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1 Introduction

Throughout this paper, for any integers a and b with a ≤ b, let [a, b]Z denote the discrete
interval {a, a+ 1, . . . , b}. Here, we are concerned with the existence of solutions of the
four-parameter fourth order discrete boundary value problem (BVP)

{

∆4u(t− 2)− α∆2u(t− 1) + βu(t) = λf(t, u(t)), t ∈ [1, T ]Z,

u(0) = ∆u(−1) = ∆2u(T ) = 0, ∆3u(T − 1)− α∆u(T ) = µg(u(T + 1)),
(1.1)

where T ≥ 2 is an integer, ∆ is the forward difference operator defined by ∆u(t) =
u(t+1)− u(t), ∆ku(t) = ∆k−1(∆u(t)) for k = 2, 3, 4, α, β, λ, µ are four parameters with
α, β ∈ R, λ ∈ (0,∞), µ ∈ [0,∞), f ∈ C([1, T ]Z×R,R), and g ∈ C(R,R). By a solution of
(1.1), we mean a function u ∈ C([−1, T +2]Z,R) satisfying (1.1). We assume throughout,
and without further mention, that the following condition holds:

(H1) α and β satisfy
1 + α−(T + 1)2 + β−T

2(T + 1)2 > 0,

where α− = min{α, 0} and β− = min{β, 0}.

Difference equations appear in numerous settings and forms, both in mathematics and
in its applications to statistics, computing, electrical circuit analysis, dynamical systems,
economics, biology, and other fields ([1,19]). In recent years, many researchers have paid
a lot of attention to fourth order BVPs for difference equations with various boundary
conditions. The reader may refer to [2,6,7,11,13,14,16–18,20,22,26,28] and the included
references for some recent work.

We point out, depending on the values of the parameters α, β, λ, and µ, that BVP
(1.1) covers many problems as special cases. For instance, if α = β = 0 and µ = 1, BVP
(1.1) becomes

{

∆4u(t− 2) = λf(t, u(t)), t ∈ [1, T ]Z,

u(0) = ∆u(−1) = ∆2u(T ) = 0, ∆3u(T − 1) = g(u(T + 1)).
(1.2)

The continuous version of BVP (1.2), i.e., the problem
{

u(4)(t) = λf(t, u), t ∈ (0, 1),

u(0) = u′(0) = u′′(1) = 0, u′′′(1) = g(u(1)),

has recently been investigated in [24] where results for the existence of three solutions are
obtained. Notice that BVPs for fourth order differential equations have been extensively
studied in the literature. For a small sample of recent work, see [9, 12, 14, 15, 23–25].

The existence of three solutions of BVP (1.1) has been studied in [11]. In this paper,
we continue our study on BVP (1.1). We apply variational methods and critical point
theorem to establish some criteria for the existence of infinitely many solutions of BVP
(1.1). We also present several consequences of our main theorems. Our analysis is mainly
based on a recent theorem on critical points that appeared in [3,21]; see Lemma 4.1 below.
This lemma and its variations have been frequently used to obtain multiplicity results
for nonlinear problems of a variational nature; see, for example, [3–5, 8, 10, 21] and the
references therein. Our proofs are partly motivated by these papers.

The rest of this paper is organized as follows. Section 2 contains some preliminary
lemmas, Section 3 contains the main results of this paper and one illustrative example,
and the proofs of the main results are presented in Section 4.
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2 Preliminary Lemmas

We define a real vector space

X =
{

u : [−1, T + 2]Z → R : u(−1) = u(0) = 0, ∆2u(T ) = 0
}

. (2.1)

For any u ∈ X , we let

||u||X =

(

T+1
∑

t=1

(

|∆2u(t− 2)|2 + α|∆u(t− 1)|2
)

+ β

T
∑

t=1

|u(t)|2

)1/2

.

Let
ρ = (T + 1)3/2

(

1 + α−(T + 1)2 + β−T
2(T + 1)2

)−1/2
. (2.2)

Clearly, ρ > 0 by condition (H1).
The following result is taken from [11, Lemma 2.1].

Lemma 2.1 For any u ∈ X, we have

T+1
∑

t=1

(

|∆2u(t− 2)|2 + α|∆u(t− 1)|2
)

+ β

T
∑

t=1

|u(t)|2 ≥ 0

and
|u(t)| ≤ ρ||u||X for t ∈ [1, T + 1]Z. (2.3)

Hence, || · ||X is a norm on X with which X becomes a T + 1 dimensional separable and
reflexive Banach space.

