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Almost Oscillatory Three-Dimensional Dynamical

Systems of First Order Delay Dynamic Equations

A. Akgül 1,2 and E. Akın 2∗

1 Dicle University, Education Faculty Department of Mathematics 21280 Diyarbakır, Turkey,
2 Missouri University of Science and Technology Department of Mathematics and Statistics

Rolla, Missouri 65409-0020, USA

Received: February 17, 2014; Revised: July 5, 2014

Abstract: In this paper, we investigate oscillation and asymptotic properties for
three dimensional systems of first order dynamic equations with delays. Most of our
results are new in the discrete case.

Keywords: time scales; oscillation; three-dimensional dynamical system.

Mathematics Subject Classification (2010): 39A10.

1 Introduction

In this paper, we investigate three dimensional dynamical systems with delays of the
form











x∆(t) = a(t)f(y(τ(t))),

y∆(t) = b(t)g(z(τ(t))),

z∆(t) = λ c(t)h(x(τ(t))),

(1)

on a time scale T, i.e, a closed subset of real numbers, τ : T → T is a rd-continuous
function such that τ(t) < t, lim

t→∞

τ(t) = ∞, λ = ±1, a, b : T 7→ [0,∞) (not identically

zero) and c : T 7→ (0,∞) are rd-continuous functions such that

∫

∞

T

a(s)∆s =

∫

∞

T

b(s)∆s = ∞, T ∈ T (2)

and f, g, h : R 7→ R are continuous functions satisfying

uf(u) > 0, ug(u) > 0, and uh(u) > 0 for u 6= 0. (3)

∗ Corresponding author: mailto:akine@mst.edu

c© 2014 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua209
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210 A. AKGÜL AND E. AKIN

Here, we would like to indicate that none of the functions f , g and h are assumed to be
monotone. Sometimes we will assume that functions f, g and h satisfy

f(u)

Φα(u)
≥ F,

g(u)

Φβ(u)
≥ G,

h(u)

Φγ(u)
≥ H for all u 6= 0, (4)

where F,G,H are positive constants and Φα, Φβ and Φγ are odd power functions, i.e.

Φp(u) = |u|psgnu (p > 0), p ∈ {α, β, γ}.

This paper is motivated by the papers [1, 2, 6]. In [1], the special case of system (1)
has been considered in which f(u) = uα, g(u) = uβ, h(u) = uγ , τ(t) = t, λ = −1,
and α, β, γ are ratios of odd positive integers. In [2], system (1) is considered without
delays. The continuous version of a system similar to system (1) without delays in [5]
and the discrete version of a system similar to system (1) with delays in [6, 7] have
been considered. The results in [8] are the discrete version of these in [1]. It is worth
mentioning that our results not only improve results in [6] but also are new in the discrete
case.

The main purpose of this paper is to investigate oscillatory and asymptotic behaviour
of solutions of system (1). The set up in this paper is as follows: In Section 2, we give
preliminary results including some asymptotic behaviour of the solutions of system (1).
In Sections 3 and 4, we obtain almost oscillation criteria for solutions of system (1) when
λ = −1 and λ = 1, respectively.

Here, we consider only unbounded time scales. For an excellent introduction to time
scales we refer the interested reader to the books [3, 4].

A proper solution of system (1) is said to be oscillatory if all its components x, y, z

are oscillatory. System (1) with λ = 1 is said to be almost oscillatory if every solution
(x, y, z) of system (1) is either oscillatory or

lim
t→∞

| x(t) |= lim
t→∞

| y(t) |= lim
t→∞

| z(t) |= ∞. (5)

System (1) with λ = −1 is said to be almost oscillatory if every solution (x, y, z) of
system (1) is either oscillatory or

lim
t→∞

x(t) = lim
t→∞

y(t) = lim
t→∞

z(t) = 0. (6)

It is necessary to use the following remark in the further sections in order to obtain a
contradiction.

Remark 1.1 (See [1]) Let a, c ∈ Crd(T,R
+) such that

∫

∞

T
c(s)∆s < ∞. Then

∫

∞

T

a(t)

(∫

∞

t

c(s)∆s

)

∆t =

∫

∞

T

c(t)

(

∫ σ(t)

T

a(s)∆s

)

∆t.

2 Preliminaries

In this section, we investigate asymptotic behaviour of solutions of system (1) so that we
will be able to obtain almost oscillatory systems. The next two results hold regardless if
λ = ±1. In the following subsections, we will classify nonoscillatory solutions of system
(1) when λ = 1 and λ = −1, respectively.
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Lemma 2.1 Assume that condition (3) holds. Let (x, y, z) be a solution of system
(1) and let x(t) be nonoscillatory for t ≥ t0, t0 ∈ T. Then (x, y, z) is nonoscillatory and
x,y,z are monotonic for sufficiently large t.

Proof. Let (x, y, z) be a solution of system (1) such that x(t) is nonoscillatory for
t ≥ t0. Then we assume that x(τ(t)) > 0 for t ≥ t1 ≥ t0, t1 ∈ T. By the third
equation of system (1), we have z∆(t) > 0 or z∆(t) < 0, t ≥ t1 ≥ t0. This implies
that z(t) is monotonic for t ≥ t1 ≥ t0 and eventually of one sign for t ≥ t1. Let
z(t) > 0, z(τ(t)) > 0 for t ≥ t2 ≥ t1, t2 ∈ T. Therefore from the second equation of
system (1), y(t) is monotonic for t ≥ t2 ≥ t1 and eventually of one sign for t ≥ t2 ≥ t1.
Let y(τ(t)) > 0 for t ≥ t3 ≥ t2. Similarly, we obtain that x(t) is monotonic for t ≥ t3 ≥ t2
from the first equation of system (1). Therefore (x, y, z) is nonoscillatory.

Lemma 2.2 Assume that conditions (2) and (3) hold. Let (x, y, z) be a nonoscilla-
tory solution of system (1) such that lim

t→∞

x(t) is finite, then

lim
t→∞

y(t) = lim
t→∞

z(t) = 0.

Proof. Assume that (x, y, z) is a nonoscillatory solution of system (1) such that
the limit of x is finite. By Lemma 2.1, y is monotonic and hence the limit of y exists.
For the sake of contradiction suppose that the limit of y is positive. Therefore, y(t) >
0 for large t. Then there exists t1 ≥ t0, t1 ∈ T such that

y(τ(t)) > 0, τ(t) ≥ t1.

From (3), there exist a positive constant K and t2 ∈ T, t2 ≥ t1 such that

f(y(τ(t))) > K, τ(t) ≥ t2.

Thus, from the first equation of system (1), we have

x∆(t) = a(t)f(y(τ(t))) > a(t)K > 0, τ(t) ≥ t2.

Integrating the above inequality from t2 to t, we get

x(t) > x(t2) +K

∫ t

t2

a(s)∆s.

It follows from (2) that

lim
t→∞

x(t) = ∞,

but this gives us a contradiction. In the case the limit of y is negative, the proof is similar
and hence omitted. Therefore, we get

lim
t→∞

y(t) = 0.

Similarly one can show that

lim
t→∞

z(t) = 0

by using the second equation of system (1). So this completes the proof.
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2.1 Preliminaries when λ = 1

In this subsection, we will investigate asymptotic behaviour of solutions of system (1)
when λ = 1.

Lemma 2.3 Let conditions (2) and (3) hold. Assume that (x, y, z) is a nonoscilla-
tory solution of system (1) with λ = 1 for large t and let

Type (a): sgn x(t) = sgn y(t) = sgn z(t),

Type (c): sgn x(t) = sgn y(t) 6= sgn z(t).

Then every nonoscillatory solution of system (1) with λ = 1 is of either Type (a) or Type
(c).

Proof. Let (x, y, z) be a nonoscillatory solution of system (1). Without loss of
generality, we assume that x(t) > 0 and x(τ(t)) > 0 for t ≥ t0, t0 ∈ T. By Lemma 2.1,
both y and z are monotonic. Therefore they are eventually of one sign. First let z(t) > 0
and z(τ(t)) > 0 for t ≥ t0. Suppose y(t) < 0 for t ≥ t0. Since y is increasing, y(τ(t)) < 0
for t ≥ t0. Since z is increasing, there exist t1 ∈ T and L > 0 such that

g(z(τ(t))) > L, τ(t) ≥ t1. (7)

Using (7) and the second equation of system (1) yields

y∆(t) = b(t)g(z(τ(t))) > Lb(t), τ(t) ≥ t1.

If we integrate the above inequality from t1 to t, we obtain

y(t) > y(t1) + L

∫ t

t1

b(s)∆s.

By (2), y(t) → ∞ as t → ∞, which is a contradiction with the negativity of y. Therefore
this case is not possible and so (x, y, z) is of Type (a).

Now let z(t) < 0 for t ≥ t0. Since z is increasing, z(τ(t)) < 0, t ≥ t0. Suppose that
y(t) < 0, y(τ(t)) < 0 for large t. Then there exist t1 ≥ t0, t1 ∈ T and v ≤ 0 such that

f(y(τ(t))) ≤ v, τ(t) ≥ t1. (8)

We claim that v = 0. Assume that v < 0 and we will show that this leads to a contra-
diction. Using (8) and the first equation of system (1) yields

x∆(t) = a(t)f(y(τ(t))) ≤ va(t), τ(t) ≥ t1.

Integrating the last inequality from t1 to t, we obtain

x(t) ≤ x(t1) + v

∫ t

t1

a(s)∆s.

By (2), we get x(t) → −∞ as t → ∞, which is a contradiction with the positivity of x.
Therefore this case is not possible and so (x, y, z) is of Type (c).

The proof for the case when x(t) < 0 for large t is analogous.
Solutions of Type (a) are sometimes called strongly monotone solutions (see, e.g. [5]).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 14 (3) (2014) 209–223 213

Lemma 2.4 Let conditions (2) and (3) hold. Any Type (a) solution (x, y, z) of
system (1) with λ = 1 satisfies

lim
t→∞

| x(t) |= lim
t→∞

| y(t) |= ∞.

Proof. Let (x, y, z) be a Type (a) solution of system (1). Then there exists t0 ∈ T

such that x(τ(t)) > 0, y(τ(t)) > 0, and z(τ(t)) > 0 for t ≥ t0. Since y is eventually
increasing, there exist t1 ≥ t0, t1 ∈ T and K > 0 such that f(y(τ(t))) ≥ K, τ(t) ≥ t1.

From the first equation of system (1), we have

x∆(t) = a(t)f(y(τ(t))) ≥ Ka(t), τ(t) ≥ t1.

Integrating the above inequality from t1 to t yields

x(t) ≥ x(t1) +K

∫ t

t1

a(s)∆s, τ(t) ≥ t1.

The above inequality together with (2) implies that lim
t→∞

x(t) = ∞. Since z is eventually

increasing, there exist t2 ≥ t1, t2 ∈ T and M > 0 such that g(z(τ(t))) ≥ M, τ(t) ≥ t2.

From the second equation of system (1), we have

y∆(t) = b(t)g(z(τ(t))) ≥ Mb(t), τ(t) ≥ t2.

Integrating the above inequality from t2 to t gives us

y(t) ≥ y(t2) +M

∫ t

t2

b(s)∆s, τ(t) ≥ t2. (9)

The above inequality together with (2) implies lim
t→∞

y(t) = ∞. This completes the proof.

Lemma 2.5 Let (2) and (3) hold. Assume that (x, y, z) is a Type (c) solution of
system (1) with λ = 1. Then

lim
t→∞

z(t) = 0.

Proof. Assume that (x, y, z) is a Type (c) solution of system (1). Without loss of
generality, assume that x(τ(t)) > 0 for t ≥ t0, t0 ∈ T. Then y(t) > 0, z(t) < 0, t ≥ t0.
Since z is increasing, lim

t→∞

z(t) ≤ 0. Suppose that lim
t→∞

z(t) < 0. Then there exist t1 ≥ t0,

t1 ∈ T and S < 0 such that g(z(τ(t))) ≤ S, τ(t) ≥ t1. Integrating the second equation of
system (1) from t1 to t, we have

y(t) ≤ y(t1) + S

∫ t

t1

b(s)∆s, τ(t) ≥ t1

and therefore (2) implies that lim
t→∞

y(t) = −∞. But this contradicts the fact that y(t) > 0

for t ≥ t0. Therefore, lim
t→∞

z(t) = 0. This completes the proof.
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2.2 Preliminaries when λ = −1

In this subsection, we will investigate the asymptotic behaviour of solutions of system
(1) when λ = −1.

Lemma 2.6 Let conditions (2) and (3) hold. Then any nonoscillatory solution
(x, y, z) of system (1) with λ = −1 is one of the following types:

Type (a): sgn x(t) = sgn y(t) = sgn z(t) for large t;

Type (b): sgn x(t) = sgn z(t) 6= sgn y(t) for large t.

Proof. Let (x, y, z) be a nonoscillatory solution of system (1). Without loss of
generality, we assume that x(t) > 0, x(τ(t)) > 0 for t ≥ t0. By Lemma 2.1, both y and
z are monotonic and they are eventually of one sign. We now show that z cannot be
negative. Suppose that z(t) < 0 for t ≥ t0 to obtain a contradiction. Then there exists
t1 ≥ t0, t1 ∈ T such that z(τ(t)) < 0 for τ(t) ≥ t1. Then there exist t2 ∈ T, t2 ≥ t1 and
a constant d ≤ 0 such that

g(z(τ(t))) ≤ d, τ(t) ≥ t2. (10)

We claim that d = 0. Assume that d < 0 and we will show that this leads to a contra-
diction. If we use (10) together with the second equation of system (1), we obtain

y∆(t) = b(t)g(z(τ(t))) ≤ db(t), τ(t) ≥ t2.

Integrating the above inequality from t2 to t, we get

y(t) ≤ y(t2) + d

∫ t

t2

b(s)∆s.

In view of (2), y(t) → −∞ as t → ∞. Therefore, there exist t3 ∈ T, t3 ≥ t2 and a
negative constant v such that

y(τ(t)) < v, τ(t) ≥ t3. (11)

From (3) and (11), there exist K < 0 and t4 ∈ T, t4 ≥ t3 such that

f(y(τ(t))) ≤ K, τ(t) ≥ t4. (12)

Using (12) together with the first equation of system (1), we obtain

x∆(t) = a(t)f(y(τ(t))) ≤ Ka(t), τ(t) ≥ t4.

If we integrate the last inequality from t4 to t, we get

x(t) < x(t4) +K

∫ t

t4

a(s)∆s.

By (2), we have x(t) → −∞ as t → ∞, but this contradicts the fact that x(t) > 0 for all
t ≥ t0. This implies that z(t) > 0 for all t ≥ t0.

One can show the proof similarly for the case when x(t) < 0 eventually for t ≥ t0.
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Lemma 2.7 Let conditions (2) and (3) hold. Assume (x, y, z) is a Type (b) solution
of system (1) with λ = −1. Then

lim
t→∞

y(t) = lim
t→∞

z(t) = 0.

Proof. Assume (x, y, z) is a Type (b) solution of system (1) such that x(t) > 0,
y(t) < 0, z(t) > 0, z(τ(t)) > 0 for t ≥ t0, t0 ∈ T. Since y(t) is increasing, we have
lim
t→∞

y(t) ≤ 0. Assume lim
t→∞

y(t) 6= 0. Then there exist t1 ≥ t0 and a constant L < 0 such

that y(τ(t)) ≤ L for τ(t) ≥ t1. From (3), there exists K < 0 such that

f(y(τ(t))) ≤ K, τ(t) ≥ t1. (13)

Integrating the first equation of system (1) from t1 to t and using (13), we have

x(t) ≤ x(t1) +K

∫ t

t1

a(s)∆s, τ(t) ≥ t1

and so (2) implies lim
t→∞

x(t) = −∞. This contradicts the positivity of x and therefore

lim
t→∞

y(t) = 0. In a similar way, we can show that lim
t→∞

z(t) = 0.

In the next two sections, we will obtain almost oscillation criteria for system (1).

3 Almost Oscillatory System (1) When λ = −1

The next two results in this section are new in the discrete case and can be found in [ [2],
Theorem 4.1, Theorem 4.2 and Theorem 4.3.] without delays.

Theorem 3.1 Let conditions (2) and (3) hold. Assume

∫

∞

T

c(s)∆s = ∞, T ∈ T. (14)

Then system (1) with λ = −1 is almost oscillatory.

Proof. Assume (x, y, z) is a nonoscillatory solution of system (1). By Lemma 2.6,
nonoscillatory solutions are of either Type (a) or Type (b). Assume (x, y, z) is a Type
(a) solution. Without loss of generality, assume that there exists t0 ∈ T such that
x(t) > 0, x(τ(t)) > 0, y(t) > 0, y(τ(t)) > 0, and z(t) > 0 for t ≥ t0. Since x(t) is
eventually increasing, there exist L > 0 and t1 ≥ t0 such that x(τ(t)) > L for τ(t) ≥ t1.

From (3), there exist K > 0 and t2 ∈ T, t2 ≥ t1 such that

h(x(τ(t))) ≥ K, τ(t) ≥ t2. (15)

Integrating the third equation of system (1) from t2 to t and using (15), we have

z(t) ≥ z(t2) +K

∫ t

t2

c(s)∆s, τ(t) ≥ t2,

and so this implies that lim
t→∞

z(t) = ∞, which is a contradiction with the boundedness

of z. Therefore, (x, y, z) can not be a Type (a) solution. Therefore all nonoscillatory
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solutions are of Type (b). Without loss of generality, assume that there exists t0 ∈ T

such that x(t) > 0, y(t) < 0, y(τ(t)) < 0, z(t) > 0, t ≥ t0. By Lemma 2.7, we have
lim
t→∞

y(t) = lim
t→∞

z(t) = 0. So it is enough to show that lim
t→∞

x(t) = 0. Since x is eventually

decreasing, there exists t1 ≥ t0 such that lim
t→∞

x(t) = M ≥ 0, t ≥ t1. Therefore there

exists t2 ≥ t1 such that x(τ(t)) ≥ M, τ(t) ≥ t2. By (3), there exist K > 0 and t3 ≥ t2
such that

h(x(τ(t))) ≥ K, τ(t) ≥ t3. (16)

Integrating the third equation of system (1) from t3 to t and using (16), we get

z(t) ≤ z(t3)−K

∫ t

t3

c(s)∆s, τ(t) ≥ t3.

and as t → ∞, we get a contradiction with the boundedness of z. So lim
t→∞

x(t) = 0. This

completes the proof.

Example 3.1 Let T = Z. Then we consider the following system











∆xn = anf(yn−l),

∆yn = bng(zn−l),

∆zn = λcnh(yn−l),

(17)

where l is a given positive integer and λ = −1. Here an, bn : Nn0
→ R+∪{0}, cn : Nn0

→
R+ such that

∞
∑

n=1

an =
∞
∑

n=1

bn = ∞, (18)

where n0 ∈ N = {1, 2, . . .}, R+ is the set of positive real numbers. Also f, g, h : R → R

are continuous functions satisfying (3). If

∞
∑

n=1

cn = ∞, (19)

then system (17) with λ = −1 is almost oscillatory by Theorem 3.1.

For the next two theorems, we assume that

∫

∞

T

c(s)∆s < ∞, T ∈ T. (20)

Theorem 3.2 Let λ = −1 in system (1). Assume condition (3) holds and there exist
positive constants F,G, α, β such that

f(u)

Φα(u)
≥ F,

g(u)

Φβ(u)
≥ G for small u 6= 0. (21)

If
∫

∞

T

b(s)

(

∫

∞

τ(s)

c(v)∆v

)β

∆s = ∞, T ∈ T, (22)
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or
∫

∞

T

a(t)





∫

∞

τ(t)

b(s)

(

∫

∞

τ(s)

c(v)∆v

)β

∆s





α

∆s = ∞, T ∈ T, (23)

then every nonoscillatory solution of system (1) that fulfils Type (b) satisfies lim
t→∞

x(t) =

0.

