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Abstract: In this paper, a new synchronization scheme, combination synchroniza-
tion, is used to realize reduced order function projective synchronization among three
chaotic Josephson junction systems using backstepping technique. In the first case,
function projective synchronization of two (2) third order drive systems with a sin-
gle second order Josephson junction is considered while in the second case, a single
third order system is synchronized with two (2) second order system using backstep-
ping. Controllers are designed and simulated to show the efficacy of combination
synchronization scheme.
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1 Introduction

Synchronization between two chaotic systems has evolved greatly since its proposition
by Pecora and Caroll [1]. Many types of synchronization schemes have been proposed
and implemented including complete synchronization (CS) [1], projective synchronization
(PS) [2, 3], lag synchronization (LS) [4], modified projective synchronization [5] while
techniques such as adaptive control method [6], active control [7], active backstepping [2]
and feedback control [8] have been used for design of controllers. Backstepping scheme
has been efficient in the design technique for stabilization, tracking and synchronization
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of chaotic systems. According to Tian et al., [9], some of the advantages of the method
include: applicability to a variety of chaotic systems irrespective of whether they contain
external excitation or not; needs only one controller to realize synchronization of chaotic
systems and finally there is no derivative in the controller. Backstepping technique offers
faster and better transient error dynamics convergence and synchronization time than the
active control technique [2]. The results of chaos synchronization are utilized in biological
sciences [10], economics and finance [11], chemical reactions, secure communication [12,
13] and cryptography and data encryption. Recently, synchronization between fractional
order and integer order system was reported in [14]

Projective Synchronization (PS) refers to the dynamical behavior in which the re-
sponses of two identical systems synchronize up to a constant scaling factor α ∈ ℜ [15].
When α = 1 we have complete synchronization and α = −1 gives antisynchronization
of the systems. Function projective synchronization in which the scaling factor is not
a constant value was proposed by Du et al., [16]. A form of projective synchronization
referred to as hybrid projective synchronization, in which the different state variables
can synchronize up to different scaling factors was implemented by Hu et al., [7, 17].
The hybrid function projective synchronization was extended to different systems with
time varying parameters [18], fractional order system [19] and hyperchaotic system [20].
The scaling constant in projective synchronization gives faster communication, hence,
the popularity of the scheme.

Until recently, synchronization has been applied to two systems of the same dimen-
sion (identical or non-identical), however, natural and practical systems tend to involve
systems of different order. As pointed out in [2], there are real situations where sys-
tems of different order need to be synchronized e.g the order of the thalamic neurons
can be different from the hippocampal neurons, the synchronization between heart and
lungs, the synchronization in neuron systems and certain biomechanical systems (such
as biological implants), mechanical systems [21]. This motivated the implementation of
increased order [22–24] and reduced order synchronization [25, 26].

It was also proposed by Runzi and Yinglan [27] that information signal be transmit-
ted by two different drive systems. For example, we split the transmitted signals into
several parts, each part loaded in different systems; or divide time into different intervals,
the signals in different intervals loaded in different systems. If this is really so, then the
transmitted signals may have stronger anti-attack ability and anti-translated capability
than that transmitted by the usual transmission model. Furthermore, in a communi-
cation network, there are many users (slave) but one control (master) which connects
different users to one another. There is the need to implement a synchronization scheme
whereby many users can be connected to and routed through a single master securely.
Increased order and reduced order combination synchronization of three different non-
linear systems was implemented using active backstepping design [19]. Synchronization
between combination of two drive systems and combination of two response systems in
drive-response synchronization model was investigated by Sun et al., [28] in a new scheme
referred to as combination-combination synchronization.

To the best of our knowledge, research into reduced order function projective combi-
nation synchronization has not been carried out, hence, we set forth in this paper to in-
vestigate it. From the aforementioned, we implement a reduced order projective synchro-
nization of (i) two (2) 3-dimensional system and one slave (ii) two (2) one 3-dimensional
master system and two (2) 2-dimensional slave system using the backstepping technique.
The remainder of the paper is arranged as follows:
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2 Reduced-order Function Projective Combination Synchronization of Two

Third Order and One Second Order Josephson Junctions

2.1 Design of controller via active backstepping technique

In this section, two third order Josephson junctions in (1) and (2) are taken as the drive
systems while one second order non-autonomous Josephson junction (3) is taken as the
response system in order to achieve generalized reduced order combination synchroniza-
tion among the three chaotic Josephson junctions