For any u ∈ X , let the functionals Φ and Ψ be defined by

Φ(u) =
1

2
||u||2X (2.4)

and

Ψ(u) =

T
∑

t=1

F (t, u(t))−
µ

λ
G(u(T + 1)), (2.5)

where

F (t, x) =

∫ x

0

f(t, s)ds, (t, x) ∈ [1, T ]Z × R, (2.6)

and

G(x) =

∫ x

0

g(s)ds, x ∈ R. (2.7)

Then, Φ and Ψ are well defined and continuously Gâteaux differentiable whose Gâteaux
derivatives at u ∈ X are the functionals Φ′(u) and Ψ′(u) given by

Φ′(u)(v) =

T+1
∑

t=1

(

∆2u(t− 2)∆2v(t− 2) + α∆u(t− 1)∆v(t− 1)
)

+ β

T
∑

t=1

u(t)v(t)

and

Ψ′(u)(v) =

T
∑

t=1

f(t, u(t))v(t)−
µ

λ
g(u(T + 1))v(T + 1)

for any v ∈ X .
Lemma 2.2 below follows from [11, Lemma 2.3].
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Lemma 2.2 The function u ∈ X is a critical point of the functional Φ− λΨ if and
only if u is a solution of BVP (1.1).

3 Main Results

In this section, we present our main results. In what follows, let X , ρ, F , and G be
defined by (2.1), (2.2), (2.6), and (2.7), respectively. For convenience, we use the following
notation:

A = lim inf
ξ→∞

∑T
t=1 max

|x|≤ξ
F (t, x)

ξ2
, B = lim sup

ξ→∞

∑T
t=1 F (t, ξ)

ξ2
, (3.1)

C = lim inf
ξ→0+

∑T
t=1 max

|x|≤ξ
F (t, x)

ξ2
, D = lim sup

ξ→0+

∑T
t=1 F (t, ξ)

ξ2
, (3.2)

λ1 =
2+ α+ βT

2B
, λ2 =

1

2ρ2A
, (3.3)

λ3 =
2 + α+ βT

2D
, λ4 =

1

2ρ2C
.

In the following, we assume that

(H2) A, B, C, D ≥ 0.

We also use the convention that 1/a = ∞ when a = 0.
We now state our main results in the paper.

Theorem 3.1 Assume that

A <
B

ρ2(2 + α+ βT )
. (3.4)

Then, for each λ ∈ (λ1, λ2), for each function g ∈ C(R,R) with

g(x) ≤ 0 on R and G∞ = lim inf
ξ→∞

G(ξ)

ξ2
> −∞, (3.5)

and for each µ ∈ [0, µ1) with

µ1 =
1− 2ρ2λA

−2ρ2G∞
, (3.6)

BVP (1.1) has a sequence of solutions that is unbounded in X.

Theorem 3.2 Assume that

C <
D

ρ2(2 + α+ βT )
. (3.7)

Then, for each λ ∈ (λ3, λ4), for each function g ∈ C(R,R) satisfying (3.4), and for each
µ ∈ [0, µ2) with

µ2 =
1− 2ρ2λC

−2ρ2G∞
,

BVP (1.1) has a sequence of solutions converging uniformly to zero in X.
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Remark 3.1 For Theorems 3.1 and 3.2, we make the following comments.

(a) It is easy to verify that condition (H) implies 2 + α + βT > 0. Thus, λ1 ≥ 0 and
λ3 ≥ 0.

(b) By the assumptions (3.4) and (3.7), we see that λ1 < λ2 and λ3 < λ4. This assures
that the intervals (λ1, λ2) and (λ3, λ4) are nonempty.

(c) The interval [0, µ1) is well defined since µ1 > 0 under the condition that λ < λ2.

(d) The interval [0, µ2) is well defined since µ2 > 0 under the condition that λ < λ4.

The following results are direct consequences of Theorems 3.1 and 3.2.

Corollary 3.1 Assume that (3.4) holds. Then, for each λ ∈ (λ1, λ2), the BVP

{

∆4u(t− 2)− α∆2u(t− 1) + βu(t) = λf(t, u(t)), t ∈ [1, T ]Z,

u(0) = ∆u(−1) = ∆2u(T ) = 0, ∆3u(T − 1)− α∆u(T ) = 0,
(3.8)

has a sequence of solutions which is unbounded in X.

Corollary 3.2 Assume that (3.7) holds. Then, for each λ ∈ (λ3, λ4), BVP (3.8) has
a sequence of solutions converging uniformly to zero in X.

Corollary 3.3 Assume that A = 0 and B = ∞. Then, for each λ ∈ (0,∞), for each
function g ∈ C(R,R) with

g(x) ≤ 0 on R and G∞ = lim inf
ξ→∞

G(ξ)

ξ2
= 0, (3.9)

and for each µ ∈ [0,∞), BVP (1.1) has a sequence of solutions which is unbounded in
X.

