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Permanence and Ultimate Boundedness for

Discrete-Time Switched Models of Population

Dynamics
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Abstract: The problems of permanence and ultimate boundedness for a class of
discrete-time Lotka–Volterra type systems with switching of parameter values are
studied. Two new approaches for the constructing of a common Lyapunov function
for the family of subsystems corresponding to a switched system are suggested. Suf-
ficient conditions in terms of linear inequalities are obtained to guarantee that the
solutions of the considered system are ultimately bounded or permanent for an arbi-
trary switching law. An example is presented to demonstrate the effectiveness of the
obtained results.

Keywords: population dynamics; ultimate boundedness; switched system; discrete-

time models; common Lyapunov function; linear inequalities.

Mathematics Subject Classification (2010): 92D25, 39A22, 39A60.

1 Introduction

The Lotka–Volterra type differential and difference equations systems are extensively
used in modeling of population dynamics [6, 7, 9, 12, 14, 15]. A very important ecolog-
ical problem associated with multispecies population interactions is the following one:
whether or not the densities of all species are bounded [5, 7, 9, 15]. Of particular interest
is the situation when there exists a bounded region in the phase space of the system,
such that every solution enters this region for finite time and remains within it thereafter.
Solutions of systems possessing this property are called ultimately bounded [6, 7].

∗ Corresponding author: mailto:alex43102006@yandex.ru
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2 A.Yu. ALEKSANDROV, Y. CHEN AND A.V. PLATONOV

It is worth mentioning that, in the analysis of population models, it is important not
only to check the ultimate boundedness, but also to verify whether or not the considered
system is permanent [5, 7, 12, 17]. The permanence property, in addition to the ultimate
boundedness of densities of all species, implies that if initially all species are present,
even in very small quantities, then after a certain time some sizeable amount of each of
them will be present.

Conditions of ultimate boundedness and permanence are well investigated for Lotka–
Volterra type models with constant parameters, see, for example, [5–7, 9] and the refer-
ences cited therein. However, owing to many natural and man-made factors, such as fire,
drought, raining season, changing in nutrition, deforestation, radiation, etc., the intrinsic
discipline of biological species or ecological environment usually undergoes some discrete
changes of relatively short duration at some fixed times. For more adequate modeling
of such processes, stochastic, switched or impulsive systems are used [4, 8, 13, 17, 18].
The problem of ultimate boundedness and permanence analysis for these models is much
more complicated than that one for differential and difference systems with constant
parameters.

In the present paper, a discrete-time switched Lotka–Volterra type system is studied.
The system consists of a family of subsystems of difference equations and a switching law
determining at each time instant which subsystem is active. We will look for conditions
providing the ultimate boundedness or permanence of the considered system for an ar-
bitrary switching law. A general approach to the problem is based on the construction
of a common Lyapunov function (CLF) for the family of subsystems corresponding to
the switched system. This approach has been effectively used for the analysis of stability
and boundedness for many classes of switched systems, see, for instance, [1–3, 10, 11,
16], and the references therein. However, the problem of the existence of a CLF has not
got a constructive solution even for the case of family of linear time-invariant systems
[11].

In [3], for the investigated switched system, a special form of Lyapunov function
has been used. The sufficient condition in terms of linear inequalities was obtained to
guarantee the existence of a CLF in the prescribed form, and thereby to ensure that
solutions of the switched system are ultimately bounded or permanent for an arbitrary
switching signal. In the present paper, two different approaches for the constructing
of a CLF are proposed. The usage of these approaches permits to relax the ultimate
boundedness and the permanence conditions found in [3].

2 Statement of the Problem

Consider the switched difference system

xi(k + 1) = xi(k) exp



h



c
(σ)
i +

n∑

j=1

p
(σ)
ij fj(xj(k))







 , i = 1, . . . , n. (1)

The system describes interaction of n species in a biological community. Here xi(k)
is the density of population i at the kth generation; functions fi(zi) are defined for

zi ∈ [0,+∞); σ = σ(k), k = 0, 1, . . ., with σ(k) ∈ {1, . . . , N} defines a switching law; c
(s)
i

and p
(s)
ij , s = 1, . . . , N , i, j = 1, . . . , n, are constant coefficients; h is a positive parameter

characterizing the transient time between two consecutive generations. Thus, at each



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 14 (1) (2014) 1–10 3

time instant, the dynamics of (1) is described by one of the subsystems

xi(k + 1) = xi(k) exp


h


c

(s)
i +

n∑

j=1

p
(s)
ij fj(xj(k))




 , i = 1, . . . , n, s = 1, . . . , N. (2)

Subsystems of the form (2) are discrete counterparts of the continuous generalized Lotka–
Volterra ecosystem models [5–7, 12, 15]. It is known [6, 7, 12] that if the populations have
non-overlapping generations, then discrete time models are more appropriate than the
continuous ones. Moreover, they provide efficient schemes for the numerical simulation
of continuous processes.

In (1), coefficients c
(s)
i characterize the intrinsic growth rate of the ith population; the

introduction of self-interaction terms p
(s)
ii fi(zi) with p

(s)
ii < 0 is justified by the natural

limitation of resources in the environment, the terms p
(s)
ij fj(zj) for j 6= imeasure influence

of population j on population i. It is supposed that environment fluctuations provoke
switching of the system parameters.

According to standard assumptions [6, 7, 15], we assume that functions fi(zi), i =
1, . . . , n, possess the following properties:

(i) fi(zi) are continuous for zi ∈ [0,+∞);
(ii) fi(0) = 0, and for zi > 0 the inequality fi(zi) > 0 holds, and
(iii) fi(zi) → +∞ as zi → +∞.
By Rn

+ we denote the non-negative orthant of Rn; intRn
+ being the interior of Rn

+;

x(k,x(0), k0) denotes the solution of (1) starting from x(0) at k = k0; Ps =
(
p
(s)
ij

)n
i,j=1

,

s = 1, . . . , N , are given matrices; and BQ = {z : z ∈ intRn
+, ‖z‖ ≤ Q} for a given

positive number Q. For biological reasons, we will consider (1) in intRn
+ which is an

invariant set for this system.

Definition 2.1 System (1) is called ultimately bounded in intRn
+ with the ultimate

bound R > 0 if, for any x(0) ∈ intRn
+ and k0 ≥ 0, there exists T > 0, such that

‖x(k,x(0), k0)‖ ≤ R for k ≥ k0 + T .

Definition 2.2 System (1) is called uniformly ultimately bounded in intRn
+ with

the ultimate bound R > 0 if, for any Q > 0, there exists T = T (Q) > 0, such that
‖x(k,x(0), k0)‖ ≤ R for all k0 ≥ 0, x(0) ∈ BQ, k ≥ k0 + T .

Definition 2.3 System (1) is called permanent if there exists a compact set D ⊂
intRn

+, such that, for any x(0) ∈ intRn
+ and k0 ≥ 0, the solution x(k,x(0), k0) of (1)

ultimately remains in D.

Definition 2.4 System (1) is called uniformly permanent if there exist numbers ∆1

and ∆2, 0 < ∆1 < ∆2, such that, for any δ1 and δ2, 0 < δ1 < δ2, one can choose T > 0
satisfying the following condition: if for the initial values of a solution x(k,x(0), k0) the

inequalities k0 ≥ 0, δ1 ≤ x
(0)
i ≤ δ2, i = 1, . . . , n, hold, then ∆1 ≤ xi(k,x

(0), k0) ≤ ∆2,
i = 1, . . . , n, for k ≥ k0 + T .

Conditions of the ultimate boundedness and the permanence are well investigated
for individual subsystems from (2) without switching [5–7, 12]. The goal of the present
paper is the ultimate boundedness and the permanence analysis for switched system (1).
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3 Ultimate Boundedness Conditions

Sufficient conditions of uniform ultimate boundedness for switched system (1) have been
obtained in [3]. The case was considered when, for the functions f1(z1), . . . , fn(zn), in
addition to the properties (i)–(iii), the following assumptions are fulfilled.

Assumption 3.1 Let
∫ 1

0
fi(τ)
τ dτ < +∞, i = 1, . . . , n.

Assumption 3.2 The functions f̃i(zi) = fi(exp(zi)) satisfy the Lipschitz condition
with constant L for all zi ∈ (−∞,+∞), i = 1, . . . , n.

For example, the properties (i)–(iii) and Assumptions 3.1 and 3.2 are fulfilled for
functions fi(zi) = log(zi + 1), i = 1, . . . , n.

Let us introduce the auxiliary matrices Ps =
(
p̄
(s)
ij

)n
i,j=1

whose entries are defined by

the formulae p̄
(s)
ii = p

(s)
ii , and p̄

(s)
ij = max

{
p
(s)
ij ; 0

}
for j 6= i; i, j = 1, . . . , n; s = 1, . . . , N .

Thus, the matrices P1, . . . ,PN are Metzler ones [9, 10].
Consider the two families of linear inequalities systems

Psθ < 0, s = 1, . . . , N, (3)

Ps
T
b < 0, s = 1, . . . , N, (4)

where θ = (θ1, . . . , θn)
T , b = (b1, . . . , bn)

T . These inequalities in vector form are under-
stood to be component-wise. That is to say, a vector is less than zero if and only if so
is each component of the vector. For convenience, one can call a vector to be negative
(respectively, positive) if it is less (respectively, greater) than zero.

In [3], a CLF for (2) has been chosen in the form

V1(z) =

n∑

i=1

λi

∫ zi

1

fi(τ)

τ
dτ, (5)

where λ1, . . . , λn are positive coefficients. By the usage of function (5), the following
theorem was proved.

Theorem 3.1 Let Assumptions 3.1 and 3.2 be fulfilled. If systems (3) and (4) admit

positive solutions, then there exists h0 > 0 such that system (1) is uniformly ultimately

bounded in intRn
+ for any h ∈ (0, h0) and for arbitrary switching law.

Remark 3.1 Necessary and sufficient conditions of solvability for inequality systems
of the form (3) and (4) with Metzler matrices have been found in [2, 10]. Furthermore,
in [2], an effective algorithm based on a modification of Gaussian elimination procedure
for the construction of positive solutions of such systems was suggested.

Remark 3.2 It is known [9] that if a matrix P is Metzler one, then the system of
inequalities Pθ < 0 possesses a positive solution if and only if the system of inequalities
PTb < 0 possesses a positive solution as well. However, it is not true for the families
of inequalities (3), (4) [2, 3]. Generally, from the existence of a positive solution for
the inequalities (3) with Metzler matrices P1, . . . ,PN , it does not follow that a positive
solution also exists for the corresponding inequalities (4).
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In the present section, we shall suggest another approach for the constructing of a CLF
for family (2). The usage of this approach permits to relax the conditions of Theorem
3.1. In particular, we will prove that in the case when for functions f1(z1), . . . , fn(zn),
instead of Assumptions 3.1 and 3.2, an additional assumption is fulfilled, the existence of
a positive solution for (3) is sufficient to ensure that (1) is uniform ultimately bounded
for sufficiently small values of h and for any switching law. Thus, another condition of
Theorem 3.1, i.e., the condition of the existence of a positive solution for (4), can be
dropped.

Assumption 3.3 The functions f̃i(zi) = fi(exp(zi)) are continuously differentiable
for zi ∈ (−∞,+∞), and 0 < f̃ ′

i(zi) ≤ L, i = 1, . . . , n, where L is a positive constant.

Theorem 3.2 Let Assumption 3.3 be fulfilled. If system (3) admits a positive solu-

tion, then there exists h0 > 0 such that system (1) is uniformly ultimately bounded in

intRn
+ for any h ∈ (0, h0) and for arbitrary switching law.

Proof. Let a positive vector θ = (θ1, . . . , θn)
T satisfy the inequalities (3). Then there

exists a number γ > 0, such that
∑n

j=1 p̄
(s)
ij θj ≤ −γ, i = 1, . . . , n, s = 1, . . . , N .

Construct a CLF for (2) in the form

V2(z) = max
i=1,...,n

fi(zi)

θi
. (6)

Function V2(z) is continuous for z ∈ Rn
+, and V2(z) → +∞ as ‖z‖ → ∞.

For some s in {1, . . . , N}, consider the difference of the function (6) with respect to
the sth subsystem from (2). Let x̂ ∈ intRn

+, and x(k) = (x1(k), . . . , xn(k))
T be the

solution of the sth subsystem starting from x̂ at k = 0. For every k = 0, 1, . . ., find

Bk = max
i=1,...,n

fi(xi(k))

θi
.

Denote by Ak a subset of {1, . . . , n} such that fi(xi(k))/θi = Bk for i ∈ Ak, and
fi(xi(k))/θi < Bk for i /∈ Ak.

Choose a nonnegative integer k. Let r ∈ Ak, i ∈ Ak+1. We obtain

∆V2

∣∣
(s)

= V2(x(k + 1))− V2(x(k)) =
fi(xi(k + 1))

θi
−

fr(xr(k))

θr

=

(
fi(xi(k + 1))

θi
−

fi(xi(k))

θi

)
−

(
fr(xr(k))

θr
−

fi(xi(k))

θi

)

=

(
f̃i(yi(k + 1))

θi
−

f̃i(yi(k))

θi

)
−

(
fr(xr(k))

θr
−

fi(xi(k))

θi

)

≤
f̃ ′
i(yi(k) + ξik∆yi(k))

θi
h


c

(s)
i +

n∑

j=1

p̄
(s)
ij fj(xj(k))


−

(
fr(xr(k))

θr
−

fi(xi(k))

θi

)

≤
f̃ ′
i(yi(k) + ξik∆yi(k))

θi
h


c

(s)
i + p̄

(s)
ii fi(xi(k))+

n∑

j=1

p̄
(s)
ij θj

fr(xr(k))

θr
− p̄

(s)
ii θi

fr(xr(k))

θr
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−

(
fr(xr(k))

θr
−

fi(xi(k))

θi

)

≤
f̃ ′
i(yi(k) + ξik∆yi(k))

θi
h

(
c
(s)
i − γBk − p̄

(s)
ii θi

(
fr(xr(k))

θr
−

fi(xi(k))

θi

))

−

(
fr(xr(k))

θr
−

fi(xi(k))

θi

)

=
f̃ ′
i(yi(k) + ξik∆yi(k))

θi
h
(
c
(s)
i − γBk

)
−

(
fr(xr(k))

θr
−

fi(xi(k))

θi

)(
1 + Lhp̄

(s)
ii

)
.

Here yi(k) = log xi(k), ∆yi(k) = yi(k + 1)− yi(k), ξik ∈ (0, 1).

Let D = max
s=1,...,N

max
i=1,...,n

|p̄
(s)
ii |,

0 < h0 <
1

LD
, (7)

and h ∈ (0, h0). Then there exists a positive number H , such that ∆V2

∣∣
(s)

< 0 for

‖x(k)‖ > H and for all s = 1, . . . , N .
Define the constants M and M1 by the following formulae:

M = max
z∈Rn

+
, ‖z‖≤H

V2(z), M1 > M + hL max
s=1,...,N

max
i=1,...,n

∣∣∣∣∣
c
(s)
i

θi

∣∣∣∣∣ .

Consider the regionG = {z : z ∈ intRn
+, V2(z) ≤ M1}.We obtain that V2(x(k+1)) ≤ M1

if ‖x(k))‖ ≤ H , and V2(x(k + 1)) < V2(x(k)) if ‖x(k))‖ > H . Hence, once a solution
x(k,x(0), k0) of (1) enters into G at k = k1 ≥ k0, it remains within the region for k ≥ k1.

Choose a positive number Q. We will show that there exists T = T (Q) ≥ 0 such that
V2(x(k,x

(0), k0)) ≤ M1 for all k0 ≥ 0, x(0) ∈ BQ and k ≥ k0 + T (Q).
Let U = maxz∈Rn

+
, ‖z‖≤Q V2(z). If U ≤ M1, then we can take T (Q) = 0.

Now consider the case when U > M1. If V2(x(k,x
(0), k0)) > M1 for k = k0, k0 +

1, . . . , k̃, then the inequalities

M1 < V2(x(k̃,x
(0), k0)) ≤ V2(x

(0))− ρ(k̃ − k0) ≤ U − ρ(k̃ − k0)

hold, where
ρ = − max

s=1,...,N
max

z∈Rn
+
, M1≤V2(z)≤U

∆V2

∣∣
(s)

> 0.

Hence, k̃ < k0+(U−M1)/ρ. By taking T (Q) = (U−M1)/ρ, one gets V2(x(k,x
(0), k0)) ≤

M1 for k ≥ k0 + T (Q). Thus, system (1) is uniformly ultimately bounded in intRn
+.

Corollary 3.1 Let c
(s)
i ≤ 0, i = 1, . . . , n; s = 1, . . . , N , and Assumption 3.3 be

fulfilled. If system (3) admits a positive solution, then there exists h0 > 0 such that the

zero solution of (1) is globally asymptotically stable in intRn
+ for any h ∈ (0, h0) and for

any switching law.

Remark 3.3 In the case when all the coefficients c
(s)
i are negative, instead of (3), it

is sufficient to consider the nonstrict inequalities

Psθ ≤ 0, s = 1, . . . , N. (8)
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Corollary 3.2 Let c
(s)
i < 0, i = 1, . . . , n; s = 1, . . . , N , and Assumption 3.3 be

fulfilled. If system (8) admits a positive solution, then there exists h0 > 0 such that the

zero solution of (1) is globally asymptotically stable in intRn
+ for any h ∈ (0, h0) and for

any switching law.

4 Permanence Conditions

In this section, we consider the case when, in system (1), parameters c
(s)
i and p

(s)
ij satisfy

an additional restriction.

Assumption 4.1 The following inequalities are valid c
(s)
i > 0, and p

(s)
ij ≥ 0 for j 6= i;

i, j = 1, . . . , n; s = 1, . . . , N .

Theorem 4.1 Let Assumptions 3.3 and 4.1 be fulfilled. If system (3) admits a pos-

itive solution, then there exists h0 > 0 such that system (1) is uniformly permanent for

any h ∈ (0, h0) and for arbitrary switching law.

Proof. Let for a constant h0 the condition (7) be valid. Choose a number h ∈ (0, h0),
and consider the corresponding switched system (1).

According to the proof of Theorem 3.2, there exists ∆2 > 0, and for given positive
numbers δ1 and δ2, 0 < δ1 < δ2, one can find η > 0 and T > 0, such that if the initial

values of a solution x(k,x(0), k0) of (1) satisfy the conditions k0 ≥ 0, δ1 ≤ x
(0)
i ≤ δ2, i =

1, . . . , n, then 0 < xi(k,x
(0), k0) ≤ η, i = 1, . . . , n, for k ≥ k0, and 0 < xi(k,x

(0), k0) ≤
∆2, i = 1, . . . , n, for k ≥ k0 + T .

The fulfilment of the Assumption 4.1 implies the existence of positive numbers δ and

β, such that c
(s)
i + p

(s)
ii fi(zi) ≥ β for 0 < zi ≤ δ, i = 1, . . . , n; s = 1, . . . , N . Hence, if 0 <

xi(k,x
(0), k0) < δ for some i ∈ {1, . . . , n}, then xi(k+1,x(0), k0) ≥ xi(k,x

(0), k0) exp(hβ).
Let

ω = min
s=1,...,N

min
i=1,...,n

min
0≤zi≤η

(
c
(s)
i + p

(s)
ii fi(zi)

)
,

ω̃ = min
s=1,...,N

min
i=1,...,n

min
0≤zi≤∆2

(
c
(s)
i + p

(s)
ii fi(zi)

)
.

We obtain that xi(k+1,x(0), k0) ≥ δ exp(hω) for k ≥ k0, xi(k,x
(0), k0) ≥ δ, i = 1, . . . , n,

and xi(k + 1,x(0), k0) ≥ δ exp(hω̃) for k ≥ k0 + T , xi(k,x
(0), k0) ≥ δ, i = 1, . . . , n.

Therefore, there exists T̃ ≥ T , such that ∆1 ≤ xi(k,x
(0), k0) ≤ ∆2, i = 1, . . . , n, for

k ≥ k0 + T̃ , where ∆1 = δ min {1; exp(hω̃)}. This completes the proof.

Consider one more approach for a Lyapunov function constructing which permits to
use for the verification of the permanence property system (4) instead of system (3).

Theorem 4.2 Let Assumptions 3.2 and 4.1 be fulfilled. If system (4) admits a pos-

itive solution, then there exists h0 > 0 such that system (1) is uniformly permanent for

any h ∈ (0, h0) and for arbitrary switching law.

Proof. For a constant h0, let the condition (7) be valid, and h ∈ (0, h0). Consider
the corresponding switched system (1).

Choose a positive vector b = (b1, . . . , bn)
T satisfying the inequalities (4). There exists

a number γ > 0, such that
∑n

i=1 p̄
(s)
ij bi ≤ −γ, j = 1, . . . , n, s = 1, . . . , N .
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Construct a CLF for (2) in the form

V3(z) =

n∑

i=1

bi log zi. (9)

Function V3(z) is defined and continuous for z ∈ intRn
+.

For some s in {1, . . . , N}, consider the difference of the function (9) with respect to
the sth subsystem from (2). Let x̂ ∈ intRn

+, and x(k) = (x1(k), . . . , xn(k))
T be the

solution of the sth subsystem starting from x̂ at k = 0. We obtain

∆V3

∣∣
(s)

= V3(x(k + 1))− V3(x(k)) =

n∑

i=1

bi (log xi(k + 1)− log xi(k))

= h

n∑

i=1

bi


c

(s)
i +

n∑

j=1

p
(s)
ij fj(xj(k))


 = h

n∑

i=1

bic
(s)
i + h

n∑

j=1

(
n∑

i=1

bip
(s)
ij

)
fj(xj(k))

≤ h

n∑

i=1

bic
(s)
i − hγ

n∑

j=1

fj(xj(k)).

Hence, there exists a positive number H , such that ∆V3

∣∣
(s)

< 0 for ‖x(k)‖ > H and for

all s = 1, . . . , N .

Let

A = H max
s=1,...,N

max
i=1,...,n

max
‖z‖≤H

exp



h



c
(s)
i +

n∑

j=1

p
(s)
ij fj(zj)







 ,

M1 = max
0<zi≤A, i=1,...,n

V3(z) = logA
n∑

i=1

bi.

In a similar way as in the proof of Theorem 3.2, it can be shown that for any Q > 0
there exists T = T (Q) ≥ 0, such that if the initial values of a solution x(k,x(0), k0) of
(1) satisfy the conditions k0 ≥ 0, x(0) ∈ BQ, then V3(x(k,x

(0), k0)) ≤ M1 for k ≥ k0+T .
The fulfilment of the Assumption 4.1 implies the existence of positive numbers δ and

β, such that c
(s)
i + p

(s)
ii fi(zi) ≥ β for 0 < zi ≤ δ, i = 1, . . . , n; s = 1, . . . , N . Hence, if

0 < xi(k) < δ for some i ∈ {1, . . . , n}, then xi(k + 1) ≥ xi(k) exp(hβ). Without loss of
generality, we assume that δ < 1.

In the case when xi(k) ≥ δ, the following estimates hold

xi(k + 1) ≥ xi(k) exp
(
h
(
p
(s)
ii fi(xi(k))

))
≥ xi(k) exp

(
−hDf̃i(yi(k))

)

≥ xi(k) exp
(
−hD(L|yi(k)|+ f̃i(0))

)
≥ λδ1+hLD.

Here yi(k) = log xi(k), λ = exp(−hDmaxi=1,...,n fi(1)).

Let positive numbers δ1 and δ2, δ1 < δ2, be given. Choose the numbers T1 =

T1(δ1) > 0 and T2 = T2(δ2) > 0, such that if k0 ≥ 0, δ1 ≤ x
(0)
i ≤ δ2, i = 1, . . . , n,

then xi(k,x
(0), k0) ≥ λδ1+hLD, i = 1, . . . , n, for k ≥ k0 +T1, and V3(x(k,x

(0), k0)) ≤ M1
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for k ≥ k0 + T2. By taking T̂ = max{T1;T2}, we obtain ∆1 ≤ xi(k,x
(0), k0) ≤ ∆2,

i = 1, . . . , n, for k ≥ k0 + T̂ . Here ∆1 = λδ1+hLD, and

∆2 = max
i=1,...,n

(
exp(M1)/∆

∑

j 6=i

bj

1

)1/bi

.

This completes the proof.

Remark 4.1 The fulfilment of Assumption 3.2 (Assumption 3.3) with a single con-
stant L for all zi ∈ (−∞,+∞), i = 1, . . . , n, is quite severe constraint on the admissible
functions f1(z1), . . . , fn(zn). It is worth mentioning that in a similar way the conditions
of permanence can be obtained in the case when, for every r > 0, functions f̃i(zi) satisfy
Assumption 3.2 (Assumption 3.3) for zi ∈ (−∞, r), i = 1, . . . , n, with the constant L(r),
and L(r) → +∞ as r → +∞. However, in this case, we can not guarantee the perma-
nence property for all solutions of (1). For any Q > 0, there exists a number h0 > 0,
such that for any h ∈ (0, h0) the conditions of Definition 2.4 are fulfilled only for δ2 < Q.

5 Example

In (1) let n = 3, and the family (2) consists of two subsystems with the matrices

P1 =



−1 a 0
0 −2 1
1 0 −3


 , P2 =



−3 1 0
0 −1 1
d 0 −4


 .

Here a and d are positive parameters. In this case, P1 = P1, P2 = P2.
On the one hand, it is easy to verify that the system P1θ < 0, P2θ < 0 admits a

positive solution if and only if

a < 3, d < 12, ad < 4. (10)

On the other hand, for the existence of a positive solution for the system P
T

1 b < 0,

P
T

2 b < 0 it is necessary and sufficient the fulfilment of the inequalities

a < 6, d < 9, ad < 18. (11)

The regions (10) and (11) in the parameter space are nonoverlapping. Thus, this
example shows that Theorems 4.1 and 4.2 complement each other.

6 Conclusion

In this paper, a discrete-time Lotka–Volterra type system with switching of parame-
ter values is studied. The conditions are determined under which the system is ulti-
mately bounded or permanent for any admissible switching law. Two new approaches
for Lyapunov functions constructing are proposed. By the usage of these approaches,
the theorems on the ultimate boundedness and permanence conditions are proved. These
theorems complement each other and relax the known ultimate boundedness conditions
found in [3]. The interesting direction for further research is the extension of the obtained
results to switched biological models of more general form.
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Abstract: In this paper, using semigroup theory and Banach fixed point theorem, we
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1 Introduction

In recent few decades, researchers have developed great interest in fractional calculus
due to its wide applicability in science and engineering. Tools of fractional calculus
have been available and applicable to deal with many physical and real world problems
such as anomalous diffusion process, traffic flow, nonlinear oscillation of earthquake, real
system characterized by power laws, critical phenomena, scale free process, description
of viscoelastic materials and many others. For more details about fractional calculus we
refer to [3–5, 7, 10, 12, 13, 16, 18].

In the present paper, we study the convergence of the Faedo-Galerkin approximations
of solutions to the nonlinear fractional order Sobolev type evolution equation

dq

dtq
[u(t) + g(t, u(t))] +Au(t) = f(t, u(t)), 0 < t ≤ T ≤ ∞, 0 < q ≤ 1,

u(0) = φ, (1)
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in a separable Hilbert space (H, ‖ · ‖, (·, ·)), where A is a closed linear operator
defined on D(A) which is dense in H . We assume that linear operator −A is
the infinitesimal generator of analytic semigroup {S(t); t ≥ 0} in H . The functions
f and g are continuous functions and satisfy certain assumptions stated later in Section 2.