ẋ1 = x2,

ẋ2 =
1

βC

(i− g(x2)x2 − sinx1 − x3),

ẋ3 =
1

βL

(x2 − x3), (1)

the second drive system is

ẏ1 = y2,

ẏ2 =
1

βC

(i− g(y2)y2 − sin y1 − y3),

ẋ3 =
1

βL

(y2 − y3), (2)

while the response system is given as

ż1 = z2 + u1,

ż2 = −αz2 − sin z1 + a+ b sinωt+ u2, (3)

where ui(t), i = 1, 2 are the controllers to be designed. We define the error systems as
follows

e1 = z1 − (α1(t)x1 + β1(t)y1 + α3(t)x3 + β3(t)y3),

e2 = z2 − (α2(t)x2 + β2(t)y2). (4)

Using the error systems defined in (4) with systems defined in (1), (2) and (3) yields the
following error dynamics

ė1 = z2 + u1 − α1(t)x2 − β1(t)y2 −
α3(t)

βL

(x2 − x3)−
β3(t)

βL

(y2 − y3)

− α̇1(t)x1 − β̇1(t)y1 − α̇3(t)x3 − β̇3(t)y3

= e2 + α2(t)x2 + β2(t)y2 − α1(t)x2 − β1(t)y2 −
α3(t)

βL

(x2 − x3)−
β3(t)

βL

(y2 − y3) + u1

− α̇1(t)x1 − β̇1(t)y1 − α̇3(t)x3 − β̇3(t)y3,

ė2 = −αz2 − sin z1 + a+ b sinωt+ u2 −
α2(t)

βC

(i− g(x2)x2 − sinx1 − x3)

−
β2(t)

βC

(i − g(y2)y2 − sin y1 − y3)− α̇2(t)x2 − β̇2(t)
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= −α(e2 + α2(t)x2 + β2(t)y2)− α̇2(t)x2 − β̇2(t)− sin z1

+ a+ b sinωt+ u2−
α2(t)

βC

(i− g(x2)x2 − sinx1 −x3)−
β2(t)

βC

(i− g(y2)y2 − sin y1 − y3).

Thus, the error dynamics of the system can be written as

ė1 = e2 + u1 +A1, (5)

ė2 = −αe2 + u2 +A2, (6)

where

A1 = α2(t)x2+β2(t)y2−α1(t)x2 −β1(t)y2−
α3(t)

βL

(x2−x3)−
β3(t)

βL

(y2− y3)− α̇1(t)x1

− β̇1(t)y1 − α̇3(t)x3 − β̇3(t)y3,

A2 = −α(α2(t)x2+β2(t)y2)− sin z1+a+ b sinωt− α̇2(t)x2 − β̇2(t)−
α2(t)

βC

(i− g(x2)x2

− sinx1 − x3)−
β2(t)

βC

(i− g(y2)y2 − sin y1 − y3).

Our goal is to find the control functions which will enable the systems (1), (2) and
(3) realize generalized reduced order function projective combination synchronization by
active backstepping technique. The design procedure includes three steps as shown below:

Step 1. Let q1 = e1, its time derivative is

q̇1 = ė1 = e2 + u1 +A1, (7)

where e2 = α1(q1) can be regarded as virtual controller. In order to stabilize q1-
subsystem, we choose the following Lyapunov function v1 = 1

2
q2
1
. The time derivative of

v1 is

v̇1 = q1q̇1 = q1(α1(q1) + u1 +A1). (8)

Suppose α1(q1) = 0 and the control function u1 is chosen as

u1 = −(A1 + kq1), (9)

then v̇1 = −kq21 < 0, where k is positive constant which represent the feedback gain.
Then, v̇1 is negative definite and the subsystem q1 is asymptotically stable. Since, the
virtual controller α1(q1) is estimative, the error between e2 and α1(q1) can be denoted
by q2 = e2 − α1(q1). Thus, we have the following (q1, q2)-subsystems

q̇1 = q2 − kq1,

q̇2 = −αq2 + u2 +A2. (10)
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Step 2. In order to stabilize subsystem (10), a Lyapunov function can be chosen as
v2 = v1 +

1

2
q2
2
. The time derivative of v2 is

v̇2 = −q21 + q2(q1 − αq2 + u2 +A2). (11)

If the control function u2 is chosen as

u2 = αq2 − q1 −A2 − kq2, (12)

then v̇2 = −kq2
1
− kq2

2
< 0, where k is a positive constant which represent the feedback

gain. Then, v̇2 is negative definite and the subsystem (q1, q2) in (10) is asymptotically
stable. This implies that generalized reduced order function projective combination syn-
chronization of the drive systems (1) and (2) and the response system (3) is achieved.