Corollary 3.4 Assume that C = 0 and D = ∞. Then, for each λ ∈ (0,∞), for each
function g ∈ C(R,R) satisfying (3.9), and for each µ ∈ [0,∞), BVP (1.1) has a sequence
of solutions converging uniformly to zero in X.

Corollary 3.5 Assume that A < B
2(T+1)3 . Then, for each λ ∈

(

1
B , 1

2A(T+1)3

)

and

each function g ∈ C(R,R) satisfying (3.9), BVP (1.2) has a sequence of solutions which
is unbounded in X.

Corollary 3.6 Assume that C < D
2(T+1)3 . Then, for each λ ∈

(

1
D , 1

2C(T+1)3

)

and

each function g ∈ C(R,R) satisfying (3.9), BVP (1.2) has a sequence of solutions con-
verging uniformly to zero in X.

We conclude this section with the following example where the construction of the
nonlinear function f(t, x) is partly motivated by [10, Example 3.1].
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Example 3.1 Let T ≥ 2 be an integer, {an} and {bn} be sequences defined by
b1 = 2, bn+1 = b6n, and an = b4n for n ∈ N. Let f : [0, T ]Z × R → R be a positive
continuous function defined by

f(t, x) = t2



























b31
√

1− (1− x)2 + 1, x ∈ [0, b1],

(an − b3n)
√

1− (an − 1− x)2 + 1, x ∈ ∪∞
n=1[an − 2, an],

(b3n+1 − an)
√

1− (bn+1 − 1− x)2 + 1, x ∈ ∪∞
n=1[bn+1 − 2, bn+1],

1, otherwise.

Let α, β ∈ R satisfy (H). We claim that for each λ ∈ (0,∞) and µ ∈ [0,∞), the BVP
{

∆4u(t− 2)− α∆2u(t− 1) + βu(t) = λf(t, u(t)), t ∈ [1, T ]Z,

u(0) = ∆u(−1) = ∆2u(T ) = 0, ∆3u(T − 1)− α∆u(T ) = −µ(u(T + 1))2/3,
(3.10)

has a sequence of solutions which is unbounded in X .

In fact, with g(x) = −x2/3, it is clear that BVP (3.10) is a special case of BVP
(1.1) and that (3.9) holds. Let F (t, x) be defined by (2.6). Then, for t ∈ [1, T ]Z, simple
computations yield

F (t, an) = t2
(
∫ an

0

1ds+ b31

∫ 2

0

√

1− (1− s)2 ds

+

n
∑

i=1

∫ ai

ai−2

(ai − b3i )
√

1− (ai − 1− s)2 ds

+

n−1
∑

i=1

∫ bi+1

bi+1−2

(b3i − ai)
√

1− (bi+1 − 1− s)2 ds

)

= t2
(π

2
an + an

)

and

F (t, bn) = t2
(
∫ bn

0

1ds+ b31

∫ 2

0

√

1− (1− s)2 ds

+

n−1
∑

i=1

∫ ai

ai−2

(ai − b3i )
√

1− (ai − 1− s)2 ds

+

n−1
∑

i=1

∫ bi+1

bi+1−2

(b3i − ai)
√

1− (bi+1 − 1− s)2 ds

)

= t2
(π

2
b3n + bn

)

.

Thus,

lim
n→∞

F (t, an)

a2n
= 0 and lim

n→∞

F (t, bn)

b2n
= ∞ for t ∈ [1, T ]Z.

Then, for A and B defined in (3.1), it is easy to see that

A = lim inf
ξ→∞

F (t, ξ)
∑T

t=1 t
2

ξ2
= 0 and B = lim sup

ξ→∞

F (t, ξ)
∑T

t=1 t
2

ξ2
= ∞. (3.11)
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Thus, all the conditions of Corollary 3.3 are satisfied. The claim then follows directly
from Corollary 3.3.

4 Proofs of the Main Results

The proofs of our theorems are based on the following lemma obtained in [3, Theorem
2.1]. This result is a supplement of the variational principle of Ricceri [21, Theorem 2.5].

Lemma 4.1 Let X be a reflexive real Banach space, let Φ,Ψ : X → R be two
Gâteaux differentiable functionals such that Φ is sequentially weakly lower semicontinu-
ous, strongly continuous and coercive, and Ψ is sequentially weakly upper semicontinuous.
For every r > infX Φ, let

ϕ(r) := inf
u∈Φ−1(−∞,r)

(

supv∈Φ−1(−∞,r)Ψ(v)
)

−Ψ(u)

r − Φ(u)
, (4.1)

and

γ := lim inf
r→∞

ϕ(r), δ := lim inf
r→(infX Φ)+

ϕ(r).