The Feado-Galerkin approximations of solutions of the particular case of (1) in which
g = 0, have been established by Muslim [9]. Author in [9] has discussed the convergence
of Feado-Galerkin approximation of the solution to the equation

dβ

dtβ
u(t) +Au(t) = f(t, u(t)), t ∈ [0, T ], β ∈ (0, 1), (2)

u(0) = φ. (3)

under the assumption that −A generates an analytic semigroup of bounded linear oper-
ators defined on a Banach space H and f satisfies certain conditions.

The existence and uniqueness of solution and approximation of solution of functional
differential equation

d

dt
[u(t) + g(t, u(t))] = −Au(t) + f(t, u(t)), t > 0,

u(0) = φ, (4)

have been discussed by D. Bahuguna and Reeta in [2] with the assumption that −A
generates an analytic semigroup and f and g satisfy the conditions such that f and Aβg
satisfy the Lipschitz condition on C([0, T ]×D(Aα);H).

This paper is organized as follows: we present some basic definitions, lemmas, the-
orems and assumptions required to establish the convergence result as preliminaries in
Section 2. The existence and uniqueness of the approximate solutions are proved using
semigroup theory and fixed point theorem in Section 3. In Section 4, we prove the con-
vergence of the solution to each of the approximate integral equations with the limiting
function which satisfies the associated integral equation and the convergence of the ap-
proximate Feado-Galerkin solutions will be shown in Section 5. In the last section we
consider an example as an application.

2 Preliminaries and Assumptions

In this section we provide some basic definitions, results and assumptions on f and g
which will be used in the later sections.

Definition 2.1 The fractional derivative of f : [0,∞) → R in the Caputo sense of
order q is defined as

cDq
t f(t) =

1

Γ(m− q)

∫ t

0

(t− s)m−q−1fm(s)ds, (5)

for m− 1 ≤ q < m, m ∈ N, t > 0, with the following property:

cDq
t f(t) = Dq

t [f(t)−

m−1∑

k=0

fk(0)gk+1(t)], (6)
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where Dq
t denotes the Riemann-Liouville fractional derivative of order q defined as

Dq
t f(t) =

dm

dtm
1

Γ(m− q)

∫ t

0

(t− s)m−q−1f(s)ds, t > 0, m− 1 < q < m (7)

Definition 2.2 [14]. A function u ∈ C([0, T ];H) is said to be a mild solution of
equation (1) if it satisfies

u(t) = Sq(t)(φ+ g(0, φ))− g(t, u(t)) +

∫ t

0

(t− s)q−1ATq(t− s)g(s, u(s))ds

+

∫ t

0

(t− s)q−1Tq(t− s)f(s, u(s))ds, t ∈ [0, T ],

u(0) = φ, (8)

where

Sq(t) =

∫ ∞

0

ζq(θ)S(t
qθ)dθ, Tq(t) = q

∫ ∞

0

θζq(θ)S(t
qθ)dθ.

Here ζq(θ) is a probability density function defined on the interval (0,∞), satisfying the
following properties

• ζq(θ) ≥ 0, θ ∈ (0,∞) and
∫∞

0
ζq(θ)dθ = 1;

• ζq(θ) =
1
q θ

−1− 1
q × ψq(θ

−1/q) ≥ 0, where

ψq(θ) =
1

π
Σ∞

n=1(−1)n−1θ−nq−1Γ(nq + 1)

n!
sin(nπq), θ ∈ (0,∞).

Now, we consider some assumptions on A, f and g.
Assumptions on A: We assume that linear operator A satisfies the following con-

ditions.

(A1) A is a closed, positive, self-adjoint linear operator from the domain D(A) ⊂ H into
H such that D(A) is dense in H . We assume that A has the pure point spectrum

0 < λ0 ≤ λ1 ≤ λ2 · · · ,

where λm → ∞ as m → ∞ and a corresponding complete orthonormal system of
eigenfunctions {ui}, i.e. Aui = λiui and < ui, uj >= δij , where δij is defined as

δij =

{
0, i 6= j,

1, i = j.

These assumptions on A imply that −A generates an analytic semigroup, therefore
there exist constants M ≥ 1 and δ ≥ 0 such that

‖S(t)‖ ≤M e−δt, t ≥ 0.

So −A is an infinitesimal generator of analytic semigroup. We assume without loss
of generality that ‖S(t)‖ is uniformly bounded by M , i.e. ‖S(t)‖ ≤ M for t ≥ 0
and 0 ∈ ρ(−A), where ρ(−A) denotes the resolvent set of −A. If required, for c > 0



14 ALKA CHADDHA AND DWIJENDRA N. PANDEY

large enough, we may add cI to A, then −(A + cI) is invertible and generates a
bounded analytic semigroup. Also for t > 0, we have

‖AS(t)‖ ≤ Mt−1, (9)

‖AαS(t)‖ ≤ Mαt
−α. (10)

The set of all continuous functions from [0, T ] intoX , denoted by CT = C([0, T ];X)
is a Banach space under the supremum norm given by

‖ψ‖T = sup
0≤t≤T

‖ψ(t)‖, ψ ∈ CT .

Also, it can be shown easily that Cα
T = Xα(T ) = C([0, T ];D(Aα)) is a Banach

space endowed with the supremum norm

‖ψ‖T,α = sup
0≤t≤T

‖ψ(t)‖α, ψ ∈ Cα
T .

It follows that Aα, 0 ≤ α ≤ 1, can be defined as a closed linear invertible operator
with domain D(Aα) which is dense in H . D(Aω) →֒ D(Aα), for 0 < α < ω such
that embedding is continuous. Also, it can be easily shown that D(Aα) is a Banach
space with norm ‖x‖ = ‖Aαx‖ and this norm is equivalent to the graph norm of
Aα. For more details on the fractional powers of closed linear operator, we refer to
Pazy [10].

Assumptions on f and g: We list the following assumptions on f and g:

(A2) The nonlinear map f : [0, T ]×D(Aα) → H satisfies a local Lipschitz-like condition

‖f(t, x)− f(t, y)‖ ≤ FR(t)‖x− y‖T, α (11)

and
‖f(t, x)‖ ≤ FR(t), (12)

for all t ∈ [0, T ], x, y ∈ BR(X
α(T ), φ), where BR(X

α(T ), φ) := {u ∈ Xα(T ) :
‖u− φ‖T, α ≤ R}, and FR(t) : R

+ → R
+ is a nondecreasing function depending on

R.

(A3) For (t, x) ∈ [0, T ] × D(Aα), there exist positive constants L and β, 0 < α <
β < 1 such that the function Aβg is a continuous function satisfying the following
conditions

‖Aβg(t, x)−Aβg(s, y)‖ ≤ L{‖t− s‖γ + ‖x− y‖T, α} (13)

and
L‖Aα−β‖ ≤ 1, (14)

for all t∈ [0, T ], γ ∈ (0, 1] and x, y ∈ BR(X
α(T ), φ), L is a constant.

Lemma 2.1 [ Zhou and Jiao [14]] For any fixed t ≥ 0, Sq(t) and Tq(t) are bounded

linear operators such that ‖Sq(t)x‖ ≤ M‖x‖ , ‖Tq(t)x‖ ≤ qM
Γ(1+q)‖x‖ and ‖AαTq(t)x‖ ≤

qMαΓ(2−α)
Γ(1+q(1−α)) t

−qα for all x ∈ D(Aα) , where M is a constant such that ‖S(t)‖ ≤M , for all

t ∈ [0, T ].
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3 Existence and Uniqueness

In this section, we establish the existence and uniqueness of the solution to every ap-
proximate integral equations of (1) by using Banach fixed point theorem.

LetHn denote the finite dimensional subspace of the Hilbert spaceH which is spanned
by {u0, u1, · · · , un} and let Pn : H → Hn for n = 1, 2, · · · , be the corresponding projec-
tion operators. Let 0 < T0 ≤ T < ∞ be arbitrary but fixed constant chosen is such a
way that

B = max
{0≤t≤T0}

‖Aβg(t, φ)‖, (15)

‖(Sq(t)− I)Aα(φ+ gn(0, φ))‖ ≤
(1 − ς)R

3
, (16)

‖Aα−β‖LT γ
0 +M1+α−βC1(LR̃+B)

T
q(β−α)
0

(β − α)
+ MαFR(T )C2

T
q(1−α)
0

(1− α)

< (1− ς)
R

6
, (17)

M1+α−βLC1
T

q(β−α)
0

(β − α)
+ MαFR(T )C2

T
q(1−α)
0

(1− α)
< 1− ς, (18)

where L‖Aα−β‖ = ς < 1, R̃ =
√
R2 + ||φ2α||, C1 = Γ{1−(α−β)}

Γ{1+q(β−α)} , C2 = Γ(2−α)
Γ{1+q(1−α)} .

We define

gn : [0, T ]×D(Aα) → H, such that gn(t, u(t)) = g(t, Pnu(t)) (19)

and
fn : [0, T ]×D(Aα) → H, such that fn(t, u(t)) = f(t, Pnu(t)), (20)

for each n.
Now, we consider a map Qn on BR(X

α(T0), φ) defined by

Qn(u)(t) = Sq(t)(φ + gn(0, φ))− gn(t, (t)) +

∫ t

0

(t− s)q−1ATq(t− s)gn(s, u(s))ds

+

∫ t

0

(t− s)q−1Tq(t− s)fn(s, u(s))ds, t ∈ [0, T0], (21)

for each n = 0, 1, 2, · · · .

Theorem 3.1 Let the assumptions (A1)-(A3) hold. Then there exists a constant T0,
0 < T0 < T and a unique fixed point un ∈ BR(X

α(T0), φ) of the operator Qn for all n
i.e. un satisfies the approximate integral equations

un(t) = Sq(t)(φ + gn(0, φ))− gn(t, un(t)) +

∫ t

0

ATq(t− s)gn(s, un(s))

(t− s)1−q
ds

+

∫ t

0

Tq(t− s)fn(s, un(s))

(t− s)1−q
ds, t ∈ [0, T0], (22)

for each n = 0, 1, 2, · · · .
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Proof. First we prove the continuity of the map t→ Qnu(t) from [0, T0] into D(Aα)
with respect to norm ‖ · ‖α. For any u ∈ BR(X

α(T0), φ) and t1, t2 ∈ [0, T0] with t1 < t2,
we have

Aα[(Qnu)t2 − (Qnu)t1]

= Aα[(Sq(t2)− Sq(t1))(φ + g(0, φ))]

−Aα−β [Aβgn(t2, u)−Aβgn(t1, u)]

+

∫ t2

t1

(t2 − s)q−1Tq(t2 − s)A1+α−β [Aβgn(s, u(s))]ds

+

∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1]Tq(t2 − s)A1+α−β [Aβgn(s, u(s))]ds

+

∫ t1

0

(t1 − s)q−1[Tq(t2 − s)− Tq(t1 − s)]A1+α−β [Aβgn(s, u(s))]ds

+

∫ t2

t1

(t2 − s)q−1AαTq(t2 − s)fn(s, u(s))ds

+

∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1]AαTq(t2 − s)fn(s, u(s))ds

+

∫ t1

0

(t1 − s)q−1Aα[Tq(t2 − s)− Tq(t1 − s)]fn(s, u(s))ds,

= K1 +K2 +K3 +K4 +K5 +K6 +K7 +K8.

Hence, we have

‖(Qnu)t2 − (Qnu)t1‖ ≤

8∑

i=1

‖Ki‖. (23)

We have

K1 = Aα[(Sq(t2)− Sq(t1))(φ + g(0, φ))],

=

∫ ∞

0

ζq(θ)[

∫ t2

t1

qθtq−1AαS(tβθ)A(φ + g(0, φ))dt]dθ,

taking norm on both the sides, we get (see [7, p. 101] and [8, p. 437])

‖K1‖ ≤

∫ ∞

0

ζq(θ)[

∫ t2

t1

qθtq−1‖AαS(tβθ)‖‖A(φ+ g(0, φ))‖dt]dθ,

≤ Mα

∫ ∞

0

θ1−αζq(θ)

∫ t2

t1

tq(1−α)−1‖A(φ+ g(0, φ))‖dtdθ,

≤
C2Mα

(1− α)
‖A(φ+ g(0, φ))‖(t

q(1−α)
2 − t

q(1−α)
1 ),

≤ C2Mαq‖A(φ+ g(0, φ))‖(t1 + κ(t2 − t1))
q(1−α)−1(t2 − t1),

≤ C2Mαq‖A(φ+ g(0, φ))‖κq(1−α)−1(t2 − t1)
q(1−α), (24)

and
‖K2‖ ≤ ‖Aα−β‖‖Aβgn(t2, u)−Aβgn(t1, u)‖ ≤ L‖Aα−β‖(t1 − t2)

γ . (25)
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Further, we have

‖K3‖ ≤ C1qM1+α−β

∫ t2

t1

(t2 − s)α(β−α)−1‖Aβgn(s, u(s))‖ds,

≤ C1M1+α−β [(LR̃+B)]
(t2 − t1)

q(β−α)

(β − α)
, (26)

and

K4 =

∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1]A1+α−βTq(t2 − s)Aβgn(s, u(s))ds.

Taking norm on both the sides, we get

‖K4‖ ≤ C1qM1+α−β

∫ t1

0

{(t1 − s)−q(1+α−β)[(t2 − s)q−1 − (t1 − s)q−1]

×‖Aβgn(s, u(s))‖}ds,

≤ C1qM1+α−β[(LR̃+B)]

×

∫ t1

0

(t1 − s)−q(1+α−β)[(t2 − s)q−1 − (t1 − s)q−1]ds,

≤ C1qM1+α−β[(LR̃+B)]

∫ t1

0

(t1 − s)λ−1[(t2 − s)−λµ − (t1 − s)−λµ]ds,

where λ = 1− q(1 + α− β), µ = q−1
1−q(1+α−β) (see Muslim, [8] and El-Borai [9]).

Hence, after some calculations we get

‖K4‖ ≤ C1qM1+α−β [(LR̃+B)]µδµ−1(1− b)−λ(1−µ)−1(t2 − t1)
λ(1−µ), (27)

where b = (1 − (µλ )
1

λµ ) and 0 ≤ δ ≤ 1.
Similarly,

‖K5‖ ≤ C1qM1+α−β [(LR̃+B)]µ1δ
µ1−1
1 (1 − b1)

−q(1−µ1)−1(t2 − t1)
q(1−µ1), (28)

where µ1 = 1 + α− β, b1 = (1− (µ1

q )
1

qµ1 ) and 0 ≤ δ1 ≤ 1 (see [8, 9]).

‖K6‖ ≤

∫ t2

t1

(t2 − s)q−1‖AαTq(t2 − s)‖‖fn(s, u(s))‖ds,

≤ FR(T )MαC2
(t2 − t1)

q(1−α)

(1 − α)
. (29)

Also, we notice that

‖K7‖ ≤

∫ t1

0

((t2 − s)q−1 − (t1 − s)q−1)‖AαTq(t2 − s)‖‖fn(s, u(s))‖ds,

≤ MαC2q

∫ t1

0

((t2 − s)q−1 − (t1 − s)q−1)(t1 − s)−qα‖fn(s, u(s))‖ds,

≤ MαC2FR(T )q

∫ t1

0

((t2 − s)−µ2λ
′

1 − (t1 − s)−µ2λ
′

1)(t1 − s)λ
′

1−1ds,

≤ MαC2qFR(T )µ2δ
µ2−1
2 (1 − b2)

−λ
′

1(1−µ2)−1(t2 − t1)
λ
′

1(1−µ2), (30)
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where λ
′

1 = 1− qα, µ2 = 1−q
1−qα , b2 = (1− (µ2

λ
′

1

)
1

µ2λ
′

1 ), 0 ≤ δ2 ≤ 1, and

‖K8‖ ≤

∫ t1

0

(t1 − s)q−1‖Aα[Tq(t2 − s)− Tq(t1 − s)]‖‖fn(s, u(s))‖ds,

≤ C2qMαFR(T )

∫ t1

0

(t1 − s)q−1[(t2 − s)−qα − (t1 − s)−qα]ds,

≤ C2qMαFR(T )αδ
α−1
3 (1− b3)

−q(1−α)−1(t2 − t1)
q(1−α), (31)

where b3 = (1 − (αq )
1
qα ) and 0 ≤ θ3 ≤ 1. Using (24)-(31) in (23), we get that (Qnu)

is Hölder continuous on [0, T0]. Hence the continuity of the map t → (Qnu)(t) is
proved. Next we show that Qn(BR(X

α(T0), φ)) ⊆ BR(X
α(T0), φ). For any element

u ∈ BR(X
α(T0), φ), we have

‖(Qnu)(t)− φ‖α ≤ ‖(Sq(t)− I)Aα(φ+ gn(0, φ))‖

+‖Aα−β‖‖Aβgn(0, φ)−Aβgn(t, u(t))‖

+

∫ t

0

(t− s)q−1‖A1+α−βTq(t− s)‖‖Aβgn(s, u(s))‖ds

+

∫ t

0

(t− s)q−1‖Tq(t− s)‖α‖fn(s, u(s))‖ds,

≤ ‖(Sq(t)− I)Aα(φ+ gn(0, φ))‖

+‖Aα−β‖‖Aβgn(0, φ)−Aβgn(t, u(t))‖

+M1+α−βC1q

∫ t

0

(t− s)q(β−α)−1‖Aβgn(s, u(s))‖ds

+MαC2q

∫ t

0

(t− s)q(1−α)−1‖fn(s, u(s))‖ds,

≤ ‖(Sq(t)− I)(φ + gn(0, φ))‖ + ‖Aα−β‖L{T γ
0 + ‖u(t)− φ‖}

+M1+α−βC1{(LR̃+B)}
T

q(β−α)
0

(β − α)

+MαC2FR(T )
T

q(1−α)
0

(1− α)
.

≤ R.

Taking supremum over [0, T0], we get

||(Qnu)− φ||T0, α ≤ R. (32)

This implies that Qn(BR(X
α(T0), φ)) ⊆ BR(X

α(T0), φ).
In the next step, our aim is to show that Qn is a strict contraction mapping on

BR(X
α(T0), φ). Let for all t ∈ [0, T0] and u1, u2 ∈ BR(X

α(T0), φ), we have

‖(Qnu1)(t)− (Qnu2)(t)‖α ≤ ‖Aα−β‖‖Aβgn(t, u1)−Aβgn(t, u2)‖

+

∫ t

0

(t− s)q−1‖A1+α−βTq(t− s)‖[‖Aβgn(s, u1(s)) −Aβgn(s, u2(s))‖]ds

+

∫ t

0

(t− s)q−1‖AαTq(t− s)‖‖fn(s, u1(s))− fn(s, u2(s))‖ds, (33)
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From the assumptions (A2) - (A3), we have

‖Aβgn(t, u1)−Aβgn(t, u2)‖ ≤ L‖u1(t)− u2(t)‖α ≤ L‖u1 − u2‖T0, α, (34)

‖fn(s, u1)− fn(s, u2)‖ ≤ FR(T )‖u1(s)− u2(s)‖α ≤ FR(T )‖u1 − u2‖T0, α. (35)

Using inequalities (34) and (35) in (33), we get

‖Qnu1(t)−Qnu2(t)‖α ≤ [‖Aα−β‖ L+M1+α−βLC1
T

q(β−α)
0

(β − α)

+MαFR(T )C2
T

q(1−α)
0

(1− α)
]‖u1(t)− u2(t)‖α. (36)

Taking supremum over [0, T0], we get

‖Qnu1 −Qnu2‖T0, α ≤ [‖Aα−β‖ L+M1+α−βLC1
T

q(β−α)
0

(β − α)

+ MαFR(T )C2
T

q(1−α)
0

(1− α)
]‖u1 − u2‖T0, α. (37)

We use (15)–(18) in the inequality (37) and get that Qn is a strict contraction
on BR(X

α(T0), φ). Hence, by the fixed point theorem, there exists a unique un ∈
BR(X

α(T0), φ) such that Qnun = un. which implies that un satisfies the integral equation
(22) for each n = 1, 2, · · · . This completes the proof of the theorem.

Lemma 3.1 Suppose that assumptions (A1) − −A(3) are satisfied. If φ ∈ D(Aα),
where 0 < α < 1, then un(t) ∈ D(Aυ) for all t ∈ (0, T0] with 0 ≤ υ < 1. Furthermore, if

φ ∈ D(A) then un(t) ∈ D(Aυ) for all t ∈ [0, T0] with 0 ≤ υ < 1.

From Theorem 3.1, we have that there exists a unique un ∈ BR(X
α(T0), φ) such that

un satisfies the equation (22). Theorem 2.6.13 in Pazy [10] implies that T (t) : H →
D(Aυ) for t > 0 and 0 ≤ υ < 1 and for 0 ≤ υ ≤ η < 1, D(Aη) ⊆ D(Aυ). From the
assumption (A3) we have that the map t 7→ Aβg(t, un(t)) is Hölder continuous on [0, T0]
with the exponent ρ = min{γ, υ}. It is easy to see that Hölder continuity of un can be
established using the similar arguments from equation (23), (30)-(31). From Theorem
4.3.2 in Pazy [10], we have

∫ t

0

(t− s)q−1Tq(t− s)Aβgn(s, un)ds ∈ D(A).

Also from Theorem 1.2.4 in Pazy [10], we have that T (t)x ∈ D(A) if x ∈ D(A). The
result follows from these facts and the fact that D(A) ⊆ D(Aυ) for 0 ≤ υ ≤ 1.

Corollary 3.1 Suppose that (A1), (A2) and (A3) are satisfied. If φ ∈ D(Aα) with

0 < α < 1, then for any t0 ∈ (0, T0] there exists a constant Ut0 such that

‖Aυun(t)‖ ≤ Ut0

for all t0 ≤ t ≤ T0 independent of n, where 0 < α < υ < β.
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Proof. Let us assume that φ ∈ D(Aα). Applying Aυ on both the sides of (22) and
using (9)–(10) for t ∈ [t0, T0] and α < υ < β, we obtain

‖un(t)‖υ ≤ ‖AυSq(t)(φ + gn(0, φ))‖ + ‖Aυ−β‖‖Aβgn(t, un)‖

+

∫ t

0

(t− s)q−1‖A1+υ−βTq(t− s)‖‖Aβgn(s, un)‖ds

+

∫ t

0

(t− s)q−1‖AυTq(t− s)‖‖fn(s, un)‖ds,

≤ Mυt
−qυ
0 (‖φ‖+ ‖gn(0, φ)‖) + ‖Aυ−β‖[(LR̃+B)]

+M1+υ−β(LR̃+B)C3
T

q(β−υ)
0

(β − υ)
+MυC4FR(T )

T
q(1−υ)
0

(1− υ)

≤ Ut0 ,

where C3 = Γ(1−υ+β)
Γ1+q(−υ+β) , C4 = Γ(2−υ)

Γ1+q(1−υ) .

Again, for t ∈ [0, T0] and 0 < υ ≤ α, φ ∈ D(Aυ) and

‖un(t)‖υ ≤ M(‖Aυφ‖+ ‖gn(0, φ)‖υ) + ‖Aυ−β‖[LR+B]

+M1+υ−β(LR̃+B)C3
T

q(β−υ)
0

(β − υ)
+MυC4FR(T )

T
q(1−υ)
0

(1− υ)

≤ Ut0 .

Furthermore, we have if φ ∈ D(Aβ) then φ ∈ D(Aυ) for 0 < υ ≤ β and required result
can be proved easily.

4 Convergence of Solution

In this section we will show the convergence of the solution un ∈ Xα(T0) of the approx-
imate integral equations (22) to a unique solution u(·) ∈ Xα(T0) of the equation (8).

Theorem 4.1 Let the assumptions (A1)–(A3) hold. If φ ∈ D(Aα), then for any

t0 ∈ (0, T0],
lim
n→∞

sup
{n≥m, t0≤t≤T0}

‖un(t)− um(t)‖α = 0.

Proof. For n ≥ m, we have

Aα[un(t)− um(t)] = Sq(t)A
α(gn(0, φ)− gm(0, φ))

+

∫ t

0

(t− s)q−1 × [Aα+1Tq(t− s){gn(s, un)− gm(s, um)}]ds

+

∫ t

0

(t− s)q−1AαTq(t− s)[fn(s, un)− fm(s, um)]ds. (38)

Now, let 0 < α < ν < β, then we have

‖fn(t, un)− fm(t, um)‖ ≤ ‖fn(t, un)− fn(t, um)‖+ ‖fn(t, um)− fm(t, um)‖,

≤ FR(T )‖un(t)− um(t)‖α + ‖(Pn − Pm)um(t)‖α.
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Also,

‖(Pn − Pm)um(t)‖α ≤ ‖Aα−β(Pn − Pm)Aνum(t)‖ ≤
1

λν−α
m

‖Aνum(t)‖.