Finally, we have the following subsystems

q̇1 = q2 − kq1,

q̇2 = −q1 − kq2. (13)

Now the generalized reduced order function projective combination synchronization is
achieved, the following can be obtained.

Let α1 = α2 = α3 = 0, then we have Case 1.

Case 1: If the controllers are chosen as

u1 = (β1(t)− β2(t))y2 +
β3(t)

βL

(y2 − y3) + β̇1(t)y1 + β̇3(t)y3 − kq1,

u2 = (α− k)q2 − q1 + αβ2(t)y2 + sin z1 − a− b sinωt+

β2(t)

βC

(i− g(y2)y2 − sin y1 − y3) + β̇2(t)y2, (14)

where q1 = z1 − β1(t)y1 − β3(t)y3, q2 = z2 − β2(t)y2, then the drive system (2) achieves
reduced order modified function projective synchronization with the response system (3).
Let β1(t) = β2(t) = β3(t) = 0, then we obtain Case 2.

Case 2: If the controllers are chosen as

u1 = (α1(t)− α2)x2 +
α3(t)

βL

(x2 − x3)− kq1 + α̇1(t)x1 + α̇3(t)x3,

u2 = (α− k)q2 − q1 + αα2(t)x2 + sin z1 − a− b sinωt+

α2(t)

βC

(i− g(x2)x2 − sinx1 − x3) + α̇2(t)x2, (15)

where q1 = z1 −α1(t)x1 −α3(t)x3, q2 = z2 −α2(t)x2, then the drive system (1) achieves
reduced order modified function projective synchronization with the response system (2).

Suppose α1(t) = α2(t) = α3(t) = β1(t) = β2(t) = β3(t) = 0, then we obtain Case 3.
Case 3: If the controllers are chosen as

u1 = −kq1,

u2 = (α− k)q2 − q1 + sin z1 − a− b sinωt, (16)

where q1 = z1, q2 = z2, then the equilibrium point (0, 0, 0) of the response system (3) is
asymptotically stable.
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Suppose β1(t) = β2(t) = β3(t) = α1(t) = α2(t) = α3(t) = γ(t), then we obtain Case
4.

Case 4: If the controllers are chosen as

u1 =
γ(t)

βL

(x2 − x3 + y2 − y3) + γ̇(t)(x1 + y1 + x3 + y3)− kq1,

u2 = (α− k)q2 − q1 + αγ(t)(x2 + y2) + sin z1 − a− b sinωt+ γ̇(t)(x2 + y2)

−
γ(t)

βC

(g(x2)x2 + g(y2)y2 + sinx1 + sin y1 + x3 + y3 − 2i), (17)

where q1 = z1 − γ(t)(x1 + y1 + x3 + y3), q2 = z2 − γ(t)(x2 + y2), then the drive systems
(1) and (2) achieve reduced order function projective combination synchronization with
the response system (3).

Let all the scaling functions be α1(t), α2(t), α3(t), β1(t), β2(t) and β3(t), then we
obtain Case 5.

Case 5: If the controllers are chosen as

u1 = −α2(t)x2 − β2(t)y2 + α1(t)x2 + β1(t)y2 +
α3(t)

βL

(x2 − x3) +
β3(t)

βL

(y2 − y3)

+α̇1(t)x1 + β̇1(t)y1 + α̇3(t)x3 + β̇3(t)y3 − kq1,

u2 = α(α2(t)x2 + β2(t)y2) + sin z1 − a− b sinωt+ α̇2(t)x2

+β̇2(t)(y2) + (α− k)q2 − q1 +
α2(t)

βC

(i− g(x2)x2 − sinx1 − x3)

+
β2(t)

βC

(i− g(y2)y2 − sin y1 − y3), (18)

q1 = z1 − (α1(t)x1 + β1(t)y1 +α3(t)x3 + β3(t)y3), q2 = z2 − (α2(t)x2 + β2(t)y2), then the
drive systems (1) and (2) achieve reduced order modified function projective combination
synchronization with the response system (3).