Proof. Assume that (x, y, z) is a nonoscillatory solution of system (1) of Type (b).
Without loss of generality assume that x(t) > 0, y(t) < 0, y(τ(t)) < 0 and z(t) >

0 for t ≥ t0. From the first equation of system (1), x is nonincreasing, and therefore x

has a nonnegative limit. Assume that lim
t→∞

x(t) > 0. Then there exists t1 ≥ t0 such that

x(τ(t)) ≥ 0, τ(t) ≥ t1. By (3), there exist t2 ≥ t1 and K > 0 such that

h(x(τ(t))) ≥ K, τ(t) ≥ t2. (24)

Integrating the third equation of system (1) from τ(t) to ∞ and using (24), we obtain

z(τ(t)) ≥ K

∫

∞

τ(t)

c(s)∆s, τ(t) ≥ t2,

where we use Lemma 2.7. By (21) there exist t3 ≥ t2, t3 ∈ T and G > 0 such that

g(z(τ(t))) ≥ GKβ

(

∫

∞

τ(t)

c(s)∆s

)β

, τ(t) ≥ t3. (25)

Integrating the second equation of system (1) from t3 to t and using (25), we obtain

y(t) = y(t3) +

∫ t

t3

b(s)g(z(τ(s)))∆s

≥ y(t3) +GKβ

∫ t

t3

b(s)

(

∫

∞

τ(s)

c(v)∆v

)β

∆s, τ(t) ≥ t3.

If we assume (22), then we have lim
t→∞

y(t) = ∞, but this contradicts the fact that

lim
t→∞

y(t) = 0. So lim
t→∞

x(t) = 0. Assume (23). Integrating the second equation of system

(1) from τ(t) to ∞ and using the fact that lim
t→∞

y(t) = 0 and (25), we obtain

−y(τ(t)) ≥ GKβ

∫

∞

τ(t)

b(s)

(

∫

∞

τ(s)

c(v)∆v

)β

∆s, τ(t) ≥ t3,

By (21), there exists F > 0 such that

f(y(τ(t))) ≤ Fyα(τ(t))

≤ −FGαKαβ





∫

∞

τ(t)

b(s)

(

∫

∞

τ(s)

c(v)∆v

)β

∆s





α

, τ(t) ≥ t3.
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Integrating the first equation of system (1) from t3 to t yields

x(t) − x(t3) =

∫ t

t3

a(s)f(y(τ(s)))∆s

≤ −FGαKαβ

∫ t

t3

a(s)





∫

∞

τ(s)

b(v)

(

∫

∞

τ(v)

c(η)∆η

)β

∆v





α

∆s, τ(t) ≥ t3.

This implies that lim
t→∞

x(t) = −∞, which is a contradiction by (23). This completes the

proof.

Example 3.2 Let T = Z. Then we consider system (17) with λ = −1. Assume there
exist positive constants F,G, α, β such that (21) holds. If

∞
∑

i=1

bi

(

∞
∑

r=i−l

cr

)β

= ∞

or
∞
∑

i=1

ai





∞
∑

s=i−l

bs

(

∞
∑

r=s−l

cr

)β




α

= ∞

holds, then every nonoscillatory solution of system (17) that fulfils Type (b) satisfies
lim
t→∞

x(t) = 0 by Theorem 3.2.

Theorem 3.3 Assume conditions (2), (3) and (4) hold. Let αβγ < 1. If

∫

∞

t3

c(t)

(

∫ τ(t)

t2

a(s)

(

∫ τ(s)

t1

b(v)∆v

)α

∆s

)γ

∆t = ∞, t1, t2, t3 ∈ T, (26)

then every nonoscillatory solution of system (1) with λ = −1 is of Type (b). In addition,
if (22) holds, then system (1) is almost oscillatory.

Proof. Suppose that (x, y, z) is a nonoscillatory solution of system (1) with λ = −1.
Then by Lemma 2.6, (x, y, z) is of either Type (a) or Type (b). Suppose that (x, y, z)
is a Type (a) solution. Without loss of generality, assume x(t) > 0, x(τ(t)) > 0, y(t) >
0, y(τ(t)) > 0, z(t) > 0 for t ≥ t0, t0 ∈ T. Integrating the second equation of system (1)
from t1 ≥ t0, t1 ∈ T to τ(t) and using the positivity of y yield

y(τ(t)) ≥ y(τ(t)) − y(t1) =

∫ τ(t)

t1

b(s)g(z(τ(s)))∆s, τ(t) ≥ t1.

By (3) and (4), there exist G > 0 and t2 ≥ t1, t2 ∈ T such that

g(z(τ(t))) ≥ Gzβ(τ(t)), τ(t) ≥ t2.

Therefore, we obtain

y(τ(t)) ≥ G

∫ τ(t)

t1

b(s)zβ(τ(s))∆s ≥ G

∫ τ(t)

t1

b(s)zβ(s)∆s

≥ Gzβ(t)

∫ τ(t)

t1

b(s)∆s, τ(t) ≥ t2
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or

yα(τ(t)) ≥ Gαzαβ(t)

(

∫ τ(t)

t1

b(s)∆s

)α

, τ(t) ≥ t2. (27)

By (3), (4) and (27), there exist F > 0 and t3 ≥ t2, t3 ∈ T such that

f(y(τ(t))) ≥ Fyα(τ(t)) ≥ FGαzαβ(t)

(

∫ τ(t)

t1

b(s)∆s

)α

, τ(t) ≥ t3. (28)

Integrating the first equation of system (1) from t3 ≥ t2 to τ(t) and using (28)

x(τ(t)) ≥ x(τ(t)) − x(t3)

=

∫ τ(t)

t3

a(s)f(y(τ(s)))∆s

≥ FGα

∫ τ(t)

t3

a(s)zαβ(s)

(

∫ τ(s)

t1

b(v)∆v

)α

∆s

≥ FGαzαβ(t)

∫ τ(t)

t3

a(s)

(

∫ τ(s)

t1

b(v)∆v

)α

∆s, τ(t) ≥ t3.

or

xγ(τ(t)) > F γGαγzαβγ(t)

[

∫ τ(t)

t3

a(s)

(

∫ τ(s)

t1

b(v)∆v

)α

∆s

]γ

, τ(t) ≥ t3.

By (3) and (4), there exist H > 0 and t4 ≥ t3 such that

h(x(τ(t))) ≥ Hxα(τ(t)), τ(t) ≥ t4.

From the third equation of system (1), we have

−z∆(t) = c(t)h(x(τ(t)))

≥ Hc(t)xγ(τ(t))

> FαHGαγc(t)zαβγ(t)

[

∫ τ(t)

t3

a(s)

(

∫ τ(s)

t1

b(v)∆v

)α

∆s

]γ

, τ(t) ≥ t4.

Dividing both sides of the above inequality by zαβγ(t), we have

−z∆(t)

zαβγ(t)
> FαHGαγc(t)

[

∫ τ(t)

t3

a(s)

(

∫ τ(s)

t1

b(v)∆v

)α

∆s

]γ

, τ(t) ≥ t4.

Integrating the above inequality from t4 to t yields

∫ t

t4

−z∆(t)

zαβγ(t)
∆t > FαHGαγ

∫ t

t4

c(p)

[

∫ τ(t)

t3

a(s)

(

∫ τ(s)

t1

b(v)∆v

)α

∆s

]γ

∆p, t ≥ t4.

By [1], the left hand side of the above inequality is finite as t → ∞, but this contradicts
(26). Therefore, (x, y, z) can not be a Type (a) solution. So every nonoscillatory solution
of system (1) is of Type (b). This implies that lim

t→∞

x(t) is finite. Then by Lemma 2.7,

we have lim
t→∞

y(t) = lim
t→∞

z(t) = 0. By Theorem 3.2, lim
t→∞

x(t) = 0. So this completes the

proof.
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4 Almost Oscillatory System (1) when λ = 1

The last two results in this section are new for the discrete case.

Theorem 4.1 Let conditions (2), (3) and (14) hold. Then system (1) with λ = 1 is
almost oscillatory.

Proof. It follows from Lemma 2.3 that nonoscillatory solutions of system (1) are
either Type (a) or Type (c) solution of system (1). Assume that (x, y, z) is a Type (c)
solutions of system (1). Without loss of generality, assume that there exists t0 ∈ T such
that x(t) > 0, x(τ(t)) > 0, y(t) > 0, y(τ(t)) > 0, and z(t) < 0 for t ≥ t0. Since x is
eventually increasing, there exist t1 ≥ t0, t1 ∈ T and L > 0 such that

h(x(τ(t))) ≥ L, τ(t) ≥ t1. (29)

Integrating the third equation of system (1) from t1 to t and using (29) we get

z(t) ≥ z(t1) + L

∫ t

t1

c(s)∆s, τ(t) ≥ t1.

So (14) implies lim
t→∞

z(t) = ∞. This contradicts the assumptions on z. Therefore solutions

of system (1) can not be of Type (c). If (x, y, z) is a Type (a) solution, then from Lemma
2.4 and equation (14), we obtain (5). This completes the proof.

For the next two theorems, we assume that

∫

∞

T

c(s)∆s < ∞, T ∈ T.

Theorem 4.2 Let (2) and (3) hold. Assume that there exist positive constants F,H
and α, γ such that

f(u)

Φα(u)
≥ F,

h(u)

Φγ(u)
≥ H for large u 6= 0, (30)

and
∫

∞

t3

c(r)

(

∫ τ(r)

t2

a(s)

(

∫ τ(s)

t1

b(η)∆η

)α

∆s

)γ

∆r = ∞, t1, t2, t3 ∈ T. (31)

Then any Type (a) solution (x, y, z) of system (1) with λ = 1 satisfies (5).

Proof. Let (x, y, z) be a Type (a) solution of system (1) such that x(τ(t)) >

0, y(τ(t)) > 0, z(τ(t)) > 0 for t ≥ t0. By (9), we have

y(t) ≥ y(t2) +M

∫ t

t2

b(s)∆s ≥ M

∫ t

t2

b(s)∆s.

There exists t3 ∈ T, t3 ≥ t2 such that

y(τ(t)) ≥ M

∫ τ(t)

t3

b(s)∆s, τ(t) ≥ t3,
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and so

yα(τ(t)) ≥ Mα

(

∫ τ(t)

t3

b(s)∆s

)α

, τ(t) ≥ t3. (32)

By (30), there exist t4 ∈ T, t4 ≥ t3 and F > 0 such that

f(y(τ(t))) ≥ Fyα(τ(t)) ≥ FMα

(

∫ τ(t)

t3

b(s)∆s

)α

, τ(t) ≥ t4, (33)

where we used (32). Integrating the first equation of system (1) from t4 to t and using
(33) yield

x(t) ≥ x(t) − x(t4) =

∫ t

t4

a(s)f(y(τ(s)))∆s

≥ FMα

∫ t

t4

a(s)

(

∫ τ(s)

t3

b(η)∆η

)α

∆s, τ(t) ≥ t4.

Then there exists t5 ∈ T, t5 ≥ t4 such that

x(τ(t)) ≥ FMα

∫ τ(t)

t4

a(s)

(

∫ τ(s)

t3

b(η)∆η

)α

∆s, τ(t) ≥ t5

or

xγ(τ(t)) ≥ F γMαγ

(

∫ τ(t)

t4

a(s)

(

∫ τ(s)

t3

b(η)∆η

)α

∆s

)γ

, τ(t) ≥ t5.

Using the third equation of system (1), (30) and the above inequality, we have

z∆(t) = c(t)h(x(τ(t)))

≥ c(t)Hxγ(τ(t))

≥ F γMαγc(t)

(

∫ τ(t)

t4

a(s)

(

∫ τ(s)

t3

b(η)∆η

)α

∆s

)γ

, τ(t) ≥ t5.

Integrating the above inequality from t5 to t we get

z(t) > z(t)− z(t5)

≥ F γMαγ

∫ t

t5

c(s)

(

∫ τ(s)

t4

a(η)

(

∫ τ(η)

t3

b(r)∆r

)α

∆η

)γ

∆s, τ(t) ≥ t5.

So as t → ∞, z(t) → ∞ by (31). The proof is complete by Lemma 2.4.

Example 4.1 Let T = Z. Then we consider system (17) with λ = 1. Assume condi-
tions (3) and (18) hold and there exist positive constants F,H, α, γ such that (30) holds.
If

∞
∑

r=1

cr

(

r−l−1
∑

s=1

as

(

s−l−1
∑

n=1

bn

)α)γ

= ∞, (34)

then any Type (a) solution (x, y, z) of system (17) with λ = 1 satisfies (5) by Theorem
4.2.
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Theorem 4.3 Let conditions (2), (3) hold and β ≤ 1. Assume that there exist posi-
tive constants G, β such that

g(u)

Φβ(u)
≥ G for large u 6= 0, (35)

where g is an odd function. If

∫

∞

T

c(s)

(

∫ σ(s)

T

b(v)∆v

)

∆s = ∞, T ∈ T, (36)

then every nonoscillatory solution of system (1) with λ = 1 is a strongly monotone
solution. In addition, if (31) holds, then system (1) with λ = 1 is almost oscillatory.

Proof. Assume (x, y, z) is a Type (c) solution of system (1). Without loss of general-
ity, assume that there exists t0 ∈ T such that x(t) > 0, x(τ(t)) > 0, y(t) > 0, y(τ(t)) >
0, z(t) < 0, t ≥ t0. Since x is eventually increasing, from (3) there exist K > 0 and
t1 ≥ t0, t1 ∈ T such that h(x(τ(t))) ≥ K, τ(t) ≥ t1. By Lemma 2.5, lim

t→∞

z(t) = 0. Then

integrating the third equation of system (1) from t to ∞ yields

−z(t) =

∫

∞

t

c(s)h(x(τ(s)))∆s ≥ K

∫

∞

t

c(s)∆s.

From (35), there exist t2 ≥ t1, t2 ∈ T and G > 0 such that

g(−z(τ(t))) ≥ G(−z(τ(t)))β ≥ G(−z(t)) ≥ GK

∫

∞

t

c(s)∆s, τ(t) ≥ t2. (37)

Integrating the second equation of system (1) from t2 to t, we have

y(t)− y(t2) =

∫ t

t2

b(s)g(z(τ(s)))∆s

or

−y(t) + y(t2) =

∫ t

t2

b(s)g(−z(τ(s)))∆s.

Using (37), we have

− y(t) + y(t2) ≥ GK

∫ t

t2

b(s)

(∫

∞

s

c(v)∆v

)

∆s, τ(t) ≥ t2. (38)

Using Remark 1.1 for (38), we get

−y(t) + y(t2) ≥ GK

∫ t

t2

c(s)

(

∫ σ(s)

t2

b(v)∆v

)

∆s, τ(t) ≥ t2.

As t → ∞ and using (36), we get a contradiction with the boundedness of y. The second
part follows from Theorem 4.2.
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Example 4.2 Let T = Z. Then we consider system (17) with λ = 1. Assume con-
ditions (3) and (18) hold and β ≤ 1. There exist positive constants G, β such that (35)
holds. If

∞
∑

s=1

cs

(

s−l
∑

r=1

br

)

= ∞, (39)

then every nonoscillatory solution of system (17) with λ = 1 is a strongly monotone
solution. In addition, if (34) holds, then system (17) with λ = 1 is almost oscillatory by
Theorem 4.3.

5 Conclusion

In this paper, we consider oscillation and asymptotic behaviour of solutions of system (1)
depending on λ = ±1. We conclude that system (1) with λ = ±1 is almost oscillatory,
independently of the nonlineriaties, if (14) holds. However, if (20) holds, then system
(1) is almost oscillatory depending on the sign of λ and the types of nonlinearities.
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Boston Inc., Boston, 2003.

[5] Kiguradze, I. T. and Chanturia, T. A. Asymptotic Properties of Solutions of Nonau-

tonomous Ordinary Differential Equations. Translated from the 1985 Russian original.
Kluwer, Dordrecht, 1993.

[6] Schmeidel, E. Oscillation of nonlinear three-dimensional difference systems with delays.
Math. Bohem. 135 (2) (2010) 163–170.

[7] Schmeidel, E. Boundedness of solutions of nonlinear three-dimensional difference systems
with delays. Fasc. Math. 44 (2010) 107–113.

[8] Thandapani, E. and Ponnammal, B. Oscillatory properties of solutions of three-dimensional
difference systems. Math. Comput. Modelling 45 (5-6) (2005) 641–650.



Nonlinear Dynamics and Systems Theory, 14 (3) (2014) 224–243

The Obstacle Problem Associated with Nonlinear

Elliptic Equations in Generalized Sobolev Spaces

E. Azroul 1, M.B. Benboubker 1 and S. Ouaro 2∗
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2 LAboratoire de Mathématiques et Informatique (LAMI),

UFR. Sciences Exactes et Appliquées, Université de Ouagadougou,
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Abstract: We prove an existence result of entropy solution to the obstacle problem
associated with the equation of the type

−div(a(x, u,∇u)) + g(x, u,∇u) = f ∈ L
1(Ω)

in generalized Sobolev spaces, without assuming the sign condition in the nonlinearity
g via penalization methods.
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1 Introduction

The obstacle problem is, roughly speaking, about solving a partial differential equa-
tion with the additional constraint that the solution is required to stay above a given
function, the obstacle. This leads to a variational inequality. From a minimization point
of view, the problem is to find a minimizer with fixed boundary value in the set of
functions lying above the obstacle function. Such a set is convex and thus, a unique min-
imizer exists under reasonable assumptions. The balayage concept of potential theory
which is the potential theoretic viewpoint of the obstacle problem is finding the smallest
superharmonic function which lies above the obstacle.

∗ Corresponding author: mailto:ouaro@yahoo.fr

c© 2014 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua224

mailto: ouaro@yahoo.fr
http://e-ndst.kiev.ua


NONLINEAR DYNAMICS AND SYSTEMS THEORY, 14 (3) (2014) 224–243 225

In this paper, we deal with the obstacle problem associated with the following quasi-
linear elliptic equations

− div(a(x, u,∇u)) + g(x, u,∇u) = f ∈ L1(Ω) (1)

with non-standard structural conditions which involve a variable growth exponent p(.).
We prove some existence result of entropy solution under the assumption that g has a
constant sign. A problem like (1) was studied by Azroul, Benboubker and Rhoudaf in [1],
where they proved the existence of entropy solutions by using a decomposition method
of the measure µ.

The study of partial differential equations and variational problems involving p(x)-
growth conditions has received specific attention in recent decades. This is a consequence
of the fact that such equations can be used to model phenomena which arise in math-
ematical physics. Electrorheological fluids and elastic mechanics are two examples of
physical fields which benefit from such kinds of studies. In that context, we refer to
Diening [7], Ruzicka [18], and the references therein.

Most materials can be modelled with sufficient accuracy using classical Lebesgue and
Sobolev spaces Lp and W 1,p, where p is a fixed constant, we recall some papers (and
references therein), in which this theory is developed: [1, 5, 6, 11]. For electrorheological
fluids, this is not adequate, but rather the exponent p should be able to vary. This
situation leads us to the study of variable exponent Lebesgue and Sobolev spaces, Lp(.)

and W 1,p(.) where p(.) is a real-valued function.
The variable exponent Lebesgue Spaces Lp(.), where p(.) is a real-valued function,

appeared in the literature for the first time in 1931 in the paper by W.Orlicz [16]. In the
1950s, this study was carried out by Nakano [14] who made the first systematic study of
spaces with a variable exponent. Later, Polish and Czechoslovak mathematicians inves-
tigated the modular function spaces (see e.g. [13] and [10]). Variable exponent Lebesgue
spaces on the real line have been independently developed by Russian researchers. In
that context, we refer to the work of Tsenov [19] and Zhikov ( [22, 23]). The interested
reader of the theory of Lebesgue and Sobolev spaces with a variable exponent can find
numerous further references in the monograph [8]. Recently, some papers have appeared
in the case of the obstacle problem with a variable exponent. See ( [15, 17]) for ex-
istence and uniqueness of an entropy solution, in the framework of Lewy-Stampacchia
inequalities.