Thus, we have

‖fn(t, un)− fm(t, um)‖ ≤ FR(T )[‖un(t)− um(t)‖α +
1

λν−α
m

‖Aνum(t)‖]. (39)

Similarly,

‖Aβgn(t, un)−Aβgm(t, um)‖ ≤ L[‖un(t)− um(t)‖α +
1

λν−α
m

‖Aνum(t)‖]. (40)

From (38), (39) and (40) and for 0 < t
′

0 < t0, we have

‖un(t)− um(t)‖α ≤ ‖Sq(t)A
α(gn(0, φ)− gm(0, φ))‖

≤ ‖Sq(t)A
α(gn(0, φ)− gm(0, φ))‖+ ‖Aα−β‖‖Aβgn(t, un)−Aβgm(t, um)‖

+(

∫ t
′

0

0

+

∫ t

t
′

0

)(t− s)q−1‖A1+α−βTq(t− s)‖ × [‖Aβgn(s, un)− Aβgm(s, um)‖]ds

+(

∫ t
′

0

0

+

∫ t

t
′

0

)(t− s)q−1‖AαTq(t− s)‖‖fn(s, un)− fm(s, um)‖ds. (41)

The first term of (41) is estimated as

‖Sq(t)Aα(gn(0, φ)− gm(0, φ))‖ ≤ M‖Aα−β‖‖Aβg(0, Pnφ)−Aβg(0, Pmφ)‖

≤ M‖Aα−β‖L‖(Pn − Pm)Aαφ‖. (42)

We estimate the first and third integrals as

∫ t
′

0

0

(t− s)q−1‖A1+α−βTq(t− s)‖‖Aβgn(s, un)−Aβgm(s, um)‖ds

≤ 2M1+α−βC1q(LR1 +B1)× (t0 − t
′

0)
q(β−α)−1t

′

0, (43)

∫ t
′

0

0

(t− s)q−1‖AαTq(t− s)‖ × ‖fn(s, un)− fm(s, um)‖ds

≤ 2MαC2FR(T )q(t0 − t
′

0)
q(1−α)−1t

′

0. (44)

From the second and fourth integrals, we have

∫ t

t
′

0

(t− s)q−1‖A1+α−βTq(t− s)‖‖Aβgn(s, un)−Aβgm(s, um)‖ds

≤M1+α−βLC1q

∫ t

t
′

0

(t− s)q(β−α)−1[‖un(s)− um(s)‖α +
1

λν−α
m

‖Aνum(s)‖]ds,

≤M1+α−βLC1q(
Ut

′

0

T
q(β−α)
0

λν−α
m q(β − α)

+

∫ t

t
′

0

(t− s)q(β−α)−1‖un(s)− um(s)‖αds), (45)
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and
∫ t

t
′

0

(t− s)q−1‖AαTq(t− s)‖‖fn(s, un)− fm(s, um)‖ds

≤MαFR(T )C2q

∫ t

t
′

0

(t− s)q(1−α)−1[‖un(s)− um(s)‖α +
1

λν−α
m

‖Aνum(s)‖]ds,

≤MαFR(T )C2q(
Ut

′

0

T
q(1−α)
0

λν−α
m q(1− α)

+

∫ t

t
′

0

(t− s)q(1−α)−1‖un(s)− um(s)‖αds). (46)

Using (42)–(46) in (41), we obtain

‖un(t)− um(t)‖α ≤ M‖Aα−β‖‖(Pn − Pm)Aαφ‖

+‖Aα−β‖L[‖un(t)− um(t)‖α +
1

λν−α
m

‖Aνum(t)‖]

+2(
M1+α−βC1q(LR1 +B1)

(t0 − t
′

0)
q(α−β)−1

+
MαC2FR(T )q

(t0 − t
′

0)
q(α−1)−1

)t
′

0 +Mα,β

Ut
′

0

λν−α
m

+

∫ t

t
′

0

(
MαqC2FR(T )

(t− s)q(α−1)+1
+

M1+α−βqLC1

(t− s)q(α−β)+1
)

×[‖un(s)− um(s)‖α]ds, (47)

where

Mα,β =MαFR(T )C2
T

q(1−α)
0

(1− α)
+M1+α−βLC1

T
q(β−α)
0

(β − α)
. (48)

Also, we have ‖Aα−β‖L < 1. Therefore inequality (47) becomes

‖un(t)− um(t)‖α ≤
1

(1− ‖Aα−β‖L)
{M‖(Pn − Pm)Aαφ‖ + ‖Aα−β‖L

Ut
′

0

λν−α
m

+2(
M1+α−βC1q(LR1 +B1)

(t0 − t
′

0)
q(α−β)−1

+
MαC2qFR(T )

(t0 − t
′

0)
q(α−1)−1

)t
′

0 +Mα,β

Ut
′

0

λν−α
m

+

∫ t

t
′

0

(
MαqC2FR(T )

(t− s)q(α−1)+1
+

M1+α−βLC1q

(t− s)q(α−β)+1
)

×[‖un(s)− um(s)‖α]ds}. (49)

Taking supremum over [t0, T0], we get

sup
t∈[t0,T0]

‖un(t)− um(t)‖α

≤
1

(1− ‖Aα−β‖L)
{M‖(Pn − Pm)Aαφ‖ + ‖Aα−β‖L

Ut
′

0

λν−α
m

+2(
M1+α−βC1q(LR1 +B1)

(t0 − t
′

0)
q(α−β)−1

+
MαC2qFR(T )

(t0 − t
′

0)
q(α−1)−1

)t
′

0 +Mα,β

Ut
′

0

λν−α
m

+

∫ t

t
′

0

(
MαqC2FR(T )

(t− s)q(α−1)+1
+

M1+α−βLqC1

(t− s)q(α−β)+1
)‖un − um‖T0, αds}. (50)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 14 (1) (2014) )11–29 23

Applying Gronwall’s inequality to the above inequality, taking m→ ∞, we obtain

lim
m→∞

sup
{n≥m, t0≤ t ≤ T0}

‖un(t)− um(t)‖α

≤
2

(1− ‖Aα−β‖L)
[
M1+α−βC1(LR1 +B1)

(t0 − t
′

0)
q(α−β)−1

+
MαC2FR(T )

(t0 − t
′

0)
q(α−1)−1

]t
′

0 × C, (51)

where C is arbitrary constant. The right hand side of inequality (51) may be made as
small as possible by taking t

′

0 (as t
′

0 is arbitrary) sufficiently small. This completes the
proof of the theorem.

Corollary 4.1 Let assumptions (A1)− (A3) hold. If φ ∈ D(A), then

sup
{n≥m, 0≤t≤T0}

‖Aα[un(t)− um(t)]‖ → 0,

as m→ ∞.

Proof. In this case, we have

‖Sq(t)φ‖α ≤M‖φ‖α. (52)

Then from the inequality (52), Lemma (3.1) and Corollary (3.1) we get that in the proof
of Theorem (4.1), we can take t0 = 0 to get the required result.

Theorem 4.2 Suppose that (A1) − (A3) are satisfied and φ ∈ D(Aα). Then, there

exist T0, 0 < T0 ≤ T and a unique function u ∈ Xα(T0) such that un → u as n→ ∞ in

Xα(T0) and u ∈ Xα(T0) satisfies the equation (8) on [0, T0].

Proof. Let φ ∈ D(Aα). Since Aαun(t) → Aαu(t) as n → ∞, for 0 < t ≤ T0 and
un(0) = u(0) = φ for all n. Since un ∈ BR(X

α(T0), φ), it follows that u ∈ BR(X
α(T0), φ).

Further, for any 0 < t0 ≤ T0, we have

sup
{t0≤t≤T0}

‖un(t)− u(t)‖α = 0.

Also,

‖fn(t, un)− f(t, u)‖ = ‖f(t, Pnun)− f(t, u)‖,

≤ FR(T )[‖un − u‖α + ‖(Pn − I)u‖α], (53)

and

‖Aβgn(t, un)−Aβg(t, u)‖ = ‖Aβg(t, Pnun)−Aβg(t, u)‖,

≤ L[‖un − u‖α + ‖(Pn − I)u‖]. (54)

Taking supremum on [t0, T0], we get

sup
{t0≤t≤T0}

‖fn(t, un)− f(t, u)‖ ≤ FR(T )[‖un − u‖T0, α + ‖(Pn − I)u‖T0, α],

→ 0,

as n→ ∞ and

sup
{t0≤t≤T0}

‖Aβgn(t, un)−Aβg(t, u)‖ ≤ L[‖un − u‖T0, α + ‖(Pn − I)u‖T0,α],

→ 0,
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as n→ ∞. Now, for 0 < t0 < t, we may rewrite (22) as

un(t) = Sq(φ+ gn(0, φ))− gn(t, un) + (

∫ t0

0

+

∫ t

t0

)(t− s)q−1ATq(t− s)gn(s, un)ds

+(

∫ t0

0

+

∫ t

t0

)(t− s)q−1Tq(t− s)fn(s, un)ds. (55)

We have

‖

∫ t0

0

(t− s)q−1ATq(t− s)gn(s, un)ds‖ ≤

∫ t0

0

(t− s)q−1‖A1−βTq(t− s)‖

×[‖Aβgn(s, un)‖]ds,

≤ M1−βC
′

1{(LR̃+B)}T qβ−1
0 t0, (56)

and

‖

∫ t0

0

(t− s)q−1Tq(t− s)fn(s, un)ds‖ ≤

∫ t0

0

(t− s)q−1‖Tq(t− s)‖‖fn(s, un)‖ds,

≤ MC
′

1{(LR̃+B)}T qβ−1
0 t0, (57)

where C
′

1 = qΓ(1+β)
Γ(1+qβ) and C

′

2 = q
Γ(1+q) . Thus, we have

‖un(t)− Sq(t)(φ + gn(0, φ)) + gn(t, un)−

∫ t

t0

(t− s)q−1ATq(t− s)gn(s, un)ds

−

∫ t

t0

(t− s)q−1Tq(t− s)fn(s, un)ds‖

≤M1−βC
′

1{(LR̃+B)}T qβ−1
0 t0 +MC

′

2FR(T )T
q−1
0 t0.

Let n→ ∞, in the above inequality, we get

‖u(t)− Sq(t)(φ+ g(0, φ)) + g(t, u(t))−
∫ t

t0
(t− s)q−1ATq(t− s)g(s, u(s))ds

−

∫ t

t0

(t− s)q−1Tq(t− s)f(s, u(s))ds‖

≤M1−βC
′

1{(LR̃+B)}T qβ−1
0 t0 +MC

′

2FR(T )T
q−1
0 t0. (58)

Since 0 < t0 ≤ T0 is arbitrary, we get that u satisfies the integral equation (8).
Now, let φ ∈ D(A). Corollary 4.1 implies that there exists u ∈ Xα(T0) such that

un → u in Xα(T0). Since un ∈ BR(X
α(T0), φ) for each n, u is also in BR(X

α(T0), φ).
Further, we have

sup
{0≤t≤T0}

‖fn(t, un)− f(t, u)‖ ≤ FR(T )[‖un − u‖T0, α + ‖(Pn − I)u‖T0, α],

→ 0, as n→ ∞, (59)

and

sup
{0≤t≤T0}

‖Aβgn(t, un)−Aβg(t, u)‖ ≤ L[‖un − u‖T0, α + ‖(Pn − I)u‖T0, α],

→ 0, as n→ ∞. (60)
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Using (59), (60) and (22), we obtain

u(t) = Sq(t)(φ + g(0, φ))− g(t, u(t)) +

∫ t

0

(t− s)q−1ATq(t− s)g(s, u(s))ds

+

∫ t

0

(t− s)q−1Tq(t− s)f(s, u(s))ds. (61)

Hence, this completes the proof of the theorem.

Now, we shall show the uniqueness of the solution to equation (61). Let u1 and u2
be the two solutions of (61). We have

u1(t)− u2(t) = −{g(t, u1(t))− g(t, u2(t))}

+

∫ t

0

(t− s)q−1ATq(t− s)[g(s, u1)− g(s, u2)]ds

+

∫ t

0

(t− s)q−1Tq(t− s)[f(s, u1)− f(s, u2)]ds,

and thus

‖Aα[u1(t)− u2(t)]‖ ≤ ‖Aα−β‖‖Aβg(t, u1(t))−Aβg(t, u2(t))‖

+

∫ t

0

(t− s)q−1‖A1+α−βTq(t− s)‖‖Aβg(s, u1)−Aβg(s, u2)‖ds

+

∫ t

0

(t− s)q−1‖AαTq(t− s)‖‖f(s, u1)− f(s, u2)‖ds,

≤ ‖Aα−β‖L‖u1(t)− u2(t)‖α

+M1+α−βC1Lq

∫ t

0

(t− s)q(β−α)−1‖u1(t)− u2(t)‖αds

+MαFR(T )C2q

∫ t

0

(t− s)q(1−α)−1‖u1(t)− u2(t)‖αds.

Since ‖Aα−β‖L < 1, therefore we obtain
‖u1(t)− u2(t)‖α

≤
1

(1− L‖Aα−β‖)
[

∫ t

0

{
M1+α−βC1qL

(t− s)1−q(β−α)
+

MαFR(T )C2q

(t− s)1−q(1−α)
}‖u1(t)− u2(t)‖αds].

Applying Gronwall’s inequality, we obtain

‖u1(t)− u2(t)‖α = 0

for all 0 ≤ t < T0. From the fact

‖u1(t)− u2(t)‖ ≤
1

λα0
‖u1(t)− u2(t)‖α,

therefore, u1 = u2 on [0, T0]. The proof of the theorem is complete.
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5 Faedo-Galerkin Approximation

In this section, we will discuss the Faedo-Galerkin approximations of solutions and prove
some convergence result for such approximations.

We know that for any 0 < T0 < T , we have a unique u ∈ Xα(T0) satisfying the
integral equation

u(t) = Sq(t)(φ + g(0, φ))− g(t, u(t)) +

∫ t

0

(t− s)q−1ATq(t− s)g(s, u(s))ds

+

∫ t

0

(t− s)q−1Tq(t− s)f(s, u(s))ds, (62)

Also, there is a unique solutions un ∈ Xα(T0) of the approximate integral equations

un(t) = Sq(t)(φ + gn(0, φ))− gn(t, un(t)) +

∫ t

0

(t− s)q−1ATq(t− s)gn(s, un(s))ds

+

∫ t

0

(t− s)q−1Tq(t− s)fn(s, un(s))ds. (63)

We apply the projection on the above equation, then Faedo-Galerkin approximation is
given by vn(t) = Pnun(t) satisfying

Pnun(t) = vn(t) = Sq(t)(P
nφ+ Png(0, Pnφ)) − Png(t, vn(t))

+

∫ t

0

(t− s)q−1ATq(t− s)Png(s, vn(s))ds

+

∫ t

0

(t− s)q−1Tq(t− s)Pnf(s, vn(s))ds. (64)

Let the solution u of (62) and vn of (64) have the representation

u(t) =
∞∑

i=0

αi(t)ui, αi(t) = (u(t), ui) i = 0, 1, 2, · · · , (65)

vn(t) =

n∑

i=0

αn
i (t)ui, αn

i (t) = (vn(t), ui) i = 0, 1, 2, · · · , (66)

Using (66) in (64), we obtain a system of fractional order integro-differential equation of
the form

dq

dtq
(αn

i (t) + gni (t, α
n
0 (t), α

n
1 (t)..., α

n
n)) + λiα

n
i (t) = fn

i (α
n
0 (t), α

n
1 (t)..., α

n
n), (67)

αn
i (0) = φi, (68)

where

gni (t, α
n
0 (t), α

n
1 (t)..., α

n
n)) = (g(t,

n∑

i=0

αn
i (t)ui), ui),

fn
i (α

n
0 (t), α

n
1 (t)..., α

n
n) = (f(t,

n∑

i=0

αn
i (t)ui), ui),

and φi = (φ, ui), for i = 1, 2, · · · , n. The system (67)–(68) determines the αn
i (t)’s.

As a consequence of Theorems 3.1 and 4.1, we have the following convergence result.
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Theorem 5.1 Let (A1) − (A3) hold and φ ∈ D(Aα). Then there exist functions

vn ∈ C([0, T0], D(Aα)),

vn(t) = Sq(t)(P
nφ+ Png(0, Pnφ)) − Png(t, vn(t))

+

∫ t

0

(t− s)q−1ATq(t− s)Png(s, vn(s))ds

+

∫ t

0

(t− s)q−1Tq(t− s)Pnf(s, vn(s))ds, t ∈ [0, T0]

and u ∈ C([0, T0], D(Aα)),

u(t) = Sq(t)(φ + g(0, φ))− g(t, u(t)) +

∫ t

0

(t− s)q−1ATq(t− s)g(s, u(s))ds

+

∫ t

0

(t− s)q−1Tq(t− s)f(s, u(s))ds, t ∈ [0, T0]

such that vn → u in C([0, T0], D(Aα)) as n→ ∞.

Now, we show the convergence of αn
i (t) → αi(t). Consider the following

Aα[u(t)− vn(t)] = Aα[
∞∑

i=0

(αi(t)− αn
i (t))ui] =

∞∑

i=0

λαi (αi(t)− αn
i (t))ui.

Therefore, we have

‖Aα[u(t)− vn(t)]‖
2 ≥

n∑

i=0

λ2αi (αi(t)− αn
i (t))

2.

We have the following convergence theorem.

Theorem 5.2 We have the following result:

(a) If φ ∈ D(Aα) for all t0 ∈ (0, T0], then

lim
n→∞

sup
t0≤t≤T0

[
n∑

i=0

λ2αi {αi(t)− αn
i (t)}

2] = 0.

(b) If φ ∈ D(A) for all t ∈ [0, T0], then

lim
n→∞

sup
0≤t≤T0

[
n∑

i=0

λ2αi {αi(t)− αn
i (t)}

2] = 0.

The assertion of this theorem follows from the facts mentioned above and the following
result.

Proposition 5.1 Let (H1)−(H3) hold and let T0 be any number such that 0 < T0 <
T , then we have the following.

(a) If φ ∈ D(Aα) for all t0 ∈ (0, T0] then

lim
n→∞

sup
n≥m, t0≤t≤T

‖ Aα[vn(t)− vm(t)]‖ = 0. (69)
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(b) If φ ∈ D(A) for all t0 ∈ [0, T0] then

lim
n→∞

sup
n≥m, 0≤t≤T

‖ Aα[vn(t)− vm(t)]‖ = 0. (70)

Proof. For n ≥ m, we have

‖ Aα[vn(t)− vm(t)]‖ = ‖ Aα[Pnun(t)− Pmum(t)]‖,

≤ ‖ Pn[un(t)− um(t)]‖α + ‖ (Pn − Pm)um(t)‖α,

≤ ‖ [un(t)− um(t)]‖α +
1

λϑ−α
m

‖ Aϑum‖. (71)

If φ ∈ D(Aα), then the result in (a) follows from Theorem 4.1. If φ ∈ D(A), (b) follows
from Corollary 4.1.

6 Application

Consider the following partial differential equation of fractional order of the form

dq

dtq
[u(t, x)−∆u(x, t)] + ∆2u(x, t) = F (x, t, u(t, x)), 0 < q ≤ 1, (72)

u(x, 0) = u0, x ∈ Ω, (73)

with the homogenous boundary conditions. Were Ω is a bounded domain in the RN with
sufficiently smooth boundary ∂Ω and ∆ is N -dimensional Laplacian and function h is
sufficiently smooth in all arguments. We take X = L2(Ω) and let A be the operator
defined as −Au = ∆u with the domain

D(A) = H2(Ω) ∩H1
0 (Ω). (74)

Then equation (72) can be written as

dq

dtq
[v(t) +Av(t)] +A2v(t) = F (t, v(t)), (75)

v(0) = u0. (76)

It is well known that A is not invertible but (A+ cI) is invertible and ||(A+ cI)−1|| ≤ C
for large enough c > 0. Therefore equation (75) can be written of the form (1) with
g(t, v) = (1 − c)(A + cI)−1v and f(t, v) = cA(A + cI)−1v + F (t, (A + cI)−1v). It is
easy to see that operator A satisfies (A1) and f and g satisfy (A2) and (A3) respectively.
By applying the results of the earlier sections, we have the existence of Faedo-Galerkin
approximations and their convergence to the unique solution of (72)-(73).

Acknowledgment

The authors would like to thank the referee for valuable comments and suggestions. The
work of the first author is supported by the UGC (University Grants Commission, India)
under Grant No (6405− 11− 061).nt.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 14 (1) (2014) )11–29 29

References

[1] Bahuguna, D. and Muslim, M., Approximation of solutions to a class of second order
history-valued delay differential equations. Nonlinear Dynamics and Systems Theory 8 (3)
(2008) 237–254.

[2] Bahuguna, D., Shukla, Reeta. Approximations of solutions to nonlinear Sobolev type evo-
lution equations. Electron. J. Differential Equations 31 (2003) 1–16.
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1 Introduction

The notion of a dynamic graph (not on a time scale) was introduced by D.D.Siljak (see [1]
and bibliography therein). This notion was justified by the fact that it makes possible
to present the effect of interconnections between subsystems of a complex system on
its whole dynamics in a more precise way (see [3]). In a series of works that followed
paper [1] (see [2] and bibliography therein) the idea of a dynamic graph for continuous
complex system was extended for controlled and other systems.

This paper is aimed at establishing stability conditions for a dynamic graph on a
time scale (see Bohner and Peterson [4] and bibliography therein) in terms of the matrix
Lyapunov function and the principle of comparison (see [5] and bibliography therein).
The paper is arranged as follows.

Section 1 presents a notion of dynamic graph as a one-parameter mapping of the space
of graphs with N nodes into itself. In the analysis of the dynamic graph this mapping is
referred to as a motion of the corresponding dynamic graph.

In Section 2 a notion of motion stability of a dynamic graph is introduced together
with a notion of stability of an equilibrium adjacent matrix of dynamic graph. The latter
is considered in the case when the properties of the dynamic graph are studied in terms
of the adjacent matrix.

Section 3 deals with a partial case of the dynamic graph, i.e. the dynamic graph on a
time scale. This type of dynamic graphs is considered for the first time and the necessity
of introducing these objects is caused by the presence of a series of unsolved problems
on stability of complex systems, whose subsystem interconnections are changing in time
continuous-discrete mode.

In Section 4 a method of matrix-valued function is proposed to solve the motion
stability problem for the dynamic graph on a time scale. The essence of this method
is that the problem on stability of an equilibrium graph of the given dynamic graph is
replaced by a simpler problem on stability of the equilibrium state of a matrix equation.
The answer to the question when the solution of the second problem guarantees the
solution of the first one is given in Section 5. Also, in this section the procedure of
constructing an auxiliary equation is specified.

In Section 6 the application of the theory of dynamic graphs to the modeling of time-
varying interconnections between subsystems of complex system of Lotka-Volterra type
is proposed for the first time. A mathematical model is constructed in the form of a
dynamic graph for the equilibrium adjacency matrix of which the existence conditions
are established as well as the sufficient stability conditions.

2 The Description of a Dynamic Graph

Consider a weighted directed graph (later referred to as a graph) D = (V,E) which is
an ordered pair where V is a nonempty finite set of N nodes and E is a set of the ribs
of the graph. The nodes (v1, v2, . . . , vN ) tie the ribs of the graph (vj , vi) so that each
rib is oriented from vj to vi at all (i, j) ∈ N = {1, 2, . . . , N}. Each rib (vj , vi) is put in
correspondence with the weight eij , if the rib (vj , vi) ∈ D while eij = 0 if (vj , vi) 6= D.
Put the concept of isomorphism N ×N of the matrix E = (eij) in correspondence with
the digraph D. Later we will use this concept of isomorphism and the permutation of
the symbols D and E as applied to the concerned situation.

Now define the space of graphs D with the fixed number N of nodes, as a linear space
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above the field F of real numbers. For any D1, D2 ∈ D there exists a single graph

D1 +D2 ∈ D, (1)

which is called a sum of graphs D1 and D2, and for any D ∈ D and an arbitrary number
α ∈ F there exists a single graph

αD ∈ D. (2)

If in the formula (2) we assume α = 0, then αD = 0, which corresponds to the zero
graph D = 0 ∈ D. This graph consists of N disconnected nodes, and therefore the
matrix E is empty.

The above operations defining D as a linear space can be interpreted in the context
of a linear space C of adjacent matrices. For the two N × N matrices E1 = (e1ij) and

E2 = (e2ij) the sum is

(e1ij) + (e2ij) = (e1ij + e2ij) ∈ C (3)

and for any N ×N matrix E = (eij) ∈ C and a scalar quantity α ∈ F obtain

αeij = (αeij) ∈ C. (4)

Note that the zero element of the space C is an N ×N matrix E = 0 ∈ C.
Now, in order to introduce the notion of the motion of the graph and its stability in

the space D, introduce the norm of the graph ν(D) with the following properties:

(a) ν(D) > 0 at all D ∈ D (D 6= 0);

(b) ν(αD) = |α|ν(D) at all D ∈ D and α ∈ F ;

(c) ν(D1 +D2) ≤ ν(D1) + ν(D2) at all (D1, D2) ∈ D.

(5)

For the space of adjacent matrices C isomorphic to the space D, consider the matrix
norm ν : RN×N → R+ in the space R

N×N with the properties:

(a) ν(E) > 0 at all E ∈ R
N×N (E 6= 0);

(b) ν(αE) = |α|ν(E) at all E ∈ R
N×N and at all α ∈ F ;

(c) ν(E1 + E2) ≤ ν(E1) + ν(E2) at all (E1, E2) ∈ R
N×N .

(6)

Using these norms, introduce the metric in the space D by the formula

ρ(D1, D2) = ν(D1 −D2) at all (D1, D2) ∈ D. (7)

and in the matrix space D by the formula

ρ(E1, E2) = ν(E1 − E2) at all (E1, E2) ∈ C. (8)

Taking into account some of the results of the monograph [6], consider the axiomatic
specification of a dynamic graph as a mapping of the abstract space D into itself.

Let the family of mappings Φ(t,D) in the space D for any D ∈ D and an arbitrary
t ∈ R be put into correspondence with some graph Φ ∈ D.

Definition 2.1 A dynamic graph D is a one-parameter mapping Φ: R×D → D of
the space D into itself, which satisfies the following axioms:
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(a) Φ(t0, D0) = D0 at all t0 ∈ R and at all D0 ∈ D;

(b) Φ(t,D) is continuous at all t ∈ R and at all D ∈ D;

(c) Φ(t2,Φ(t1, D)) = Φ(t1 + t2, D) at all (t1, t2) ∈ R and at all D ∈ D.

The axiom (a) establishes the fact of the existence of an initial graph D(t0) = D0.
The axiom (b) specifies the continuity of the mapping Φ(t,D) with respect to all t and
all D, including t0 and D0. The axiom (b) determines that the dynamic graph is a
one-parameter group of transformations of the space D into itself.

In applications of the theory of dynamic graphs the notion of an adjacent matrix
plays a key role, therefore the introduction of such a notion is justified.

Definition 2.2 A dynamic adjacent matrix E is a one-parameter mapping Ψ: R×
R

N×N → R
N×N of the space R

N×N into itself, satisfying the following axioms:

(a) Ψ(t0, E0) = E0 at all t0 ∈ R and at all E0 ∈ R
N×N ;

(b) the mapping Ψ(t, E) is continuous at all t ∈ R and at all E ∈ R
N×N ;

(c) Ψ(t2,Ψ(t1, E)) = Ψ(t1 + t2, E) at all (t1, t2) ∈ R and at all E ∈ R
N×N .

In the process of the analysis of the dynamic graph Φ(t,D) the mapping is called
the motion of the dynamic graph D, while Ψ(t, E) is called the motion of the adjacent
matrix E. The graph of stationary motion determined by the formula

Φ(t,De) = De at all t ∈ R. (9)

is of interest. The graph De will also be called the equilibrium graph.
Analogously, the adjusent equilibrium matrix is determined by the formula

Ψ(t, Ee) = Ee at all t ∈ R. (10)

Now consider the notion of stability (instability) of a dynamic graph, if a graph of
stationary motion (equilibrium) is specified.

3 Setting of a Problem of Stability of a Dynamic Graph

The analysis of the form and the character of motions of a graph in the neighbourhood of
an equilibrium graph or an equilibrium adjacent matrix is of interest, since this analysis
allows to identify the conditions for the conservation in time of a certain structure of a
complex system described by the specified graph. Introduce some definitions, taking into
account the notion of stability in the Lyapunov sense and the two metrics: ρ0(·, D

e) and
ρ(·, De) for the characteristic of the initial and the current state of the dynamic graph.

Definition 3.1 The equilibrium graph De is called

(a) (ρ0, ρ)-stable if for any ǫ > 0 and t0 ∈ R there exists ∆ = ∆(t0, ǫ) > 0 such that
the inequality

ρ0(D0, D
e) < ∆ (11)

implies the estimate
ρ(D(t,D0), D

e) < ǫ (12)

at all t ≥ t0;
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(b) uniformly (ρ0, ρ)-stable, if in the conditions of Definition 3.1 (a) the quantity ∆
does not depend on t0 ∈ R;

(c) asymptotically (ρ0, ρ)-stable, if it is (ρ0, ρ)-stable and for any t0 ∈ R there exists
η > 0 such that at

ρ0(D0, D
e) < η (13)

the following relation holds:

lim
t→∞

ρ(D(t,D0), D
e) = 0; (14)

(d) globally asymptotically (ρ0, ρ)-stable if the conditions of Definition 3.1 (c) are sat-
isfied at an arbitrary large η and at all D ∈ D;

(e) (ρ0, ρ)-unstable if the conditions of Definition 3.1 (a) are not satisfied.

In the case when the properties of a dynamic graph are studied on the basis of an
adjacent equilibrium matrix it makes sense to consider the following definition.