2.2 Numerical simulation results

The designed controllers are verified in our numerical simulation using the in-built fourth
order Runge-Kutta (ode45) routine in Matlab. In the numerical simulation procedure
we used the systems parameters within the chaotic region and controllers are chosen
in accordance with Case 4. The initial conditions of the drive systems and response
system are given as (x1, x2, x3) = (0, 0, 0), (y1, y2, y3) = (111), (z1, z2) = (0, 1), γ(t) =
2.0 + 0.01 sin(0.05t) and k = 1. Corresponding numerical results are as follows: Figure
1 shows the dynamics of the error variables when the controllers are deactivated for
0 ≤ t ≤ 200. Figure 2 shows that reduced order combination synchronization among
systems (1), (2) and (3) is achieved as indicated by the convergence of the error state
variables to zero as soon as the controllers are switch on for t ≥ 80. Figure 3 shows that
the state variables of the drive and the response systems follow the same trajectory when
the controllers are activated for t ≥ 80, this also confirms reduced order combination
synchronization among systems (1), (2) and (9). Evidence of reduced order function
projective combination synchronization is presented in Figure 4.
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Figure 1: Error dynamics among systems (1), (2) and (3) with control activated at t ≥ 80.
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Figure 2: Error dynamics among systems (1), (2) and (9) with control activated activated at
t ≥ 80.
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Figure 3: Dynamics of state variables with control applied.
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Figure 4: Evidence of projective synchronization.
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3 Generalized Reduced-order Function Projective Combination Synchro-

nization of One Third Order and Two Second Order Josephson Junctions

3.1 Design of controller via active backstepping technique

In this section, one third order Josephson junction in (1) is taken as the drive system
while two second order non-autonomous Josephson junctions in (19) and (20) are taken
as the response systems in order to achieve reduced order function projective combination
synchronization among the three chaotic Josephson junctions

ẏ1 = y2 + u1,

ẏ2 = −αy2 − sin y1 + a+ b sinωt+ u2, (19)

ż1 = z2 + u3,

ż2 = −αz2 − sin z1 + a+ b sinωt+ u4, (20)

where u1, u2, u2 and u4 are the controllers to be designed. We define the error systems
as follows

e1 = z1 + y1 − (α1(t)x1 + α3(t)x3),

e2 = z2 + y2 − α2x2. (21)

Using the error systems defined in (21) with systems defined in (1), (19) and (20)
yields the following error dynamics

ė1 = z2 + y2 + u3 − α1(t)x2 + u1 −
α3(t)

βL

(x2 − x3)− α̇1(t)x1 − α̇3(t)x3

= e2 + (α2(t)− α1(t))x2 −
α3(t)

βL

(x2 − x3) + u3 + u1 − α̇1(t)x1 − α̇3(t)x3,

ė2 = −αz2 − sin z1 + a+ b sinωt+ u4 − αy2 − sin y1 + a+ b sinωt

+ u2 −
α2(t)

βC

(i− g(x2)x2 − sinx1 − x3)− α̇2(t)x2

= −α(e2 + α2(t)x2)− sin z1 + a+ b sinωt)− α̇2(t)x2

+ u− sin y1 + a+ b sinωt) + u2 −
α2(t)

βC

(i− g(x2)x2 − sinx1 − x3).

Thus, the error dynamics of the system can be written as:

ė1 = e2 + U1 +B1, (22)

ė2 = −αe2 + U2 +B2, (23)

where

B1 = (α2(t)− α1(t))x2 −
α3(t)

βL

(x2 − x3)− α̇1(t)x1 − α̇3(t)x3,

B2 = −αα2(t)x2)−sin z1+2a+2b sinωt−sin y1−α̇2(t)x2−
α2(t)

βC

(i−g(x2)x2−sinx1−x3),
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U1 = u1 + u3, U2 = u2 + u4.

Our goal is to find the control functions which will enable the systems (7), (19)
and (20) realize reduced order function projective combination synchronization by active
backstepping technique. The design procedure includes three steps as shown below:

Step 1. Let q1 = e1, its time derivative is

q̇1 = ė1 = e2 + U1 +B1, (24)

where e2 = α1(q1) can be regarded as virtual controller. In order to stabilize q1-
subsystem, we choose the following Lyapunov function v1 = 1

2
q21 and its time derivative

of v1 is

v̇1 = q1q̇1 = q1(α1(q1) + U1 +B1). (25)

Suppose α1(q1) = 0 and the control function U1 is chosen as

U1 = −(B1 + kq1), (26)

then v̇1 = −kq2
1
< 0, where k is positive constant which represents the feedback gain.