Then:

(a) For every r > infX Φ and every λ ∈ (0, 1/ϕ(r)), the restriction of the functional
Iλ := Φ−λΨ to Φ−1(−∞, r) admits a global minimum that is a critical point (local
minimum) of Iλ in X.

(b) If γ < ∞, then for each λ ∈ (0, 1/γ), the following alternative holds: either

(b1) Iλ possesses a global minimum, or

(b2) there is a sequence {un} of critical points (local minima) of Iλ such that

lim
n→∞

Φ(un) = ∞.

(c) If δ < ∞, then for each λ ∈ (0, 1/δ), the following alternative holds: either

(c1) there is a global minimum of Φ which is a local minimum of Iλ, or

(c2) there is a sequence {un} of pairwise distinct critical points (local minima) of
Iλ which converges weakly to a global minimum of Φ.

The proof of Theorem 3.1 relies on Lemma 4.1 (b).

Proof of Theorem 3.1. Let the functionals Φ,Ψ : X → R be defined by (2.4) and
(2.5), respectively. Then, it is clear that Φ and Ψ satisfy all the regularity assumptions
given in Lemma 4.1.

By the definition of A in (3.1), there exists a sequence {ξn} of positive numbers such
that limn→∞ ξn = ∞ and

A = lim
n→∞

∑T
t=1 max|x|≤ξn F (t, x)

ξ2n
. (4.2)
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Let rn =
ξ2
n

2ρ2 . Then, for any u ∈ X with Φ(u) < rn, from (2.3), we have

max
t∈[1,T+1]Z

|u(t)| ≤ ρ||u||X < ρ(2rn)
1/2 = ξn. (4.3)

Note that 0 ∈ Φ−1(−∞, rn) and Ψ(0) = 0. Then, by (4.1) and (3.5),

ϕ(rn) = inf
u∈Φ−1(−∞,rn)

(

supv∈Φ−1(−∞,rn) Ψ(v)
)

−Ψ(u)

rn − Φ(u)

≤ inf
u∈Φ−1(−∞,rn)

supv∈Φ−1(−∞,rn) Ψ(v)

rn

≤

∑T
t=1 max|x|≤ξn F (t, x)− µ

λ min|s|≤ξn G(s)

rn

= 2ρ2
∑T

t=1 max|x|≤ξn F (t, x) − µ
λG(ξn)

ξ2n
.

Thus, from (3.5) and (4.2), we see that, for γ defined in Lemma 4.1,

γ ≤ lim inf
n→∞

ϕ(rn) ≤ 2ρ2
(

A−
µ

λ
G∞

)

< ∞. (4.4)

We claim that

if λ ∈ (λ1, λ2) and µ ∈ [0, µ1), then λ ∈ (0, 1/γ). (4.5)

In fact, it is clear that λ > 0. Now, when λ ∈ (λ1, λ2) and µ ∈ [0, µ1), from (3.6) and
(4.4), we have

γ ≤ 2ρ2
(

A−
µ1

λ
G∞

)

= 2ρ2
(

A+
1− 2ρ2λA

2ρ2λ

)

=
1

λ
,

and so, λ < 1/γ. Thus, (4.5) holds.
Let λ ∈ (λ1, λ2) and µ ∈ [0, µ1) be fixed. Then, in view of (4.4) and (4.5), by Lemma

4.1 (b), it follows that one of the following alternatives holds

(b1) either Iλ := Φ− λΨ has a global minimum, or

(b2) there exists a sequence {un} of critical points of Iλ such that limn→∞ ||un||X = ∞.

In what follows, we show that alternative (b1) does not hold. By the definition of B
in (3.1), there exists a sequence {ηn} of positive numbers such that limn→∞ ηn = ∞ and

B = lim
n→∞

∑T
t=1 F (t, ηn)

η2n
. (4.6)

For each n ∈ N, define a function wn : [−1, T + 2]Z → R by

wn(t) =

{

0, t = −1, 0,

ηn, t ∈ [1, T + 2]Z.
(4.7)
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Then, wn ⊆ X . Moreover, from (2.4) and (2.5), it is easy to see that

Φ(wn) =
1

2
(2 + α+ βT )η2n

and

Ψ(wn) =
T
∑

t=1

F (t, ηn)−
µ

λ
G(ηn).