Definition 3.2 An equilibrium adjacent matrix Ee ∈ ∈ R
N×N is said to be:

(a) (ρ0, ρ)-stable if for any ǫ > 0 and t0 ∈ R there exists ∆ = ∆(t0, ǫ) > 0 such that
the inequality

ρ0(E0, E
e) < ∆ (15)

implies the estimate
ρ(E(t, E0), E

e) < ǫ (16)

at all t ≥ t0;

(b) uniformly (ρ0, ρ)-stable if all the conditions of Definition 3.2 (a) are satisfied with
∆ not depending on t0 ∈ R;

(c) asymptotically (ρ0, ρ)-stable if it is (ρ0, ρ)-stable and for any t0 ∈ R there exists
ζ > 0 such that at

ρ0(E0, E
e) < ζ (17)

the following relation holds:

lim
t→∞

ρ(E(t, E0), E
e) = 0;

(d) globally asymptotically (ρ0, ρ)-stable if the conditions of Definition 3.2 (c) are sat-
isfied at an arbitrary fixed ζ and at any matrix E0 ∈ R

N×N .

Remark 3.1 Since for the selection of two measures some variants are admissible,
Definitions 3.1 and 3.2 can have different interpretations. Let us dwell on some of them:

(1) let De = 0 and ρ0(t, ·) = ρ(t, ·) = ‖D‖, where ‖ · ‖ is an Euclidean norm. Then
Definition 3.1 characterises the stability of a dynamic graph with respect to the
zero graph;

(2) let Ee = 0 and ρ0(t, ·) = ρ(t, ·) = ‖E‖. Then Definition 3.2 characterises the
stability of the dynamic adjacent matrix with respect to the zero adjacent matrix
E = 0 ∈ C.
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4 The Evolution of a Dynamic Graph on a Time Scale

Let a time scale T with a graininess function µ(t) = σ(t)−t, where σ(t) = inf{s ∈ T, s >
t} be specified. The function σ(t) determines the operator of a jump forward σ : T → T.
Determine T

k by the formula T/{M}, if T has a right scattered maximum M , and in
the rest cases T

k = T (see [5] and the bibliography therein).

Definition 4.1 Fix t ∈ T
k and let D : T → D. Determine some matrix D∆(t)

(provided that it exists) with the following properties: for any ǫ > 0 there exists a
neighbourhood W of a point t for which

‖[D(σ(t)) −D(s)]−D∆(t)[σ(t) − s]‖ ≤ |σ(t)− s|

at all s ∈W .

In this case we will say that D∆(t) is a delta derivative of the graph D(t) in a point
t.

The evolution of the dynamic graph on a time scale T will be described by the matrix
equation

D∆(t) = G(t,D), D(t0) = D0 ∈ D, (18)

whereG : T×D → D. In terms of the dynamic matrix of adjacency E(t) the equation (18)
takes the form

E∆(t) = F (t, E), E(t0) = E0 ∈ R
N×N , (19)

where F : T× R
N×N → R

N×N .
If T = R, then µ(t) = 0 and E∆ = dE

dt and the initial problem (19) becomes the
initial problem for the matrix ordinary differential equation

dE

dt
= F (t, E), E(t0) = E0 ∈ R

N×N . (20)

If T = Z, then µ(t) = 1 and E∆ = ∆E(t) = E(t + 1) − E(t) and the initial
problem (19) becomes the initial problem for the matrix difference equation

E(t+ 1)− E(t) = F (t, E(t)), E(t0) = E0 ∈ R
N×N . (21)

The objective of the qualitative analysis of a dynamic graph is the study of the
solutions of the matrix system of dynamic equations (19).

5 The Application of Matrix-Valued Functions Method in the Study of Sta-

bility

Now, connect with the system (19) the matrix-valued function V (t, E) : T × R
N×N →

R
N×N and its full dynamic derivative along the solutions of the system (19)

V ∆(t, E) = V ∆
t (t, E(σ(t))) +

+

∫ 1

0

V̇E
(
t, E(t) +Hµ(t)E∆(t)

)
dH E∆(t) =

= V ∆
t (t, E(σ(t))) +

+

∫ 1

0

V̇E
(
t, E(t) +Hµ(t)F (t, E(t))

)
dH F (t, E(t)),

(22)
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where V ∆
t is calculated as a ∆-derivative of the matrix- valued function V (t, E) with

respect to t in compliance with Definition 5.4.5, and V̇E is a partial derivative of the
matrix- valued function V (t, E) with respect to the matrix argument E ∈ R

N×N .
Assume that for the expression (22) there exists a matrix- valued function

G(t, V (t, E)) such that
V ∆(t, E)|(19) ≤ G(t, V (t, E)). (23)

Along with the matrix inequality (23) consider the matrix equation

M∆(t) = G(t,M(t)), M(t0) =M0 ∈ R
N×N , (24)

where M(t) = U(t, E(t)), E(t) = E(t; t0, E0) at all t ∈ T.
Now introduce some notions and definitions for the dynamic equations (19) and (24).
Assume that for the system (19) a time scale T with the graininess function µ(t)

is chosen. Let X1 = R
N×N and A1 ⊂ X1 be the space of initial data E0, such that

E(t0; t0, E0) = E0 ∈ A1. Denote SE which is a family of motions of the dynamic graph
on the time scale T.

Then the sequence of sets and spaces {T, X1, A1, I, SE} determines the evolution of
the dynamic graph on a time scale.

Analogously, for the system (24) keep the time scale T with the same graininess
function µ(t) and denote X2 = R

N×N , A2 ⊂ X2 is a space of initial values M0 such
that M(t0; t0,M0) =M0 ∈ A2. Let SM be a family of motions of the matrix system (24).

Then the sequence {T, X2, A2, I, SM} determines the evolution of the matrix dynamic
equation (24) on a time scale.

Let the sets N1 ⊂ X1 and N2 ⊂ X2 be invariant with respect to the families of
motions SE and SM respectively.

By the matrix mapping U : T×X1 → X2 connect the sets N2 and N1 by the relation

N2 = U(T×N1) = {M ∈ X2 : M = U(t∗, E1)

for some E1 ⊂ N1 and t∗ ∈ T}.
(25)

The family of motions SM of the system (24) and the family of motions SE of the
dynamic graph (19) will be connected by the relation

Sm = M(SE), (26)

where M(SE) = {M(·; t0, B) : M(t; t0, B) = U(t, E(t; t0, A)) for any E(t; t0, A) ∈ SE ,
B = U(t0, A), A ∈ A1 and t0 ∈ T}.

It seems interesting to obtain conditions under which the dynamic properties of the
pairs (SM , N2) and (SE , N1) would be equivalent.

Note that the systems (19) and (24) are determined in the same space of variables
R

N×N , but the system (24), in view of its construction according to the inequality (23),
can prove to be more traceable compared with the initial system (19).

6 The Comparison Principle

Before we start obtaining the conditions for the stability of the system of dynamic equa-
tions (24), formulate a lemma determining the connection between the dynamic proper-
ties of the pairs (SM , N2) and (SE , N1). Let ν1(E,N1) be a metric in a space X1 and
ν2(U(t, E), N2) be a metric in a space X2.
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The function ψ : [0, r1] → R+ (respectively ψ : [0,∞] → R+) belongs to the Hahn
class if ψ(0) = 0 and ψ(r) is strictly increasing over [0, r1] (on R+). Functions of this
class play the part of comparison functions in the theory of stability of motion.

Lemma 6.1 Assume that evolutions of the systems (19) and (24) are determined

and there exists a matrix-valued function U : T×X1 → X2, such that:

(a) the sets of motions SM and SE are connected by the relation (26);

(b) the sets V1 and N2 are closed and connected by the relation (25);

(c) there exist comparison functions ψ1, ψ2 ∈ K-class, such that

ψ1(ν1(E,N1)) ≤ ν2(U(t, E), N2) ≤ ψ2(ν1(E,N1))

at all t ∈ T and E ∈ R
N×N .

Then the following statements hold:

(a) the invariance of the pair (SE , N1) implies the invariance of the pair (SM , N2);

(b) the stability of a certain type of the pair (SM , N2) implies the stability of the same

type of the pair (SE , N1);

(c) the exponential stability of the pair (SM , N2) implies the exponential stability of

the pair (SE , N1) if the comparison functions have the form ψi(r) = air
b0 , ai > 0,

b0 > 0, i = 1, 2.

Proof. Consider the statement (b) and assume that the pair (SM , N2) is stable.
Here for any ǫ2 > 0 and any t0 ∈ T one can find ∆2 = ∆2(ǫ2, t0) > 0 such that
ν2(M(t; t0, B), N2) < ǫ2 at all M(·; t0, B) ∈ SM and at all t ∈ T (B, t0) ⊂ T as soon as
ν2(B,N2) < ∆2.

To prove the stability of the pair (SE , N1) for an arbitrary ǫ > 0 and t0 ∈ T choose
ǫ2 = ψ1(ǫ) and ∆ = ψ−1

2 (∆2). If ν1(A,N1) < ∆, then, according to the condition
(c) of Lemma 6.1 obtain ν2(B,N2) ≤ ψ2(ν1(A,N1)) < ψ2(∆) = ∆2. It means that
for any solution M(t, t0, B) ∈ SM the estimate ν2(M(t; t0, B)) < ǫ2 is true at all
t ∈ T (B, t0). From the conditions (a), (b) of Lemma 6.1 obtain that E(·; t0, A) ∈ N1 at
all t ∈ T (A, t0) = T (B, t0), where B = U(t0, A). From the condition (c) of Lemma 6.1
it follows that

ν1(E(t; t0, A), N1) ≤ ψ−1(U(t, E(t; t0, A)), N2) =

= ψ−1(ν2(M(t; t0, B), N2) ≤ ψ−1(ǫ2) = ǫ,

at all t ∈ T (A, t0) = T (B, t0) as soon as ν1(A,N1) < ∆. The statement (b) is proved.
The proof of the other statements of the comparison principle is performed in a similar

way. ✷

To obtain the sufficient conditions for the stability of a dynamic graph on the basis of
the analysis of the system (24) define concretely the choice of the matrix-valued function
U(t, E) and the matrix of the function G(t, U) in the inequality (23).

Let
U(t, E) = EET and G(t, U) = AU, (27)
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where A is an N ×N -constant matrix, and E ∈ R
N×N .

Taking into account the relation

E(σ(t)) = E(t) + µ(t)E∆(t)

on a time scale T with the graininess µ(t), obtain

U∆(E(t)) = EFT (t, E) + F (t, E)ET + µ(t)F (t, E)FT (t, E). (28)

Taking into account (28), the inequality (23) takes the form

U∆(E(t))|(19) ≤ AU(E(t)) (29)

at all t ∈ T , and the matrix comparison equation (24)

M∆(t) = AM(t), M(t0) =M0 ∈ R
N×N (30)

is linear.

7 Applications

From the analysis of the literature on complex systems [1, 3], mathematical biology [7]
etc., it becomes clear, that complex systems with the time-varying interaction between
subsystems have not been researched. Indeed, in the literature complex systems are
described by the system of differential equations:

dxi
dt

= gi(t, xi) + hi(t, ei1x1, ei2x2, ..., eiNxN ), i = 1, 2, ..., N. (31)

where equations
dxi
dt

= gi(t, xi), i = 1, 2, ..., N,

describe motion of the disconnected subsystems. Functions hi describe action of all
subsystems of the complex system on the i-th subsystem. Parameter eik replies for the
action of the k-th subsystem on the i-th one and eik is constant. So, the actual problem is

to construct the mathematical model and research the complex systems with time-varying

interconnection between their subsystems.
Since interconnection matrix E = [eij ]

N
i,j=1 in the complex system (31) may be con-

sidered as an adjacent matrix of some graph G = (V, E), where V = {V1, V2, ..., VN} is a
nonempty finite set of N nodes and E = {(Vi, Vj)|Vi, Vj ∈ V, i, j = 1, N} is a set of ribs,
then the earlier mentioned problem is to construct the example of complex systems, in
which interconnections between subsystems would assign some time-varying or, perhaps,
dynamic graph [6].

Following the setting problem, consider the generalization of the well-known in math-
ematical biology and ecology Volterra model of the community of n species. The gen-
eralized system is described by the system of dynamic equations on some time scale
T:

N∆
i (t) = Ni

(
εi −

n∑

j=1

γijNj

)
, i = 1, 2, ..., n, (32)

where Ni(t) is a number of individuals of the i-th species at the moment t ∈ T, N∆
i (t)

is a delta derivative of the function Ni(t) in a point t ∈ T. In the case when T = R
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(when the number of the species changes quickly enough, such scales are considered;
communities of bacteria are an example), N∆

i (t) = dNi

dt . Such a case is considered
in [7]. If T = hZ, h > 0 (when the number of the species changes over long periods of
time such scales are considered; communities of higher animals are an example), then
N∆

i (t) = ∆Ni(t) = Ni(t + h) − Ni(t). When the number of species changes with the
different intensity on the different time intervals, the scale with inconstant graininess
function µ(t) (µ(t) ≡ 0, when T = R, and µ(t) ≡ h, when T = hZ) can be applied to
such species dynamics modelling. The intensity can be affected, for example, by habitat
conditions (climate, geography, forage base, etc.)

In addition, in (32) εi denotes a rate of natural growth or mortality of the i-th species
in the absence of other species. The sign and the absolute value of γij (i 6= j) represent
the nature and intensity of influence of the j-th species to i-th; γii is an indicator of
infraspecific competition.

We assume now, that n species whose dynamics are described by the system (32),
are the preys and identify interconnections in a community of m species, where the
individuals are predators, feeding on individuals of preys.

Denote by Sk (k = 1, 2, ...,m) the set of those n species of the preys community,
which form the forage base of the k-th species of the predator community. Also define
N(Sk) by the formula:

N(Sk) =
∑

i∈Sk

Ni,

that is, N(Sk) is equal to the volume of the k-th predator’s forage base. Predator’s
community dynamics can be described by the system (32):

M∆
i (t) =Mi

(
αi −

m∑

j=1

βijMj

)
, i = 1, 2, ...,m, (33)

where Mi(t) is a number of individuals of the i-th species at the moment t ∈ T, M∆
i (t)

is a delta derivative of the function Mi(t). Also in (33) αi denotes a rate of natural
growth or mortality of the i-th species in the absence of other species, and βij represent
the nature and intensity of influence of the j-th species to the i-th. In this case, it seem
natural to assume that the effect of the j-th to the i-th is dependent on percentage of
the species, forming the mutual forage base, in the j-th species forage base. That is:

βij = βij

(N(Si ∩ Sj)

N(Sj)

)
.

The more large the ratio
N(Si∩Sj)
N(Sj)

is (the interval [0, 1] is the range of the ratio), the

larger the j-th species makes bids for the mutual with the i-th species forage base, thereby
affecting on the i-th species of community of the predators.

So, we have constructed an example of the complex system, that is described by the
system of equations

M∆
i (t) =Mi

(
αi −

m∑

j=1

βij

(N(Si ∩ Sj)

N(Sj)

)
Mj

)
, i = 1, 2, ...,m, (34)

and the interconnections between the subsystems are described by the system of equations
(32).
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So, adjacent matrix E(t) = [eij ]
m
i,j=1 of some dynamic graph G is constructed. The

matrix satisfies the following system of equations:

E(t) = B
(N(Si ∩ Sj)

N(Sj)

)
,

N∆
i (t) = Ni

(
εi −

n∑

j=1

γijNj

)
, i = 1, 2, ..., n,

(35)

Let us consider the particular case when the functions βij are linear:

βij

(N(Si ∩ Sj)

N(Sj)

)
= Qij

N(Si ∩ Sj)

N(Sj)
.

Let the community of the preys consist of the 3 species z1, z2, z3, and the community of
the predators consist of 2 species. Suppose that the forage base S1 of the first species of
the predators is {z1, z2}, and the forage base S2 of the second species of the predators is
{z2, z2}. Then the interconnections parameters βij satisfy the following relations:

β11 = Q11, β12 = Q12
N2

N2 +N3
,

β21 = Q21
N2

N1 +N2
, β22 = Q22,

N∆
i (t) = Ni

(
εi −

3∑

j=1

γijNj

)
, i = 1, 2, 3.

(36)

The equations (36) describe the evolution of a dynamic graph, consisting of two preys.
The value βij(t), as it was mentioned, denotes the weight of the edge (Vi, Vj).

For the dynamic graph G, which is represented by equations (36), consider the prob-
lem of existence of the adjacent equilibrium matrix and of its stability in terms of Defi-
nition 3.2.

As we see from the formula (36), the value of the adjacent equilibrium matrix Ee is
assigned by the equilibrium state of the system of dynamic equations on the time scale
(32). That is, adjacent equilibrium matrix Ee equals

Ee =

(
Q11 βe

12

βe
21 Q22

)

if and only if components Ne
i (i = 1, 2, 3) of the equilibrium vector of the system (32)

satisfies the system of equations:




Ni

(
εi −

3∑
j=1

γijNj

)
= 0, i = 1, 2, 3,

Q12N2

N2+N3
= βe

12,
Q21N2

N1+N2
= βe

21.

(37)

Suppose now, that the adjacent matrix equals to Ee = E∗ and let N∗ = (N∗
1 , N

∗
2 , N

∗
3 )

T

be a corresponding state vector of the system (32) (that is, the solution of the system
(37)). Establish the stability conditions of the state N∗. It is easy to see, that sta-
bility conditions of the state N∗ of the system (32) are also stability conditions of the
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equilibrium matrix Ee = E∗. In the system (32) replace the value Ni to xi by the
formula:

xi = Ni −N∗
i , i = 1, 2, 3, (38)

to obtain stability conditions. We obtain the system of dynamic equations

x∆i = N∆
i = (xi +N∗

i )
(
εi −

3∑

j=1

γij(xj +N∗
j )
)
=

=
(
xi

(
εi −

3∑

j=1

γijN
∗
j

)
−

3∑

j=1

N∗
i γijxj

)
−

3∑

j=1

γijxixj , i = 1, 2, 3,

(39)

and





x∆1 =
(
ε1 −

3∑
j=1

γ1jN
∗
j −N∗

1 γ11

)
x1 −N∗

1 γ12x2 −N∗
1 γ13x3 −

3∑
j=1

γ1jx1xj ,

x∆2 = −N∗
2 γ21x1 +

(
ε2 −

3∑
j=1

γ2jN
∗
j −N∗

2 γ22

)
x2 −N∗

2 γ23x3 −
3∑

j=1

γ2jx2xj ,

x∆3 = −N∗
3 γ31x1 −N∗

3 γ32x2 +
(
ε3 −

3∑
j=1

γ3jN
∗
j −N∗

3 γ33

)
x3 −

3∑
j=1

γ3jx3xj .

(40)

Denoting

x = (x1, x2, x3)
T ,

A =




ε1 −
3∑

j=1

γ1jN
∗
j −N∗

1 γ11 −N∗
1 γ12 −N∗

1 γ13

−N∗
2 γ21 ε2 −

3∑
j=1

γ2jN
∗
j −N∗

2 γ22 −N∗
2 γ23

−N∗
3 γ31 −N∗

3 γ32 ε3 −
3∑

j=1

γ3jN
∗
j −N∗

3 γ33




,

F (x) = (F1(x), F2(x), F3(x))
T , Fi(x) = −

3∑

j=1

γijxixj ,

we obtain the vector form of the system (40):

x∆ = Ax + F (x), (41)

with the conditions

lim
‖x‖→0

‖F (x)‖ = 0. (42)

Now the stability conditions of the equilibrium state N∗ of the system (32) are the
stability conditions of the trivial equilibrium of the system (41), which can be obtained
by the generalized Lyapunov’s direct method [5]. According to the method, consider the
positive definite function:

v(x) = xTx = x21 + x22 + x23,
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and compute the total ∆-derivative of v(x) with respect to the solutions of the system
(41). Using the product rule (see [5]), we find:

v∆
∣∣∣
(41)

=
(
x∆

)T

xσ + xTx∆
∣∣∣
(41)

=
(
x∆

)T(
x+ µ(t)x∆

)
+ xTx∆

∣∣∣
(41)

=

= (Ax+ F (x))T (x+ µ(t)(Ax + F (x))) + xT (Ax+ F (x))
∣∣∣
(41)

=

= xT (AT +A+ µ(t)ATA)x +Ψ(µ(t), x) = xT (AT ⊕A)x+Ψ(µ(t), x),

(43)

where

Ψ(µ(t), x) = FT (x)x + xTF (x) + µ(t)(xTATF (x) + FT (x)Ax + FT (x)F (x)).

Here we have used a symbol of regressive sum: AT ⊕A = AT +A+ µ(t)ATA.
Now if there exists the negative definite matrix B ∈ R

3×3 such that inequality:

xT (AT ⊕A)x ≤ xTBx, ∀t ∈ T, ∀x ∈ D ⊆ R
3, (44)

holds, then the equilibrium state x = 0 is stable by Theorem 3.3.2 from [5]. Indeed,
conditions (1), (2) and (2b) for the function v(x) hold. From (43) and (44) we obtain:

v∆
∣∣∣
(41)

≤ xTBx+Ψ(µ(t), x),

where the function Ψ(µ(t), x) satisfies the inequality:

‖Ψ(µ(t), x)‖ ≤ 2‖F (x)‖‖x‖(1 + µ(t)‖A‖).

Using the equality (42), we compute

lim
‖x‖→0

‖Ψ(µ(t), x)‖

‖x‖
≤ lim

‖x‖→0
2‖F (x)‖(1 + µ(t)‖A‖) = 0.

That is, conditions (2b) and (2c) of Theorem 3.3.2 hold, therefore by Theorem 3.3.2 the
equilibrium state x = 0 of the system (41) is asymptotically stable which implies the
asymptotical stability of the state N = N∗ of the system (32).

So, in the case when the system (37) can be solved with respect to N1, N2 and N3,
there exists the equilibrium matrix

Ee =

(
Q11 βe

12

βe
21 Q22

)
,

which is asymptotically stable, when (44) holds.

References

[1] Siljak, D.D. Dynamic Graphs. Nonlinear Analysis: Hybrid Systems. doi: 10 1016/ nahs
2006.08.004.

[2] Zecevic, A.I., Siljak, D.D. Control of Dynamic Graphs. SICE Journal of Control, Measure-

ment and System Integration 3 (1) (2010).

[3] Siljak, D.D. Asymptotic stability and Instability of Large-Scale Systems. IEEE Transactions

on Automatic Control 18 (6) (1973) 636–645.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 14 (1) (2014) 30–43 43

[4] Bohner, M., Peterson, A. Dynamic Equations on Time Scales: An Introduction with Ap-

plications. Boston, Birkhouser, 2001.

[5] Martynyuk, A.A. Stability Theory of Solutions of Dynamic Equations on Time Scales. Kiev,
Phoenics, 2012.

[6] Siljak, D.D. Large-scale Dynamic Systems: Stability and Structure. North-Holland, New
York, 1978.

[7] Svirizhev, Yu.M., Logofet, D.A. Stability of Biological Communities. Moscow, Nauka, 1978.
[Russian]



Nonlinear Dynamics and Systems Theory, 14 (1) (2014) 44–57

Adaptive Hybrid Function Projective Synchronization

of Chaotic Space-Tether System

A. Khan 1 and R. Pal 2∗

1 Department of Mathematics, Jamia Millia Islamia University, New Delhi, India
2 Department of Mathematics, University of Delhi, New Delhi, India

Received: April 25, 2013; Revised: January 30, 2014

Abstract: In this paper, we have achieved adaptive hybrid function projective
synchronization between two identical chaotic space-tether systems with uncertain
time-varying parameters and with each system evolving from different initial condi-
tions by applying adaptive control technique. Based on Lyapunov stability theory,
adaptive control laws and parameter update laws for estimating the uncertain, time-
varying parameters are derived to make the states of the two identical chaotic systems
asymptotically synchronized. Complete synchronization, antisynchronization, hybrid
projective synchronization are obtained as special cases from the above synchroniza-
tion method. The control techniques and the proposed update laws are verified by
numerical simulation results.

Keywords: adaptive control; parameter estimation; hybrid function projective syn-
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1 Introduction

Two identical chaotic systems with different initial conditions were first made to synchro-
nize in 1990 by Pecora and Carroll [25]. Since then, chaos synchronization has attracted
a great deal of attention from various scientific fields. The idea of synchronization is to
use the output of the master system to control the slave system so that the output of the
response system follows the output of the master system asymptotically. Many meth-
ods and techniques for handling chaos control and synchronization of various chaotic
systems have been developed such as PC method [25], OGY method [19], time-delay
feedback approach [24], feedback approach [9, 14], backstepping design technique [29],
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adaptive method [5, 7, 15, 21, 27, 28], linear control method [16, 22], nonlinear control
scheme [21, 23].

Till now, different types of synchronization phenomenon have been presented such as
complete synchronization (CS) [11], generalized synchronization (GS) [8], lag synchro-
nization [26], anticipated synchronization [18], phase synchronization [2], hybrid syn-
chronization (HS) [6] and antiphase synchronization [13], etc. Among all kinds of chaos
synchronization schemes, projective synchronization characterized by a scaling factor
that two systems synchronize proportionally has been of recent interest as it can be used
to obtain faster communication with its proportional feature. Recently, a new kind of
synchronization, Function Projective Synchronization (FPS) was introduced [4]. FPS
is a more general definition of Projective Synchronization where the drive system and
the response system can be synchronized upto a scaling function which is not a con-
stant. Another synchronization phenomenon called a Hybrid Projective Synchronization
(HPS) has also been investigated where the different state variables of the two systems
synchronize up to different state factors [10]. Combining these two, we have a new
kind of synchronization phenomenon called a Hybrid Function Projective Synchroniza-
tion (HFPS) which is of latest interest [12, 20, 30]. Here, the different state vectors of
the drive and response system synchronize up to different scaling functions which are not
scalars. Thus, it is the most modified and generalised form of Projective Synchronization.

Motivated by the aforementioned research, we have formulated Hybrid Function Pro-
jective Synchronization (HFPS) of two identical chaotic systems with different initial
conditions using adaptive control scheme where the response system has uncertain time-
varying parameters. Based on Lyapunov stability theory, adaptive control law and the
parameter update law are derived using which HFPS between the two systems is achieved.

Application of chaos synchronization is varied. We consider its application in the field
of celestial mechanics. In the recent decades, this field has slowly gained interest and
some work has followed [1,3,17,31]. The model we choose in this manuscript as identical
chaotic systems is that of a space-tether system. The dynamics of space-tether system
has recently been of great interest due to its vast applicability in the field of celestial
mechanics. A tether is a long cable used to couple spacecrafts to each other or to other
masses such as rocket, space station etc., so that their dynamics can be connected. So, a
space-craft together with a tether forms a space-tether system and depending upon the
objective and mission, there always arise problems of synchronizing its motion with other
spacecrafts using a tether itself or with another space-tether system altogether. Here,
in this manuscript, we consider the problem where there is a need to synchronize two
identical space-tether systems. A space-tether system can have numerous applications
like creation of artificial gravitation on board of the spacecraft, maintainance of spacecraft
with electric power, study of upper atmosphere, in research of distant space and many
more. Thus, the study of dynamics of a space-tether system is an important topic in
celestial mechanics.