A treatment of the obstacle problem (1) in the Lp-case can be found in [3] where the
main goal in this work is to obtain a solution with f ∈ L1(Ω) in the general settings of
Orlicz-Sobolev spaces. We are interested, in this paper, in the single obstacle problem
associated with equation (1), where the techniques used to study this problem are based
on the following approximate problems,

(Pǫ)

{

−div(a(x, uǫ,∇uǫ)) + gǫ(x, uǫ,∇uǫ) = fǫ in Ω,
uǫ = 0 on ∂Ω,

where gǫ(x, s, ξ) =
g(x, s, ξ)

1 + ǫ|g(x, s, ξ)|
and fǫ is a sequence of regular functions.

Nevertheless, this approximation can not enable to obtain the a priori estimates in our
case, this is due to the fact that uǫgǫ(x, uǫ,∇uǫ) has no sign. To overcome this difficulty,
one has introduced a doubling approximation, that is we penalized the problem (Pǫ) by

(Pσ
ǫ )

{

−div(a(x, uσǫ ,∇u
σ
ǫ )) + gσǫ (x, u

σ
ǫ ,∇u

σ
ǫ ) −

1

ǫ2
|T 1

ǫ
(uσ

−

ǫ )|p(x)−1 = fǫ in Ω,

uσǫ = 0 on ∂Ω,



226 E. AZROUL, M.B. BENBOUBKER AND S. OUARO

where gσǫ (x, s, ξ) = δσ(s)gǫ(x, s, ξ) and where δσ(s) is some increasing Lipschitz-function
(see Sections 4 and 5). Note also that the obstacle in the problem considered in this
paper seems to follow the sign of the nonlinearity g.

As application to the problem considered in this paper, we have the Stefan problem
which is a particular kind of boundary value problem for a partial differential equation
(PDE), adapted to the case in which a phase boundary can move with time. The classical
Stefan problem aims to describe the temperature distribution in a homogeneous medium
undergoing a phase change, for example ice passing to water.

Our simplest model is the following Lp(.)-problem,

−div (|∇u|p(x)−2∇u) + |u|r(x)|∇u|p(x) = f in Ω, u = 0 on ∂Ω,

generated by the p(x)-Laplacian operator.
The paper is organized as follows. In Section 2, we present the preliminaries about

Lebesgue and Sobolev spaces with variable exponent. In Section 3, we introduce the
assumptions and prove some fundamental lemmas. In Section 4, we prove the existence
of entropy solutions to the obstacle problem associated with (1) for the case of positive
nonlinearity g. Finally, in Section 5, we prove the existence of entropy solutions to the
obstacle problem associated with (1) for the case of negative nonlinearity g.

2 A Framework for Function Spaces

For each open bounded subset Ω of IRN (N ≥ 2), we denote

C+(Ω) = {p|p ∈ C(Ω), p(x) > 1 for any x ∈ Ω̄}.

For every p ∈ C+(Ω) we define: p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x).

We define the variable exponent Lebesgue space by:

Lp(x)(Ω) =

{

u|u is a measurable real-valued function,

∫

Ω

|u(x)|p(x) dx <∞

}

.

The Luxemburg norm on the space Lp(x)(Ω) is defined by

‖u‖p(x) = inf

{

λ > 0,

∫

Ω

∣

∣

∣

∣

u(x)

λ

∣

∣

∣

∣

p(x)

≤ 1

}

.

We denote by Lp′(x)(Ω) the conjugate space of Lp(x)(Ω) where 1
p(x) +

1
p′(x) = 1 (see [9],

[21]). For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), the Generalized Hölder inequality
∣

∣

∣

∣

∫

Ω

u v dx

∣

∣

∣

∣

≤
( 1

p−
+

1

p′
−

)

‖u‖p(x) ‖v‖p′(x),

holds true.

Proposition 1 (see [9, 21]) We denote ρ(u) =
∫

Ω |u|p(x) dx, ∀u ∈ Lp(x)(Ω). If

un, u ∈ Lp(x)(Ω) and p+ < +∞, then the following assertions hold:

(i) ‖u‖p(x) < 1 (resp,= 1, > 1) ⇔ ρ(u) < 1 (resp, = 1, > 1),
(ii) ‖u‖p(x) > 1 ⇒ ‖u‖

p−

p(x) ≤ ρ(u) ≤ ‖u‖
p+

p(x); ‖u‖p(x) < 1 ⇒ ‖u‖
p+

p(x) ≤ ρ(u) ≤ ‖u‖
p−

p(x),

(iii) ‖un‖p(x) → 0 ⇔ ρ(un) → 0; ‖un‖p(x) → ∞ ⇔ ρ(un) → ∞.
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We define the generalized Sobolev space by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) and |∇u| ∈ Lp(x)(Ω)}.

It is endowed with the following norm

‖u‖1,p(x) = ‖u‖p(x) + ‖∇u‖p(x) ∀u ∈W 1,p(x)(Ω).

We denote by W
1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(x)(Ω) and p∗(x) =
Np(x)
N−p(x) for p(x) < N .

Proposition 2 (see [9]) (i) Assuming p− > 1, the spaces W 1,p(x)(Ω) and

W
1,p(x)
0 (Ω) are separable and reflexive Banach spaces.

(ii) If q ∈ C+(Ω̄) and q(x) < p∗(x) for any x ∈ Ω, then W 1,p(x)(Ω) →֒→֒ Lq(x)(Ω) is

compact and continuous.

(iii) There is a constant C > 0, such that

‖u‖p(x) ≤ C ‖∇u‖p(x) ∀u ∈W
1,p(x)
0 (Ω), if p ∈ C(Ω).

Therefore, ‖∇u‖p(·) and ‖u‖1,p(·) are equivalent norms in W
1,p(·)
0 (Ω).

3 Basic Assumptions and Some Fundamental Lemmas

Let p ∈ C+(Ω̄) such that 1 < p− ≤ p(x) ≤ p+ <∞ and denote Au = −div(a(x, u,∇u)),
where a : Ω× IR× IRN → IRN is a Carathéodory function satisfying the assumptions :

|a(x, s, ξ)| ≤ β[k(x) + |s|p(x)−1 + |ξ|p(x)−1], (2)

[a(x, s, ξ)− a(x, s, η)](ξ − η) > 0 for all ξ 6= η ∈ IRN , (3)

a(x, s, ξ)ξ ≥ α|ξ|p(x), (4)

for a.e. x ∈ Ω and for all (s, ξ) ∈ IR × IRN , where k(x) is a positive function lying in
Lp′(x)(Ω) and β, α > 0.

Furthermore, let g : Ω×IR×IRN → IR be a Carathéodory function having a constant
sign such that for a.e. x in Ω and for all s ∈ IR and ξ ∈ IRN ,

|g(x, s, ξ)| ≤ b(|s|)(c(x) + |ξ|p(x)), (5)

g(x, 0, ξ) = 0, (6)

where b : IR+ → IR+ is a continuous non-decreasing function and c(.) is a positive
function which belongs to L1(Ω).

We introduce the functional spaces needed later. For p ∈ C+(Ω̄), T
1,p(x)
0 (Ω) is defined

as the set of measurable functions u : Ω → IR such that the truncated functions Tk(u) ∈

W
1,p(x)
0 (Ω), where Tk(s) := max{−k,min{k, s}}, for s ∈ IR and k > 0.
We give the following lemma which is a generalization of Lemma 2.1 in [5] for gener-

alized Sobolev spaces. Note that its proof is a slight modification of Lemma 2.1 in [5].

Lemma 3.1 For every u ∈ T
1,p(x)
0 (Ω), there exists a unique measurable function

v : Ω → IRN such that ∇Tk(u) = vχ{|u|<k}, a.e. in Ω, for every k > 0.
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We will define the gradient of u as the function v, and we will denote it by v = ∇u.

Lemma 3.2 [4] Let g ∈ Lr(x)(Ω) and gn ∈ Lr(x)(Ω) with ‖gn‖Lr(x)(Ω) ≤ C for

1 < r(x) <∞. If gn(x) → g(x) a.e. in Ω, then gn ⇀ g in Lr(x)(Ω).

Lemma 3.3 [4] Assume that (2)-(4) hold true, and let (un)n∈N be a sequence in

W
1,p(x)
0 (Ω) such that un ⇀ u in W

1,p(x)
0 (Ω) and

∫

Ω

[a(x, un,∇un)− a(x, un,∇u)]∇(un − u)dx→ 0. (7)

Then, un → u in W
1,p(x)
0 (Ω) for a subsequence.

Lemma 3.4 [2] Let F : IR −→ IR be uniformly Lipschitzian with F (0) = 0 and

p ∈ C+(Ω). Let u ∈ W
1,p(x)
0 (Ω). Then F (u) ∈ W

1,p(x)
0 (Ω). Moreover, if the set D of

discontinuity points of F ′ is finite, then

∂(F ◦ u)

∂xi
=











F ′(u)
∂u

∂xi
a.e. in {x ∈ Ω : u(x) /∈ D},

0 a.e. in {x ∈ Ω : u(x) ∈ D}.

Remark that the previous lemma implies that the functions in W
1,p(x)
0 (Ω) can be trun-

cated and as a consequence of this lemma we obtain the following result.

Lemma 3.5 [2] Let u ∈ W
1,p(x)
0 (Ω). Then, Tk(u) ∈ W

1,p(x)
0 (Ω), with k > 0. More-

over, we have Tk(u) → u in W
1,p(x)
0 (Ω) as k → ∞.

Definition 3.1 Let Y be a reflexive Banach space, a bounded operator B from Y to
its dual Y ∗ is called pseudo-monotone if

un ⇀ u in Y
Bun ⇀ χ in Y ∗

lim sup
n→∞

〈Bun, un〉 ≤ 〈χ, u〉











=⇒ χ = Bu and 〈Bun, un〉 → 〈χ, u〉.

Definition 3.2 Let Y be a reflexive Banach space, a bounded operator B from Y to
its dual Y ∗ is called pseudo-monotone if

un ⇀ u in Y
lim sup
n→∞

〈Bun, un − u〉 ≤ 0

}

=⇒ lim inf〈Bun, un − v〉 ≥ 〈Bu, u− v〉 for all v ∈ Y.

It is clear that the Definition 3.1 is equivalent to the well known Definition 3.2.

4 Statement of the Case of a Positive Nonlinearity g

We first consider the convex set K0 =
{

u ∈W
1,p(x)
0 (Ω);u ≥ 0 a.e. in Ω

}

.

Theorem 4.1 Assume that (2)− (6) hold true and f ∈ L1(Ω). Then there exists at

least one solution (entropy solution) to the following unilateral problem,

(P)















u ∈ T
1,p(x)
0 (Ω), u ≥ 0 a.e. in Ω, g(x, u,∇u) ∈ L1(Ω)

∫

Ω

a(x, u,∇u)∇Tk(u − v) dx+

∫

Ω

g(x, u,∇u)Tk(u − v) dx ≤

∫

Ω

fTk(u − v) dx,

∀v ∈ K0 ∩ L
∞(Ω), ∀k > 0.
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Proof of Theorem 4.1

We consider the following approximated problem

(Pǫ)

{

−div(a(x, uǫ,∇uǫ)) + gǫ(x, uǫ,∇uǫ) = fǫ in Ω,
uǫ = 0 on ∂Ω,

(8)

where gǫ(x, s, ξ) =
g(x, s, ξ)

1 + ǫ|g(x, s, ξ)|
and fǫ = T 1

ǫ
(f); then (fǫ)ǫ>0 is a sequence of bounded

functions which strongly converges to f in L1(Ω) and ‖fǫ‖1 ≤ ‖f‖1, for all ǫ > 0.

Note that |gǫ(x, s, ξ)| ≤ |g(x, s, ξ)| ≤ b(|s|)(c(x) + |ξ|p(x)) and |gǫ(x, s, ξ)| ≤
1
ǫ
.

Nevertheless, it seems difficult to obtain a priori estimates, due to the fact that the
quantity uǫgǫ(x, uǫ,∇uǫ) has no constant sign. In order to avoid this inconvenience, we
approach the sign function by an increasing Lipschitz function.

Set for σ > 0,

δσ(s) =







s−σ
s
, if s ≥ σ > 0,

0, if |s| ≤ σ,
−s−σ

s
, if s < −σ < 0.

Now, we set

gσǫ (x, s, ξ) = δσ(s)gǫ(x, s, ξ). (9)

Remark that gσǫ (x, s, ξ) has the same sign as s.

Now, we are in a position to approximate our initial unilateral problem by the fol-
lowing penalized problem

(Pσ
ǫ )























uσǫ ∈W
1,p(x)
0 (Ω)

〈Auσǫ , u
σ
ǫ − v〉+

∫

Ω

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )(u

σ
ǫ − v) dx−

1

ǫ2

∫

Ω

|T 1

ǫ
(uσ

−

ǫ )|p(x)−1(uσǫ − v) dx

=

∫

Ω

fǫ(u
σ
ǫ − v) dx, ∀v ∈W

1,p(x)
0 (Ω).

(10)

We define the operators Gσ
ǫ , R

σ
ǫ :W

1,p(x)
0 (Ω) −→W−1,p′(x)(Ω) by,

〈Gσ
ǫ u, v〉 =

∫

Ω

gσǫ (x, u,∇u)v dx, 〈R
σ
ǫ u, v〉 = −

1

ǫ2

∫

Ω

|T 1

ǫ
(u−)|p(x)−1v dx.

We also denote

〈Au, v〉 =

∫

Ω

a(x, u,∇u)∇v dx.

Thanks to the generalized Hölder’s inequality, we have for all u, v ∈W
1,p(x)
0 (Ω),

∣

∣

∣

∣

∫

Ω

gσǫ (x, u,∇u)v dx

∣

∣

∣

∣

≤
( 1

p−
+

1

p′
−

)

‖gσǫ (x, u,∇u)‖p′(x)‖v‖p(x)

≤
( 1

p−
+

1

p′
−

)

((

1 +
1

ǫ

)

p′
+

p′
−

(meas(Ω) + 1)
1

p′
−

)

‖v‖p(x)

≤ C‖v‖1,p(x)

(11)
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and

∣

∣

∣

∣

−
1

ǫ2

∫

Ω

|T 1

ǫ
(u−)|p(x)−1v dx

∣

∣

∣

∣

≤
1

ǫ2

( 1

p−
+

1

p′
−

)

‖T 1

ǫ
(u−)p(x)−1‖p′(x)‖v‖p(x)

≤
1

ǫ2

( 1

p−
+

1

p′
−

)

∥

∥

∥

∥

(

1

ǫ

)p(x)−1∥
∥

∥

∥

p′(x)

‖v‖p(x)

≤ C‖v‖1,p(x).

(12)

We need the following lemma.

Lemma 4.1 The operator Bσ
ǫ = A+Gσ

ǫ +Rσ
ǫ from W

1,p(x)
0 (Ω) into W−1,p′(x)(Ω) is

pseudo-monotone. Moreover, Bσ
ǫ is coercive, in the following sense:

〈Bσ
ǫ v, v〉

‖v‖1,p(x)
→ +∞ if ‖v‖1,p(x) → +∞.

Proof of Lemma 4.1 Using the generalized Hölder’s inequality and the growth
condition (2) we can show that A is bounded, and by (11) and (12), Bσ

ǫ is bounded

in W
1,p(x)
0 (Ω). The coercivity follows from (4) and the fact that gσǫ (x, s, ξ)s ≥ 0 and

−
1

ǫ2

∫

Ω

|T 1

ǫ
(u−)|p(x)−1u dx ≥ 0. It remains to show that Bσ

ǫ is pseudo-monotone.

Let (uk)k>0 be a sequence in W
1,p(x)
0 (Ω) such that











uk ⇀ u in W
1,p(x)
0 (Ω),

Bσ
ǫ uk ⇀ χ in W−1,p′(x)(Ω),

lim sup
k→∞

〈Bσ
ǫ uk, uk〉 ≤ 〈χ, u〉.

(13)

We will prove that χ = Bσ
ǫ u and 〈Bσ

ǫ uk, uk〉 → 〈χ, u〉 as k → +∞.

Firstly, since W
1,p(x)
0 (Ω) →֒→֒ Lp(x)(Ω), then

uk → u in Lp(x)(Ω) for a subsequence denoted again (uk)k>0. (14)

As (uk)k>0 is a bounded sequence in W
1,p(x)
0 (Ω), then by (2), (a(x, uk,∇uk))k>0 is

bounded in (Lp′(x)(Ω))N . Therefore, there exists a function ϕ ∈ (Lp′(x)(Ω))N such that

a(x, uk,∇uk)⇀ ϕ in (Lp′(x)(Ω))N as k → ∞. (15)

Similarly, it is easy to see that (gσǫ (x, uk,∇uk))k>0 is bounded in Lp′(x)(Ω) with respect
to k, then there exists a function ψσ

ǫ ∈ Lp′(x)(Ω) such that

gσǫ (x, uk,∇uk)⇀ ψσ
ǫ in Lp′(x)(Ω) as k → ∞ (16)

and as (−
1

ǫ2
|T 1

ǫ
(uk)|

p(x)−1)k>0 is bounded in Lp′(x)(Ω), then

−
1

ǫ2
|T 1

ǫ
(u−k )|

p(x)−1 → −
1

ǫ2
|T 1

ǫ
(u−)|p(x)−1 in Lp′(x)(Ω) as k → ∞. (17)
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It is clear that, for all v ∈W
1,p(x)
0 (Ω), we have

〈χ, v〉 = lim
k→∞

〈Bσ
ǫ uk, v〉 = lim

k→∞

∫

Ω

a(x, uk,∇uk)∇vdx + lim
k→∞

∫

Ω

gσǫ (x, uk,∇uk)vdx

+ lim
k→∞

−
1

ǫ2

∫

Ω

|T 1

ǫ
(u−k )|

p(x)−1v dx

=

∫

Ω

ϕ∇v dx+

∫

Ω

ψσ
ǫ v dx−

1

ǫ2

∫

Ω

|T 1

ǫ
(u−)|p(x)−1v dx.

(18)
On one hand, by (14) we have

∫

Ω

gσǫ (x, uk,∇uk)uk dx→

∫

Ω

ψσ
ǫ u dx as k → ∞, (19)

−
1

ǫ2

∫

Ω

|T 1

ǫ
(u−k )|

p(x)−1uk dx→ −
1

ǫ2

∫

Ω

|T 1

ǫ
(u−)|p(x)−1u dx as k → ∞. (20)

Consequently, by the hypotheses, we have

lim sup
k→∞

〈Bσ
ǫ (uk), uk〉 = lim sup

k→∞

{∫

Ω

a(x, uk,∇uk)∇uk dx+

∫

Ω

gσǫ (x, uk,∇uk)uk dx

−
1

ǫ2

∫

Ω

|T 1

ǫ
(u−k )|

p(x)−1uk dx

}

≤

∫

Ω

ϕ∇u dx+

∫

Ω

ψσ
ǫ u dx−

1

ǫ2

∫

Ω

|T 1

ǫ
(u−)|p(x)−1u dx.

(21)
Therefore,

lim sup
k→∞

∫

Ω

a(x, uk,∇uk)∇uk dx ≤

∫

Ω

ϕ∇u dx. (22)

Thanks to (3), we have
∫

Ω

(a(x, uk,∇uk)− a(x, uk,∇u))(∇uk −∇u) dx ≥ 0. (23)

Then
∫

Ω

a(x, uk,∇uk)∇uk dx ≥ −

∫

Ω

a(x, uk,∇u)∇u dx

+

∫

Ω

a(x, uk,∇uk)∇u dx +

∫

Ω

a(x, uk,∇u)∇uk dx.