Note that G(ηn) ≤ 0 by (3.5). Then, we have

Iλ(wn) = Φ(wn)− λΨ(wn)

=
1

2
(2 + α+ βT )η2n − λ

T
∑

t=1

F (t, ηn) + µG(ηn)

≤
1

2
(2 + α+ βT )η2n − λ

T
∑

t=1

F (t, ηn). (4.8)

Now, we consider two cases.
Case 1: B < ∞. From the fact that λ > λ1 and the definition of λ1 in (3.3), we have

B − 2+α+βT
2λ > 0. Let

ǫ ∈

(

0, B −
2 + α+ βT

2λ

)

. (4.9)

From (4.6), there exists N1 ∈ N such that

T
∑

t=1

F (t, ηn) > (B − ǫ)η2n for n ≥ N1.

This, together with (4.8), implies that

Iλ(wn) ≤

(

1

2
(2 + α+ βT )η2n − λ(B − ǫ)

)

η2n.

Thus, from (4.9) and the fact that limn→∞ ηn = ∞, we have limn→∞ Iλ(wn) = −∞.
Case 2: B = ∞. Choose

M >
2 + α+ βT

2λ
. (4.10)

Then, (4.6) implies that there exists N2 ∈ N such that

T
∑

t=1

F (t, ηn) > Mη2n for n ≥ N2.

Thus, from (4.8),

Iλ(wn) ≤

(

1

2
(2 + α+ βT )η2n − λM

)

η2n.

Then, from (4.10) and the fact that limn→∞ ηn = ∞, we have limn→∞ Iλ(wn) = −∞.
Combining the above two cases, we see that the functional Iλ is always unbounded

from below. Hence, the alternative (b1) does not hold. Therefore, there exists a sequence
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{un} of critical points of Iλ such that limn→∞ ||un||X = ∞. Applying Lemma 2.2
completes the proof of the theorem. �

Using Lemma 4.1 (c) and arguing as in the proof of Theorem 3.1, we can prove
Theorem 3.2. For the completeness, we give the proof below.

Proof of Theorem 3.2. Let the functionals Φ,Ψ : X → R be defined by (2.4) and
(2.5), respectively. Then, as before, Φ and Ψ satisfy all the regularity assumptions given
in Lemma 4.1.

By the definition of C in (3.2), there exists a sequence {ξn} of positive numbers such
that limn→∞ ξn = 0 and

C = lim
n→∞

∑T
t=1 max|x|≤ξn F (t, x)

ξ2n
.

By the fact that infX Φ = 0 and the definition δ, we have δ = lim infr→0+ ϕ(r). Then,
as in showing (4.4) and (4.5) in the proof of Theorem 3.1, we can prove that δ < ∞ and
that if λ ∈ (λ3, λ4) and µ ∈ [0, µ2), then λ ∈ (0, 1/δ). Let λ ∈ (λ3, λ4) and µ ∈ [0, µ2) be
fixed. Then, by Lemma 4.1 (c), we see that one of the following alternatives holds

(c1) either there is a global minimum of Φ which is a local minimum of Iλ = Φ−λΨ, or

(c2) there exists a sequence {un} of critical points of Iλ which converges weakly to a
global minimum of Φ.

In the following, we show that alternative (c1) does not hold. By the definition of C in
(3.2), there exists a sequence {ηn} of positive numbers such that limn→∞ ηn = 0 and

C = lim
n→∞

∑T
t=1 F (t, ηn)

η2n
. (4.11)

For each n ∈ N, let wn : [−1, T + 2]Z → R be defined by (4.7) with the above ηn. Then,
as in the cases 1 and 2 of the proof of Theorem 3.1, we can obtain that, for n large
enough, if C < ∞, then

Iλ(wn) ≤

(

1

2
(2 + α+ βT )η2n − λ(C − ǫ)

)

η2n,

where

ǫ ∈

(

0, C −
2 + α+ βT

2λ

)

,

and if C = ∞, then

Iλ(wn) ≤

(

1

2
(2 + α+ βT )η2n − λM

)

η2n,

where M satisfies (4.10). Therefore, we always have Iλ(wn) < 0 for large n. Then, since
limn→∞ Iλ(wn) = Iλ(0) = 0, we see that 0 is not a local minimum of Iλ. This, together
with the fact that 0 is the only global minimum of Φ, shows that alternative (c1) does
not hold. Therefore, there exists a sequence {un} of critical points of Iλ which converges
weakly (and thus also strongly) to 0. An application of Lemma 2.2 completes the proof
of the theorem. �

Finally, we point out that Corollaries 3.1, 3.3, and 3.5 follow directly from Theorem
3.1, and Corollaries 3.2, 3.4, and 3.6 are obviously consequences of Theorem 3.2.
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