Consequently, the paper is organized as follows. In Section 2, model of the space-
tether system is explained, in Section 3, adaptive HFPS (AHFPS) between the aforemen-
tioned two systems is studied in details. In Section 4, numerical simulations are presented
following which observations are made. Finally, in Section 5, conclusion is drawn.
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2 Model Explaination

The dynamics of a space-tether system can be developed using different kinds of math-
ematical models which describe its motion. In this paper, we have chosen the model
where tether is considered as massless rod. It is given by equation (1).

Figure 1: The space-tether problem where tether is considered a massless rod.

d2α

dt2
=

3ω2

2

A−B

C
sin 2α−

∆c

C
(l − lo) sin(α− ϕ),

d2l

dt2
= −

c(l− lo)

2C
[∆2 +

2C

m
−∆2 cos(2α− 2ϕ)]

+3ω2 cosϕ(l cosϕ+∆cosα) + (
dϕ

dt
)2l + 2lω

dϕ

dt

+
dα

dt
∆(

dα

dt
+ 2ω) cos(α− ϕ) +

3∆ω2 sin 2α sin(α− ϕ)

2C
,

d2ϕ

dt2
=

∆2c

2lC
(l − lo) sin(2α− 2ϕ) +

dα
dt ∆(dαdt + 2ω) sin(α− ϕ)

l
−

3ω2 sinϕ(l cosϕ+∆cosα)

l
−

2 dl
dt (ω + dϕ

dt )

l
−

3∆ω2

2l

A−B

C
sin 2α, (1)

where the parameters are defined as follows:
A,B,C= principal of moments of inertia of the spacecraft;
lo = length of unstrained tether;
α= angle which the line joining the centres of mass of earth and spacecraft makes with
a fixed axis through the center of mass of earth;
l= variable length of the strained tether;
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ϕ= inclination of the oscillating plane of the orbit of the center of mass of the system
with the plane of ecliptic;
α= angle which the line joining centers of mass of earth and spacecraft makes with the
tether;
∆= distance between the center of mass of the spacecraft and the position on the space-
craft to which the tether is attached;
m= mass of the spacecraft;
ω= angular velocity of the carrying spacecraft in circular orbit.

3 Adaptive Control Scheme for AHFPS

For the applicability of the adaptive control scheme, the system is identified in the form
of first order differential equations. For this, we make the following substitution:

α(t) = x1(t),
dα

dt
= x2(t), l(t) = x3(t),

dl

dt
= x4(t), ϕ(t) = x5(t),

dϕ

dt
= x6(t).

Also, we rename the parameters in the following manner:

3ω2

2

A−B

C
= a,

∆c

C
= b,

∆clo
C

= d,
c

2C
[∆2 +

2C

m
] = e,

∆2c

2C
= f,

∆2clo
2C

= g, 3ω2 = h, 3ω2∆ = j, 2ω∆ = k,

3∆ω2

2C
= n,

3∆ω2

2

A−B

C
= p,

clo
2C

[∆2 +
2C

m
] = q.

Based on these substitutions, the system of equations is given as:

dx1

dt
= x2,

dx2

dt
= a sin 2x1 − bx3 sin(x1 − x5) + d sin(x1 − x5),

dx3

dt
= x4,

dx4

dt
= −ex3 + fx3 cos(2x1 − 2x5)− g cos(2x1 − 2x5) + hx3 cos

2 x5 +

j cosx1 cosx5 + x3x
2
6 + 2ωx3x6 +∆x2

2 cos(x1 − x5) +

kx2 cos(x1 − x5) + n sin 2x1 sin(x1 − x5) + q,

dx5

dt
= x6,

dx6

dt
= f sin(2x1 − 2x5)− g

sin(2x1 − 2x5)

x3
+

∆x2
2 sin(x1 − x5)

x3
+

k
x2 sin(x1 − x5)

x3
− h sinx5 cosx5 − j

cosx1 sinx5

x3
−

2ωx4

x3
−

2x4x6

x3
−

p sin 2x1

x3
. (2)
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The system of equations (2) is considered as our master system. Then the identical
slave system is given by:

dy1
dt

= y2 + u1,

dy2
dt

= a1 sin 2y1 − b1x3 sin(y1 − y5) + d1 sin(y1 − y5) + u2,

dy3
dt

= y4 + u3,

dy4
dt

= −e0y3 + f1x3 cos(2y1 − 2y5)− g1 cos(2y1 − 2y5) +

h1y3 cos
2 y5 + j1 cos y1 cos y5 + y3y

2
6 + 2ω1y3y6 +

∆1y
2
2 cos(y1 − y5) + k1y2 cos(y1 − y5) +

n1 sin 2y1 sin(y1 − y5) + u4 + q1,

dy5
dt

= y6 + u5,

dy6
dt

= f1 sin(2y1 − 2y5)− g1
sin(2y1 − 2y5)

y3
+

∆1y
2
2 sin(y1 − y5)

y3
+

k1
y2 sin(y1 − y5)

y3
− h1 sin y5 cos y5 − j1

cos y1 sin y5
y3

−

2ω1y4
y3

−
2y4y6
y3

−
p1 sin 2y1

y3
+ u6, (3)

where xi, yi stand for the state variables of the master system and slave system re-
spectively, a1, b1, d1, e0, f1, g1, h1, j1, k1, n1, p1, q1,∆1, ω1 are the uncertain time-varying
parameters of the slave system which are to be estimated and u1, u2, u3, u4, u5, u6 are
the time-dependent non-linear controls which are also to be determined.

Let us now suppose that that the time-varying scaling function matrix be given by
A(t) = diag (α1(t), α2(t), α3(t), α4(t), α5(t), α6(t)) where αi(t) 6= 0; i = 1, 6. The syn-
chronization errors are defined by

er(t) = xr(t)− αr(t)yr(t), r = 1, 6. (4)

AHFPS between the two systems (2) and (3) will be achieved up to the desired scaling
function matrix A(t) if limt→∞ ||er(t)|| = 0, r = 1, 6. Following these, the error dynamics
is given by:

de1
dt

= x2 − α1y2 − α1u1 −
dα1

dt
y1,

de2
dt

= a sin 2x1 − bx3 sin(x1 − x5) + d sin(x1 − x5)−

α2[a1 sin 2y1 − b1x3 sin(y1 − y5) + d1 sin(y1 − y5)]−

α2u2 −
dα2

dt
y2,

de3
dt

= x4 − α3y4 − α3u3 −
dα3

dt
y3,
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de4
dt

= −ex3 + fx3 cos(2x1 − 2x5)− g cos(2x1 − 2x5) + q +

hx3 cos
2 x5 + j cosx1 cosx5 + x3x

2
6 + 2ωx3x6 +

∆x2
2 cos(x1 − x5) + kx2 cos(x1 − x5) +

n sin 2x1 sin(x1 − x5)− α4[−e0y3 + f1x3 cos(2y1 − 2y5)−

g1 cos(2y1 − 2y5) + q1 + h1y3 cos
2 y5 + j1 cos y1 cos y5 +

y3y
2
6 + 2ω1y3y6 +∆1y

2
2 cos(y1 − y5) + k1y2 cos(y1 − y5) +

n1 sin 2y1 sin(y1 − y5)]− α4u4 −
dα4

dt
y4,

de5
dt

= x6 − α5y6 − α5u5 −
dα5

dt
y5,

de6
dt

= f sin(2x1 − 2x5)− g
sin(2x1 − 2x5)

x3
+

∆x2
2 sin(x1 − x5)

x3
+

k
x2 sin(x1 − x5)

x3
− h sinx5 cosx5 − j

cosx1 sinx5

x3
−

2ωx4

x3
−

2x4x6

x3
−

p sin 2x1

x3
− α6[f1 sin(2y1 − 2y5)−

g1
sin(2y1 − 2y5)

y3
+

∆1y
2
2 sin(y1 − y5)

y3
+ k1

y2 sin(y1 − y5)

y3
−

h1 sin y5 cos y5 − j1
cos y1 sin y5

y3
−

2ω1y4
y3

−
2y4y6
y3

−

p1 sin 2y1
y3

]− α6u6 −
dα6

dt
y6. (5)

When we have two identical chaotic systems without controls (i.e. ui = 0), if they
evolve from different initial conditions, the trajectories of the two systems eventually
separate from each other and become unindentifiable and irrelevant. But when we have
two controlled chaotic systems, the two systems will approach synchronization for any
initial condition by appropriate control gain and update laws for uncertain time-varying
parameters. So, taking [ki; i = 1, 20] as control gains which are positive constants and
letting ea = a1−a, eb = b1− b, ed = d1−d, ee = e0−e, ef = f1−f, eg = g1−g, eh = h1−
h, ej = j1−j, ek = k1−k, en = n1−n, ep = p1−p, eq = q1−q, e∆ = ∆1−∆, eω = ω1−ω,the
following adaptive control laws and parameter update laws are proposed:

Adaptive control laws:

−α1u1 = −x2 + α1y2 +
dα1

dt
y1 − k1e1,

−α2u2 = −[a1 sin 2x1 − b1x3 sin(x1 − x5) + d1 sin(x1 − x5)] +

α2[a1 sin 2y1 − b1x3 sin(y1 − y5) + d1 sin(y1 − y5)] +

dα2

dt
y2 − k2e2,

−α3u3 = −x4 + α3y4 +
dα3

dt
y3 − k3e3,
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−α4u4 = −[−e0x3 + f1x3 cos(2x1 − 2x5)− g1 cos(2x1 − 2x5) + q1 +

h1x3 cos
2 x5 + j1 cosx1 cosx5 + x3x

2
6 + 2ω1x3x6 +

∆1x
2
2 cos(x1 − x5) + k1x2 cos(x1 − x5) +

n1 sin 2x1 sin(x1 − x5)] + α4[−e0y3 + f1x3 cos(2y1 − 2y5)−

g1 cos(2y1 − 2y5) + q1 + h1y3 cos
2 y5 + j1 cos y1 cos y5 +

y3y
2
6 + 2ω1y3y6 +∆1y

2
2 cos(y1 − y5) +

k1y2 cos(y1 − y5) + n1 sin 2y1 sin(y1 − y5)] +

dα4

dt
y4 − k4e4,

−α5u5 = −x6 + α5y6 +
dα5

dt
y5 − k5e5,

−α6u6 = −[−f1 sin(2x1 − 2x5)− g1
sin(2x1 − 2x5)

x3
+

∆1x
2
2 sin(x1 − x5)

x3
+ k

x2 sin(x1 − x5)

x3
− h sinx5 cosx5 −

j
cosx1 sinx5

x3
−

2ωx4

x3
−

2x4x6

x3
−

p1 sin 2x1

x3
] +

α6[f1 sin(2y1 − 2y5)− g1
sin(2y1 − 2y5)

y3
+

∆1y
2
2 sin(y1 − y5)

y3
+

k1
y2 sin(y1 − y5)

y3
− h1 sin y5 cos y5 − j1

cos y1 sin y5
y3

−
2ω1y4
y3

−

2y4y6
y3

−
p1 sin 2y1

y3
] +

dα6

dt
y6 − k6e6. (6)

While, parameter update laws are:

da1
dt

= sin 2x1e2 − k7ea,

db1
dt

= −x3 sin(x1 − x5)e2 − k8eb,

dd1
dt

= sin(x1 − x5)e2 − k9ed,

de0
dt

= −x3e4 − k10ee,

df1
dt

= x3 cos(2x1 − 2x5)e4 + sin(2x1 − 2x5)e6 − k11ef ,

dg1
dt

= − cos(2x1 − 2x5)e4 −
sin(2x1 − 2x5)

x3
e6 − k12eg,

dh1

dt
= x3 cos

2 x5e4 − sinx5 cosx5e6 − k13eh,

dj1
dt

= cosx1 cosx5e4 −
cosx1 sinx5

x3
e6 − k14ej,

dk1
dt

= x2 cos(x1 − x5)e4 +
x2 sin(x1 − x5)

x3
e6 − k15ek,
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dn1

dt
= sin 2x1 sin(x1 − x5)e4 − k16ef ,

dp1
dt

= −
sin 2x1

x3
e6 − k17ep,

dq1
dt

= e4 − k18eq,

d∆1

dt
= x2

2 cos(x1 − x5)e4 +
x2
2 sin(x1 − x5)

x3
e6 − k19e∆,

dω1

dt
= 2x3x6e4 −

2x4

x3
− k20eω. (7)

Now we have the following theorem which shows the stability and control performance
of the adaptive control scheme:

Theorem 3.1 For a given scaling function matrix

A(t) = diag (α1(t), α2(t), α3(t), α4(t), α5(t), α6(t)),

where αi(t) 6= 0, i = 1, 6, and any initial conditions xi(0), yi(0), i = 1, 6, the adaptive
control law (6) and parameter update law (7) warrant that the error functions ei(t) are
asymptotically convergent to zero, i.e. limt→∞ ||ei(t)|| = 0, i = 1, 6.

Proof. We choose a Lyapunov function as follows:

V =
1

2
[e21 + e22 + e23 + e24 + e25 + e26 + e2a + e2b + e2d + e2e + e2f +

e2g + e2h + e2j + e2k + e2n + e2p + e2q + e2∆ + e2ω].

We substitute the values of the controls ui using adaptive control laws (6) into error
dynamical system (5) and also note that for each uncertain parameter say, a1, ėa = ȧ1
(where (·) represents differentiation with respect to t) and its value is given by the first
equation of parameter update laws (7). Similarly, it follows for the other parameters.
Using all these values, it can be shown that the time derivative of the Lyapunov function
along the trajectory of the error system (5) is given by:

dV

dt
= eT

de

dt
= −eTQe. (8)

where e = (e1, e2, e3, e4, e5, e6, ea, eb, ed, ee, ef , eg, eh, ej , ek, en, ep, eq, e∆, eω)
T and

Q = diag (ki; i = 1, 20).
Clearly, Q is a positive definite matrix and hence, V (t) is negative definite. Based

on the Lyapunov stability theory, the error dynamical system (5) is globally and asymp-
totically stable at the origin and we have limt→∞ ||er(t)|| = 0; r = 1, 6. Thus, AHFPS
between the master system (2) and slave system (3) is achieved. This proves the theorem.
✷

4 Numerical Simulation Results and Discussions

In this section, we verify and demonstrate the effectiveness of the proposed method by
displaying and discussing the simulation results. We find by simulating that the sys-
tem given by (2) shows chaotic behavior for the following sets of values : a = 0, b =
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10−10, d = 10−11, e = 10−6, f = 5 × 10−20, g = 5 × 10−21, h = 0.03, j = 3. × 10−9, k =
2.×10−8, n = 1.5×10−10, p = 0, q = 10−7,∆ = 0.0000001,Ω = 0.1 with initial conditions
chosen as x1(0) = 0.8, x2(0) = 1.09, x3(0) = 0.8, x4(0) = 1.9, x5(0) = 0.8, x6(0) = 1.9.
With these values, we take the resulting system as the master system (2) (see Fi-
gure 2(a)). Now, we take the initial values of the unknown estimated parameters as

0 2000 4000 6000 8000 10 000

1.08995

1.09000

1.09005

1.09010

(a) Master system.

-6´1013
-4´1013

-2´1013 0 2´1013

-4´1012

-3´1012

-2´1012

-1´1012

0

1´1012

2´1012

(b) Slave system (without controls).

Figure 2: Poincare map showing chaotic master and slave systems.

a1(0) = −0.00136336, b1(0) = 9.× 10−7, d1(0) = 4.5× 10−6, e1(0) = 0.00130435, f1(0) =
4.5 × 10−11, g1(0) = 2.25 × 10−10, h1(0) = 0.030603, j1(0) = 3.0603 × 10−6, k1(0) =
0.0000202, n1(0) = 1.53015×10−6, p1(0) = −1.36336×10−7, q1(0) = 0.00652174,∆1(0) =
0.0001,Ω1(0) = 0.101 with initial conditions chosen as y1(0) = 1.3, y2(0) = 0.5, y3(0) =
0.8, y4(0) = 3.01, y5(0) = −0.8, y6(0) = 1.1. We find that when the system is considered
with these values, without the controls, then the system again is chaotic. Thus, this is
chosen as our slave system (3) which is to be controlled using the adaptive controllers
ui(t); i = 1, 6 (see Figure 2(b)). Also, we choose the control gains as ki = 1; i = 1, 20.
With these values, we now test AHFPS between systems (2) and (3). We can have nu-
merous cases of AHFPS, to test, let us as an example, choose the scaling function matrix
as A(t) = diag (α1(t), α2(t), α3(t), α4(t), α5(t), α6(t)) = (5 sin t − 6, 2, 5, 0.9e−t, 1, 10).
Clearly, αi(t) 6= 0; i = 1, 6; for all t. Accordingly, the initial values of the error variables
are: e1(0) = 8.6, e2(0) = 0.09, e3(0) = −3.2, e4(0) = −0.809, e5(0) = 1.6, e6(0) = −9.1.

0 10 20 30 40
0.000

0.005

0.010

0.015

0.020

(a) Figure 3: Time Series Analysis of e1(t).

0 5 10 15 20 25 30

-4.´10-6

-2.´10-6

0

2.´10-6

4.´10-6

(b) Figure 4: Time Series Analysis of e2(t).

The time-evolution graphs of the error variables ei(t), i = 1, 6, are plot-
ted in Figures 3 to 8 while time-evolution graphs of the estimated parameters
a1, b1, d1, e0, f1, g1, h1, j1, k1, n1, p1, q1,∆1, ω1 are presented in Figures 9 to 22. It is clear
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(c) Figure 5: Time Series Analysis of e3(t).
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(d) Figure 6: Time Series Analysis of e4(t).
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(e) Figure 7: Time Series Analysis of e5(t).
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-0.0001
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(f) Figure 8: Time Series Analysis of e6(t).
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(g) Figure 9: Time Series Analysis of
a1(t)(a1 → a = 0).

0 20 40 60 80

-1.5´10-9
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-5.´10-10

0

5.´10-10

1.´10-9

1.5´10-9

(h) Figure 10: Time Series Analysis of
b1(t)(b1 → b = 10−10).

from time-evolution graphs of all error variables in Figures 3 to 8 that they converge
to zero asymptotically while Figures 9 to 22 show that a1 → a, b1 → b, d1 → d, e0 →
e, f1 → f, g1 → g, h1 → h, j1 → j, k1 → k, n1 → n, p1 → p, q1 → q,∆1 → ∆, ω1 → ω,
respectively. Hence parameter update law is verified. All these graphs together indicate
the achievement of AHFPS between systems (2) and (3).

By choosing different scaling function matrices A(t), we can obtain different synchro-
nization phenomenon between the systems (2) and (3) as special cases:
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(i) Figure 11: Time Series Analysis of
d1(t)(d1 → d = 10−11).
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(j) Figure 12: Time Series Analysis of
e0(t)(e0 → e = 10−6).
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(k) Figure 13: Time Series Analysis of
f1(t)(f1 → f = 5× 10−20).
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(l) Figure 14: Time Series Analysis of
g1(t)(g1 → g = 5× 10−21).
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(m) Figure 15: Time Series Analysis of
h1(t)(h1 → h = 0.03).
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(n) Figure 16: Time Series Analysis of
j1(t)(j1 → j = 3.× 10−9).

4.1 Complete Synchronization

We choose A(t) = diag (α1(t), α2(t), α3(t), α4(t), α5(t), α6(t)) = (1, 1, 1, 1, 1, 1).
Accordingly, the initial values of the error variables are: e1(0) = −0.5, e2(0) =
0.59, e3(0) = 0, e4(0) = −1.11, e5(0) = 1.6, e6(0) = 0.8.

4.2 Antisynchronization

We choose

A(t) = diag (α1(t), α2(t), α3(t), α4(t), α5(t), α6(t)) = (−1,−1,−1,−1,−1,−1).
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(o) Figure 17: Time Series Analysis of
k1(t)(k1 → k = 2.× 10−8).
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(p) Figure 18: Time Series Analysis of
n1(t)(n1 → n = 1.5× 10−10).
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(q) Figure 19: Time Series Analysis of
p1(t)(p1 → p = 0).
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(r) Figure 20: Time Series Analysis of
q1(t)(q1 → q = 10−7).
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(s) Figure 21: Time Series Analysis of
∆1(t)(∆1 → ∆ = 0.0000001).
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(t) Figure 22: Time Series Analysis of
ω1(t)(ω1 → ω = 0.1).

Accordingly, the initial values of the error variables are: e1(0) = 2.1, e2(0) = 1.59, e3(0) =
1.6, e4(0) = 4.91, e5(0) = 0, e6(0) = 3.0.

4.3 Hybrid Projective Synchronization (HPS)

We can have numerous cases of HPS, as an example let us choose

A(t) = diag (α1(t), α2(t), α3(t), α4(t), α5(t), α6(t)) = (1, 2, 5, 90, 10, 0.1).

Accordingly, the initial values of the error variables are: e1(0) = 0.7935, e2(0) =
1.0875, e3(0) = 0.796, e4(0) = 1.88495, e5(0) = 0.804, e6(0) = 1.8945. When
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the time-evolution graphs of ei(t); i = 1, 6 and the uncertain parameters a1, b1, d1,
e0, f1, g1, h1, j1, k1, n1, p1, q1,∆1, ω1 are plotted in each of the above cases, we find they
are similar to those plotted in Figures 3 to 22. Clearly, then, complete synchronization,
antisynchronization, hybrid projective synchronization, all can be achieved as special
cases of AHFPS.

5 Conclusion

In this paper, we have presented an application of adaptive control technique in the field
of celestial mechanics. The control method has been applied to two identical chaotic
space-tether systems, where each system starts from different initial conditions and the
response system contains uncertain parameters so that AHFPS is achieved between them.
Based on Lyapunov stability theory, adaptive control laws and parameter update laws
are designed to make the states between the drive and response systems synchronized
asymptotically and they have also been used to estimate the uncertain time-varying
parameters. Both theoretical analysis and numerical simulation confirm the effectiveness
of our proposed method.
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1 Introduction

In the theory of differential equations with deviating arguments, we study the differential
equations involving variables (arguments) as well as unknown functions and its deriva-
tive, generally speaking, under different values of the variables (arguments). It is a very
important and significant branch of nonlinear analysis with numerous applications to
physics, mechanics, control theory, biology, ecology, economics, theory of nuclear reac-
tors, engineering, natural sciences, and many other areas of science and technology. The
book [3] by El’sgol’ts and Norkin provides a comprehensive study of differential equa-
tions with deviated arguments. The existence, uniqueness, almost automorphic solutions
and asymptotic behaviors of differential equations with deviating arguments have been
studied by many authors like Driver [4], Obreg [5], Grimm [6], Gal [7], Haloi [8, 10, 11]
(see [12–16] and references cited therein).
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Impulsive effects are common phenomena due to short-term perturbations whose du-
ration is negligible in comparison with the total duration of the original process, such
phenomena may also be called impulsive differential equations. In recent years, there has
been a growing interest in the study of impulsive differential equations since such equa-
tions are mathematical approaches for simulation of process and phenomena observed in
control theory, physics, chemistry, population dynamics, biotechnology, economics and
so on. Chang et al. [27] have studied the existence of PC-mild solutions for first order
impulsive neutral integro-differential inclusions with nonlocal initial conditions. Ding et
al. [17] discussed a class of second-order impulsive differential equations with integral
boundary values. By using Krasnoselskii’s fixed point theorem, the existence of solutions
for the system is obtained. For more details, one can see ( [18, 20, 21, 24–26, 28]) and
references cited therein.

On the other hand, due to theoretical and practical difficulties, the study of impul-
sive differential equations with deviating arguments has been developed rather slowly.
Recently, the study of impulsive differential equations with deviating arguments has
been found in some papers. For example, in [32], Jankowski discussed the existence
of solutions for second order impulsive differential equations with deviating arguments.
Guobing et al. [29] established the existence solution of periodic boundary value problems
for a class of impulsive neutral differential equations with multi-deviation arguments (see
also [30–35] and the references therein).

The existence and uniqueness of abstract integro-differential equations have been dis-
cussed by many authors (see [9,10,19,22,23] and references cited therein). Bahuguna [2]
proved the existence, uniqueness, regularity and continuation of solutions to the following
integro-differential equations in an arbitrary Banach space H :

du(t)

dt
+Au(t) = f(t, u(t)) +K(u)(t), t > t0,

u(t0) = u0,



 (1)

where

K(u)(t) =

∫ t

t0

a(t− s)g(s, u(s))ds.

Under the assumptions that −A generates an analytic semigroup S(t), t ≥ 0 on H , the
function a is real-valued and locally integrable on [0,∞), the nonlinear maps f and g are
defined on [0,∞)×H into H .

Gal [7] proved the global existence and uniqueness to the following differential equa-
tion with deviated argument in a Banach space (X, ‖.‖):

du

dt
= Au(t) + f(t, u(t), u([h(u(t), t)])), t > 0,

u(0) = u0,



 (2)

where A is the infinitesimal generator of an analytic semigroup of bounded linear oper-
ators on X . He proved the results under the following assumptions on f and h:

1. f : [0,∞)×Xα ×Xα−1 → X satisfies

‖f(t, x, x′)− f(s, y, y′)‖ ≤ Lf{|t− s|θ1 + ‖x− y‖α + ‖x′ − y′‖α−1} (3)

for all x, y ∈ Xα, x′, y′ ∈ Xα−1, s, t ∈ [0,∞), for some constants Lf > 0 and
0 < θ1 ≤ 1.
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2. h : Xα × [0,∞) → [0,∞) satisfies

|h(x, t)− h(y, s)| ≤ Lh{‖x− y‖α + |t− s|θ2} (4)

for all x, y ∈ Xα, s, t ∈ [0,∞), for some constants Lh > 0 and 0 < θ2 ≤ 1.

Here ‖x‖α = ‖(A)αx‖, denotes the norm on Xα, the domain of Aα, for 0 < α ≤ 1.
In this paper, we extend the Cauchy problem (1) for integro-differential equations

to the Cauchy problems for the impulsive integro-differential equations with a deviated
argument in a Banach space (H, ‖.‖):

d

dt
u(t) +Au(t) = f(t, u(t), u[w(t, u(t))]) +

∫ t

0

a(t, τ)g(τ, u(τ))dτ,

t ∈ I = [0, T0], t 6= tk,

u(tk) = Ik(u(tk)), k = 1, 2, · · · ,m,

u(0) = u0,






(5)

where −A is the infinitesimal generator of an analytic semigroup of bounded linear op-
erators, S(t), t ≥ 0 on H . Functions f, a, g and w are suitably defined and satisfying
certain conditions to be stated later. 0 = t0 < t1 < ... < tm < tm+1 = T0, Ik ∈
C(H,H)(k = 1, 2, ...,m), are bounded functions. Ik(u(tk)) = u(t+k ) − u(t−k ), u(t−k ) and
u(t+k ) represent the left and right limits of u(t) at t = tk, respectively.

The paper is organized as follows. In “Preliminaries and Assumptions” we provide
some basic definitions, notations, lemmas and proposition which are used throughout the
paper. In “Local existence of mild solution” we will prove some existence and uniqueness
results concerning the PC-mild solutions. At last (i.e., in “Application”), we give an
example to demonstrate the application of the main results.

2 Preliminaries and Assumptions

In this section, we will introduce some basic definitions, notations, lemmas and proposi-
tion which are used throughout this paper.

It is assume that −A generates an analytic semigroup of bounded operators, denoted
by {S(t)}t≥0. It is known that there exist constants M̃ ≥ 1 and ω ≥ 0 such that

‖S(t)‖ ≤ M̃eωt, t ≥ 0.