By (15), we get

lim inf
k→∞

∫

Ω

a(x, uk,∇uk)∇uk dx ≥

∫

Ω

ϕ∇u dx

which implies by using (22)

lim
k→∞

∫

Ω

a(x, uk,∇uk)∇uk dx =

∫

Ω

ϕ∇u dx. (24)

By means of (18), (19), (20) and (24), we obtain 〈Bσ
ǫ uk, uk〉 → 〈χ, u〉 as k → +∞.

On the other hand, by (24) and the fact that a(x, uk,∇u) → a(x, u,∇u) in (Lp′(x)(Ω))N ,
we can deduce that

lim
k→+∞

∫

Ω

(a(x, uk,∇uk)− a(x, uk,∇u))(∇uk −∇u) dx = 0
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and so, by virtue of Lemma 3.3 we find ∇un → ∇u a.e. in Ω, which concludes

a(x, uk,∇uk)⇀ a(x, u,∇u) in (Lp′(x)(Ω))N ,

gσǫ (x, uk,∇uk)⇀ gσǫ (x, u,∇u) in Lp′(x)(Ω)

and

−
1

ǫ2
|T 1

ǫ
(u−k )|

p(x)−1 ⇀ −
1

ǫ2

∫

Ω

|T 1

ǫ
(u−)|p(x)−1.

Thus, χ = Bσ
ǫ u.

In view of Lemma 4.1, there exists at least one solution uσǫ ∈ W
1,p(x)
0 (Ω) to the

problem (10), by using the classical theorem in [12]. The continuation of the proof of
Theorem 4.1 is divided into several steps.

4.1 Study of the approximate problem with respect to ǫ

4.1.1 A priori estimates

If we take v = uσǫ − Tk(u
σ
ǫ ) as a test function in (10), we obtain

∫

Ω

a(x, uσǫ ,∇u
σ
ǫ )∇Tk(u

σ
ǫ ) dx+

∫

Ω

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )Tk(u

σ
ǫ ) dx

−
1

ǫ2

∫

Ω

|T 1

ǫ
(uσ−ǫ )|p(x)−1Tk(u

σ
ǫ ) dx =

∫

Ω

fǫTk(u
σ
ǫ ) dx.

So, as uσǫ = uσ+ǫ − uσ−ǫ , then

−
1

ǫ2
|T 1

ǫ
(uσ−ǫ )|p(x)−1Tk(u

σ
ǫ ) = −

1

ǫ2
|T 1

ǫ
(uσ−ǫ )|p(x)−1Tk(u

σ
ǫ )χ{uσ

ǫ ≤0}

=
1

ǫ2
|T 1

ǫ
(uσ−ǫ )|p(x)−1Tk(u

σ−
ǫ ) ≥ 0.

(25)

Using the fact that gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )Tk(u

σ
ǫ ) ≥ 0 and by (25) we get

∫

Ω

a(x, uσǫ ,∇u
σ
ǫ )∇Tk(u

σ
ǫ ) dx ≤ k‖f‖L1(Ω). (26)

So, by (4) we get

α‖∇Tk(u
σ
ǫ )‖

γ

p(x) ≤ α

∫

Ω

|∇Tk(u
σ
ǫ )|

p(x) dx ≤ k‖f‖L1(Ω) (27)

with

γ =

{

p+ if ‖∇Tk(u
σ
ǫ )‖p(x) ≤ 1,

p− if ‖∇Tk(u
σ
ǫ )‖p(x) > 1.

Thanks to Poincaré inequality, we obtain

‖Tk(u
σ
ǫ )‖1,p(x) ≤ Ck

1

γ , (28)

where C does not depend on ǫ. Consequently (Tk(u
σ
ǫ ))ǫ>0 is bounded in W

1,p(x)
0 (Ω)

uniformly on ǫ and σ.
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4.1.2 Convergence in measure of uσǫ

We prove that uσǫ converges to some function uσ in measure. To prove this, we show that
uσǫ is a Cauchy sequence in measure. Let k be large enough. Combining the generalized
Hölder’s inequality, Poincaré’s inequality and (28), one has

k meas({|uσǫ | > k}) =

∫

{|uσ
ǫ |>k}

|Tk(u
σ
ǫ )| dx ≤

∫

Ω

|Tk(u
σ
ǫ )| dx

≤
(

1
p−

+ 1
p′

−

)

(meas(Ω) + 1)
1

p′
− ‖Tk(u

σ
ǫ )‖p(x)

≤ C1‖Tk(u
σ
ǫ )‖1,p(x) ≤ C2k

1

γ ;

(29)

which yields

meas({|uσǫ | > k}) ≤
C2

k1−
1

γ

∀ǫ > 0, ∀k > 0. (30)

Hence

meas({|uσǫ | > k}) → 0 as k → ∞ ( since 1−
1

γ
> 0), (31)

uniformly in ǫ and σ. Moreover, we have, for every δ > 0,

meas ({|uσn − uσm| > δ}) ≤ meas ({|uσn| > k}) + meas ({|uσm| > k})
+meas ({|Tk(u

σ
n)− Tk(u

σ
m)| > δ}).

(32)

Since (Tk(u
σ
ǫ ))ǫ>0 is bounded in W

1,p(x)
0 (Ω), then there exists for σ > 0 fixed, vσk ∈

W
1,p(x)
0 (Ω) such that

Tk(u
σ
ǫ )⇀ vσk in W

1,p(x)
0 (Ω)

and by the compact embedding, we have

Tk(u
σ
ǫ ) → vσk in Lp(x)(Ω) and a.e. in Ω. (33)

Consequently, we can assume that (Tk(u
σ
ǫ ))ǫ>0 is a Cauchy sequence in measure in Ω.

Let η > 0. Then by (30) and (32), there exists some k(η) > 0 such that meas({|uσn−u
σ
m| >

δ}) < η for all n,m ≥ n0(k(η), δ). This proves that (uσǫ )ǫ>0 is a Cauchy sequence in
measure and thus, converges almost everywhere to some measurable function uσ.
Therefore, uσǫ → uσ a.e. in Ω.

Furthermore,

Tk(u
σ
ǫ )⇀ Tk(u

σ) in W
1,p(x)
0 (Ω)

and

Tk(u
σ
ǫ ) → Tk(u

σ) in Lp(x)(Ω) and a.e. in Ω.

(34)

4.1.3 Positivity of uσ

Taking v = uσǫ − T 1

ǫ
(uσǫ ) as a test function in (10), we obtain

∫

Ω

a(x, uσǫ ,∇u
σ
ǫ )∇T 1

ǫ
(uσǫ ) dx+

∫

Ω

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )T 1

ǫ
(uσǫ ) dx−

1

ǫ2

∫

Ω

|T 1

ǫ
(uσ−ǫ )|p(x)−1T 1

ǫ
(uσǫ ) dx =

∫

Ω

fǫT 1

ǫ
(uσǫ ) dx.
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Since

∫

Ω

a(x, uσǫ ,∇u
σ
ǫ )∇T 1

ǫ
(uσǫ ) dx ≥ 0 and gσǫ (x, u

σ
ǫ ,∇u

σ
ǫ )T 1

ǫ
(uσǫ ) ≥ 0, we get

−
1

ǫ2

∫

Ω

|T 1

ǫ
(uσ−ǫ )|p(x)−1

(

−T 1

ǫ
(uσ

−

ǫ )
)

dx ≤
1

ǫ
‖f‖L1(Ω).

Thus,
∫

Ω

|T 1

ǫ
(uσ−ǫ )|p(x) dx ≤ ǫ‖f‖L1(Ω).

Now, denote by A =
{

x ∈ Ω such that |T 1

ǫ

(

uσ
−

ǫ

)

| = 1
ǫ

}

. As ǫ is used to tend to 0, we

can take it in (0, 1) to get

meas(A)

(

1

ǫ

)p−

≤

∫

A

|T 1

ǫ
(uσ−ǫ )|p(x) ≤ ǫ‖f‖L1(Ω);

which implies that (by letting ǫ go to 0)

meas(A) = 0.

Hence, since uσǫ → uσ a.e. in Ω and the fact that meas(A) = 0, we conclude that

|T 1

ǫ

(

uσ
−

ǫ

)

|p(x) → |uσ
−

|p(x) a.e. in Ω.

We use again the Fatou’s Lemma to obtain
∫

Ω

|uσ
−

| dx ≤ lim inf
ǫ→0

∫

Ω

|T 1

ǫ
(uσ−ǫ )|p(x) dx ≤ lim inf

ǫ→0
ǫ‖f‖L1(Ω) = 0;

which yields
uσ ≥ 0.

4.1.4 Almost everywhere convergence of the gradient

For the sake of simplicity we will write η(ǫ, h) for any quantity such that

lim
h→+∞

lim
ǫ→0

η(ǫ, h) = 0.

Finally, by ηh(ǫ) we will denote a quantity that depends on ǫ and h and is such that

lim
ǫ→0

ηh(ǫ) = 0,

for any fixed value of h.
Let h > 2k > 0, we shall use in (10) the test function







vh,σǫ = uσǫ − ηϕk(ω
h,σ
ǫ )

ωh,σ
ǫ = T2k

(

uσǫ − Th(u
σ
ǫ ) + Tk(u

σ
ǫ )− Tk(u

σ)
)

ωh,σ = T2k(u
σ − Th(u

σ)).
(35)

Let ϕk(t) = teλt
2

, λ = ( b(k)2α )2, it’s obvious to check that (see [6], Lemma 1)

ϕ′

k(t)−
b(k)

α
|ϕk(t)| ≥

1

2
, ∀t ∈ IR. (36)
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It follows that

〈A(uσǫ ), ϕk(ω
h,σ
ǫ )〉+

∫

Ω

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )ϕk(ω

h,σ
ǫ ) dx−

1

ǫ2

∫

Ω

|T 1

ǫ
(uσ−ǫ )|p(x)−1ϕk(ω

h,σ
ǫ ) dx =

∫

Ω

fǫϕk(ω
h,σ
ǫ ) dx,

which is equivalent to saying that

∫

Ω

a(x, uσǫ ,∇u
σ
ǫ )∇ω

h,σ
ǫ ϕ′

k(ω
h,σ
ǫ ) dx+

∫

Ω

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )ϕk(ω

h,σ
ǫ ) dx

−
1

ǫ2

∫

Ω

|T 1

ǫ
(uσ−ǫ )|p(x)−1 ϕk(ω

h,σ
ǫ ) dx

=

∫

Ω

fǫϕk(ω
h,σ
ǫ ) dx.

(37)

Note that, ∇ωh,σ
ǫ = 0 on the set {|uσǫ | > s = 4k + h}, therefore, we get by (37)

∫

Ω

a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))∇ω

h,σ
ǫ ϕ′

k(ω
h,σ
ǫ ) dx+

∫

Ω

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )ϕk(ω

h,σ
ǫ ) dx

−
1

ǫ2

∫

Ω

|T 1

ǫ
(uσ−ǫ )|p(x)−1 ϕk(ω

h,σ
ǫ ) dx

=

∫

Ω

fǫϕk(ω
h,σ
ǫ ) dx.

According to (34), we have ϕk(ω
h,σ
ǫ )⇀ ϕk(ω

h,σ) weakly-* in L∞(Ω) as ǫ→ 0, and then

∫

Ω

fǫϕk(ω
h,σ
ǫ ) dx→

∫

Ω

fϕk(ω
h,σ) dx.

Finally, by using Lebesgue’s theorem, we can deduce that

∫

Ω

fϕk(ω
h,σ) dx→ 0 as h→ +∞.

Therefore,
∫

Ω

fϕk(ω
h,σ
ǫ ) dx = η(ǫ, h). (38)

Note that ϕk(ω
h,σ
ǫ ) and uσǫ has the same sign in the set {x ∈ Ω, |uσǫ | > k}, then we

have

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )ϕk(ω

h,σ
ǫ ) ≥ 0 and −

1

ǫ2
|T 1

ǫ
(uσ−ǫ )|p(x)−1ϕk(ω

h,σ
ǫ ) ≥ 0.

From (37), we deduce that

∫

Ω

a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))∇ω

h,σ
ǫ ϕ′

k(ω
h,σ
ǫ ) dx +

∫

{|uσ
ǫ |<k}

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )ϕk(ω

h,σ
ǫ ) dx

−
1

ǫ2

∫

Ω

|T 1

ǫ
(uσ−ǫ )|p(x)−1 (uσǫ − Tk(u

σ)) exp(λ(ωh,σ
ǫ ))2 dx

≤ η(ǫ, h).
(39)
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Since uσ ≥ 0, then the third term on the left-hand side of the above inequality is positive,
thus,

∫

Ω

a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))∇ω

h,σ
ǫ ϕ′

k(ω
h,σ
ǫ ) dx +

∫

{|uσ
ǫ |<k}

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )ϕk(ω

h,σ
ǫ ) dx

≤ η(ǫ, h).
(40)

Splitting the first integral on the left-hand side of (40), where |uσǫ | ≤ k and |uσǫ | > k, we
can write

∫

Ω

a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))∇ω

h,σ
ǫ ϕ′

k(ω
h,σ
ǫ ) dx

=

∫

{|uσ
ǫ |≤k}

a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))[∇Tk(u

σ
ǫ )−∇Tk(u

σ)]ϕ′

k(ω
h,σ
ǫ ) dx

+

∫

{|uσ
ǫ |>k}

a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))∇ω

h,σ
ǫ ϕ′

k(ω
h,σ
ǫ ) dx.

(41)

The first term on the right-hand side of the last inequality can be written as
∫

{|uσ
ǫ |≤k}

a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))[∇Tk(u

σ
ǫ )−∇Tk(u

σ)]ϕ′

k(ω
h,σ
ǫ ) dx

=

∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))[∇Tk(u

σ
ǫ )−∇Tk(u

σ)]ϕ′

k(ω
h,σ
ǫ ) dx.

(42)

For the second term on the right-hand side of (41), we can write according to (4),
∫

{|uσ
ǫ |>k}

a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))∇ω

h,σ
ǫ ϕ′

k(ω
h,σ
ǫ ) dx

≥ −ϕ′(2k)

∫

{|uσ
ǫ |>k}

|a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))||∇Tk(u

σ)| dx.
(43)

Since |a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ )| is bounded in (Lp′(x)(Ω))N , if necessary we have

|a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ )| ⇀ lM,σ in (Lp′(x)(Ω))N as ǫ→ 0, for a subsequence.

Due to ∇Tk(u
σ)χ{|uσ

ǫ |>k} → ∇Tk(u
σ)χ{|uσ

|>k} in Lp(x)(Ω) as ǫ→ 0, we obtain

−ϕ′(2k)

∫

{|uσ
ǫ |>k}

|a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))||∇Tk(u

σ)| dx→

−ϕ′(2k)

∫

{|uσ
|>k}

lM,σ|∇Tk(u
σ)| dx = 0 as ǫ→ 0.

Therefore,

− ϕ′(2k)

∫

{|uσ
ǫ |>k}

|a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))||∇Tk(u

σ)| dx = ηh(ǫ). (44)

Combining (41) and (44), we deduce that
∫

Ω

a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))∇ω

h,σ
ǫ ϕ′(ωh,σ

ǫ ) dx

≥

∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))[∇Tk(u

σ
ǫ )−∇Tk(u

σ)]ϕ′

k(ω
h,σ
ǫ ) dx+ ηh(ǫ).

(45)
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It follows
∫

Ω

a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))∇ω

h,σ
ǫ ϕ′(ωh,σ

ǫ ) dx

≥

∫

Ω

[a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))− a(x, Tk(u

σ
ǫ ),∇Tk(u

σ))]

×[∇Tk(u
σ
ǫ )−∇Tk(u

σ)]ϕ′

k(ω
h,σ
ǫ ) dx

+

∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ))[∇Tk(u
σ
ǫ )−∇Tk(u

σ)]ϕ′

k(ω
h,σ
ǫ ) dx+ ηh(ǫ).

(46)

Concerning the second term of the right-hand side of (46) we can write
∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ))[∇Tk(u
σ
ǫ )−∇Tk(u

σ)]ϕ′

k(ω
h,σ
ǫ ) dx

=

∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ))∇Tk(u
σ
ǫ )ϕ

′

k(Tk(u
σ
ǫ )− Tk(u

σ)) dx

−

∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ))∇Tk(u
σ)ϕ′

k(ω
h,σ
ǫ ) dx.

(47)

By the continuity of Nemytskii’s operator (cf. [9], [20]), we have

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ))ϕ′

k(Tk(u
σ
ǫ )− Tk(u

σ)) → a(x, Tk(u
σ),∇Tk(u

σ))ϕ′

k(0)

and a(x, Tk(u
σ
ǫ ),∇Tk(u

σ)) → a(x, Tk(u
σ),∇Tk(u

σ)) strongly in (Lp′(x)(Ω))N , while
∇Tk(u

σ
ǫ ) ⇀ ∇Tk(u

σ) weakly in (Lp(x)(Ω))N and ∇Tk(u
σ
ǫ )ϕ

′

k(ω
h,σ
ǫ ) → ∇Tk(u

σ)ϕ′

k(0)
strongly in (Lp(x)(Ω))N .
Then, the first and the second term of the right-hand side on (47) tend respectively to

∫

Ω

a(x, Tk(u
σ),∇Tk(u

σ))∇Tk(u
σ)ϕ′

k(0) dx as ǫ→ 0

and

−

∫

Ω

a(x, Tk(u
σ),∇Tk(u

σ))∇Tk(u
σ)ϕ′

k(ω
h,σ) dx as ǫ→ 0;

therefore,
∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ))[∇Tk(u
σ
ǫ )−∇Tk(u

σ)]ϕ′

k(ω
h,σ
ǫ ) dx = ηh(ǫ). (48)

Combining (46) and (48) yields
∫

Ω

a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))∇ω

h,σ
ǫ ϕ′(ωh,σ

ǫ ) dx

≥

∫

Ω

[a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))− a(x, Tk(u

σ
ǫ ),∇Tk(u

σ))]

×[∇Tk(u
σ
ǫ )−∇Tk(u

σ)]ϕ′

k(ω
h,σ
ǫ ) dx + η(ǫ, h).

(49)

Going back to the second term of the left hand side of (40), we have
∣

∣

∣

∣

∫

{|uσ
ǫ |<k}

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )ϕk(ω

h,σ
ǫ ) dx

∣

∣

∣

∣

≤ b(k)

∫

Ω

c(x)|ϕk(ω
h,σ
ǫ )| dx+

b(k)

α

∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))∇Tk(u

σ
ǫ )|ϕk(ω

h,σ
ǫ )| dx

≤ η(ǫ, h) +
b(k)

α

∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))∇Tk(u

σ
ǫ )|ϕk(ω

h,σ
ǫ )| dx.

(50)
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The last term of the last side of this inequality reads as

b(k)

α

∫

Ω

[a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))− a(x, Tk(u

σ
ǫ ),∇Tk(u

σ))]

[∇Tk(u
σ
ǫ )−∇Tk(u

σ)]|ϕk(ω
h,σ
ǫ )| dx

+
b(k)

α

∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ))[∇Tk(u
σ
ǫ )−∇Tk(u

σ)]|ϕk(ω
h,σ
ǫ )| dx

+
b(k)

α

∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))∇Tk(u

σ)|ϕk(ω
h,σ
ǫ )| dx.

(51)

Reasoning as above, it is easy to see that

b(k)

α

∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ))[∇Tk(u
σ
ǫ )−∇Tk(u

σ)]|ϕk(ω
h,σ
ǫ )| dx = ηh(ǫ)

and
b(k)

α

∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))∇Tk(u

σ)|ϕk(ω
h,σ
ǫ )| dx = η(ǫ, h).

Therefore,

∣

∣

∣

∣

∫

{|uσ
ǫ |<k}

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )ϕk(ω

h,σ
ǫ ) dx

∣

∣

∣

∣

≤
b(k)

α

∫

Ω

[a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))− a(x, Tk(u

σ
ǫ ),∇Tk(u

σ))]

×[∇Tk(u
σ
ǫ )−∇Tk(u

σ)]|ϕk(ω
h,σ
ǫ )| dx+ η(ǫ, h).

