vakhobzhon Ganizhonovich died suddenly.

He was born on June 21, 1953 in Russkoe village of Markhamatsky district of An-
dizhan region into a peasant family. From 1970 to 1974, after finishing school, he studied
at the Physical and Mathematical Department of Andizhan State Pedagogical Institute
(ASPI). On graduating the Institute, he started to work as a teacher of mathematics at
secondary school N3 of Markhamatsky district. From November, 1974 to November 31,
1975 he did his military service in the Soviet Army, and then he proceeded with his work
at the same school N3. In April, 1977 he was invited to join the Chair of Algebra and
Theory of Numbers of ASPI in the capacity of a technician and in February, 1981 he
moved to the position of assistant.

In November, 1985 he entered a post-graduate course at the Stability of Processes
Department of the Institute of Mechanics of AN UkrSSR. Under the tutelage of doc-
tor of physical and mathematical sciences, professor A.A. Martynyuk, he prepared the
Candidate thesis entitled “The application of matrix Lyapunov functions in stability in-
vestigation of systems with slow and quick motions” which was a result of his intensive
persevering work. After defending the Candidate thesis he was conferred a Candidate
of Science degree (PhD) in Physics and Mathematics, speciality 01.02.01 — Theoretical
mechanics.

In December, 1988 he started as a senior lecturer at the Chair of Algebra and Com-
puter Science of Andizhan State University and in September, 1990 he was appointed a
senior research fellow of the Chair.

V.G. Miladzhanov managed to combine fruitfully teaching and guiding, academic and
research activity. He spared neither time nor effort, throwing himself into work. Many
long days, sleepless nights and months of hard work enabled him to carry out intensive
research and to prepare in a short term his Doctor thesis “Stability analysis of nonlinear
systems under structural perturbations”. On December 21, 1993 he successfully defended
the thesis at the Special Council of the Institute of Mathematics of NAS of Ukraine and
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took the degree of Doctor of Physical and Mathematical Sciences in speciality 01.02.01
— Theoretical Mechanics.

In August, 1994 V.G. Miladzhanov was elected the Head of the Chair of Algebra
and Theory of Numbers and starting from December, 1996 he fulfilled the duties of the
Dean of the Mathematical Department. In February, 1998 he was elected the Head of
the Chair of Applied Mathematics and Mechanics of Andizhan State University.

From September 1, 2000 he became the Dean of the Physical and Mathematical
Department and until the very last day of his life he headed the Chair of Mathematics
of Andizhan State University.

V.G. Miladzhanov has made a major contribution to the preparation of young teach-
ers for the Republic of Uzbekistan in the whole, and for Andizhan region in particular.
During his professional life (for almost forty years) he brought up and trained more than
eight thousand highly qualified young specialists working in the secondary and high ed-
ucation. Scientific results of Miladzhanov are associated with the development of the
method of matrix Lyapunov functions for stability investigation of systems with quick
and slow motions; stability analysis of large-scale systems under structural perturbations;
stability analysis of large-scale discrete systems under structural perturbations; stability
of impulsive system under structural perturbations. He proposed a method of construct-
ing hierarchical matrix Lyapunov function for nonautonomous systems which is used in
stability investigation of nonlinear mechanical systems.

Scientific achievements attained by Miladzhanov in the fundamental and applied prob-
lems of mechanics are widely known in many countries including, of course, Uzbekistan
and Ukraine. Together with academician A.A. Martynyuk he worked over and has pre-
pared a generalizing monograph which is intended to be published in English. Besides,
he wrote and published more than 150 scientific and methodological papers.

Cherished memory of the well-known scientist and a remarkable man Miladzhanov
Vakhobzhon Ganizhonovich will linger on in the memory of those who knew him and
worked together with him.
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A.A. Martynyuk 

Institute of Mechanics, National Academy of Sciences of 
Ukraine, Kyiv, Ukraine 

The monograph presents a generalization of the well-known Lyapunov function 
method and related concepts to the matrix auxiliary functions case within the 
framework of systematic stability analysis of dynamical systems (differential 
equations). The book is organized in five chapters as follows.  
      In Chapter 1, the author starts with some explanations on Lyapunov's original 
definition of stability of systems. This culminates in comments, the well-accepted 
definitions and concepts of stability, and the concept of reference solution and 
equilibrium states. After brief outline of trends in Lyapunov’s stability theory the 
author reports on the development of the fairly new view on the method of vector 
Lyapunov functions.  
      Chapter 2 is designed to give a survey on the matrix Lyapunov function method 
in general, using the calculus of Dini derivatives and a technique originated at the 
works of Yoshizawa. The concept of matrix Lyapunov functions and the theory of 
differential inequalities provide a very general comparison principle which is 
described in detail here.  
     Chapter 3 is devoted to stability analysis of singularly perturbed systems. In 
particular, the author treats oscillating systems of solid bodies and Lur'e-Postnikov 
systems (absolute stability in hydraulic servo systems).  
     In Chapter 4, the author continues with probabilistic stability analysis of 
differential equations with Markovian random perturbations (Ito-interpreted SDEs) 
in the spirit of Katz-Krasovskij. 
     Chapter 5 exhibits illustrations of the versatility, applicability and efficiency of 
matrix-valued Lyapunov functions in stability investigations with respect to 
equilibrium states. Here the author discusses asymptotic stability of population 
models (predator-prey), an orbital astronomical observatory, n-generator power 
system and the motion in space of winged aircrafts. Besides, each chapter is 
accompanied by numerous examples and notes on the locally related bibliography. 
    Thus it can be recommended to any specialist in nonlinear dynamical systems 
and differential equations, both in deterministic and stochastic analysis.  
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