If necessary, we may assume without loss of generality that ‖S(t)‖ is uniformly
bounded by M , i.e., ‖S(t)‖ ≤ M for t ≥ 0, and 0 ∈ ρ(−A), i.e., −A is invertible.
In this case, it is possible to define the fractional power Aα for 0 ≤ α ≤ 1 as closed
linear operator with domain D(Aα) ⊆ H . Furthermore, D(Aα) is dense in H and the
expression

‖x‖α = ‖Aαx‖

defines a norm on D(Aα). Henceforth, we denote the space D(Aα) by Hα endowed with
the norm ‖ · ‖α. Also, for each α > 0, we define H−α = (Hα)

∗, the dual space of Hα with
the norm

‖x‖−α = ‖A−αx‖.

Then H−α is a Banach space endowed with this norm. For more details, we refer to the
book by Pazy [1].
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Lemma 2.1 [1, pp. 72,74,195-196] Suppose that −A is the infinitesimal generator
of an analytic semigroup S(t), t ≥ 0 with ‖S(t)‖ ≤ M for t ≥ 0 and 0 ∈ ρ(−A). Then
we have the following:

(i) Hα is a Banach space for 0 ≤ α ≤ 1;

(ii) For any 0 < δ ≤ α implies D(Aα) ⊂ D(Aδ), the embedding Hα →֒ Hδ is continu-
ous;

(iii) The operator AαS(t) is bounded for every t > 0 and

‖AαS(t)‖ ≤ Cαt
−α.

We define the following space

X = PC(Hα) = {u : [0, T0] → Hα : u ∈ C((tk, tk+1], Hα), k = 0, 1, · · · ,m,

and there exists u(t−k ), u(t
+
k ) and u(t

−
k ) = u(tk)}.

X is a Banach space endowed with the supremum norm

‖u‖PC := sup
t∈I

‖u(t)‖α.

We shall use the following conditions on f and w in its arguments:

(H1) LetW ⊂ Dom(f) be an open subset of R+×Hα×Hα−1, where 0 ≤ α < 1. For each
(t, u, v) ∈ W , there is a neighborhood V1 ⊂ W of (t, u, v), such that the nonlinear
map satisfies the following condition,

‖f(t, u, v)− f(s, u1, v1)‖ ≤ Lf{|t− s|θ1 + ‖u− u1‖α + ‖v − v1‖α−1},

for all (t, u, v), (s, u1, v1) ∈ V1, Lf = Lf (t, u, v, V1) > 0 and 0 < θ1 ≤ 1 are
constants.

(H2) Let U ⊂ Dom(w) be a open subsets of R+ × Hα−1, where 0 ≤ α < 1. For each
(t, u) ∈ U , there is a neighborhood V2 ⊂ U of (t, u), w(·, 0) = 0 such that

|w(t, u) − w(s, v)| ≤ Lw {‖u− v‖α−1 + |t− s|θ2},

for all (t, u), (s, v) ∈ V2, Lw = Lw(u, t, U) > 0 and 0 < θ2 ≤ 1 are constants.

(H3) Let W1 be an open subset of R+ ×Hα. For each (t, x) ∈ W1 there exists a neigh-
borhood V3 ⊂W1 of (t, x) and a positive constant Lg = Lg(t, x, V3) such that

‖g(t, x)− g(s, y)‖ ≤ Lg‖x− y‖α,

for all (t, x), (s, y) ∈ V3.

(H4) Let a : [0, T0] × [0, T0] → [0, T0] be a continuous function that satisfies the Holder
condition uniformly in the first variable, i.e., there exist positive constants La > 0
and 0 < θ3 ≤ 1, such that

|a(t, s)− a(τ, s)| ≤ La|t− τ |θ3 ,

for all t, τ, s ∈ [0, T0].
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(H5) The functions Ik : Hα → Hα are continuous and there exists Dk such that
‖Ik(u)‖α ≤ Dk, k = 0, 1, · · · ,m.

(H6) There exists continuous nondecreasing dk : R+ → R+ such that

‖Ik(u)− Ik(v)‖α ≤ dk‖u− v‖α, k = 1, 2, · · · ,m.

New concept of solutions. Here, we prove a new concept of solutions for the
following problem (6)





u′(t) +Au(t) = r(t) +

∫ t

0 a(t, τ)g(τ, u(τ))dτ, t ∈ [0, T0], t 6= tk,
u(0) = u0,
u(tk) = Ik(u(t

−
k )), k = 1, 2 · · · ,m,

(6)

where r ∈ PC(I,H).
Let

{
v′(t) +Av(t) = r(t) +

∫ t

0 a(t, τ)g(τ, u(τ))dτ, t ∈ [0, T0],
v(0) = v0,

(7)

and






w′(t) +Aw(t) = 0, t ∈ [0, T0], t 6= tk,
w(0) = 0,
w(tk) = Ik(u(t

−
k )), k = 1, 2, · · · ,m,

(8)

be the decomposition of u(.) = v(.)+w(.), where v is the continuous mild solution of (7)
and w is the PC mild solution of (8).

By a mild solution for (7), we mean a continuous function v : [0, T0] → H satisfying
the following integral equation (For more details we refer to [2] and [10])

v(t) = S(t)v0 +

∫ t

0

S(t− s)
[
r(s) + Υv(s)

]
ds, t ∈ [0, T0], (9)

where

Υv(t) =

∫ t

0

a(t, τ)g(τ, u(τ))dτ.

and by a PC mild solution for (8), we mean a function w ∈ PC([0, T0], D(A)) satisfying
the following integral equation (see [20, Lemma 2.3 ])

w(t) =





−
∫ t

0 Aw(s)ds, t ∈ [0, t1],

I1(u(t
−
1 ))−

∫ t

0
Aw(s)ds, t ∈ (t1, t2],

...∑k
i=1 Ii(u(t

−
i ))−

∫ t

0
Aw(s)ds, t ∈ (tk, tk+1],

k = 1, 2, · · · ,m.

(10)
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The above equation (10) can be expressed as

w(t) =

k∑

i=1

χi(t)Ii(w(t
−
i ))−

∫ t

0

Aw(s)ds, (11)

for t ∈ [0, T0], where

χi(t) =

{
0, for t ∈ [0, t1],
1, for t ∈ (tk, tk+1], k = 1, 2, 3, · · · ,m.

(12)

Taking Laplace transform of (11), we obtain

w(p) =
k∑

i=1

e−tip

p
Ii −

Aw(p)

p
,

this gives

w(p) =

k∑

i=1

e−tip(pI +A)−1Ii, (13)

Also, we note that (pI+A)−1 =
∫∞

0
e−ptS(t)dt. Thus we can derive the mild solution

for (8)

w(t) =

k∑

i=1

χi(t)S(t− ti)Ii(w(t
−
i )).

Hence, the mild solution for the problem (6) is given by

u(t) = S(t)u0 +

k∑

i=1

χi(t)S(t− ti)Ii(u(t
−
i )) +

∫ t

0

S(t− s)
[
r(s) + Υu(s)

]
ds. (14)

We can rewrite (14) as

u(t) =





S(t)u0 +
∫ t

0
S(t− s)

[
r(s) + Υu(s)

]
ds, t ∈ [0, t1],

S(t)u0 + S(t− t1)I1(u(t
−
1 ))

+
∫ t

0 S(t− s)
[
r(s) + Υu(s)

]
ds, t ∈ (t1, t2],

...

S(t)u0 +
∑k

i=1 S(t− ti)Ii(u(t
−
i ))

+
∫ t

0 S(t− s)
[
r(s) + Υu(s)

]
ds, t ∈ (tk, tk+1], k = 1, 2, · · · ,m.

(15)
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3 Local Existence of Mild Solutions

In this section, we will prove the existence and uniqueness results concerning PC-mild
solutions for system (5). For 0 ≤ α < 1, we define

X1 = {u ∈ X : ‖u(t)− u(s)‖α−1 ≤ L|t− s|, ∀ t, s ∈ (tk, tk+1], k = 0, 1, · · · ,m},

where L is a suitable positive constant to be specified later.

Definition 3.1 A continuous function u : [0, T0] → H solution of problem (5)

u(t) =






S(t)u0 +
∫ t

0
S(t− s)[f(s, u(s), u(w(s, u(s)))) + Υu(s)]ds, t ∈ [0, t1],

S(t)u0 + S(t− t1)I1(u(t
−
1 ))

+
∫ t

0
S(t− s)[f(s, u(s), u(w(s, u(s)))) + Υu(s)]ds, t ∈ (t1, t2],

...

S(t)u0 +
∑k

i=1 S(t− ti)Ii(u(t
−
i ))

+
∫ t

0
S(t− s)[f(s, u(s), u(w(s, u(s)))) + Υu(s)]ds, t ∈ (tk, tk+1],

k = 1, 2, · · · ,m.

(16)

is said to be a mild solution.

For a fixed R > 0, we define

W = {u ∈ X ∩X1 : u(0) = u0, ‖u− u0‖PC ≤ R}.

Clearly, W is a closed and bounded subset of X1 and is a Banach space.
Let

N1 = sup
0≤t≤T0

‖f(0, u0, u0)‖, (17)

N2 = sup
0≤t≤T0

‖g(0, u0)‖ (18)

and

aT0
=

∫ T0

0

|a(s)|ds. (19)

Now we define a map G : W → W by

(Gu)(t) =





S(t)u0 +
∫ t

0 S(t− s)[f(s, u(s), u(w(s, u(s)))) + Υu(s)]ds, t ∈ [0, t1],

S(t)u0 + S(t− t1)I1(u(t
−
1 ))

+
∫ t

0 S(t− s)[f(s, u(s), u(w(s, u(s)))) + Υu(s)]ds, t ∈ (t1, t2],
...

S(t)u0 +
∑k

i=1 S(t− ti)Ii(u(t
−
i ))

+
∫ t

0 S(t− s)[f(s, u(s), u(w(s, u(s)))) + Υu(s)]ds, t ∈ (tk, tk+1],
k = 1, 2, · · · ,m.

(20)
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Theorem 3.1 Let u0 ∈ Hα and the assumptions (H1) – (H4) hold. Then the problem
(5) has a mild solution provided that

Cα[(Nf + aT0
Ng)]

T 1−α
0

1− α
+M

k∑

i=1

Di ≤
R

2
(21)

and

Cα{Lf (2 + LLw) + aT0
Lg}

T 1−α
0

(1− α)
+M

m∑

0

di < 1, (22)

Proof. We begin with showing that Gu ∈ X1 for each u ∈ X1. Clearly, G : X → X.

Let u ∈ X1, then for each τ1, τ2 ∈ [0, t1], τ1 < τ2 and 0 ≤ α < 1, we have

‖(Gu)(τ2)− (Gu)(τ1)‖α−1

≤ ‖[S(τ2)− S(τ1)]u0‖α−1

+

∫ τ1

0

‖Aα−1[S(τ2 − s)− S(τ1 − s)]‖ ‖f(s, u(s), u(w(s, u(s))))‖ds

+

∫ τ1

0

‖Aα−1[S(τ2 − s)− S(τ1 − s)]‖
{∫ s

0

|a(s, τ)| ‖g(τ, u(τ))‖dτ
}
ds

+

∫ τ2

τ1

‖Aα−1S(τ2 − s)‖ ‖f(s, u(s), u(w(s, u(s))))‖ds

+

∫ τ2

τ1

‖Aα−1S(τ2 − s)‖
{∫ s

0

|a(s, τ)| ‖g(τ, u(τ))‖dτ
}
ds. (23)

Since f(t, u(t), u(w(u(t), t))) and g(t, u(t)) are continuous, together with the assump-
tions (H1), (H2) and (H3), there exist constants Nf and Ng, such that

‖f(t, u(t), u(w(t, u(t))))‖ ≤ Nf ,

‖g(t, u(t))‖ ≤ Ng

}
, u ∈ X, t ∈ [0, T0], (24)

where Nf = Lf

{
T θ1
0 +R(1 + LLw) + LLwT

θ2
0

}
+N1 and Nf = LgR+N2.

For the first term on the right hand side of (23), we have

‖Aα−1[S(τ2)− S(τ1)]u0‖ ≤

∫ τ2

τ1

‖Aα−1S′(s)u0‖ds

=

∫ τ2

τ1

‖AαS(s)u0‖ds

=

∫ τ2

τ1

‖S(s)‖ ‖u0‖αds

≤ M‖u0‖α(τ2 − τ1). (25)
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For the second and third term on the right hand side of (23), we have the following
estimate

‖(S(τ2 − s)− S(τ1 − s))‖α−1 ≤

∫ τ2−τ1

0

‖Aα−1S′(l)S(τ1 − s)‖dl

=

∫ τ2−τ1

0

‖S(l)AαS(τ1 − s)‖dl

≤ MCα(τ2 − τ1)(τ1 − s)−α. (26)

Then using the inequality (26), we get the following bounds for the second and third
term on the right hand side of (23) as

∫ τ1

0

‖(S(τ2 − s)− S(τ1 − s))Aα−1‖‖f(s, u(s), u(w(s, u(s))))‖ds

≤ NfMCα
T 1−α
0

1− α
(τ2 − τ1). (27)

∫ τ1

0

‖(S(τ2 − s)− S(τ1 − s))Aα−1‖
{∫ s

0

|a(s, τ)| ‖g(τ, u(τ))‖dτ
}
ds

≤MNgCαaT0

T 1−α
0

1− α
(τ2 − τ1). (28)

The fourth and fifth term on the right side of (23) are estimated as

∫ τ2

τ1

‖S(τ2 − s)Aα−1‖‖f(s, u(s), u(w(s, u(s))))‖ds

≤ ‖Aα−1‖MNf(τ2 − τ1). (29)

∫ τ2

τ1

‖S(τ2 − s)Aα−1‖
{∫ s

0

|a(s, τ)| ‖g(τ, u(τ))‖dτ
}
ds

≤ ‖Aα−1‖aT0
MNg(τ2 − τ1). (30)

Thus from the inequalities (25) and (27)-(30), we see that

‖(Gu)(τ2)− (Gu)(τ1)‖α−1 ≤M
{
‖u0‖α + Cα(Nf + aT0

Ng)
T 1−α
0

1− α

+(Nf + aT0
Ng) ‖A

α−1‖
}
(τ2 − τ1). (31)

For τ1, τ2 ∈ (t1, t2], τ1 < τ2 and 0 ≤ α < 1, we have

‖(Gu)(τ2)− (Gu)(τ1)‖α−1

≤ ‖[S(τ2)− S(τ1)]u0‖α−1 + ‖Aα−1[S(τ2 − t1)− S(τ1 − t1)]I1(u(t
−
1 ))‖

+

∫ τ1

0

‖Aα−1[S(τ2 − s)− S(τ1 − s)]‖
{
‖f(s, u(s), u(w(s, u(s)))) + Υu(s)‖

}
ds

+

∫ τ2

τ1

‖Aα−1S(τ2 − s)‖
{
‖f(s, u(s), u(w(s, u(s)))) + Υu(s)‖

}
ds. (32)
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The second term on the right side of (32) is estimated as

‖Aα−1[S(τ2 − t1)− S(τ1 − t1)]I1(u(t
−
1 ))‖ ≤

∫ τ2

τ1

‖Aα−1S′(t− t1)‖‖I1(u(t
−
1 ))‖ds

=

∫ τ2

τ1

‖AαS(t− t1)‖ ‖I1(u(t
−
1 ))‖ds

≤ M ‖I1(u(t
−
1 ))‖α(τ2 − τ1). (33)

Thus, from the inequalities (25), (27)-(30) and (33), we see that

‖(Gu)(τ2)− (Gu)(τ1)‖α−1

≤M
{
‖u0‖α + ‖I1(u(t

−
1 ))‖α + Cα(Nf + aT0

Ng)
T 1−α
0

1− α

+(Nf + aT0
Ng) ‖A

α−1‖
}
(τ2 − τ1). (34)

Similarly, for τ1, τ2 ∈ (tk, tk+1], τ1 < τ2, k = 1, 2, · · · ,m and 0 ≤ α < 1, we have

‖(Gu)(τ2)− (Gu)(τ1)‖α−1

≤M
{
‖u0‖α +

k∑

i=1

‖Ii(u(t
−
i ))‖α + Cα(Nf + aT0

Ng)
T 1−α
0

1− α

+(Nf + aT0
Ng) ‖A

α−1‖
}
(τ2 − τ1). (35)

Thus, for each τ1, τ2 ∈ [0, T0], τ1 < τ2 and 0 ≤ α < 1, we have

‖(Gu)(τ2)− (Gu)(τ1)‖α−1 ≤ L(τ2 − τ1), (36)

where L = max{M‖u0‖α,M
∑m

i=1 ‖Ii(u(t
−
i ))‖α, (Nf + aT0

Ng)MCα
T 1−α
0

1−α , (Nf +

aT0
Ng)M‖A1−α‖}.

Therefore, G is piecewise Lipschitz continuous on [0, T0] and so G : X1 → X1.

Next we will show that G : W → W .

Let u ∈ X ∩X1 and t ∈ [0, t1], we have

‖(Gu)(t)− u0‖α ≤ ‖(S(t)− I)Aαu0‖

+

∫ t

0

‖S(t− s)Aα‖‖f(s, u(s), u(w(s, u(s))))‖ds

+

∫ t

0

‖S(t− s)Aα‖
[ ∫ s

0

|a(s, τ)| ‖g(s, u(s))‖dτ
]
ds

≤
R

2
+ Cα[(Nf + aT0

Ng)]
T 1−α
0

1− α
≤ R. (37)
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Similarly, for each t ∈ (tk, tk+1], k = 1 · · · ,m, we have

‖(Gu)(t)− u0‖α ≤ ‖(S(t)− I)Aαu0‖

+

∫ t

0

‖S(t− s)Aα‖‖f(s, u(s), u(w(s, u(s))))‖ds

+

∫ t

0

‖S(t− s)Aα‖
[ ∫ s

0

|a(s, τ)| ‖g(s, u(s))‖dτ
]
ds

+

k∑

i=1

‖AαS(t− ti)Ii(u(t
−
i ))‖

≤
R

2
+ Cα[(Nf + aT0

Ng)]
T 1−α
0

1− α
+M

k∑

i=1

‖Ii(u(t
−
i ))‖α

≤ R. (38)

Thus, from (37), (38) and (21), it is clear that

‖Gu− u0‖PC ≤ R.

Therefore, G : W → W is well defined.

Finally, we will claim that G is a contraction on W . If [0, t1], u, v ∈ W , then we have

‖(Gu)(t)− (Gv)(t)‖α ≤

∫ t

0

‖S(t− s)Aα‖ ‖f(s, u(s), u(w(s, u(s))))

−f(s, v(s), u(v(s, v(s))))‖ds +

∫ t

0

‖S(t− s)Aα‖

[ ∫ s

0

|a(s, τ)| ‖g(τ, u(τ))− g(τ, v(τ))‖dτ
]
ds. (39)

We also note that

‖f(s, u(s), u(w(s, u(s))))− f(s, v(s), u(v(s, v(s))))‖

≤ Lf

{
‖u(s)− v(s)‖α + ‖u(w(s, u(s)))− u(w(s, v(s)))‖α−1

+‖u(w(s, v(s))) − v(w(s, v(s)))‖α−1

}

≤ Lf (2 + LLw)‖u− v‖PC . (40)

and

‖g(τ, u(τ))− g(τ, v(τ))‖α ≤ Lg‖u− v‖PC . (41)

We use (40) and (41) into (39), we get

‖(Gu)(t)− (Gv)(t)‖α

≤
Cα

(1− α)

{
Lf (2 + LLw) + aT0

Lg

}
T 1−α
0 ‖u− v‖PC .
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For t ∈ (t1, t2], we have

‖(Gu)(t)− (Gv)(t)‖α ≤
[
Cα{Lf(2 + LLw) + aT0

Lg}
T 1−α
0

(1− α)

+M‖I1(u(t
−
1 ))‖α

]
‖u− v‖PC .

For t ∈ (tk, tk+1], k = 1, 2, 3, · · · ,m, we have

‖(Gu)(t)− (Gv)(t)‖α ≤
[
Cα{Lf(2 + LLw) + aT0

Lg}
T 1−α
0

(1− α)

+M
k∑

i=1

‖Ii(u(t
−
i ))‖α

]
‖u− v‖PC .

Thus, for each t ∈ [0, T0], we have

‖(Gu)(t)− (Gv)(t)‖α ≤
[
Cα{Lf(2 + LLw) + aT0

Lg}
T 1−α
0

(1− α)

+M

m∑

i=1

di

]
‖u− v‖PC . (42)

Therefore, the map G is a contraction map, hence G has a unique fixed point u ∈ W .
That is, problem (5) has a unique mild solution.

4 Further Existence Results

Theorem 3.1 can be proved if we drop the hypothesis (H1),(H2) and (H3). In that case
the proof is based on the idea of Wang et al. [21].

Theorem 4.1 Assume the conditions (H4)-(H6) hold. The semigroup {S(t)}t≥0 is
compact, f : I × H × H → H and g : I ×H → H are continuous. Let u0 ∈ Hα there
exists a constant r > 0 such that

M
{
‖u0‖α +

k∑

i=1

‖Ii(u(t
−
i ))‖α

}
+ Cα(Mf + aT0

Mg)
T 1−α
0

1− α
≤ r, (43)

where

Mf = sup
s∈I,u∈Ω

‖f(s, u(s), u(w(s, u(s))))‖, Mg = sup
s∈I,u∈Ω

‖g(s, u(s))‖ (44)

and

Ω = {v ∈ PC(Hα) : ‖v‖PC ≤ r}.

Then there exists a mild solution u ∈ PC(Hα) of the problem (5).
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Proof. Let us define a map F : PC(Hα) → PC(Hα), by

(Fu)(t) =





S(t)u0 +
∫ t

0 S(t− s)[f(s, u(s), u(w(s, u(s)))) + Υu(s)]ds, t ∈ [0, t1],

S(t)u0 + S(t− t1)I1(u(t
−
1 ))

+
∫ t

0 S(t− s)[f(s, u(s), u(w(s, u(s)))) + Υu(s)]ds, t ∈ (t1, t2],
...

S(t)u0 +
∑k

i=1 S(t− ti)Ii(u(t
−
i ))

+
∫ t

0 S(t− s)[f(s, u(s), u(w(s, u(s)))) + Υu(s)]ds, t ∈ (tk, tk+1],
k = 1, 2, · · · ,m.

Step 1. First we show that F is continuous. It follows from the continuity of f and g
that

‖f(s, un(s), un(w(s, un(s)))) − f(s, u(s), u(w(s, u(s))))‖ ≤ ǫ, as n→ ∞,

‖g(s, un(s)) − g(s, u(s))‖ ≤ ǫ, as n→ ∞,

for s ∈ [0, t], t ∈ [0, T0].
Now, for each t ∈ [0, t1], we have

‖(Fun)(t)− (Fu)(t)‖α ≤ Cα(1 + aT0
)
T 1−α
0

1− α
ǫ→ 0, as n→ ∞. (45)

For, t ∈ (t1, t2], we have

‖(Fun)(t)− (Fu)(t)‖α

≤M‖I1(un(t
−
1 ))− I1(u(t

−
1 ))‖α + Cα(1 + aT0

)
T 1−α
0

1− α
ǫ→ 0, as n→ ∞. (46)

Similarly, for each t ∈ (tk, tk+1], k = 1, 2, · · · ,m,

‖(Fun)(t)− (Fu)(t)‖α

≤M
k∑

i=1

‖Ii(un(t
−
i ))− Ii(u(t

−
i ))‖α + Cα(1 + aT0

)
T 1−α
0

1− α
ǫ→ 0, as n→ ∞.

(47)

Thus, from the inequalities (45)-(47), we see that F is continuous.
Step 2. Next we show that F maps bounded sets into bounded sets in PC(Hα).
Let u ∈ Ω, then for t ∈ [0, t1], we have

‖(Fu)(t)‖α ≤M‖u0‖α + Cα(Mf + aT0
Mg)

T 1−α
0

1− α
. (48)

For each t ∈ (t1, t2], we have

‖(Fu)(t)‖α ≤M
{
‖u0‖α + ‖I1(u(t

−
1 ))‖α

}
+ Cα(Mf + aT0

Mg)
T 1−α
0

1− α
. (49)
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Similarly, for each t ∈ (tk, tk+1], k = 1, 2, · · · ,m, we have

‖(Fu)(t)‖α ≤M
{
‖u0‖α +

k∑

i=1

‖Ii(u(t
−
i ))‖α

}
+ Cα(Mf + aT0

Mg)
T 1−α
0

1− α
. (50)

Thus, from inequalities (43) and (48)-(50), we see that F : Ω → Ω.
Step 3. In this step, we show that F maps bounded sets into equicontinuous sets in

PC(Hα). Let τ1, τ2 ∈ [0, t1], τ1 < τ2, we have

‖(Fu)(τ2)− (Fu)(τ1)‖α

≤M
{
‖u0‖α + Cα(Mf + aT0

Mg)
T 1−α
0

1− α

+‖Aα−1‖(Mf + aT0
Mg)

}
(τ2 − τ1). (51)

Similarly, for each τ1, τ2 ∈ (tk, tk+1], τ1 < τ2, k = 1, 2, · · · ,m, we have

‖(Fu)(τ2)− (Fu)(τ1)‖α

≤M
{
‖u0‖α +

k∑

i=1

‖Ii(u(t
−
i ))‖α + Cα(Mf + aT0

Mg)
T 1−α
0

1− α

+‖Aα−1‖(Mf + aT0
Mg)

}
(τ2 − τ1).

(52)

The right hand side of (52) tends to zero as τ2 → τ1. Hence, F(Ω) is equicontinuous.
Step 4. F maps Ω into a compact set in Hα.
For this purpose, we decompose F by F = F1 + F2,
where

(F1u)(t) = S(t)u0 +

∫ t

0

S(t− s)
[
f(s, u(s), u(w(s, u(s)))) + Υu(s)

]
ds,

t ∈ I\ {t1, · · · , tm},

and

(F2u)(t) =






0, t ∈ [0, t1],

∑k
i=1 S(t− ti)Ii(u(t

−
i )), t ∈ (tk, tk+1], k = 1, 2, · · · ,m.

Since F2 is a constant map and hence compact.
Finally, we need to prove that (F1u)(t) is relatively compact in Ω for 0 ≤ t ≤ T0.

The set {S(t)u0} is precompact in Hα for each t ∈ [0, T0], since {S(t), t ≥ 0} is compact.
For t ∈ (0, T0], and ǫ > 0 sufficiently small, we define

(F ǫ
1u)(t) = S(ǫ)

∫ t−ǫ

0

S(t− ǫ− s)
[
f(s, u(s), u(w(s, u(s)))) + Υu(s)

]
ds, u ∈ Ω.
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The set {(F ǫ
1u)(t) : u ∈ Ω} is precompact in Hα since S(ǫ) is compact. Moreover, for

any u ∈ Ω, we have

‖(F1u)(t)− (F ǫ
1u)(t)‖α ≤

∫ t

t−ǫ

‖AαS(t− s)‖ ‖f(s, u(s), u(w(s, u(s))))‖ds

+

∫ t

t−ǫ

‖AαS(t− s)‖
{∫ s

0

|a(s, τ)| ‖g(s, u(s))‖dτ
}
ds

≤ M(Mf + aT0
Mg)ǫ.