(52)

Combining (40), (51) and (52), we obtain

∫

Ω

[a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))− a(x, Tk(u

σ
ǫ ),∇Tk(u

σ))]

×[∇Tk(u
σ
ǫ )−∇Tk(u

σ)](ϕ′

k(ω
h,σ
ǫ )−

b(k)

α
|ϕk(ω

h,σ
ǫ )|) dx

≤ η(ǫ, h),

(53)

which implies by using (36) that

∫

Ω

[a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))− a(x, Tk(u

σ
ǫ ),∇Tk(u

σ))][∇Tk(u
σ
ǫ )−∇Tk(u

σ)] dx ≤ η(ǫ, h).

(54)
Letting ǫ tend to 0 and h tend to infinity, we deduce that

∫

Ω

[a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))− a(x, Tk(u

σ
ǫ ),∇Tk(u

σ))][∇Tk(u
σ
ǫ )−∇Tk(u

σ)] dx→ 0.

By Lemma 3.3, we get from convergence above

Tk(u
σ
ǫ ) → Tk(u

σ) in W
1,p(x)
0 (Ω). (55)

Thus,

∇uσǫ → ∇uσ a.e. in Ω. (56)
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4.1.5 Equi-integrability of the nonlinearity gσǫ

In order to pass to the limit in the approximated equation, we now show that

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ ) → gσ(x, uσ,∇uσ) in L1(Ω). (57)

In particular, it is enough to prove the equi-integrability of the sequence
{|gσǫ (x, u

σ
ǫ ,∇u

σ
ǫ )|}. To this purpose, we take uσǫ −T1(u

σ
ǫ −Th(u

σ
ǫ )) ≥ 0 as a test function

in (10), to obtain
∫

{|uσ
ǫ |≥h+1}

|gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )| dx ≤

∫

{|uσ
ǫ |>h}

|fn| dx.

Let η > 0 be fixed. Then, there exists h(η) ≥ 1 such that
∫

{|uσ
ǫ |≥h(η)}

|gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )| dx <

η

2
. (58)

For any measurable subset E ⊂ Ω, we have
∫

E

|gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )| dx ≤

∫

E

b(l(ε))
(

c(x) + |∇Th(η)(u
σ
ǫ )|

p(x)
)

dx

+

∫

{|uσ
ǫ |≥h(η)}

|gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )| dx.

(59)

In view of (55), there exists β(η) > 0 such that
∫

E

b(h(η))
(

c(x) + |∇Th(η)(u
σ
ǫ )|

p(x)
)

dx ≤
η

2
for all E such that meas(E) < β(η). (60)

Finally, by combining (58) and (60), one easily has
∫

E

|gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )| dx ≤ η for all E such that meas(E) < β(η).

Then, we deduce that gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ ) is uniformly equi-integrable in Ω.

4.1.6 Passing to the limit with respect to ǫ

Let v ∈ K0 ∩ L
∞(Ω), we take uσǫ − Tk(u

σ
ǫ − v) as a test function in (10) to obtain

∫

Ω

a(x, uσǫ ,∇u
σ
ǫ )∇Tk(u

σ
ǫ − v) dx+

∫

Ω

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )Tk(u

σ
ǫ − v) dx ≤

∫

Ω

fǫTk(u
σ
ǫ − v) dx.

(61)
We deduce that
∫

{|uσ
ǫ −v|≤k}

a(x, uσǫ ,∇u
σ
ǫ )∇(uσǫ−v)dx+

∫

Ω

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )Tk(u

σ
ǫ−v)dx ≤

∫

Ω

fǫTk(u
σ
ǫ−v)dx,

(62)
which is equivalent to saying that

∫

{|uσ
ǫ −v|≤k}

a(x, uσǫ ,∇u
σ
ǫ )∇u

σ
ǫ dx−

∫

{|uσ
ǫ −v|≤k}

a(x, uσǫ ,∇u
σ
ǫ )∇v dx

+

∫

Ω

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )Tk(u

σ
ǫ − v) dx

≤

∫

Ω

fǫTk(u
σ
ǫ − v) dx.

(63)
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By Fatou’s lemma and the fact that

a(x, Tk+‖v‖∞
(uσǫ ),∇Tk+‖v‖∞

(uσǫ ))⇀ a(x, Tk+‖v‖∞
(uσ),∇Tk+‖v‖∞

(uσ)) in (Lp′(x)(Ω))N ,

we get
∫

{|uσ
−v|≤k}

a(x, uσ,∇uσ)∇uσ dx−

∫

{|uσ
−v|≤k}

a(x, Tk+‖v‖∞
(uσ),∇Tk+‖v‖∞

(uσ))∇v dx

+

∫

Ω

gσ(x, uσ,∇uσ)Tk(u
σ − v) dx

≤

∫

Ω

fTk(u
σ − v) dx.

(64)
Consequently,

∫

Ω

a(x, uσ,∇uσ)∇Tk(u
σ − v) dx+

∫

Ω

gσ(x, uσ,∇uσ)Tk(u
σ − v) dx

≤

∫

Ω

fTk(u
σ − v) dx, ∀v ∈ K0 ∩ L

∞(Ω) and ∀k > 0.
(65)

4.2 Study of the problem with respect to σ

4.2.1 Estimates with respect to σ

We are going to give some estimates on the sequence (uσ)σ>0 identical to (27). For that,
we take v = Ts(u

σ − Tk(u
σ)) in (65) and we let s → ∞; then, by the same argument as

in section 4.1 we can prove that

α‖∇Tk(u
σ)‖γ

p(x) ≤ α

∫

Ω

|∇Tk(u
σ)|p(x) dx ≤ k‖f‖L1(Ω) for all k > 1. (66)

Thus, as in section 4.1.2, there exists u such that Tk(u) ∈ W
1,p(x)
0 (Ω) and

{

Tk(u
σ)⇀ Tk(u) in W

1,p(x)
0 (Ω),

Tk(u
σ) → Tk(u) in Lp(x)(Ω) and a.e. in Ω.

(67)

So, uσ ≥ 0 a.e. in Ω and we have also u ≥ 0 a.e. in Ω.

4.2.2 Strong convergence of truncation with respect to σ

Here, in (65) we shall use the test function






v = Ts(u
σ − ϕk(ω

h,σ)),
ωh,σ = T2k

(

uσ − Th(u
σ) + Tk(u

σ)− Tk(u)
)

,

ωh = T2k(u− Th(u)),
(68)

where h > 2k > 0. It follows that for all l > 0,
∫

Ω

a(x, uσ,∇uσ)∇Tl(u
σ − Ts(u

σ − ϕk(ω
h,σ))) dx

+

∫

Ω

gσ(x, uσ,∇uσ)Tl(u
σ − Ts(u

σ − ϕk(ω
h,σ))) dx

≤

∫

Ω

fTl(u
σ − Ts(u

σ − ϕk(ω
h,σ))) dx.
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Therefore,
∫

{|uσ
−ϕk(ωh,σ)|≤s}

a(x, uσ,∇uσ)∇Tl(ϕk(ω
h,σ)) dx

+

∫

Ω

gσ(x, uσ,∇uσ)Tl(u
σ − Ts(u

σ − ϕk(ω
h,σ))) dx

≤

∫

Ω

fTl(u
σ − Ts(u

σ − ϕk(ω
h,σ))) dx.

Letting s→ ∞ and choosing l large enough (l ≥ |ϕk(2k)|), we deduce that
∫

Ω

a(x, uσ,∇uσ)∇ϕk(ω
h,σ)dx +

∫

Ω

gσ(x, uσ,∇uσ)ϕk(ω
h,σ)dx ≤

∫

Ω

fϕk(ω
h,σ)dx.

(69)
Then, by using the same techniques as in section 4.1.4 we can deduce that

Tk(u
σ) → Tk(u) in W

1,p(x)
0 (Ω) and ∇uσ → ∇u a.e. in Ω. (70)

4.2.3 Equi-integrability of the nonlinearity g with respect to σ

Moreover, since g is a Carathéodory function, it is easy to see that

g(x, uσ,∇uσ) → g(x, u,∇u) a.e. in Ω as σ → 0.

Then, by assumption (6) (note that this hypothesis is only used here), it is clear that
gσ(x, uσ,∇uσ) = δσg(x, u

σ,∇uσ) → g(x, u,∇u) a.e. in {x ∈ Ω, u(x) ≥ 0}.
Similarly, we claim that gσ(x, uσ,∇uσ) → g(x, u,∇u) in L1(Ω).

Indeed, taking uσ − T1(u
σ − Tl(u

σ)) ≥ 0 as test function in (65), we obtain
∫

{|uσ
|≥l+1}

|gσ(x, uσ,∇uσ)| dx ≤

∫

{|uσ
|>l}

|f | dx.

Let β > 0 be fixed. Then, there exists l(β) ≥ 1 such that
∫

{|uσ
|≥l(β)}

|gσ(x, uσ,∇uσ)| dx <
β

2
. (71)

For any measurable subset E ⊂ Ω, we have
∫

E

|gσ(x, uσ,∇uσ)| dx ≤

∫

E

b(l(β))
(

c(x) + |∇Tl(β)(u
σ)|p(x)

)

dx

+

∫

{|uσ
|≥l(β)}

|gσ(x, uσ,∇uσ)| dx.
(72)

In view of (70), there exists α(β) > 0 such that
∫

E

b(l(β))
(

c(x) + |∇Tl(β)(u
σ)|p(x)

)

dx ≤
β

2
for all E such that meas(E) < α(β). (73)

Finally, by combining (71) and (73), one easily has
∫

E

|gσ(x, uσ,∇uσ)| dx ≤ β for all E such that meas(E) ≤ α(β).

Therefore, we deduce that gσ(x, uσ,∇uσ) is uniformly equi-integrable in Ω. So, as in
section 4.1.6, we can pass to the limit in σ and conclude. This achieves the proof of
Theorem 4.1.
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5 Case when the Nonlinearity g is Negative

We consider the convex set K0 = {u ∈W
1,p(x)
0 (Ω);u ≤ 0 a.e. in Ω}.

Theorem 5.1 Assume that (2) − (6) hold true and that f ∈ L1(Ω). Then, there

exists at least one solution (entropy solution) to the following unilateral problem,

(P)















u ∈ T
1,p(x)
0 (Ω), u ≤ 0 a.e. in Ω, g(x, u,∇u) ∈ L1(Ω)

∫

Ω

a(x, u,∇u)∇Tk(u − v) dx+

∫

Ω

g(x, u,∇u)Tk(u − v) dx ≤

∫

Ω

fTk(u − v) dx,

∀v ∈ K0 ∩ L
∞(Ω), ∀k > 0.

Proof. The same proof as for Theorem 4.1 can be applied with the following changes:
i) We approach the sign function by an increasing Lipschitz function.
ii) The Lipschitz function δσ(s) is replaced by:

δσ(s) =







−s+σ
s

, if s ≥ σ > 0,
0, if |s| ≤ σ,

s+σ
s
, if s < −σ < 0.

iii) The approximated problem becomes:

(P
σ

ǫ )























uσǫ ∈W
1,p(x)
0 (Ω)

〈Auσǫ , u
σ
ǫ − v〉+

∫

Ω

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )(u

σ
ǫ − v) dx+

1

ǫ2

∫

Ω

|T 1

ǫ
(uσ

+

ǫ )|p(x)−1(uσǫ − v) dx

=

∫

Ω

fǫ(u
σ
ǫ − v) dx, ∀v ∈ W

1,p(x)
0 (Ω).

(74)

iv) The set K0 is replaced by K0 = {u ∈W
1,p(x)
0 (Ω);u ≤ 0 a.e. in Ω}.
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[5] Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M. and Vazquez, J.L. An L1

theory of existence and uniqueness of nonlinear elliptic equations. Ann. Scuola Norm. Sup.

Pisa Cl. Sci. 22 (1995) 241–273.

[6] Boccardo, L., Murat, F. and Puel, J.P. Existence of Bounded Solutions for non linear
elliptic unilateral problems. Ann-Mat. Pura Appl. (4) 152 (1988) 183–196.

[7] Diening, L. Theoretical and Numerical Results for Electrorheological Fluids. Ph.D. thesis,
University of Freiburg, Germany, 2002.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 14 (3) (2014) 224–243 243
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1 Introduction

In this paper we are concerned with the existence of solutions to fractional order initial
value problem (IV P for short), for the system

(cDr
0u)(t, x) = f(t, x, u(t,x)) + g(t, x, u(t,x)), if (t, x) ∈ J, (1)

u(t, x) = φ(t, x), if (t, x) ∈ J̃ , (2)

u(t, 0) = ϕ(t), u(0, x) = ψ(x), (t, x) ∈ J, (3)

where ϕ(0) = ψ(0), J := [0,∞) × [0,∞), J̃ := (−∞,+∞) × (−∞,+∞)\[0,∞) ×
[0,∞), cDr

0 is the standard Caputo’s fractional derivative of order r = (r1, r2) ∈
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(0, 1] × (0, 1], f, g : J × B ⇒ R
n are given functions, φ : J̃ → R

n is a given continu-
ous function with φ(t, 0) = ϕ(t), φ(0, x) = ψ(x) for each (t, x) ∈ J, ϕ : [0,∞) → R

n,

ψ : [0,∞) → R
n are given absolutely continuous functions and B is called a phase space

that will be specified in Section 3.
We denote by u(t,x) the element of B defined by

u(t,x)(s, τ) = u(t+ s, x+ τ); (s, τ) ∈ (−∞, 0]× (−∞, 0],

here u(t,x)(., .) represents the history of the state u.
There has been a significant development in ordinary and partial fractional differential

equations in recent years. We can find numerous applications of differential equations
of fractional order in viscoelasticity, electrochemistry, control, porous media, electro-
magnetic, etc. (see [1–5]). There has been a significant development in ordinary and
partial fractional differential equations in recent years; see the monographs [6–8], and
the papers [9–15] and the references therein.

The theory of functional differential equations has emerged as an important branch of
nonlinear analysis. Differential delay equations, or functional differential equations, have
been used in modeling scientific phenomena for many years. Often, it has been assumed
that the delay is either a fixed constant or is given as an integral in which case it is called
a distributed delay; see for instance the books [16–20], and the papers [21, 22].

In this paper, we present existence result for the problem (1)-(3). Our main result for
this problem is based on a nonlinear alternative for the sum of a completely continuous
operator and a contraction one in Fréchet spaces due to Avramescu [23]. To our knowl-
edge, there are very few papers devoted to fractional differential equations with delay on
Fréchet spaces. This paper can be considered as a contribution in this setting case.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this paper. Let p ∈ N and J0 = [0, p] × [0, p]. By C(J0,R) we denote the
Banach space of all continuous functions from J0 into R

n with the norm

‖w‖∞ = sup
(t,x)∈J0

‖w(t, x)‖,

where ‖.‖ denotes a suitable complete norm on R
n.

As usual, by AC(J0,R) we denote the space of absolutely continuous functions from J0
into R

n and L1(J0,R) is the space of Lebesgue-integrable functions w : J0 → R
n with

the norm

‖w‖L1 =

∫ p

0

∫ p

0

‖w(t, x)‖dtdx.

Definition 2.1 [24] Let r = (r1, r2) ∈ (0,∞)×(0,∞), θ = (0, 0) and u ∈ L1(J0,R
n).

The left-sided mixed Riemann-Liouville integral of order r of u is defined by

(Irθu)(t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1u(s, τ)dτds.

In particular,

(Iθθu)(t, x) = u(t, x), (Iσθ u)(t, x) =

∫ t

0

∫ x

0

u(s, τ)dτds; for almost all (t, x) ∈ J0,
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where σ = (1, 1). For instance, Irθu exists for all r1, r2 ∈ (0,∞) × (0,∞), when u ∈
L1(J0,R

n). Note also that when u ∈ C(J0,R
n), then (Irθu) ∈ C(J0,R

n), moreover

(Irθu)(t, 0) = (Irθu)(0, x) = 0; t, x ∈ J0.

Example 2.1 Let λ, ω ∈ (−1,∞) and r = (r1, r2) ∈ (0,∞)× (0,∞), then

Irθ t
λxω =

Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ+ r1)Γ(1 + ω + r2)
tλ+r1xω+r2 , for almost all (t, x) ∈ J0.

By 1 − r we mean (1 − r1, 1 − r2) ∈ [0, 1) × [0, 1). Denote by D2
tx := ∂2

∂t∂x
, the mixed

second order partial derivative.

Definition 2.2 [24] Let r ∈ (0, 1]× (0, 1] and u ∈ L1(J0,R
n). The mixed fractional

Riemann-Liouville derivative of order r of u is defined by the expression

Dr
θu(t, x) = (D2

txI
1−r
θ u)(t, x)

and the Caputo fractional-order derivative of order r of u is defined by the expression

(cDr
0u)(t, x) = (I1−r

θ

∂2

∂t∂x
u)(t, x).

The case σ = (1, 1) is included and we have

(Dσ
θ u)(t, x) = (cDσ

θ u)(t, x) = (D2
txu)(t, x), for almost all (t, x) ∈ J0.

Example 2.2 Let λ, ω ∈ (−1,∞) and r = (r1, r2) ∈ (0, 1]× (0, 1], then

Dr
θt

λxω =
Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ− r1)Γ(1 + ω − r2)
tλ−r1xω−r2 , for almost all (t, x) ∈ J0.

In the sequel we will make use of the following generalization of Gronwall’s lemma
for two independent variables and singular kernel.

Lemma 2.1 [25] Let υ : J → [0,∞) be a real function and ω(., .) be a nonnegative,

locally integrable function on J. If there are constants c > 0 and 0 < r1, r2 < 1 such that

υ(t, x) ≤ ω(t, x) + c

∫ t

0

∫ x

0

υ(s, τ)

(t− s)r1(x− τ)r2
dτds,

then there exists a constant δ = δ(r1, r2) such that

υ(t, x) ≤ ω(t, x) + δc

∫ t

0

∫ x

0

ω(s, τ)

(t− s)r1(x− τ)r2
dτds,

for every (t, x) ∈ J.
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3 The Phase Space B

The notation of the phase space B plays an important role in the study of both qualitative
and quantitative theory for functional differential equations. A usual choice is a semi-
normed space satisfying suitable axioms, which was introduced by Hale and Kato (see
[22]). For further applications see for instance the books [16,17,19] and their references.

For any (t, x) ∈ J denote E(t,x) := [0, t] × {0} ∪ {0} × [0, x], furthermore in case
t = a, x = b we write simply E. Consider the space (B, ‖(., .)‖B) is a seminormed
linear space of functions mapping (−∞, 0]×(−∞, 0] into R

n, and satisfying the following
fundamental axioms which were adapted from those introduced by Hale and Kato for
ordinary differential functional equations:

(A1) If y : (−∞, a] × (−∞, b] → R
n continuous on J and y(t,x) ∈ B, for all (t, x) ∈ E,

then there are constants H,K,M > 0 such that for any (t, x) ∈ J the following
conditions hold:

(i) y(t,x) is in B;

(ii) ‖y(t, x)‖ ≤ H‖y(t,x)‖B,

(iii) ‖y(t,x)‖B ≤ K sup(s,τ)∈[0,t]×[0,x] ‖y(s, τ)‖+M sup(s,τ)∈E(t,x)
‖y(s,τ)‖B,

(A2) For the function y(., .) in (A1), y(t,x) is a B-valued continuous function on J.

(A3) The space B is complete.

Now, we present some examples of phase spaces [26, 27].

Example 3.1 Let B be the set of all functions φ : (−∞, 0] × (−∞, 0] → R
n which

are continuous on [−α, 0]× [−β, 0], α, β ≥ 0, with the seminorm

‖φ‖B = sup
(s,τ)∈[−α,0]×[−β,0]

‖φ(s, τ)‖.