Then, v̇1 is negative definite and the subsystem q1 is asymptotically stable. Since the
virtual controller α1(q1) is estimative, the error between e2 and α1(q1) can be denoted
by q2 = e2 − α1(q1). Thus, we have the following (q1, q2)-subsystems

q̇1 = q2 − kq1,

q̇2 = −αq2 + U2 +B2. (27)

Step 2. In order to stabilize system (27), a Lyapunov function can be chosen as v2 =
v1 +

1

2
q2
2
. The time derivative of v2 is

v̇2 = −q2
1
+ q2(q1 − αq2 + U2 +B2). (28)

If the control function u2 is chosen as

U2 = −B2 − kq2 + αq2 − q1, (29)

then v̇2 = −kq2
1
− kq2

2
< 0, where k is positive constant which represents the feedback

gain. Then, v̇2 is negative definite and the subsystem (q1, q2) in (27) is asymptotically
stable. This implies that the drive system (1) and the response systems (19) and (20)
achieve reduced order function projective combination synchronization. Finally, we have
the following subsystems

q̇1 = q2 − kq1,

q̇2 = −q1 − kq2. (30)

Here we limit our results to only two major Corollaries.
Let α1 = α2 = α3, u1 = u3 and u2 = u4, then we have Case 6.
Case 6.: If the controllers are chosen as

u1 = u3 =
1

2
(
α1(t)

βL

(x2 − x3) + α̇1(t)(x1 + x3)− kq1),

u2 = u4 =
1

2
(α− k)q2 − q1 + (αα1(t) + α̇1(t))x2 + sin z1

+ sin y1 − 2a− 2b sinωt−
α1(t)

βC

(i− g(x2)x2 − sinx1 − x3),
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where e1 = z1 −α1(x1 + x3), e2 = z2 −α1x2, then the drive system (1) achieves reduced
order function projective combination synchronization with the response systems (19)
and (20).

Let all the scaling functions be α1(t), α2(t), α3(t) with u1 = u3 and u2 = u4, then
we have Case 7.

Case 7: If the controllers are chosen as

u1 = u3 =
1

2
((α1(t)− α2(t))x2 + (

α3(t)

βL

(x2 − x3) + α̇1(t)x1 + α̇3(t)x3 − kq1),

u2 = u4 =
1

2
(α− k)q2 − q1 + (αα2(t) + α̇2(t)x2)x2 + sin z1 + sin y1

− 2a− 2b sinωt−
α2(t)

βC

(i− g(x2)x2 − sinx1 − x3),

where e1 = z1 + y1 − (α1(t)x1 + α3(t)), e2 = z2 + y2 − α2(t)x2, then reduced order
modified function projective combination synchronization is achieved between the drive
system (1) and the response systems (19) and (20).

3.2 Numerical simulation results

The designed controllers are verified in our numerical simulation using the in-built
fourth order Runge-Kutta (ode45) routine in Matlab. In the numerical simulation pro-
cedure we used the systems parameters within the chaotic region and controllers are
chosen in accordance with Case 6. The initial conditions of the drive systems and re-
sponse system are given as (x1, x2, x3) = (0, 0, 0), (y1, y2, y3) = (111), (z1, z2) = (0, 1),
γ(t) = 2.0 + 0.01 sin(0.05t) and k = 1. Corresponding numerical results are as follows:
Figure 5 shows the dynamics of the error variables when the controllers were deacti-
vated. Figure 6 shows that reduced order function projective combination synchroniza-
tion among systems (1), (19) and (20) is achieved as indicated by the convergence of the
error state variables to zero as soon as the controllers are switch on for t ≥ 80. Figure
7 shows that the state variables of the drive and response systems follow the same tra-
jectory when the controllers are activated for t ≥ 80, this also confirms reduced order
function projective combination synchronization among systems (1), (19) and (20). Fig-
ure 8 presents evidence of reduced order function projective synchronization among the
systems.

4 Conclusion

Reduced order function projective combination synchronization of three chaotic systems
consisting of: (i) two third order chaotic Josephson junctions as drives and one second
order chaotic Josephson junction as response system; (ii) one third order chaotic Joseph-
son junction as the drive and two second order chaotic Josephson junctions as the slaves
via active backstepping technique has been achieved. We showed from the theoretical
analysis that various controllers which is suitable for different type of synchronization
scheme can be obtained from the general results. Furthermore, reduced order function
projective combination synchronization has more potential application to secure commu-
nication systems and biological systems.
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Figure 5: Error dynamics without control activated.
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Figure 6: Error dynamics with control activated.
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Figure 7: Dynamics of state variables with control activated.
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Figure 8: Evidence of projective synchronization.
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