Therefore, {(F ǫ
1u)(t) : u ∈ Ω} is arbitrarily close to the set {(F1u)(t) : u ∈ Ω}, t > 0.

Hence the set {(F1u)(t) : u ∈ Ω} is precompact in Hα.
Thus, F1 is a compact operator by Arzela-Ascoli theorem, and hence F is a compact

operator. Then Schauder fixed point theorem ensures that F has a fixed point, which
gives rise to a PC-mild solution.

5 Application

Consider the following semi-linear heat equation with a deviating argument

∂u

∂t
=

∂2u

∂x2
+ H̃(x, u(x, t)) +G(t, x, u(x, t)),

+
∫ t

0 a(t, τ)
∂
∂x [ξ(x, τ, u(x, τ),

∂
∂xu(x, τ))]dτ

x ∈ (0, 1) , t ∈ (0, 12 ) ∪ (12 , 1),

∆u|t= 1
2

=
u( 1

2
)−

1+u( 1
2
)−
,

u(0, t) = u(1, t) = 0,
u(x, 0) = u0(x), x ∈ (0, 1),





(53)

where

H̃(x, u(x, t)) =

∫ x

0

K(x, y)u(y, g(t)|u(y, t)|)dy,

and the function G : R+× [0, 1]×R → R is measurable in x, locally Hölder continuous in
t, locally Lipschitz continuous in u, uniformly in x. Assume that ψ : R+ → R+ is locally
Hölder continuous in t with ψ(0) = 0 and K ∈ C1([0, 1]× [0, 1];R).

Let X = L2((0, 1);R). We define an operator A as follows,

Au = −
∂2u

∂x2
, D(A) = H1

0 (0, 1) ∩H
2(0, 1), (54)

where X1/2 = D(A1/2) = H1
0 (0, 1) and X−1/2 = (H1

0 (0, 1))
∗ = H−1(0, 1) = H2(0, 1).

Here clearly the operator A is self-adjoint with compact resolvent and is the infinitesimal
generator of an analytic semigroup S(t).

Let us define g : [0,∞)×D(A) → X by

g(t, φ)(x) =
∂

∂x
[φ(x, t, φ(x, t),

∂

∂x
φ(x, t))], (55)

and the function f : R+ ×X1/2 ×X−1/2 → X , is given by

f(t, φ, ψ)(x) = H̃(x, ψ) +G(t, x, φ), (56)
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where H̃ : [0, 1]×X → H1
0 (0, 1) is given by

H̃(t, ψ(x, t)) =

∫ x

0

K(x, y)ψ(y, t)dy (57)

with ψ(x, t) = φ(x,w(t, φ(x, t))) and w(t, φ(x, t)) = g(t)|φ(x, t)| , G : R
+ × [0, 1] ×

H2(0, 1) → H1
0 (0, 1) satisfies the following

‖G(t, x, φ)‖ ≤ Q(x, t)(1 + ‖ψ‖H2(0,1)) (58)

with Q(., t) ∈ X and Q is continuous in its second argument. Then, we can easily verify
that the assumptions (H1)-(H6) hold. For more details, we refer the reader to [7].

6 Conclusion

The sufficient conditions of the existence and uniqueness of PC-mild solutions to the
integro-differential equations with a deviating argument are established.
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Abstract: In this work, an application is made of an extension of the Leggett-
Williams fixed point theorem to a second-order right focal dynamic boundary value
problem which requires neither of the functional boundaries to be invariant. In con-
clusion, two nontrivial examples are provided.
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1 Introduction

For years, fixed point theory has found itself as a center of study for boundary value
problems. Many results have provided criteria for the existence of positive solutions or
multiple positive solutions using fixed points of operators. Some of these results can be
seen in the works of Guo [10], Krosnosel’skii [12], Leggett and Williams [13], and Avery
et al. [1, 3, 6].

Applications of the aforementioned fixed point theorems have been seen in works
dealing with ordinary differential equations [2,5,9] and finite difference equations [4,7,11],
and most relevant to this paper, the theorems have been utilized for results that involve
dynamic equations on time scales [8, 14, 15].

In this paper, we show an application of the recent extension of the Leggett-Williams
fixed point theorem by Avery et al. [1] to a right-focal dynamic boundary value problem
on a time scale.
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Let T be a time scale with 0, σ2(1) ∈ T. We consider the right focal dynamic boundary
value problem

x∆∆ + f(x(σ(t))) = 0, t ∈ (0, 1) ∩ T, (1)

on the time scale T with boundary conditions

x(0) = x∆(σ(1)) = 0, (2)

where f : [0,∞) → [0,∞) is continuous.

2 Definitions

In this section, we present definitions and conventions that will be used throughout the
rest of the paper.

Definition 2.1 We define the closed interval [0, 1] to mean

[0, 1] = {t ∈ T : 0 ≤ t ≤ 1}.

All other intervals are defined similarly, except for those specifying the domain or
codomain of a function.

Definition 2.2 Let E be a real Banach space. A nonempty closed convex set P ⊂ E
is called a cone provided:

(i) x ∈ P , λ ≥ 0 implies λx ∈ P ;

(ii) x ∈ P , −x ∈ P implies x = 0.

Definition 2.3 A map α is said to be a nonnegative continuous concave functional
on a cone P of a real Banach space E if α : P → [0,∞) is continuous and

α(tx + (1− t)y) ≥ tα(x) + (1− t)α(y)

for all x, y ∈ P and t ∈ [0, 1]. Similarly we say the map β is a nonnegative continuous
convex functional on a cone P of a real Banach space E if β : P → [0,∞) is continuous
and

β(tx + (1− t)y) ≤ tβ(x) + (1− t)β(y)

for all x, y ∈ P and t ∈ [0, 1].

3 The Fixed Point Theorem

We first define sets that are integral to the fixed point theorem. Let α and ψ be non-
negative continuous concave functionals on P and let δ and β be nonnegative continuous
convex functionals on P . We define the sets

A = A(α, β, a, d) = {x ∈ P : a ≤ α(x) and β(x) ≤ d},

B = B(δ, b) = {x ∈ A : δ(x) ≤ b},

and
C = C(ψ, c) = {x ∈ A : c ≤ ψ(x)}.

The following fixed point theorem is attributed to Anderson, Avery, and Henderson [1]
and is an extension of the original Leggett-Williams fixed point theorem [13].
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Theorem 3.1 Suppose P is a cone in a real Banach space E, α and ψ are nonneg-
ative continuous concave functionals on P, δ and β are nonnegative continuous convex
functionals on P, and for nonnegative real numbers a, b, c, and d, the sets A, B, and C
are defined as above. Furthermore, suppose A is a bounded subset of P, T : A → P is a
completely continuous operator, and that the following conditions hold:

(A1) {x ∈ A : c < ψ(x) and δ(x) < b} 6= ∅, {x ∈ P : α(x) < a and d < β(x)} = ∅;

(A2) α(Tx) ≥ a for all x ∈ B;

(A3) α(Tx) ≥ a for all x ∈ A with δ(Tx) > b;

(A4) β(Tx) ≤ d for all x ∈ C; and

(A5) β(Tx) ≤ d for all x ∈ A with ψ(Tx) < C.

Then T has a fixed point x∗ ∈ A.

4 Existence of a Positive Solution of (1), (2)

In this section, we show the existence of at least one positive solution to (1), (2). To that
end, we now consider the dynamic equation

x∆∆ + f(x(σ(t))) = 0, t ∈ (0, 1),

on a time scale T with boundary conditions

x(0) = x∆(σ(1)) = 0,

where f : [0,∞) → [0,∞) is continuous. If x is a fixed point of the operator T defined
by

Tx(t) :=

∫ σ(1)

0

G(t, s)f(x(σ(s)))∆s, t ∈ [0, σ2(1)],

where G(t, s) defined on [0, σ2(1)]× [0, σ(1)] by

G(t, s) =





t, 0 ≤ t ≤ s ≤ σ(1),

σ(s), σ2(1) ≥ t ≥ σ(s) ≥ 0,

is the Green’s function for the operator L defined by

(Lx)(t) := −x∆∆,

with right focal boundary conditions

x(0) = x∆(σ(1)) = 0,

then it is well known that x is a solution of the boundary value problem (1), (2).
Throughout the remainder of the paper, we will often make use of the following

property of the preceeding Green’s function. For any y, w ∈ [0, σ2(1)] with y ≤ w,

yG(w, s) ≤ wG(y, s),
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which implies

y

∫ σ(1)

0

G(w, s)∆s ≤ w

∫ σ(1)

0

G(y, s)∆s. (3)

Let E = Crd[0, σ
2(1)] be the Banach Space composed of right-dense continuous func-

tions from [0, σ2(1)] into R with the norm

||x|| = max
t∈[0,σ2(1)]

|x(t)|.

Define the cone P ⊂ E by

P = {x ∈ E : x is nondecreasing, nonegative, and concave.}

For fixed τ, µ, ν ∈ [0, σ2(1)], define the nonnegative concave functionals α and ψ to
be

α(x) = min
t∈[τ,σ2(1)]

x(t) = x(τ),

ψ(x) = min
t∈[µ,σ2(1)]

x(t) = x(µ),

and the nonnegative, convex functionals δ and β to be

δ(x) = max
t∈[0,ν]

x(t) = x(ν),

β(x) = max
t∈[0,σ2(1)]

x(t) = x(σ2(1)).

Theorem 4.1 Let τ, µ, ν ∈ (0, σ2(1)] with 0 < τ ≤ µ < ν ≤ σ2(1). Let d and m
be positive reals with 0 < m ≤ dµ

σ2(1) and suppose f : [0,∞) → [0,∞) is continuous and

satisfies the following:

(i) f(w) ≥ d
(ν−τ)σ2(1) for τd

σ2(1) ≤ w ≤ νd
σ2(1) ;

(ii) f(w) is decreasing for 0 ≤ w ≤ m and f(m) ≥ f(w) for m ≤ w ≤ d; and

(iii)
∫ µ

0 σ(s)f
(

mσ(s)
σ(µ)

)
∆s ≤ d− f(m)σ2(1)(σ(1) − µ).

Then (1),(2) has at least one positive solution x∗ ∈ A(α, β, τd
σ2(1) , d).

Proof. Let a =
τd

σ2(1)
, b =

νd

σ2(1)
, and c =

µd

σ2(1)
. Define Tx(t) =

∫ σ(1)

0 G(t, s)f(x(σ(s)))∆s. Now by definition, A ⊂ P , and for all x ∈ A, d ≥ β(x) =

max
t∈[0,σ(1)]

x(t) = x(σ2(1)), and so A is bounded.

Now, if x ∈ A ⊂ P , then Tx(t) =
∫ σ2(1)

0 G(t, s)f(x(σ(s)))∆s, and so Tx∆∆(t) =
−f(x(σ(s))) ≤ 0 for t ∈ [0, 1], and so Tx is concave, and Tx∆(t) is nonincreasing on
[0, σ(1)]. Furthermore, Tx∆(σ(1)) = 0, and so Tx∆(t) ≥ 0 on [0, σ(1)]. So Tx is
nondecreasing on [0, σ2(1)]. Therefore, T : A→ P .
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Now we prove our first enumerated condition (A1). Let K ∈ R with
µd

σ2(1)
∫ σ(1)

0 G(µ, s)∆s
< K <

νd

σ2(1)
∫ σ(1)

0 G(ν, s)∆s
, which is well-defined by (3). Define

xK(t) = K
∫ σ(1)

0 G(t, s)∆s. So xK ∈ P ,

α(xK ) = K

∫ σ(1)

0

G(τ, s)∆s

>
µd

∫ σ(1)

0 G(τ, s)∆s

σ2(1)
∫ σ(1)

0 G(µ, s)∆s

≥
τd

∫ σ(1)

0
G(µ, s)∆s

σ2(1)
∫ σ(1)

0
G(µ, s)∆s

=
τd

σ2(1)
= a,

and

β(xK) = K

∫ σ(1)

0

G(σ2(1), s)∆s

<
νd

∫ σ(1)

0
G(σ2(1), s)∆s

σ2(1)
∫ σ(1)

0
G(ν, s)∆s

≤
σ2(1)d

∫ σ(1)

0 G(ν, s)∆s

σ2(1)
∫ σ(1)

0
G(ν, s)∆s

= d.

So xK ∈ A. Now

ψ(xK) = K

∫ σ(1)

0

G(µ, s)∆s

>
µd

∫ σ(1)

0 G(µ, s)∆s

σ2(1)
∫ σ(1)

0
G(µ, s)∆s

=
µd

σ2(1)
= c,

and

δ(xK) = K

∫ σ(1)

0

G(ν, s)∆s

<
νd

∫ σ(1)

0 G(ν, s)∆s

σ2(1)
∫ σ(1)

0
G(µ, s)∆s

=
νd

σ2(1)
= b.

So {x ∈ A : c < ψ(x) and δ(x) < b} 6= ∅.
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Next, let x ∈ P with β(x) > d. Then since for all y ≤ w, wx(y) ≥ yx(w), σ2(1)x(τ) ≥
τx(σ2(1)), and so

α(x) = x(τ) ≥
τ

σ2(1)
x(σ2(1)) =

τβ(x)

σ2(1)
>

τd

σ2(1)
= a.

Therefore {x ∈ P : α(x) < a and d < β(x)} = ∅.
Next, we prove (A2). Chose x ∈ B. So δ(x) ≤ b. Now by (i),

α(Tx) =

∫ σ(1)

0

G(τ, s)f(x(σ(s)))∆s

≥

∫ ν

τ

G(τ, s)f(x(σ(s)))∆s

=

∫ ν

τ

τf(x(σ(s)))∆s

≥

∫ ν

τ

τ

(
d

(ν − τ)σ2(1)

)
∆s

=
dτ

σ2(1)
= a.

Next, we prove (A3). Let x ∈ A with δ(Tx) > b. Then, by (3),

α(Tx) =

∫ σ(1)

0

G(τ, s)f(x(σ(s)))∆s

≥
τ

ν

∫ σ(1)

0

G(ν, s)f(x(σ(s)))∆s

=
τ

ν
δ(Tx)

>
τ

ν
·
νd

σ2(1)
=

τd

σ2(1)
= a.

Now we prove (A4). Now, since x is concave and nondecreasing for all t ∈ [0, µ],

x(σ(t)) ≥
x(σ(µ)))σ(t)

σ(µ)
≥
cσ(t)

σ(µ)
≥
mσ(t)

σ(µ)
.

So by conditions (ii) and (iii), we have

β(Tx) =

∫ σ(1)

0

G(σ2(1), s)f(x(σ(s)))∆s

=

∫ σ(1)

0

σ(s)f(x(σ(s)))∆s

=

∫ µ

0

σ(s)f(x(σ(s)))∆s +

∫ σ(1)

µ

σ(s)f(x(σ(s)))∆s

≤

∫ µ

0

σ(s)f

(
mσ(s)

σ(µ)

)
∆s+

∫ σ(1)

µ

σ2(1)f(m)∆s

≤ d− f(m)σ2(1)(σ(1) − µ) + f(m)σ2(1)(σ(1)− µ)

= d.



82 J.W. LYONS AND J.T. NEUGEBAUER

Finally, we prove our last condition, (A5). Let x ∈ A with ψ(Tx) < c. So, we have

β(Tx) =

∫ σ(1)

0

G(σ2(1), s)f(x(σ(s)))∆s ≤
σ2(1)

µ

∫ σ(1)

0

G(µ, s)f(x(σ(s)))∆s

=
σ2(1)

µ
ψ(Tx) ≤

σ2(1)c

µ
= d.

Thus T has a fixed point x∗ ∈ A, and therefore x∗ is a positive solution of (1), (2).

5 Two Nontrivial Examples

Example 5.1 Let T = [0, 12 ] ∪ [1, 32 ] and consider the boundary value problem

x∆∆ +
1

x(σ(t)) + 1
= 0, t ∈ (0, 1) ∩ T, x(0) = x∆(σ(1)) = 0.

Choose τ = 1
30 , µ = 1

2 , ν = 1, m = 1
4 , and d = 3

5 . Note that 0 < τ ≤ µ < ν ≤ σ2(1) = 1

and 0 < m < dµ
σ2(1) =

3
5
· 1
2

1 = 3
10 . Also, f(w) = 1

w+1 is continuous from the nonnegative

reals to the nonnegative reals. Lastly,

(i) for 1
50 ≤ w ≤ 3

5 , f(w) ≥ f(35 ) =
5
8 >

18
29 = d

(ν−τ)σ2(1) ,

(ii) since f ′(w) < 0 for w ≥ 0, f(w) is decreasing for 0 ≤ w ≤ 1
4 and for 1

4 ≤ w ≤
3
5 , f(m) = f(14 ) ≥ f(w), and

(iii)
∫ µ

0
σ(s)f

(
mσ(s)
σ(µ)

)
∆s =

∫ 1
2

0
sf(14s)∆s =

∫ 1
2

0
s

1
1
4s+ 1

∆s ≈ 0.115471 < 0.2 = 3
5 −

2
5 = 3

5 − f(14 )(1)
1
2 = d− f(m)σ2(1)(σ(1) − µ).

Therefore, the boundary value problem has at least one positive solution, x∗, in
A(α, β, 1

50 ,
3
5 ). That is, x

∗( 1
30 ) ≥

1
50 and x∗(1) ≤ 3

5 .

Example 5.2 Let T = 2Z = {2n : n ∈ Z} ∪ {0}. Consider the boundary value
problem

x∆∆ +
cos2(0.2x(σ(t)))√
(x(σ(t)))1/10 + 1

= 0, t ∈ (0, 1) ∩ T, x(0) = x∆(σ(1)) = 0.

Choose τ = 1
1024 , µ = 2, ν = 4, m = 1

5 , and d = 5
2 . Note that 0 < τ ≤ µ < ν ≤

σ2(1) = 4 and 0 < m < dµ
σ2(1) =

5
2
·2

4 = 5
4 . Also, f(w) =

cos2(0.2w)√
w1/10+1

is continuous from the

nonnegative reals to the nonnegative reals. Now,

(i) for 5
8192 ≤ w ≤ 5

2 , f(w) ≥ f(52 ) ≈ 0.531967 > 128
819 = d

(ν−τ)σ2(1) ,

(ii) since f ′(w) < 0 for 0 ≤ w ≤ 5
2 , f(w) is decreasing for 0 ≤ w ≤ 1

5 and for
1
5 ≤ w ≤ 5

2 , f(m) = f(15 ) ≥ f(w), and

(iii)
∫ µ

0 σ(s)f
(

mσ(s)
σ(µ)

)
∆s =

∞∑
k=0

1

2k−1
f

(
1

20 · 2k−1

)
·
1

2k
≈ 2.00009 <

5

2
=

5

2
− f

(
1

5

)
·

4(2− 2) = d− f(m)σ2(1)(σ(1) − µ).

Therefore, the boundary value problem has at least one positive solution, x∗, in
A(α, β, 5

8192 ,
5
2 ). That is, x

∗( 1
1024 ) ≥

5
8192 and x∗(4) ≤ 5

2 .
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6 Conclusion

Here it was shown how a recent Avery et al. fixed point theorem [1] that was developed
as an extension of the original Leggett-Williams fixed point theorem [13] can be applied
to show under certain conditions, the existence of a second order right focal dynamic
boundary value problem. Two nontrivial examples were then provided to show that
these conditions could be applied to specific boundary value problems.

References

[1] Anderson, D. R, Avery, R. I. and Henderson, J. A topological proof and extension of the
Leggett-Williams fixed point theorem. Comm. Appl. Nonlinear Anal. 16 (4) (2009) 39–44.

[2] Anderson, D. R., Avery, R. I. and Henderson, J. Existence of a positive solution to a right
focal boundary value problem. Electron. J. Qual. Theory. Differ. Equ. 2010 (5) (2010) 1–6.

[3] Anderson, D. R., Avery, R. I., and Henderson, J. Functional expansion-compression fixed
point theorem of Leggett-Williams type. Electron. J. Differential Equations 2010 (63)
(2010) 1–9.

[4] Anderson, D.R, Avery, R. I., Henderson, J., Liu, X, and Lyons, J. W. Existence of a positive
solution for a right focal discrete boundary value problem. J. Differ. Equ. Appl. 17 (2011)
1635–1642.

[5] Avery, R. I., Davis, J. M. and Henderson, J. Three symmetric positive solutions for Lidstone
problems by a generalization of the Leggett-Williams theorem. Electron. J. Differential

Equations 2000 (2000) 1–15.

[6] Avery, R. I. and Henderson, J. Two positive fixed points of nonlinear operators on ordered
Banach spaces. Comm. Appl. Nonlinear Anal. 8 (2001) 27–36.

[7] Cai, X. and Yu, J. Existence theorems for second-order discrete boundary value problems.
J. Math. Anal. Appl. 320 (2006) 649–661.

[8] Erbe, L. H., Peterson, A., and Tisdell C. Existence of solutions to second-order BVPs on
times scales. Appl. Anal. 84 (2005) 1069–1078.

[9] Erbe, L. H. and Wang, H. On the existence of positive solutions of ordinary differential
equations. Proc. Amer. Math. Soc. 120 (1994) 743–748.

[10] Guo, D. Some fixed point theorems on cone maps. Kexeu Tongbao 29 (1984) 575–578.

[11] Henderson, J., Lui, X., Lyons, J. W., and Neugebauer, J.T. Right focal boundary value
problems for difference equations. Opuscula Math., 30 (2010) 447–456.

[12] Krasnosel’skii, M. A. Positive Solutions of Operator Equations. P. Noordhoff, Groningen,
The Netherlands, 1964.

[13] Leggett, R. W. and Williams, L. R. Multiple positive fixed points of nonlinear operators
on ordered Banach spaces. Indiana Univ. Math. J. 28 (1979) 673–688.

[14] Liu, X., Neugebauer, J. T., and Sutherland, S. Application of a functional type compression
expansion fixed point theorem for a right focal boundary value problem on a time scale.
Comm. Appl. Nonlinear Anal. 19 (2012) 25–39.

[15] Prasad, K. R. and Sreedhar, N. Even number of positive solutions for 3nth order three-point
boundary value problems on time scales. Electon. J. Qual. Theory Differ. Equ. 98 (2011)
1–16.



Nonlinear Dynamics and Systems Theory, 14 (1) (2014) 84–91

Robust Stabilization of Fractional-Order Uncertain

Systems with Multiple Delays in State

Masoumeh Nazari 1 and Saeed Balochian 1∗

1 Department of Electrical Engineering, Gonabad Branch, Islamic Azad University,

Gonabad, Iran

Received: August 27, 2013 ; Revised: January 19, 2014

Abstract: In this paper, a sliding mode control law is designed for stabilization
of specific class of linear systems of fractional order despite of multi delays in the
state system. A fractional order sliding surface is proposed, and using the variable
structure control theorem, control law is introduced. A numerical simulation is given
to show the effectiveness of the proposed design approach.
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1 Introduction

Recently, time delays inevitably exist in systems and processes [1, 2] due to poor per-
formance, undesirable system transient responses, and instabilities so that as a result,
most systems may include a delay term. In general, the time-delay is believed to have
a negative impact on the control system performance. To compensate for this impact,
Smith predictor schemes work fine for slow processes [3, 4]. In the last two decades, the
theory of fractional calculus has attracted researchers [5–9], because of its wide use in
different areas of sciences and engineering, such as viscoelastic systems [12,13], sinusoidal
oscillators [14], electromagnetic theory [15,16], and bioengineering [17]. The sliding mode
control (SMC) approach is one of the most important methods and this approach can be
used in many systems [18, 19] because of its robustness to parameter uncertainties and
insensitivity to external disturbances. Sliding mode control (SMC) is based on the theory
of variable structure systems [20]. The main feature of SMC is to cause states from initial
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conditions to a sliding surface and then the states are forced to remain on sliding surface
because the system on the sliding surface has desirable properties such as stability and
disturbance rejection capability [21]. Another approach is the use of fractional order
controllers such as the CRONE controller [22,23], the TID controller [24], the fractional
PID controller [25], and the FO adaptive SMC [26] to improve system control function.

The topic of the present work is the stability of fractional-order linear systems with
disturbances and multi time-delays have been done using the sliding mode control strat-
egy. In this paper, the sliding mode controller for a class of linear fractional order
systems with parameter uncertainties and multi time delay in state and input distur-
bance is proposed. The paper is presented as follows. In Section 2, basic definitions
in fractional calculus are given. In Section 3, problem formulation of fractional-order
systems is presented. Section 4 proposes the sliding mode control method. Numerical
simulation results are shown in Section 5. Finally, conclusion is made in Section 6.

2 Basic Definition and Preliminaries

There exist many definitions of fractional derivative. Two of the most commonly used
definitions are the Riemann-Liouville, and the Grunwald-Letnikov definitions. The
Grunwald-Letnikov fractional derivative of order q of a continuous function f(t) is defined
by [27]

Dq
t f(t) = lim

N→∞

[
t− a

N

]−q N−1∑

j=0

(−1)j
(
q

j

)
f(t− j

[
t− a

N

]
).

Riemann-Liouville fractional integral and derivative operators of order q are defined as

Dq
t f(t) =

1

Γ(n− q)

dn

dtn

∫ t

0

(t− τ)n−q−1f(τ)dτ.

where n is the first integer which is not less than q, i.e., n − 1 ≤ q < n and Γ is the
Gamma function

Γ(q) =

∫ ∞

0

e−ttq−1dt.

If 0 < q < 1, then the Riemann-Liouville fractional derivative and integral operators of
order q are defined as

Dq
t f(t) =

1

Γ(1− q)

d

dt

∫ t

0

(t− τ)−qf(τ)dτ,

Iqt f(t) = Iαf(t) =
1

Γ(q)

∫ t

0

(t− τ)q−1f(τ)dτ.

3 Stability

Lemma 3.1 [28] The following autonomous system:

Dqx(t) = Ax(t), x(0) = x0, (1)

where 0 < q < 1, x(t) ∈ R
n and A ∈ R

n×n is asymptotically stable if and only if

|arg(eig(A))| > qπ
2 , in this case, each component of the states decays towards origin

like t−q. Also, this system is stable if and only if |arg(eig(A))| ≥ qπ
2 and those critical

eigenvalues that satisfy |arg(eig(A))| = qπ
2 have geometric multiplicity one.
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The stable and unstable regions for 0 < q < 1 are shown in Figure 1.

Figure 1: Stability region of LTI fractional order system with order 0 < q < 1.

4 Problem Formulation

Now consider the linear uncertain system of fractional order with multi delays in state
as follows:

Dq
tx(t) =

N∑

i=1

αi(Aix(t) +Aid1x(t− td1) +Aid2x(t− td2) + . . .

+Aidlx(t− tdl) +BiB(u(t) + w(t))). (2)

where and x(t) ∈ R
n, u(t) ∈ R

m, w(t) ∈ R
p are the state vector, the controller, the

exogenous input of the system, Ai ∈ R
n×n, Bi ∈ R

n×m, B ∈ R
m×m, Aid ∈ R

n×n are
constant matrices, and q is the fractional derivative, 0 < q < 1, and αi are indeterminate
parameters which satisfy αi ≥ 0 and

∑N
i=1 αi = 1.