Then we have H = K = M = 1. The quotient space ̂B = B/‖.‖B is isometric to the
space C([−α, 0] × [−β, 0],Rn) of all continuous functions from [−α, 0]× [−β, 0] into R

n

with the supremum norm, this means that partial differential functional equations with
finite delay are included in our axiomatic model.

Example 3.2 Let γ ∈ R and let Cγ be the set of all continuous functions φ :
(−∞, 0] × (−∞, 0] → R

n for which a limit lim‖(s,τ)‖→∞ eγ(s+τ)φ(s, τ) exists, with the
norm

‖φ‖Cγ
= sup

(s,τ)∈(−∞,0]×(−∞,0]

eγ(s+τ)‖φ(s, τ)‖.

Then we have H = 1 and K =M = max{e−γ(a+b), 1}.

Example 3.3 Let α, β, γ ≥ 0 and let

‖φ‖CLγ
= sup

(s,τ)∈[−α,0]×[−β,0]

‖φ(s, τ)‖ +

∫ 0

−∞

∫ 0

−∞

eγ(s+τ)‖φ(s, τ)‖dτds
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be the seminorm for the space CLγ of all functions φ : (−∞, 0]×(−∞, 0] → R
n which are

continuous on [−α, 0]× [−β, 0] measurable on (−∞,−α]×(−∞, 0]∪(−∞, 0]×(−∞,−β],
and such that ‖φ‖CLγ

<∞. Then

H = 1, K =

∫ 0

−α

∫ 0

−β

eγ(s+τ)dτds, M = 2.

4 Some Properties in Fréchet Spaces

Let X be a Fréchet space with a family of semi-norms {‖ · ‖n}n∈N. We assume that the
family of semi-norms {‖ · ‖n} verifies :

‖u‖1 ≤ ‖u‖2 ≤ ‖u‖3 ≤ . . . for every u ∈ X.

Let Y ⊂ X , we say that Y is bounded if for every n ∈ N, there exists Mn > 0 such that

‖y‖n ≤Mn for all y ∈ Y.

To X we associate a sequence of Banach spaces {(Xn, ‖·‖n)} as follows : For every n ∈ N,
we consider the equivalence relation ∼n defined by : u ∼n v if and only if ‖u− v‖n = 0
for u, v ∈ X . We denote by Xn = (X |∼n

, ‖ · ‖n) the quotient space, the completion of
Xn with respect to ‖ · ‖n. To every Y ⊂ X , we associate a sequence {Y n} of subsets
Y n ⊂ Xn as follows: For every u ∈ X , we denote by [u]n the equivalence class of u of
subset Xn and we define Y n = {[u]n : u ∈ Y }. We denote by Y n, intn(Y

n) and ∂nY
n,

respectively, the closure, the interior and the boundary of Y n with respect to ‖ · ‖n in
Xn. For more information about this subject see [28].

Definition 4.1 Let X be a Fréchet space. A function N : X → X is said to be a
contraction if for each n ∈ N there exists kn ∈ [0, 1) such that

‖N(u)−N(v)‖n ≤ kn‖u− v‖n for all u, v ∈ X.

Theorem 4.1 (Nonlinear Alternative of Avramescu) [23] Let (X, |.|n) be a Fréchet

space and let A,B : X → X be two operators. Suppose that the following hypotheses are

fulfilled:

(i) A is a compact operator;

(ii) B is a contraction operator with respect to a family of seminorms ||.||n equivalent

to the family |.|n;

(iii) the set E = {u ∈ X : u = λA(u) + λB(u
λ
) for some λ ∈ (0, 1)} is bounded.

Then there is u ∈ X such that u = Au+ Bu.

5 Existence of Solutions

In this section, we give our main existence result for problem (1)-(3). Before starting and
proving this result, we give what we mean by a solution of this problem. Let the space

Ω := {u : R2 → R
n : u(t,x) ∈ B for (t, x) ∈ E and u|J ∈ C(J,Rn)}.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 14 (3) (2014) 244–257 249

Definition 5.1 A function u ∈ Ω is said to be a solution of (1)-(3) if u satisfies
equations (1) and (3) on J and the condition (2) on J̃ .

For the existence of solutions for the problem (1)–(3), we need the following lemma:

Lemma 5.1 A function u ∈ Ω is a solution of problem (1)-(3) if and only if u

satisfies the equation

u(t, x) = z(t, x) +
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x − τ)r2−1f(s, τ, u(s,τ))dτds

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1g(s, τ, u(s,τ))dτds,

for all (t, x) ∈ J and the condition (2) on J̃ .

For each p ∈ N we consider following sets,

Cp = {u : (−∞, p]× (−∞, p] → R
n : u(t,x) ∈ B, u(t,x) = 0 for (t, x) ∈ E and

u|J0
∈ C(J0,R

n)},

and C0 = {u ∈ Ω : u(t,x) = 0 for (t, x) ∈ E}.
On C0 we define the semi-norms:

‖u‖p = sup
(t,x)∈E

‖u(t,x)‖+ sup
(t,x)∈J0

‖u(t, x)‖ = sup
(t,x)∈J0

‖u(t, x)‖, u ∈ Cp.

Then C0 is a Fréchet space with the family of semi-norms {‖u‖p}.

Theorem 5.1 Assume:

(H1) The functions f, g : J × B → R
n are continuous.

(H2) For each p ∈ N, there exist constants ℓp(t, x) ∈ C(J0,R
n) such that

‖g(t, x, u)− g(t, x, v)‖ ≤ ℓp(t, x)‖u− v‖B, for any u, v ∈ B and (t, x) ∈ J0.

(H3) For each p ∈ N, there exist p, q ∈ C(J,R+) such that

‖f(t, x, u)‖ ≤ p(t, x) + q(t, x)‖u‖B, for (t, x) ∈ J0 and each u ∈ B.

If
Kℓ∗pp

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
< 1, (4)

where ℓ∗p = sup(t,x)∈J0
ℓp(t, x), then there exists a unique solution for IVP (1)-(3) on

(−∞,+∞)× (−∞,+∞).

Proof. Transform the problem (1)-(3) into a fixed point problem. Consider the
operator N : Ω → Ω defined by,

(Nu)(t, x) =































φ(t, x), (t, x) ∈ J̃ ,

z(t, x)

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ, u(s,τ))dτds

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1g(s, τ, u(s,τ))dτds, (t, x) ∈ J.

(5)
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Let v(., .) : Rn → R
n be a function defined by,

v(t, x) =

{

z(t, x), (t, x) ∈ J.

φ(t, x), (t, x) ∈ J̃ ,

Then v(t,x) = φ for all (t, x) ∈ E.

For each w ∈ C(J,Rn) with w(t, x) = 0 for each (t, x) ∈ E we denote by w the
function defined by

w(t, x) =

{

w(t, x), (t, x) ∈ J,

0, (t, x) ∈ J̃ .

If u(., .) satisfies the integral equation,

u(t, x) = z(t, x) +
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x − τ)r2−1f(s, τ, u(s,τ))dτds

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1g(s, τ, u(s,τ))dτds,

we can decompose u(., .) as u(t, x) = w(t, x) + v(t, x); (t, x) ∈ J, which implies u(t,x) =
w(t,x) + v(t,x), for every (t, x) ∈ J, and the function w(., .) satisfies

w(t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ, w(t,x) + v(t,x))dτds

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1g(s, τ, w(t,x) + v(t,x))dτds.

Let the operators A,B : C0 → C0 be defined by

(Aw)(t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x − τ)r2−1f(s, τ, w(t,x) + v(t,x))dτds

and

(Bw)(t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1g(s, τ, w(t,x) + v(t,x))dτds.

Obviously, the operator N has a fixed point which is equivalent to finding the fixed
point of the operator equation (Aw)(t, x) + (Bw)(t, x) = w(t, x), (t, x) ∈ J . We shall
show that the operators A and B satisfy all the conditions of Theorem 4.1.

For better readability, we break the proof into a sequence of steps.
Step 1: A is continuous.

Let {wn} be a sequence such that wn → w in C0. Then

‖(Awn)(t, x) − (Aw)(t, x)‖ ≤
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1

× ‖f(s, τ, wn(s,τ) + vn(s,τ))− f(s, τ, w(s,τ) + v(s,τ))‖dτds.

Since f is a continuous function, we have

‖(Awn)−(Aw)‖p ≤
pr1+r2‖f(., ., wn(.,.) + vn(.,.))− f(., ., w(.,.) + v(.,.))‖p

Γ(r1 + 1)Γ(r2 + 1)
→ 0 as n→ ∞.
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Thus A is continuous.

Step 2: A maps bounded sets into bounded sets in C0. Indeed, it is enough to show

that, for any η > 0, there exists a positive constant
∼

ℓ such that, for each w ∈ Bη = {w ∈

C0 : ‖w‖p ≤ η}, we have ‖A(w)‖p ≤
∼

ℓ .

Let w ∈ Bη. By (H3) we have for each (t, x) ∈ J0,

‖(Aw)(t, x)‖ ≤
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x − τ)r2−1‖f(s, τ, w(s,τ) + v(s,τ))‖dτds

≤
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x − τ)r2−1p(s, τ)

+q(s, τ)‖w(s,τ) + v(s,τ)‖Bdτds

≤
‖p‖p

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x − τ)r2−1dτds

+
‖q‖pη

∗

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1dτds

≤
‖p‖p + ‖q‖pη

∗

Γ(r1 + 1)Γ(r2 + 1)
pr1+r2 := ℓ∗,

where

‖w(s,τ) + v(s,τ)‖B ≤ ‖w(s,τ)‖B + ‖v(s,τ)‖B ≤ Kpη +Kp‖φ(0, 0)‖+Mp‖φ‖B := η∗.

Hence ‖(Aw)‖p ≤ ℓ∗.

Step 3: A maps bounded sets into equicontinuous sets in C0.

Let (t1, x1), (t2, x2) ∈ J0, t1 < t2, x1 < x2, Bη be a bounded set as in Step 2, and let
w ∈ Bη. Then

‖(Aw)(t2, x2)− (Aw)(t1, x1)‖ ≤
1

Γ(r1)Γ(r2)

∫ t1

0

∫ x1

0

[(t2 − s)r1−1(x2 − τ)r2−1

−(t1 − s)r1−1(x1 − τ)r2−1]||f(s, τ, w(s,τ) + v(s,τ))||dτds

+
1

Γ(r1)Γ(r2)

∫ t2

t1

∫ x2

x1

(t2 − s)r1−1(x2 − τ)r2−1||f(s, τ, w(s,τ) + v(s,τ))||dτds

+
1

Γ(r1)Γ(r2)

∫ t1

0

∫ x2

x1

(t2 − s)r1−1(x2 − τ)r2−1||f(s, τ, w(s,τ) + v(s,τ))||dτds

+
1

Γ(r1)Γ(r2)

∫ t2

t1

∫ x1

0

(t2 − s)r1−1(x2 − τ)r2−1||f(s, τ, w(s,τ) + v(s,τ))||dτds
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≤
‖p‖p + ‖q‖pη

∗

Γ(r1)Γ(r2)

∫ t1

0

∫ x1

0

[(t2 − s)r1−1(x2 − τ)r2−1 − (t1 − s)r1−1(x1 − τ)r2−1]dτds

+
‖p‖p + ‖q‖pη

∗

Γ(r1)Γ(r2)

∫ t2

t1

∫ x2

x1

(t2 − s)r1−1(x2 − τ)r2−1dτds

+
‖p‖p + ‖q‖pη

∗

Γ(r1)Γ(r2)

∫ t1

0

∫ x2

x1

(t2 − s)r1−1(x2 − τ)r2−1dτds

+
‖p‖p + ‖q‖pη

∗

Γ(r1)Γ(r2)

∫ t2

t1

∫ x1

0

(t2 − s)r1−1(x2 − τ)r2−1dτds

≤
‖p‖p + ‖q‖pη

∗

Γ(r1 + 1)Γ(r2 + 1)
[xr22 (t2 − t1)

r1 + tr12 (x2 − x1)
r2

−(t2 − t1)
r1(x2 − x1)

r2 + tr11 x
r2
1 − tr12 x

r2
2 ]

+
‖p‖p + ‖q‖pη

∗

Γ(r1 + 1)Γ(r2 + 1)
(t2 − t1)

r1(x2 − x1)
r2

+
‖p‖p + ‖q‖pη

∗

Γ(r1 + 1)Γ(r2 + 1)
[tr12 − (t2 − t1)

r1 ](x2 − x1)
r2

+
‖p‖p + ‖q‖pη

∗

Γ(r1 + 1)Γ(r2 + 1)
(t2 − t1)

r1 [xr22 − (x2 − x1)
r2−1

≤
‖p‖p + ‖q‖pη

∗

Γ(r1 + 1)Γ(r2 + 1)
[2xr22 (t2 − t1)

r1 + 2tr12 (x2 − x1)
r2

+tr11 x
r2
1 − tr12 x

r2
2 − 2(t2 − t1)

r1(x2 − x1)
r2 ].

The right-hand side of the above inequality tends to zero as t1 → t2, x1 → x2. The
equicontinuity for the cases t1 < t2 < 0, x1 < x2 < 0 and t1 ≤ 0 ≤ t2, x1 ≤ 0 ≤ x2 is
obvious.

As a consequence of steps 1 to 3 together with Arzela-Ascoli theorem, we can conclude
that A : C0 → C0 is a compact operator.

Step 4: B is a contraction.
Let w,w∗ ∈ C0. Then we have for each (t, x) ∈ J0

‖(Bw)(t, x) − (Bw∗)(t, x)‖ ≤
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1

× ‖g(s, τ, w(s,τ) + v(s,τ))− g(s, τ, w∗

(s,τ) + v(s,τ))‖dτds

≤
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1ℓp(s, τ)‖w(s,τ) − w∗

(s,τ)‖B

≤
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1Kℓp(s, τ)

× sup
(s,τ)∈[0,t]×[0,x]

‖w(s, τ)− w∗(s, τ)‖dτds

≤
Kℓ∗p(s, τ)

Γ(r1)Γ(r2)

∫ p

0

∫ p

0

(t− s)r1−1(x− τ)r2−1dτds‖w − w∗‖p.

Therefore,

‖(Bw)− (Bw∗)‖p ≤
Kℓ∗pp

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
‖w − w∗‖p,
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since by (4), B is a contraction.

Step 5: (A priori bounds)

Now it remains to show that the set

E={w ∈ C(J,R) : w = λA(w) + λB(w
λ
) for some λ ∈ (0, 1)}

is bounded. Let w ∈ E , then w = λA(w) + λB(w
λ
) for some 0 < λ < 1. Thus for each

(t, x) ∈ J0, we have

w(t, x) =
λ

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ, w(s,τ) + v(s,τ))dτds

+
λ

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1g(s, τ,
w(s,τ) + v(s,τ)

λ
)dτds.

This implies by (H2) and (H3) that, for each (t, x) ∈ J0, we have

‖w(t, x)‖ ≤
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1[p(s, τ)

+q(s, τ)‖w(s,τ) + v(s,τ)‖B]dτds

+
λ

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1

∣

∣

∣

∣

g(s, τ,
w(s,τ) + v(s,τ)

λ
)− g(s, τ, 0)

∣

∣

∣

∣

dτds

+
λ

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1|g(s, τ, 0)|dτds

≤
pr1+r2‖p‖p

Γ(r1 + 1)Γ(r2 + 1)
+

pr1+r2g∗

Γ(r1 + 1)Γ(r2 + 1)

+
||q||p

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1‖w(s,τ) + v(s,τ)‖Bdτds

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1ℓp(s, τ)||w(s,τ) + v(s,τ)||Bdτds

≤
pr1+r2(‖p‖p + g∗)

Γ(r1 + 1)Γ(r2 + 1)

+
(||q||p + ℓ∗p)

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x − τ)r2−1‖w(s,τ) + v(s,τ)‖Bdτds,

where g∗ = sup
(s,τ)∈J0

|g(s, τ, 0)| and

‖w(s,τ) + v(s,τ)‖B ≤ ‖w(s,τ)‖B + ‖v(s,τ)‖B

≤ K sup{w(s̃, τ̃) : (s̃, τ̃ ) ∈ [0, s]× [0, τ ]}

+M‖φ‖B +K‖φ(0, 0)‖. (6)
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If we name y(s, τ) the right hand side of (6), then we have

‖w(s,τ) + v(s,τ)‖B ≤ y(t, x),

and therefore, for each (t, x) ∈ J0 we obtain

‖w(t, x)‖ ≤
pr1+r2(‖p‖p + g∗)

Γ(r1 + 1)Γ(r2 + 1)

+
||q||p + ℓ∗p

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1y(s, τ)dτds. (7)

Using the above inequality and the definition of y for each (t, x) ∈ J0 we have

y(t, x) ≤ M‖φ‖B +K‖φ(0, 0)‖+
Kpr1+r2(‖p‖p + g∗)

Γ(r1 + 1)Γ(r2 + 1)

+
K(‖q‖p + ℓ∗p)

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1y(s, t)dτds.

Then by Lemma 2.1, there exists δ = δ(r1, r2) such that we have

‖y(t, x)‖ ≤ R+ δ
K(‖q‖p + ℓ∗p)

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1Rdτds,

where

R =M‖φ‖B +K‖φ(0, 0)‖+
Kpr1+r2(‖p‖p + g∗)

Γ(r1 + 1)Γ(r2 + 1)
.

Hence

‖y‖p ≤ R+
RδKpr1+r2(‖q‖p + ℓ∗p)

Γ(r1 + 1)Γ(r2 + 1)
:= ˜R.

Then, (7) implies that

‖w‖p ≤
pr1+r2

Γ(r1 + 1)Γ(r2 + 1)
[‖p‖p + g∗ + ˜R(‖q‖p + ℓ∗p)] := R∗

p.

This shows that the set E is bounded. As a consequence of Theorem 4.1 we deduce that
A+B has a fixed point which is a solution of problem (1)-(3). ✷

6 An Example

As an application of our results we consider the following partial perturbed hyperbolic
functional differential equations of the form

(cDr
0u)(t, x) =

2 + et+x(|u(t− 2, x− 3)|+ 3)

cpet+x(2 + |u(t− 2, x− 3)|)
, if (t, x) ∈ J := [0,∞)× [0,∞), (8)

u(t, 0) = t, u(0, x) = x2, (t, x) ∈ J, (9)

u(t, x) = t+ x2, (t, x) ∈ J̃ , (10)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 14 (3) (2014) 244–257 255

where J̃ := R
2\[0,∞)× [0,∞).

Set

f(t, x, u(t,x)) =
|u(t− 2, x− 3)|+ 3

cp(2 + |u(t− 2, x− 3)|)
, if (t, x) ∈ J,

g(t, x, u(t,x)) =
2

cpet+x(2 + |u(t− 2, x− 3)|)
, if (t, x) ∈ J,

and

cp =
3pr1+r2

Γ(r1 + 1)Γ(r2 + 1)
.

Let γ > 0, and consider the following phase space

Bγ= {u ∈ C((−∞, 0]× (−∞, 0],R) : lim‖(θ,η)‖→∞ eγ(θ+η)u(θ, η) exists ∈ R}.

The norm of Bγ is given by

‖u‖γ = sup
(θ,η)∈(−∞,0]×(−∞,0]

eγ(θ+η)|u(θ, η)|.

Let
E := [0, 1]× {0} ∪ {0} × [0, 1],

and u : (−∞, 1]× (−∞, 1] → R such that u(t,x) ∈ Bγ for (t, x) ∈ E, then

lim
‖(θ,η)‖→∞

eγ(θ+η)u(t,x)(θ, η) = lim
‖(θ,η)‖→∞

eγ(θ−t+η−x)u(θ, η)

= eγ(t+x) lim
‖(θ,η)‖→∞

u(θ, η) <∞.

Hence u(t,x) ∈ Bγ . Finally we prove that

‖u(t,x)‖γ = K sup{|u(s, τ)| : (s, τ) ∈ [0, t]× [0, x]}

+M sup{‖u(s,τ)‖γ : (s, τ) ∈ E(t,x)},

where K =M = 1 and H = 1.
If t+ θ ≤ 0, x+ η ≤ 0 we get

‖u(t,x)‖γ = sup{|u(s, τ)| : (s, τ) ∈ (−∞, 0]× (−∞, 0]},

and if t+ θ ≥ 0, x+ η ≥ 0, then we have

‖u(t,x)‖γ = sup{|u(s, τ)| : (s, τ) ∈ [0, t]× [0, x]}.

Thus for all (t+ θ, x+ η) ∈ [0, 1]× [0, 1], we get

‖u(t,x)‖γ = sup{|u(s, τ)| : (s, τ) ∈ (−∞, 0]× (−∞, 0]}

+sup{|u(s, τ)| : (s, τ) ∈ [0, t]× [0, x]}.

Then

‖u(t,x)‖γ = sup{‖u(s,τ)‖γ : (s, τ) ∈ E}+ sup{|u(s, τ)| : (s, τ) ∈ [0, t]× [0, x]}.

(Bγ , ‖.‖γ) is a Banach space. We conclude that Bγ is a phase space.
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For each u, u ∈ Bγ and (t, x) ∈ J , we have

|g(t, x, u(t,x))− g(t, x, u(t,x))| ≤
1

cpet+x
‖u− u‖Bγ

.

Hence condition (H2) is satisfied with ℓpe
t+x = 1

cpet+x . Since

ℓ∗p = sup

{

1

cpet+x
, (t, x) ∈ J × R

}

≤
1

cp

and K = 1, we get
kℓ∗pp

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
=

1

3
< 1.

Hence condition (4) holds for each (r1, r2) ∈ (0, 1] × (0, 1] and all p ∈ N
∗. Also, the

function f is continuous on [0,∞)× [0,∞)× [0,∞) and

|f(t, x, w)| ≤ |w|+ 3, for each (t, x, w) ∈ [0,∞)× [0,∞)× Bγ .

Thus conditions (H1) and (H3) hold. Consequently Theorem 5.1 implies that problem
(8)-(10) has at least one solution defined on (−∞,+∞)× (−∞,+∞).
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Abstract: In this paper, we study the existence and multiplicity of periodic solutions
of the following second-order Hamiltonian systems

ẍ(t) + V
′(t, x(t)) = 0,

where t ∈ R, x ∈ R
N and V ∈ C1(R × R

N ,R). By using a symmetric mountain
pass theorem, we obtain a new criterion to guarantee that second-order Hamiltonian
systems has infinitely many periodic solutions. We generalize and improve recent
results from the literature. Some examples are also given to illustrate our main
theoretical results.

Keywords: periodic solutions; Hamiltonian systems; mountain pass theorem; sym-

metric mountain pass theorem.
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1 Introduction

Consider the second-order Hamiltonian systems

ẍ(t) + V ′(t, x(t)) = 0, (HS)

where x = (x1, ..., xN ), V ∈ C1(R × R
N ,R) and V ′(t, x) = ∇xV (t, x). The existence

and multiplicity of periodic solutions for system (HS) have been studied in many papers
via critical point theory, see the classical monographs [8] and [10] and the recent papers
[5, 6, 12, 13, 15, 18]. In [10], Rabinowitz established the existence of periodic solutions for
(HS) under the well known Ambrosetti-Rabinowitz condition:
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(AR) there is a constant µ > 2 such that

0 < µV (t, x) ≤ V ′(t, x) . x

for all t ∈ [0, T ], T > 0, and x ∈ R
N\ {0} .

The potential V (t, x) in (HS) is of the following form:

V (t, x) = −
1

2
L(t)x . x + W (t, x),

where L ∈ C(R,RN2

) is a symmetric matrix valued function and W ∈ C1(R × R
N ,R)

and satisfy:

(W1) there exist constants α0 > 0 and d0 > 0 such that

|W ′(t, x)| ≤ d0 (|x|
α0 + 1) ∀ t ∈ [0, T ], x ∈ R

N ,

He and Wu [6] have obtained some results of the existence of nontrivial T−periodic
solutions for (HS). See also Fei [5].

Motivated by the ideas of [5–7, 10, 12, 14–18], in this paper we will further study the
existence of T−periodic solutions for (HS) under some general conditions.

Here and in the following x . y denotes the inner product of x, y ∈ R
N and |.| denotes

the associated norm.
Our main results are the two following theorems.

Theorem 1.1 Assume that V satisfies

(V1) V (t, x) = −K(t, x) + W (t, x), where K,W : R× R
N → R are C1-maps and are

T−periodic in its first variable with T > 0, and V (t, 0) = 0,

(V2) lim sup
|x|→0

V (t, x)

|x|
2 < 0 uniformly in t ∈ [0, T ],

(V3) there exist constants µ > 2, θ ∈ [2, µ), λ ∈ (1, 2] and b > 0 such that

K(t, x) ≥ b |x|
λ
, K ′(t, x) . x ≤ θK(t, x), ∀ (t, x) ∈ [0, T ]× R

N ,

(V4) there exist constants σ ∈ (1, λ) and C ∈ R such that

0 ≤ µW (t, x) ≤ W ′(t, x) . x+ C |x|
σ

for all t ∈ [0, T ] and x ∈ R
N ,

(V5) there exist α0(t) > 0 and constants α1 > θ, R > 0 such that

W (t, x) ≥ α0(t) |x|
α1 ∀(t, x) ∈ [0, T ]× R

N , |x| ≥ R.

Then the system (HS) has a nontrivial T−periodic solution.

Moreover, if V (t, x) is symmetric in x, i.e. V satisfies
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(V6) V (t,−x) = V (t, x), ∀(t, x) ∈ [0, T ]× R
N ;

then we obtain the following result by using the symmetric mountain pass theorem.

Theorem 1.2 Assume that V satisfies (V1) − (V6), then the system (HS) has an

unbounded sequence of T−periodic solutions and, in particular, infinite T−periodic solu-

tions.

Remark 1.1 There are functions K and W which satisfy the hypotheses of Theorem
1.1 and Theorem 2.2, but do not satisfy the corresponding results in [4–7, 10, 12, 14–18].

For example, define a function K ∈ C1(R× R
N ,R) as follows

K(t, x) =











|x|
5

4 exp(|x|
1

4 ) + |x|
2
, if |x| ≤ 1,

exp(1) |x|
3

2 + |x|2 , if |x| > 1.

An easy computation shows that K satisfies the condition (V3) but do not satisfy the
corresponding results in [4–7, 10, 12, 14–18]. Define a function W ∈ C1(R × R

N ,R) as
follows

W (t, x) = |x|
5

4 exp(|x|
1

4 ).

Then we have

W ′(t, x) . x =
5

4
|x|

5

4 exp(|x|
1

4 ) +
1

4
|x|

1

4 |x|
5

4 exp(|x|
1

4 )

= (
5

4
+

1

4
|x|

1

4 ) |x|
5

4 exp(|x|
1

4 ).

So, W does not satisfy (W1).
Moreover, for any constant µ > 2, we have

µW (t, x)−W ′(t, x) . x = (µ−
5

4
−

1

4
|x|

1

4 ) |x|
5

4 exp(|x|
1

4 )

which yields that

0 < µW (t, x)−W ′(t, x) . x ≤ (µ−
5

4
) |x|

5

4 exp(4µ− 5)

for all (t, x) ∈ R×R
N and 0 < |x| < (4µ− 5)4, i.e. the condition (AR) does not hold for

every t ∈ R and x ∈ R
N\ {0} and

µW (t, x)−W ′(t, x).x ≤ 0, ∀ (t, x) ∈ R× R
N , |x| > (4µ− 5)4;

then (V4) holds.

Corollary 1.1 Assume that V satisfies (V1), (V3)− (V5) and

(V′

2) W (t, x) = o(|x|
2
) as |x| → 0 uniformly in t ∈ [0, T ].

Then the system (HS) has a nontrivial T−periodic solution.

Moreover, if V satisfies (V6) then the system (HS) has an unbounded sequence of

T−periodic solutions.
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2 Proof of the Main Results

Let

H1
T =

{

x : [0, T ] → R
N , x is absolutely continuous, x(0) = x(T ), and

ẋ ∈ L2([0, T ],RN)
}

Then H1
T is a Hilbert space with the norm defined by

‖x‖ =

(

∫ T

0

(|x(t)|2 + |ẋ(t)|2)dt

)
1

2

for x ∈ H1
T . Consider the functional φ : H1

T → R defined by

φ(x) =

∫ T

0

(

1

2
|ẋ(t)|2 +K(t, x(t))−W (t, x(t))

)

dt . (1)

It is well known that φ ∈ C1(H1
T ,R) and for all x, y ∈ H1

T

φ′(x)y =

∫ T

0

(ẋ(t).ẏ(t) +K ′(t, x(t)).y(t) −W ′(t, x(t)).y(t)) dt . (2)

It is well known that the T−periodic solution of system (HS) corresponds to the critical
points of φ in H1

T . We will obtain the critical point of φ by using the mountain pass theo-
rem and the symmetric mountain pass theorem. We say that φ satisfies the Palais-Smale
condition if every bounded sequence {uk} in the space H such that limk→∞ φ′(uk) = 0
contains a convergent subsequence. Therefore we state these theorems.

Theorem 2.1 [10] Let H be a real Banach space and φ ∈ C1(H,R) satisfying the

Palais-Smale condition. If φ satisfies the following conditions:

(i) φ(0) = 0,

(ii) there exist constants ρ, α > 0 such that φ/∂Bρ(0) ≥ α,

(iii) there exists e ∈ H\Bρ(0) such that φ(e) ≤ 0.

Then φ possesses a critical value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

φ(g(s)),

where Bρ(0) is the open ball in H centered in 0, with radius ρ, ∂Bρ(0) its boundary and

Γ = {g ∈ C([0, 1], H) : g(0) = 0, g(1) = e} .

Theorem 2.2 [10] Let H be a real Banach space, φ is even and φ ∈ C1(H,R)
satisfyies the Palais-Smale condition. If φ satisfies (i) and (ii) of Theorem 2.1 and the

following condition:

(iii’) For each finite dimensional subspace E ⊂ H, there is r = r(E) such that φ(x) ≤ 0
for x ∈ E\Br(0) where Br(0) is an open ball in H centered in 0, with radius r.
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Then φ possesses an unbounded sequence of critical values.

In the following, we denote Ci (i = 1, 2, 3...) for different positive constants.

Lemma 2.1 [7] For all x ∈ H1
T

‖x‖
∞

≤ C∞ ‖x‖ . (3)

where ‖x‖
∞

= max
0≤t≤T

|x(t)|.

2.1 Proof of Theorem 1.1

Let γT : H1
T → [0,+∞) be given by

γT (x) =

(

∫ T

0

(|ẋ(t)|
2
+ 2K(t, x(t)))dt

)
1

2

. (4)

By (1) and (4) we have

φ(x) =
1

2
γ2
T (x)−

∫ T

0

W (t, x(t))dt . (5)

Moreover, using (V3) and (2) we obtain

φ′(x)x ≤

∫ T

0

(

|ẋ(t)|2 + θK(t, x(t))
)

dt−

∫ T

0

W ′(t, x(t)).x(t)dt. (6)

It is clear that φ(0) = 0. Firstly, we will show that φ satisfies the Palais-Smale condition.
Let (yj) ⊂ H1

T be a sequence such that (φ(yj))j∈N is bounded and φ′(yj) → 0 as j → +∞.

Then, there exists C0 such that

φ(yj) ≤ C0, ‖φ′(yj)‖H1

T
∗ ≤ C0, (7)

for every j ∈ N. Without loss of generality, we can assume that ‖yj‖ 6= 0. Then from
(3), (4) and (V3), we obtain for j ∈ N

γ2
T (yj) =

∫ T

0

(

|ẏj(t)|
2
+ 2K(t, yj(t))

)

dt

≥

∫ T

0

(

|ẏj(t)|
2
+ 2b |yj(t)|

λ
)

dt

≥
∫ T

0 |ẏj(t)|
2
dt+ 2b (C∞ ‖yj‖)

λ−2 ∫ T

0 |yj(t)|
2
dt

≥ min
{

1, 2b(C∞ ‖yj‖)
λ−2
}

‖yj‖
2

= min
{

‖yj‖
2
, 2bCλ−2

∞
‖yj‖

λ
}

.

(8)

By (4), (6) and (V4) we have

−
θ

µ
γ2
T (yj) ≤

2

µ
‖φ′(yj)‖ ‖yj‖ −

2

µ

∫ T

0

W ′(t, yj(t)) . yj(t) dt. (9)
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By Sobolev’s embedding theorem, (5), (7), (9) and (V4) we obtain

(

µ− θ

µ

)

γ2
T (yj) ≤ 2φ(yj)+

2

µ
‖φ′(yj)‖ ‖yj‖+

2

µ

∫ T

0

C |yj(t)|
σ
dt

≤ 2C0 + C1 ‖yj‖+ C2 ‖yj‖
σ
. (10)

Combining (8) with (2.1), we obtain

min
{

‖yj‖
2
, 2bCλ−2

∞
‖yj‖

λ
}

≤
µ

µ− θ
(C0 + C1 ‖yj‖+ C2 ‖yj‖

σ). (11)

It follows from (11) that ‖yj‖ is bounded in H1
T . In a similar way as in Proposition 4.3

in [8], we can prove that (yj) has a convergent subsequence in H1
T . Hence, φ satisfies the

Palais-Smale condition. Now, let us show that φ satisfies assumption (ii) of Theorem
2.1. By (V2), there exist constants α0, ρ0 > 0 such that

V (t, x) ≤ −α0 |x|
2

(12)

for all |x| ≤ ρ0 and t ∈ [0, T ]. Choose ρ = ρ0

C∞

and let S =
{

x ∈ H1
T , ‖x‖ = ρ

}

. By 3,
we have ‖x‖

∞
≤ ρ0, for all x ∈ S, which together with (12) implies

φ(x) = 1
2

∫ T

0
|ẋ(t)|2 dt−

∫ T

0
V (t, x(t)) dt

≥ 1
2

∫ T

0
|ẋ(t)|2 dt+ α0

∫ T

0
|x(t)|2 dt

≥ min
{

1
2 , α0

}

ρ2 := α.

for every x ∈ S.

It remains to prove that φ satisfies assumption (iii) of Theorem 2.1. By (V3) we have

K(t, x) ≤ C3 |x|
θ + C4 ∀ (t, x) ∈ [0, T ]× R

N , (13)

where C3 = sup
t∈[0,T ],|x|=1

K(t, x) and C4 = sup
t∈[0,T ],|x|≤1

K(t, x). By (1) and (13) we have,

for every s ∈ R\ {0} and x ∈ H1
T \ {0},

φ(sx) ≤
s2

2

∫ T

0

|ẋ(t)|
2
dt+ C3s

θ

∫ T

0

|x(t)|
θ
dt+ C5 −

∫ T

0

W (t, sx(t)) dt. (14)

Take some Q ∈ H1
T such that ‖Q‖ = 1. Then there exists a subset Ω of positive measure

of [0, T ] such that Q(t) 6= 0 for t ∈ Ω. Take s > 1 such that s |Q(t)| ≥ R for t ∈ Ω. Then
by (V4), (V5) and (14)

φ(sQ) ≤ C6s
θ − sα1

∫

Ω

α0(t) |Q(t)|
α1 dt. (15)

Since α0(t) > 0 and α1 > θ, (15) implies that φ(sQ) < 0 for some s > 1 such that
s |Q(t)| ≥ R for t ∈ Ω and s ‖Q‖ > ρ. By Theorem 1.1, φ possesses a critical value
c ≥ α > 0 given by

c = inf
g∈Γ

max
s∈[0,1]

φ(g(s)),

where
Γ = {g ∈ C([0, 1], H) : g(0) = 0, g(1) = e} .

Hence, there is x ∈ H1
T such that φ(x) = c, φ′(x) = 0. The proof of Theorem 1.1 is

complete.



264 A. BENHASSINE

2.2 Proof of Theorem 1.2

(V6) implies that φ is even. By Theorem 2.1 and the proof of Theorem 1.1, it suffices to
prove that φ satisfies (iii′) of Theorem 2.2.

Let E ⊂ H1
T be a finite dimensional subspace. From the proof of Theorem 1.1 we

know that for any Q ∈ E ⊂ H1
T such that ‖Q‖ = 1, there is sQ > 1 such that φ(sQ) < 0,

for every |s| ≥ sQ > 1. Since E ⊂ H1
T is a finite dimensional subspace, we can choose

r = r(E) > 0 such that
φ(x) < 0, ∀ x ∈ E\ Br(0).

Hence, by Theorem 2.1, φ possesses an unbounded sequence of critical values (cn)n∈N

with cn → +∞. The proof of Theorem 1.2 is complete.

2.3 Proof of Corollary 1.1.

It follows from (V3) and (V ′

2 )

lim sup
|x|→0

V (t, x)

|x|
2 ≤ lim sup

|x|→0

(

W (t, x)

|x|
2 − b |x|

λ−2

)

< 0

uniformly in t ∈ [0, T ], which implies the conditions (V2). An easy application of Theorem
2.1 and Theorem 2.2 will show that Corollary 1.1 holds.
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Abstract: This paper deals with the approximate controllability of a functional dif-
ferential equation with deviated argument and finite delay. Sufficient condition for
approximate controllability is proved under the assumption that the linear control
system is approximately controllable; thereby removing the need to assume the in-
vertibility of a controllability operator which fails to exist in infinite dimensional space
if the generated semigroup is compact. Schauder fixed point theorem is used and the
C0 semigroup associated with mild solution has been replaced by the fundamental
solution.
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1 Introduction

In certain real world problems, delay depends not only on time but also on the unknown
quantity. The differential equations with deviated arguments are generalization of de-
lay differential equations in which the unknown quantity and its derivative appear in
different values of their arguments. Functional differential equations with deviated argu-
ment model various control problems arising in the field of engineering, physics and so
on. Many partial differential systems can be reduced to functional differential equations
with deviated arguments, see for instance [3, 8, 15, 16]. Aftereffect, hereditary systems,
equations with deviated arguments, etc. feature in several mathematical models. As a
matter of fact delay differential systems are still resistant to many classical controllers.

In recent years, controllability of infinite dimensional systems has been extensively
studied for various applications. The papers of Benchohra et al. [10] and Chang [19]
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discuss the exact controllability of functional systems with infinite delay. However, in
these papers the invertibility of a controllability operator is assumed. As a consequence
their approach fails in infinite dimensional spaces whenever the generated semigroup is
compact. Also it is practically difficult to verify their condition directly. This is one of
the motivations of our paper.

Controllability results are available in overwhelming majority of investigations for
abstract differential delay systems (see [4–6, 9–11, 18–20]); rather than for functional
differential equations with deviated arguments. It is interesting to note that approximate
controllability problem for nonlinear dynamical systems with deviated argument has not
been investigated thoroughly in literature. In an attempt to fill this gap we study the
approximate controllability of the following control system using fixed point approach
which removes the above restrictions.

However C.G. Gal [1] studied the existence and uniqueness of local and global solu-
tions for initial value problem with deviated argument

u′(t) = Au(t) + f(t, u(t), u[α(u(t), t)]), t ∈ R+, u(0) = u0.

Muslim and Bahuguna [12] studied a neutral differential equation with the same type
of deviated argument as studied by C.G. Gal [1]. Haloi, Pandey and Bahuguna [17]
studied a system with the same deviated argument. Fractional operators, analyticity
and compactness are mostly used to establish these results which impose more restriction
on the semigroup and the nonlinear part of the semilinear system. Thus, in this paper
the C0 semigroup associated with mild solution has been replaced by the fundamental
solution.