Conditions that are necessary mode switching systems starting from any point and
move on the switching surface and reach it (to switching level) are called reaching condi-
tions. One of these conditions is as follows. This condition reach is global but does not
guarantee limited arrival time:

V̇ (t) = SṠ, (3)

where S is sliding sector. Another requirement in [21] is suggested that including the
shown entity,

1

2

d

dt
S2 ≤ −η|S|,

where η is a positive constant. That fulfilling the above condition causes the switching

time reach less than |S(t=0)|
η .

5 Design of the Controller

In sliding mode control, the system state movement to a desired place, is comprised of two
parts, the reaching phase and the sliding phase. The control switching level (reachability
phase), should lead the system to the desired level. When all the modes of system were on
the surface, sliding mode occurs (sliding phase). In sliding mode, the dynamic behavior
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of the system is determined by choosing the switching level. Let the sliding surface S be
such that:

S(x, t) = I1−qx(t). (4)

Theorem 5.1 The sliding mode control law:

u(t) =
−B−1

a
k

S(t)

||S(t)||
, (5)

when

a = min{|B1|, |B2|, . . . , |BN |},

b = max{||A1x(t)||, ||A2x(t)||, . . . , ||ANx(t)||},

ddelay1 = max{||A1d1x(t− td1)||, ||A2d1x(t− td1)||, . . . , ||ANd1x(t− td1)||},

ddelay2 = max{||A1d2x(t− td2)||, ||A2d2x(t− td2)||, . . . , ||ANd2x(t− td2)||},

...

ddelayl = max{||A1dlx(t− tdl)||, ||A2dlx(t− tdl)||, . . . , ||ANdlx(t− tdl)||},

k = d+ ddelay1(x) + ddelay2(x) + · · ·+ ddelayN (x) + b||B||γ + ηe−λt||S(t)||1−δ,

and η > 0, λ > 0, 0 < δ ≤ 1.

Proof. The Lyapunov function to be defined in (2) taking the time derivative of S
in (3) and substituting by (4), we obtain:

Ṡ(t) =

N∑

i=1

αiAix(t) +

N∑

i=1

αiAid1x(t− td1) + · · ·+

N∑

i=1

αiAidNx(t− tdN )

+
N∑

i=1

αiBiBu(t) +
N∑

i=1

αiBiBw(t).

(6)

Substituting (4) in (2), we have

V̇ (t) = S(t)Ṡ(t) = ST (t)(

N∑

i=1

αiAix(t) +

N∑

i=1

αiAid1x(t− td1) + . . .

+

N∑

i=1

αiAidNx(t − tdN) +

N∑

i=1

αiBiBu(t) +

N∑

i=1

αiBiBw(t)).

(7)

On the other hand, we have

V̇ (t) = ST (t)Ṡ(t) = ST (t)(

N∑

i=1

αiAix(t) +

N∑

i=1

αiAid1x(t − td1) + . . .

+

N∑

i=1

αiAidNx(t− tdN)− k
S(t)

||S(t)||

∑N
i=1 αiBi

a
+

N∑

i=1

αiBiBw(t)),
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hence

V̇ (t) < ηe−λt||S(t)||2−δ.

This indicates that the Lyapunov function is positive definite and its derivative is negative
definite. By Lyapuonv stability theory and Lemma 1, the closed-loop system (1) with
the control law (u) in (4) is asymptotically stable.

We consider, the system states will reach the sliding mode S = 0 for a finite time T .
We have

ST Ṡ =
1

2

d(STS)

dt
=

1

2

dS2

dt
= S

dS

dt
.

It follows that
dt

d||S(T )||
=

1

ηe−λt||S(t)||1−δ
,

so
d||S(T )||

dt
= ηe−λt||S(t)||1−δ, (8)

we can integrate (8) from 0 to T , we have

T = −
1

λ
ln(1−

λ

δη
||S(0)||δ).

Therefore, t ≥ T , the system will converge to switching manifold at any initial state. T
is positive, it is enough that the selected constants

0 ≤
λ

δη
||S(0)||δ < 1.

✷

6 Simulation Results of the Proposed Sliding Mode Controller

The sliding mode controller given by (4) is applied to the fractional order systems given
by (1). Now consider this system, for example

Dq
tx(t) =

3∑

i=1

αi(Aix(t)+Aid1x(t−td1)+Aid2x(t−td2)+Aid3x(t−td3)+BiB(u(t)+w(t))),

Dq
tx(t)=α1(A1x(t)+A1d1x(t− td1)+A1d2x(t− td2)+A1d3x(t− td3)+B1B(u(t)+w(t)))

=α2(A2x(t)+A2d1x(t− td1)+A2d2x(t− td2)+A2d3x(t− td3)+B2B(u(t)+w(t)))

=α2(A2x(t)+A2d1x(t− td1)+A2d2x(t− td2)+A2d3x(t− td3)+B2B(u(t)+w(t))).

The initial conditions of system (1) are taken to be [x1(0) x2(0)]
T

= [2 − 1]
T
.

Then, we choose A1 =

[
13 −1
1 10

]
, A2 =

[
6 −8
12 9

]
, A3 =

[
5 −6
1 2

]
, A1d1 =

[
1 0
−5 3

]
, A1d2 =

[
0 1
2 14

]
, A1d3 =

[
0 2
7 4

]
, A2d1 =

[
0 8
5 9

]
, A2d2 =

[
0 1
8 2

]
,

A2d3 =

[
11 1
6 −1

]
, A3d1 =

[
0 10
10 10

]
, A3d2 =

[
4 1
1 9

]
, A3d3 =

[
0 5
1 4

]
,
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(a) State X(t).

(b) Control input u1(t). (c) Control input u2(t).

Figure 2: Sliding mode control α1 = 0.1, α2 = 0.5, α3 = 0.4 (sampling interval,
h = 0.005 s).

(a) State X(t).

(b) Control input u1(t). (c) Control input u2(t).

Figure 3: Sliding mode control α1 = 0.5, α2 = 0.5, α3 = 0 (sampling interval, h = 0.005
s).
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B =

[
−1 0
0 1

]
, B1 = 0.4, B2 = 0.6, B3 = 0.2, q = 0.5, h = 0.005, and

td1 = 2, td2 = 4, td3 = 11, and the disturbance is of the form of w(t) = sin(t). The
parameters of the controller are chosen such that η = 3, δ = 0.4, γ = 1, λ = 4. The
performance of the system is simulated. We plot this system for two different categories
of parameters α1, α2, α3. The plots of the states of the system are shown in Figures
2(a) and 3(a) for the different parameters α1, α2, α3. Figures 2(b) and 3(b) give the
control input u1(t), and Figures 2(c) and 3(c) give the control input u2(t). Therefore,
it can be concluded that the simulation results indicate that the proposed sliding mode
controller works well.

7 Conclusions

In this paper, the sliding mode controller for stabilization of fractional order systems
with uncertainties and multiple delay in state and disturbance input is investigated. A
switching surface of integral type is proposed such that stability of the closed-loop system
in the sliding mode can be guaranteed. An illustrative example shows the effectiveness
of the proposed new scheme.
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Abstract: We give a construction of a cubic stochastic operator (CSO) on a finite
dimensional simplex. This construction depends on a probability measure µ which
is given on a fixed finite graph G. Using the construction of CSO for µ defined as
product of measures given on components of G a wide class of non-Volterra CSOs is
described. It is shown that the non-Volterra operators can be reduced to N number
(where N is the number of components) of Volterra CSOs defined on the components.
By such a reduction we describe behavior of trajectories of a non-Volterra CSO defined
on the three dimensional simplex.

Keywords: simplex; graph; cubic stochastic operator; Volterra cubic operator.
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1 Introduction

There are many systems which are described by nonlinear operators. One of the simplest
nonlinear case is quadratic operator (for a recent review on the theory of quadratic
stochastic operators see [5]). Quadratic dynamical systems have been proved to be a rich
source of analysis for the investigation of dynamical properties and modeling in different
domains, such as population dynamics [1, 6], physics [11], economy [2], mathematics
[10]. In modern scientific investigations non-linear operators of higher order arise. In
particular, a cubic stochastic operator (CSO) can be obtained in gene engineering and
free population with a ternary production. To study non-linear dynamical systems a
method of Lyapunov functions is used (see [5, 9]).
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In [7], [8] and [12] the behavior of trajectories of some CSOs were studied. A CSO
arises as follows: consider a population consisting of m species. Let x0 = (x01, . . . , x

0
m) be

the probability distribution (where x0i = P (i) is the probability of i, i = 1, 2, . . . ,m) of
species in the initial generation, and Pijk,l be the probability with which individuals in
the ith, jth and kth species interbreed to produce an individual l, more precisely Pijk,l
is the conditional probability P (l|i, j, k) with which ith, jth and kth species interbred
successfully, when they produce an individual l. In this paper we consider models of free
population i.e., there is no difference of ”sex” and in any generation the ”parents” ijk
are independent i.e., P (i, j, k) = P (i)P (j)P (k) = xixjxk.

Each CSO W can be uniquely defined by a matrix P ≡ P(W ) = {Pijk,l}
m
i,j,k,l=1.

Usually the matrix P is known. In this paper we give a constructive description of
P. This construction depends on a probability measure µ which is given on a fixed
finite graph G and finite set of cells (configurations). Such constructions for quadratic
stochastic operators are given in [3] and in the general form in [4].

The main aim of the paper is to show that if µ is the product of the probability
measures being defined on the maximal connected subgraphs (components) then corre-
sponding non-Volterra CSO can be reduced to N number (where N is the number of
components) of Volterra operators defined on the components.

By such a reduction we describe behavior of trajectories of a non-Volterra CSO defined
on the three dimensional simplex. These results are a natural generalization of the
paper [13] which was devoted to quadratic stochastic operators.

2 Construction of Cubic Stochastic Operators

Recall that a CSO is a mapping of the simplex

Sm−1 = {x = (x1, ..., xm) ∈ Rm : xi ≥ 0,

m∑

i=1

xi = 1}

into itself, of the form

W : x′l =
m∑

i,j,k=1

Pijk,lxixjxk, (l = 1, ...,m), (1)

where Pijk,l are coefficients of ’heredity’ and

Pijk,l ≥ 0,

m∑

l=1

Pijk,l = 1, (i, j, k, l = 1, ...,m). (2)

Let G = (Λ, L) be a finite graph without loops and multiple edges, where Λ is the set
of vertexes and L is the set of edges of the graph.

Furthermore, let Φ be a finite set, called the set of alleles (in problems of statistical
mechanics, Φ is called the range of spin). The function σ : Λ → Φ is called a cell (in
mechanics it is called configuration). Denote by Ω the set of all cells. Let S(Λ,Φ) be the
set of all probability measures defined on the finite set Ω.

Let {Λi, i = 1, ..., N} be the set of maximal connected subgraphs (components) of
the graph G. For σ ∈ Ω denote by σ(M) its ”projection” (or ”restriction”) to M ⊂ Λ :
σ(M) = {σ(x)}x∈M . Then any σ ∈ Ω has the form σ = (σ1, . . . , σN ), where σi = σ(Λi).
We say σ(M) is a subcell iff M is a maximal connected subgraph of G.
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Fix three cells σ, ϕ, ψ ∈ Ω, and put

Ω(σ, ϕ, ψ) = {τ = (τ1, . . . , τN ) ∈ Ω : τi ∈ {σi, ϕi, ψi}, ∀i = 1, . . . , N}.

Remark 2.1 The set Ω(σ, ϕ, ψ) can be interpreted as the set of all possible ’children’
of the ’parents’ θ = (σ, ϕ, ψ). A child τ can be born from θ if it only consists the subcells
of its parents θ. For quadratic stochastic operators such a set was first considered in [3]
and in the general form in [4].

Now let µ ∈ S(Λ,Φ) be a probability measure defined on Ω such that µ(σ) > 0 for
any cell σ ∈ Ω. The heredity coefficients Pσϕψ,τ are defined as

Pσϕψ,τ =






µ(τ)
µ(Ω(σ,ϕ,ψ)) , if τ ∈ Ω(σ, ϕ, ψ),

0, otherwise.
(3)

Obviously, Pσϕψ,τ ≥ 0, and
∑

τ∈Ω Pσϕψ,τ = 1 for all σ, ϕ, ψ ∈ Ω.
The CSO W ≡Wµ acting on the simplex S(Λ,Φ) and determined by coefficients (3)

is defined as follows: for an arbitrary measure λ ∈ S(Λ,Φ), the measure W (λ) = λ′ ∈
S(Λ,Φ) is defined by the equality

λ′(τ) =
∑

σ,ϕ,ψ∈Ω

Pσϕψ,τλ(σ)λ(ϕ)λ(ψ) (4)

for any cell τ ∈ Ω.
The CSO construction is also closely related to the graph structure on the set Λ.
A CSO is called Volterra if the coefficients Pijk,l may be nonzero only when l ∈ {i, j, k}

and vanish in all the remaining cases (see [7, 8]).
It is easy to see that any Volterra CSO has the following form

W : x′l = xl


x2l + xl

m∑

i=1

i6=l

ai,lxi +

m∑

i,j=1

i6=l, j 6=l

bij,lxixj


 , (l = 1, ...,m), (5)

where ai,l and bij,l are some coefficients depending on Pijk,l .

Theorem 2.1 The CSO (4) is Volterra if and only if the graph G is connected.

Proof. Let G be connected then Ω(σ, ϕ, ψ) = {σ, ϕ, ψ}. Consequently, by (3) it
follows that the corresponding operator is Volterra. Conversely, if (3) satisfies Pσϕψ,τ = 0,
for τ /∈ {σ, ϕ, ψ} then by condition µ(σ) > 0 it follows that G is connected.

3 A Class of Non-Volterra CSOs

In this section we describe a condition on measure µ under which the CSOWµ generated
by µ (using the construction described in the previous section) can be studied using the
theory of Volterra CSO.

Denote by Ωi = ΦΛi the set of all cells defined on component Λi, i = 1, ..., N. Let µi
be a probability measure defined on Ωi, such that µi(σ) > 0 for any σ ∈ Ωi, i = 1, ..., N.
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Consider probability measure µ on Ω = Ω1 × · · · × ΩN defined as

µ(σ) =

N∏

i=1

µi(σi), (6)

where σ = (σ1, ..., σN ), with σi ∈ Ωi, i = 1, ..., N.
By Theorem 2.1, if N = 1 then QSO constructed on G is Volterra QSO.

Theorem 3.1 The CSO constructed by (3) with measure (6) is reducible to N sep-
arate Volterra CSOs.

Proof. For any σ = (σ1, ..., σN ), ϕ = (ϕ1, ..., ϕN ), ψ = (ψ1, ..., ψN ) ∈ Ω we have

µ(Ω(σ, ϕ, ψ)) =
∑

τ1,...,τN :

τi∈{σi,ϕi,ψi},i=1,...,N

N∏

i=1

µi(τi) =

N∏

i=1

(
µi(σi) + µi(ϕi) + µi(ψi)

)
.

Using this equality by (3) we get

Pσϕψ,τ =





∏N
i=1

µi(τi)
µi(σi)+µi(ϕi)+µi(ψi)

, if τ ∈ Ω(σ, ϕ, ψ),

0 otherwise.
(7)

Thus CSO generated by measure (6) can be written as

λ′(τ) = λ′(τ1, ..., τN ) =

∑

σ = (σ1, ..., σN) : σi ∈ Ωi

ϕ = (ϕ1, ..., ϕN ) : ϕi ∈ Ωi

ψ = (ψ1, ..., ψN ) : ψi ∈ Ωi

N∏

i=1

µi(τi)1(τi∈{σi,ϕi,ψi})

µi(σi) + µi(ϕi) + µi(ψi)
λ(σ)λ(ϕ)λ(ψ). (8)

Denote

Xi,w =
∑

τ∈Ω:

τi=w

λ(τ) =
∑

τ1,...,τi−1,τi+1,...,τN
τk∈Ωk,k 6=i

λ(τ1, ..., τi−1, w, τi+1, ..., τN ). (9)

From (8) we have

X ′
i,w =

∑

τ∈Ω:

τi=w

λ′(τ) =
∑

τ∈Ω:

τi=w




∑

σ1,...,σi−1,σi+1,...,σN
ϕ,ψ∈Ω

µi(w)

µi(w) + µi(ϕi) + µi(ψi)
×

N∏

j=1

j 6=i

µj(τj)1(τj∈{σi,ϕj ,ψj})

µj(σj) + µj(ϕj) + µj(ψj)
λ(σ1, ..., σi−1, w, σi+1, ..., σN )λ(ϕ)λ(ψ)+

∑

ϕ1,...,ϕi−1,ϕi+1,...,ϕN
σ,ψ∈Ω

µi(w)

µi(σi) + µi(w) + µi(ψi)
×



96 U.A. ROZIKOV AND A.Yu.KHAMRAEV

N∏

j=1

j 6=i

µj(τj)1(τj∈{σi,ϕj ,ψj})

µj(σj) + µj(ϕj) + µj(ψj)
λ(σ)λ(ϕ1 , ..., ϕi−1, w, ϕi+1, ..., ϕN )λ(ψ)+

∑

ψ1,...,ψi−1,ψi+1,...,ψN
σ,ϕ∈Ω

µi(w)

µi(σi) + µi(ϕi) + µi(w)
×

N∏

j=1

j 6=i

µj(τj)1(τj∈{σi,ϕj,ψj})

µj(σj) + µj(ϕj) + µj(ψj)
λ(σ)λ(ϕ)λ(ψ1 , ..., ψi−1, w, ψi+1, ..., ψN )


 =

3
∑

σ1,...,σi−1,σi+1,...,σN
ϕ,ψ∈Ω

µi(w)

µi(w) + µi(ϕi) + µi(ψi)
×

∑

τ∈Ω:

τi=w

N∏

j=1

j 6=i

µj(τj)1(τj∈{σj ,ϕj,ψj})

µj(σj) + µj(ϕj) + µj(ψj)
λ(σ1, ..., σi−1, w, σi+1, ..., σN )λ(ϕ)λ(ψ). (10)

It is easy to see that

∑

τ1,...,τi−1,τi+1,...,τN

N∏

j=1

j 6=i

µj(τj)1(τj∈{σj ,ϕj ,ψj})

µj(σj) + µj(ϕj) + µj(ψj)
= 1.

Thus from (10) we have

RHS of (10) =

3
∑

σ1,...,σi−1,σi+1,...,σN
ϕ,ψ∈Ω

µi(w)

µi(w) + µi(ϕi) + µi(ψi)
λ(σ1, ..., σi−1, w, σi+1, ..., σN )λ(ϕ)λ(ψ) =

∑

σ,ϕ,ψ
σi=ϕi=ψi=w

λ(σ)λ(ϕ)λ(ψ) + 6
∑

ψi∈Ωi\w

µi(w)

2µi(w) + µi(ψi)
×

∑

σ1, ..., σi−1, σi+1, ..., σN

ϕ1, ..., ϕi−1, ϕi+1, ..., ϕN

ψ1, ..., ψi−1, ψi+1, ..., ψN

λ(σ1, ..., σi−1, w, σi+1, ..., σN )λ(ϕ1, ..., ϕi−1, w, ϕi+1, ..., ϕN )λ(ψ)+

3
∑

ϕi,ψi∈Ωi\w

µi(w)

µi(w) + µi(ϕi) + µi(ψi)
×

∑

σ1, ..., σi−1, σi+1, ..., σN

ϕ1, ..., ϕi−1, ϕi+1, ..., ϕN

ψ1, ..., ψi−1, ψi+1, ..., ψN

λ(σ1, ..., σi−1, w, σi+1, ..., σN )λ(ϕ)λ(ψ) =

X3
i,w +

∑

ψ∈Ωi\w

6µi(w)

2µi(w) + µi(ψ)
X2
i,wXi,ψ +

∑

ϕ,ψ∈Ωi\w

3µi(w)

µi(w) + µi(ϕ) + µi(ψ)
Xi,wXi,ϕXi,ψ.
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Thus operator (8) can be rewritten as

X ′
i,w = Xi,w


X2

i,w +
∑

ψ∈Ωi\w

6µi(w)

2µi(w) + µi(ψ)
Xi,wXi,ψ+

∑

ϕ,ψ∈Ωi\w

3µi(w)

µi(w) + µi(ϕ) + µi(ψ)
Xi,ϕXi,ψ



 , (11)

where Xi,w is defined by (9), w ∈ Ωi, i = 1, ..., N.

Note that
∑

w∈Ωi
Xi,w = 1 for any i = 1, ..., N. One can see that for each fixed i

(i = 1, ..., N) the operator (11) is similar to (5), i.e. is a Volterra CSO W (i) : S|Ωi|−1 →
S|Ωi|−1. The theorem is proved.

This theorem allows us to use the theory of Volterra CSO to describe the behavior of
trajectories of non-Volterra CSO (8).

If for each i ∈ {1, ..., N} the asymptotical behavior of trajectories of CSO W (i) is

known, say X
(n)
i,w → X∗

i,w, n → ∞, then asymptotical behavior of W (i.e. (8)), say

λ(n)(τ) → λ∗(τ), n→ ∞, can be found from the following system of linear equations

∑

τ∈Ω:τi=w

λ∗(τ) = X∗
i,w, w ∈ Ωi, i = 1, ..., N. (12)

In the following section we shall illustrate the restriction of a non-Volterra cubic
stochastic operator to two Volterra operators and study the trajectory of the non-Volterra
operator by these two Volterra operators.

4 An Example

Consider graph G = (Λ, L) with Λ = {1, 2} and L = ∅. Take Φ = {1, 2}. Then non-
Volterra CSO (8) has the form

x′1 = x31 + 3β1(x
2
1x2 + x1x

2
2) + 3α1(x

2
1x3 + x1x

2
3)+

3α1β1[x
2
1x4 + x1x

2
4 + x22x3 + x2x

2
3 + 2(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)],

x′2 = x32 + 3β2(x
2
1x2 + x1x

2
2) + 3α1(x

2
2x4 + x2x

2
4)+

3α1β2[x
2
1x4 + x1x

2
4 + x22x3 + x2x

2
3 + 2(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)],

x′3 = x33 + 3α2(x1x
2
3 + x21x3) + 3β1(x

2
3x4 + x3x

2
4)+

3α2β1[x
2
1x4 + x1x

2
4 + x22x3 + x2x

2
3 + 2(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)],

x′4 = x34 + 3α2(x2x
2
4 + x22x4) + 3β2(x

2
3x4 + x3x

2
4)+

3α2β2[x
2
1x4 + x1x

2
4 + x22x3 + x2x

2
3 + 2(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)],

(13)
where µ1 = (α1, α2), αj > 0, α1 + α2 = 1; µ2 = (β1, β2), βj ≥ 0, β1 + β2 = 1.
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Putting x1 + x2 = X1,1, x3 + x4 = X1,2 and x1 + x3 = X2,1, x2 + x4 = X2,2 we get
the Volterra cubic operators:

X ′
1,1 = X1,1

(
X2

1,1 + 3α1X1,2(X1,1 +X1,2)
)
,

X ′
1,2 = X1,2

(
X2

1,2 + 3α2X1,1(X1,1 +X1,2)
)
,

(14)

and

X ′
2,1 = X2,1

(
X2

2,1 + 3β1X2,2(X2,1 +X2,2)
)
,

X ′
2,2 = X2,2

(
X2

2,2 + 3β2X2,1(X2,1 +X2,2)
)
.

(15)

Since Xi,1 + Xi,2 = 1, i = 1, 2, the study of both operators (14) and (15) can be
reduced to the study of a dynamical system given by the function fα(x) = x(x2 +3α(1−
x)), x ∈ [0, 1]. This is an increasing function of x ∈ [0, 1] for each parameter α ∈ [0, 1].

We have

Fix(fα) = {x ∈ [0, 1] : fα(x) = x} =

{
{0, 1}, if α ∈ [0, 1/3]∪ [2/3, 1],

{0, 3α− 1, 1}, if α ∈ (1/3, 2/3).

Using the above-mentioned properties of the function fα(x) and checking |f ′
α(a)| at

a ∈ Fix(fα) one can see that the sequence x(n) = fα(x
(n−1)), n ≥ 1 for x(0) ∈ [0, 1] has

the following limits

lim
n→∞

x(n) =





0, for any x(0) ∈ [0, 1), α ∈ [0, 1/3],

3α− 1, for any x(0) ∈ (0, 1), α ∈ (1/3, 2/3),

1, for any x(0) ∈ (0, 1], α ∈ [2/3, 1].

(16)

By equalities (16) for operators (14) we get the following

lim
n→∞

(X
(n)
1,1 , X

(n)
1,2 ) =






(0, 1), for any X
(0)
1,1 ∈ [0, 1), α1 ∈ [0, 1/3],

(3α1 − 1, 2− 3α1), for any X
(0)
1,1 ∈ (0, 1), α1 ∈ (1/3, 2/3),

(1, 0), for any X
(0)
1,1 ∈ (0, 1], α1 ∈ [2/3, 1].

(17)
A similar formula is true for the operator (15), where α1 is replaced by β1. Combining
these formulas and using formula (12) one proves the following.
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Proposition 4.1 The trajectory of the non-Volterra CSO (13) has the following limit

lim
n→∞

x(n) =






(1, 0, 0, 0), if α1, β1 ∈ [2/3, 1],

(0, 1, 0, 0), if α1 ∈ [2/3, 1], β1 ∈ [0, 1/3],

(0, 0, 1, 0), if α1 ∈ [0, 1/3], β1 ∈ [2/3, 1],

(0, 0, 0, 1), if α1, β1 ∈ [0, 1/3],

(0, 0, 3β1 − 1, 2− 3β1), if α1 ∈ [0, 1/3], β1 ∈ (1/3, 2/3),

(3β1 − 1, 2− 3β1, 0, 0), if α1 ∈ [2/3, 1], β1 ∈ (1/3, 2/3),

(0, 3α1 − 1, 0, 2− 3α1), if α1 ∈ (1/3, 2/3), β1 ∈ [0, 1/3],

(3α1 − 1, 0, 2− 3α1, 0), if α1 ∈ (1/3, 2/3), β1 ∈ [2/3, 1],

∈ U, if α1 ∈ (1/3, 2/3), β1 ∈ (1/3, 2/3),

where

U = {x ∈ S3 : x1+x2 = 3α1−1, x3+x4 = 2−3α1, x1+x3 = 3β1−1, x2+x4 = 2−3β1}.

5 Concluding Remarks

In mathematical biology, the nonlinear operator W is called an evolution operator. The
fixed points of W are interpreted as equilibrium states of the population, λ ∈ Sm−1 is
called a state of the population, andW (λ),W 2(λ), . . . are called states of the population
in subsequent generations (offsprings). SinceW is a non-linear operator, the investigation
of the sequenceWn(λ) is a difficult problem in general. So one has to consider a particular
case of W , for which the problem is respectively simple. In this paper to define such an
operator, a construction of CSO on a finite dimensional simplex is given. Using the
construction of CSO a wide class of non-Volterra CSOs is described. Then we have
showed that the non-Volterra operators can be reduced to a finitely many of Volterra
CSOs. By such a reduction we described behavior of trajectories of a non-Volterra CSO
defined on the three dimensional simplex.

Here we shall give a biological interpretation of Proposition 4.1. Assume that the
evolution of a certain biological system consisting of 4 types of individuals is described
by operator (13). Using Proposition 4.1, we can conclude the following:

1. The biological system has up to 5 equilibrium states.
2. After a certain period of time, some types will be at the vanishing point.
3. If a system is in an equilibrium state, then, depending on the state, it can have

only one of 1, 2, 3, 4 types.
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