Several papers studied the approximate controllability of semilinear control systems,
see for instance [2, 7, 14] and references therein. Generally these papers proposed con-
ditions on the systems operators by assuming the corresponding linear system is ap-
proximately controllable. For instance, Naito [7] proved that a semilinear system is
approximately controllable under range condition on the control operator and uniform
boundedness of the nonlinear operator. Sukavanam [14] proved sufficient conditions for
approximate controllability where the nonlinear function satisfies growth conditions.

Motivated by results in [7] and [14] the purpose of this paper is to study the exis-
tence and uniqueness of mild solution and approximate controllability of a functional
differential equation with deviated argument and finite delay using Schuader fixed point
theorem. However we proceed by establishing a relation between the reachable set of
linear control problem and that of the semilinear delay control problem.

In this work we study the approximate controllability of the functional differential
equation with finite delay and deviated argument, which is illustrated as follows.

dx(t)

dt
= Ax(t) +A1xt +Bu(t) + f(t, xt, x(a(x(t), t))), t ∈ J = [0, τ ],

x(t) = φ(t),−h ≤ t ≤ 0,
(1)

where x(t) ∈ X and u(t) ∈ U , X and U being Hilbert spaces. Let Z = L2([0, τ ];X), Zh =
L2([−h, τ ];X), 0 < h < τ and Y = L2([0, τ ];U) be the corresponding function spaces.
A : D(A) ⊂ X → X is a closed linear operator which generates a strongly continuous
semigroup T (t). A1 is a bounded linear operator from C([−h, τ ];X) to L2([0, τ ], X).
B : Y → Z is a bounded linear operator. When x : [−h, τ ] → X is a continuous function
then xt(.) is denoted by xt(θ) = x(t + θ), θ ∈ [−h, 0] and φ ∈ C([−h, 0];X). xt ∈
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C([−h, 0], X) a Banach space of all continuous functions from [−h, 0] to X with norm

‖xt‖C := supθ∈[−h,0]‖xt(θ)‖X for t ∈ (0, τ ].

CL(J,X) = {u ∈ C(J,X) : ∃l > 0 such that ‖u(t)− u(s)‖ ≤ l|t− s|, ∀t, s ∈ J}.

Simple Lipschitz conditions are required to study the differential equation with devi-
ated argument in Section 3.

2 Preliminaries and Assumptions

Some basic definitions and lemmas are stated which are used in proving the existence and
uniqueness of the mild solution and approximate controllability of (1). In equation (1) if
we put f ≡ 0 the resulting equation without the delay term is called the corresponding
linear system (2)

dx(t)

dt
= Ax(t) +Bu(t), t ∈ [0, τ ],

x(0) = φ(0) ∈ [−h, 0]. (2)

Let us consider the linear delayed system

dx(t)

dt
= Ax(t) +A1xt, t ∈ [0, τ ],

x0 = φ ∈ [−h, 0].
(3)

Let xφ(t) be the unique solution of system (3). Define a map S : J → L(X) by

S(t)φ(0) =

{

xφ(t), t ≥ 0,
0, t < 0.

(4)

Then S(t) is called the fundamental solution of (3) satisfying

S(t) = T (t)φ(0) +

∫ t

0

T (t− s)A1S(s+ θ)ds, t > 0,

S(0) = I, S(t) = 0, −h ≤ t < 0.

(5)

It follows from [9] that S(t) is the unique solution of (3). It can be easily shown that

S(t) = K0 exp(K0||A1||τ) := M,

where ||T (t)|| = K0. Therefore the mild solution of semilinear control system (1) is
defined as

Definition 2.1 The function x : (−h, τ ] → X is said to be a mild solution of (1) if
x(.) ∈ CL(J,X), x(t) = φ(t) for t ∈ [−h, 0] and it satisfies the integral equation.

x(t) = S(t)φ(0) +

∫ t

0

S(t− s)Bu(s)ds+

∫ t

0

S(t− s)f(s, xs, x(a(x(s), s)))ds, t ∈ J, (6)
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and the mild solution of the corresponding linear system with delay and control term (7)

dx(t)

dt
= Ax(t) +A1xt +Bu(t), t ∈ [0, τ ],

x0 = φ ∈ [−h, 0],
(7)

is defined as

x(t) =S(t)φ(0) +

∫ t

0

S(t− s)Bu(s)ds, t ∈ [0, τ ],

x(t) =φ(t),−h ≤ t < 0.

(8)

Definition 2.2 The set given by Kτ (f) = {x(T ) ∈ X : x ∈ Zh} is called reachable
set of the system (1). Kτ (0) is the reachable set of the corresponding linear control
system (7).

Definition 2.3 The system (1) is said to be approximately controllable if Kτ (f) is
dense in X. The corresponding linear system is approximately controllable if Kτ (0) is
dense in X .

Let us assume that:

(H1) The nonlinear function f : J ×X ×X → X satisfies Lipschitz condition,

‖f(t, x1, z1)− f(t, x2, z2)‖ ≤ P (‖x1 − x2‖+ ‖z1 − z2‖)

for all x1, x2, z1, z2 ∈ X, t ∈ (0, τ ] and ∃ a constant g > 0,
such that ‖f(s, 0, x(a(x(0), 0)))‖ ≤ g, ∀ s ∈ J .

(H2) Let a : X×R+ → R+ satisfy the Lipschitz condition |a(x1, s)−a(x2, s)| ≤ La‖x1−
x2‖ and a(., 0) = 0.

Lemma 2.1 The fundamental solution S(t) is bounded.

Proof. Since

||S(t)|| ≤K0 +K0||A1||

∫ t

0

||S(s+ θ)||ds

≤K0 + k0||A1||

∫ t+θ

0

||S(σ)||dσ

≤K0 + ||A1||K0

∫ t

−h

||S(σ)||dσ

≤K0 +K0||A1||

∫ t+h

0

||S(σ)||dσ

||S(t)|| ≤K0 expK0||A1||(t+ h) ≤ K0(1 + d) expK(τ + h) = M

max{||S(t)|| : t ∈ [0, τ ]} = M,

(9)

the fundamental solution is bounded.
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Lemma 2.2 If the C0−semigroup T (t) is compact then the fundamental solution S(t)
is compact.

Proof. Let us define the sequence of operators Sn(t) on [−h, τ ]. From the compact-
ness of T (t) and boundedness of ||A1|| we conclude that Sn is compact. Let ||A1|| = K1.

To prove Sn(t) → S(t) in L(X) we first show that {Sn(t)} is a Cauchy sequence in L(X).
Let us define

S1(t) = T (t), t ∈ [0, τ ],

= 0, t ∈ [−h, 0],

Sn+1(t) = T (t) +

∫ t

0

T (t− s)Sn(s+ θ)ds, t ∈ (0, τ ], θ ∈ [−h, 0],

= 0, t ∈ [−h, 0],

(10)

for n = 1, 2, ...

Therefore,

||S2(t)− S1(t)|| ≤

∫ t

0

||T (t− s)||||A1||||S(s+ θ)||ds ≤ K0K1Mt,

||Sn+1(t)− Sn(t)|| ≤
1

n!
Kn

0 K
n
1M1τ

n → 0 as n → 0.

(11)

Thus {Sn(t)} is a Cauchy sequence. As L(X) is the Banach space of all bounded linear
operators on X, ∃ an operator S(t) ∈ L(X) such that Sn(t) → S(t) uniformly on [0, τ ]
and hence S(t) is compact ∀t ∈ [0, τ ]. It is easy to check that S(t) is unique.

2.1 Existence and uniqueness of mild solution

The equation (6) is verified to be the unique mild solution of the semilinear delay control
system (1).

Theorem 2.1 The system (1) has a unique mild solution in CL(J,X) for each control
u ∈ L2([0, T ];U) if assumptions (H1) and (H2) are satisfied.

Proof. Define the space CL0
([−h, τ ], X) = {x ∈ C([−h, τ ], X) : x ∈ CL([0, τ ], X)}.

Fix 0 < t1 < T such that

PMt1(l + 2lLa)R < M‖φ‖+MMBT ‖u‖+MTg + 1.

Define the mapping Φ : CL0
([−h, t1], X) → CL0

([−h, t1], X) as

(Φx)(t) = S(t)φ(0) +

∫ t

0

S(t− s)[Bu(s) + f(s, xs, x(a(x(s), s)))]ds, t ∈ (0, t1],

= φ(θ), θ ∈ [−h, 0]. (12)

Let us consider the space BR = {x(.) ∈ CL0
([−h, t1], X) : ‖x‖C([−h,t1],X) ≤ R, x(0) =

φ(0)} endowed with the norm of uniform convergence. For any x ∈ BR and 0 ≤ t ≤ t1,

‖xt‖C = sup−h≤θ≤0‖xt(θ)‖X ≤ sup−h≤ζ≤t1‖x(ζ)‖X ≤ R.
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Then

‖(Φx)(t)‖ ≤ M‖φ(0)‖+MMBT ‖u‖

+

∫ t

0

M [‖f(s, xs, x(a(x(s), s))) − f(s, 0, x(a(x(0), 0)))‖

+ ‖f(s, 0, x(a(x(0), 0)))‖]ds

≤ M‖φ‖+MMBT ‖u‖

+

∫ t

0

M [P (‖x(s+ θ)− 0‖+ lLa‖x(s)− x(0)‖) + g]ds

≤ M‖φ(0)‖+MMBt1‖u‖

+

∫ t1

−h

MP (‖x(σ)‖d(σ) +

∫ t1

0

[MlLa‖x(s)− x(0)‖ + g]ds

≤ M‖φ(0)‖+MMBt1‖u‖+M(t1 + h)P‖x‖+ 2Mt1PlLa‖x‖+ gt1

≤ M‖φ(0)‖+MMBt1‖u‖+M(t1 + h)PR+ 2Mt1PlLaR+ gt1.

Let

M‖φ‖+MMBt1‖u‖+M(t1 + h)PR+ 2Mt1PlLaR+ gt1 < R.

Then

M‖φ‖+MMBt1‖u‖+ gt1 < R(1−M(t1 + h)P − 2Mt1PlLa).

RHS is positive if

t1(PM + 2MPlLa) < M(t1 + h)P + 2Mt1PlLa < 1,

t1 <
1

(PM + 2MPlLa)
. (13)

Hence Φ maps BR into itself when t1 satisfies (13). Next it is shown that Φ is a contrac-
tion. Let x1, x2 ∈ BR

‖(Φx1)(t)− (Φx2)(t)‖ ≤

∫ t

0

M‖f(s, (x1)s, x1(a(x1(s), s)))

− f(s, (x1)s, x1(a(x2(s), s))) − f(s, (x2)s, x2(a(x2(s), s)))

+ f(s, (x1)s, x1(a(x2(s), s)))‖ds

≤ tMP [‖x1(a(x1(s), s))− x1(a(x2(s), s))‖

+ (‖(x2)s − (x1)s‖

+ ‖x2(a(x2(s), s)− x1(a(x2(s), s)))‖)]

≤ tMP [l|a(x1(s), s)− a(x2(s), s)|

+ ‖x2(s+ θ)− x1(s+ θ)‖ + (‖x2 − x1‖C([−h,t1];X))]

≤ tM(lPLa‖x1(s)− x2(s)‖C([−h,t1],X)

+ P‖x2(t1)− x1(t1)‖ + P‖x2 − x1‖C([−h,t1],X))

≤ Mt(lPLa + 2P )‖x2 − x1‖C([−h,t1],X). (14)

So, ‖Φx1−Φx2‖C([−h,t1],X) ≤ Mt(lPLa+2P )‖x1−x2‖C([−h,t1],X). Thus Φ is a contraction
mapping. Therefore, Φ has a fixed point in BR. Hence (6) is the mild solution on [−h, t1].



272 SANJUKTA DAS, D. N. PANDEY, N. SUKAVANAM

Similarly it can be shown that (6) is the mild solution on the interval [t1, t2], t1 < t2
Repeating the above process we get that

‖Φnx1 − Φnx2‖C([−h,t1],X) ≤
Mtn

n!
(lPLa + 2P )‖x1 − x2‖C([−h,t1];X).

Thus (6) is the mild solution on the maximal existence interval [−h, t∗], t∗ < τ.

Now it is shown that x is well defined in [−h, τ ].

‖x(t)‖ ≤ M‖φ‖+M

∫ t

0

[MB‖u(s)‖+ P‖xs − 0‖

+ P |x(a(x(s), s) − x(a(x(0), 0)‖ + g]ds

≤ M‖φ‖+MMBτ‖u(s)‖

+ M

∫ t

0

P [‖xs‖+ lLa‖x(s)− x(0)‖+ g]

≤ M‖φ‖+MMBτ‖u(s)‖

+ MτP (‖x(0)‖+ g) +M

∫ t

0

l‖x(s)‖ds. (15)

By Gronwall’s inequality ‖x(t)‖ ≤ ‖xt‖C ≤ [M‖φ‖ + MMBτ‖u(s)‖ + MTP (‖x(0)‖ +
g)] exp(MτP ). So ‖x(t)‖ is bounded on [−h, t∗]. Thus x is well defined on [−h, T ]. To
prove the uniqueness of solution let x1 and x2 be any two mild solutions of (6) such that
for t ∈ [−h, 0], x1(t) = x2(t) = φ. For t ∈ [0, t∗)

‖x1(t)− x2(t)‖ ≤ M

∫ t

0

‖f(s, (x1)s, x1(a(x1(s), s)))

− f(s, (x2)s, x2(a(x1(s), s)))‖ds + f(s, (x2)s, x2(a(x1(s), s)))

− f(s, (x2)s, x2(a(x2(s), s)))‖

≤ M

∫ t

0

P{‖(x1)s − (x2)s‖+ ‖x1(s)− x2(s)‖

+ lLa‖x1(s)− x2(s)‖}ds

≤ M

∫ t

−h

P‖x1(η) − x2(η)‖dη +M

∫ t

0

P‖x1(s)− x2(s)‖ds

+ M

∫ t

0

PlLa‖x1(s)− x2(s)‖ds

≤ M

∫ 0

−h

P‖x1(η) − x2(η)‖dη +M

∫ t

0

P (2 + lLa)‖x1(s)− x2(s)‖ds.

Since uniqueness of the mild solution is proved on [−h, 0], we get

‖x1(t)− x2(t)‖ ≤ MP (2 + lLa)

∫ t

0

‖x1(s)− x2(s)‖ds.

Hence by Gronwall’s inequality x1(t) = x2(t) for all t ∈ [−h, τ ].

3 Main Result

Define a linear operator L from Z to CL([0, τ ], X) by Lx =
∫ τ

0 S(t− s)x(s)ds, t ∈ [0, τ ].

Let Kx(t) =
∫ t

0 S(t− s)x(s)ds, t ∈ [0, τ ].
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Z can be decomposed uniquely as Z = N0(L)⊕N⊥

0 (L) where N0(L) is the null space of
the operator L and N0(L) is its orthogonal space.

Let us assume

(H3) ∀ p ∈ Z, ∃ a function q ∈ R(B) such that Lp = Lq.

The approximate controllability of the corresponding linear system (2) follows from
the hypothesis (H3). Then it is to be proved that the linear system (7) with finite
delay is approximately controllable. Next by assuming that the linear system with delay
(7) is approximately controllable, the system (1) is to be proved to be approximately
controllable using Schauder fixed point theorem. Define the operator F : CL0

([0, τ ], X) →
L2([0, τ ], X) as

F (x)(t) = f(t, xt, x(a(x(t), t))); 0 < t ≤ τ.

From hypotheses (H1), (H2) we conclude that F is a continuous map. From hypothesis
(H3) it follows that for any p ∈ Z, there exists a q ∈ R(B) such that L(p − q) = 0.
Therefore p − q = n ∈ N0(L) which implies that Z = N0(L) ⊕ R(B). Therefore, it
implies the existence of a linear and continuous mapping Q from N⊥

0 (L) into R(B)
which is defined as Qu∗ = v where v is the unique minimum norm element v ∈ (u∗ +
N0(L))

⋂

R(B), i.e. ‖Qu∗‖ = ‖v‖ = min{‖v‖ : v ∈ {(u∗ + N0(L))
⋂

R(B)}. By (H3),
∀v ∈ {u∗+N⊥

0 } ∩R(B) is not empty and ∀z ∈ Z has a unique decomposition z = n+ q.

Hence the operator Q is well defined. Moreover, ‖Q‖ = c for some constant c.

Let us consider the subspace M0 of CL0
([0, τ ], X) which is defined as

M0 =

{

m ∈ CL0
([0, τ ], X) : m(t) = Kn(t), n ∈ N0(L); 0 ≤ t ≤ τ,

m(t) = 0, −h ≤ t ≤ 0;
(16)

Let

fx : M0 → M0

defined by

fx =

{

Kn, 0 < t ≤ τ ;
0, −h ≤ t ≤ 0;

(17)

where n is given by the unique decomposition of F (x +m)(t) = n(t) + q(t), n ∈ N0(L)
and q ∈ R(B).

The following assumption is made

(A1) R(A1) ⊂ R(B).

Theorem 3.1 The operator fx has a fixed point in M0 if M(1 + c)Pτ < 1.

Proof. Since S(t) is compact, K is compact and fx is compact. Let z ∈ Z then
z = q + n, n ∈ N0(L), q ∈ R(B). Also ‖n‖Z ≤ (1 + c)‖z‖Z for some constant c. Let

Br = {v ∈ M0 : ||v|| ≤ r}.
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Let m ∈ Br and ‖f(0, 0, (x+m)(a(m(s), 0)‖ ≤ lf . Suppose on the other hand

r < ‖fx(m)‖ =‖Kn‖ ≤

∫ t

0

‖S(t− s)n(s)‖ds

≤

∫ t

0

M(1 + c)‖F (x+m)‖Zds

≤

∫ t

0

M(1 + c)[‖f(s, (x+m)s, (x+m)(a((x +m)(s), s)))‖

−‖f(0, 0, (x+m)(a(m(s), 0))))‖ + ‖f(0, 0, (x+m)(a(m(s), 0))))‖]

≤M(1 + c)

∫ t

0

P [‖(x+m)(s+ θ)− 0‖

+‖(x+m)(a((x +m)(s), s))− (x+m)(a((m)(s), 0))‖ + lf ]ds

≤M(1 + c)

∫ t

0

P [‖x‖+ ‖m‖+ l|a((x+m)(s), s)− a(m(s), 0)|+ lf ]ds

≤M(1 + c)

∫ t

0

P [‖x‖+ r + lLa‖(x+m)(s)−m(s)‖+ lf ]ds

≤M(1 + c)

∫ t

0

P [‖x‖+ r + lLa‖x‖+ lf ]ds

≤M(1 + c)P (‖x‖T + rτ + lLa‖x‖T + lfT ).

(18)

Dividing by r and taking limit as r tends to ∞ we get a contradiction. So fx maps
Br into itself. Therefore, by Schauder fixed point theorem it has a fixed point.

Theorem 3.2 Suppose the linear control system (2)

dx(t)

dt
= Ax(t) +Bu(t),

x(0) = φ(0), (19)

is approximately controllable then the linear delay control system (7)

dx(t)

dt
= Ax(t) +A1xt +Bu(t),

x(t) = φ(t), −h ≤ t ≤ 0,

is controllable if assumptions (A1) hold.

Proof. Consider

y′(t) = Ay(t) +Bu(t), t ∈ [0, τ ],

y(t) = φ(t), t ∈ [−h, 0].
(20)

The mild solution of equation (20) is as follows

y(t) = T (t)φ(0) +

∫ t

0

T (t− s)Bu(s)ds, t > 0,

y(t) = φ(t), t ∈ [−h, 0].

(21)
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Since R(A1) ⊂ R(B), ∀ ǫ > 0, ∃ w ∈ U such that

‖A1ys −Bw‖Z ≤ ǫ.

Let x(t) be a solution of linear delay control system corresponding to control (u − w)
satisfying

x(t) = T (t)φ(0) +

∫ t

0

T (t− s){B(u− w) +A1xs}ds, t > 0,

x(t) = φ(t), t ∈ [−h, 0].

(22)

If t ∈ [−h, 0], then
x0(t)− y0(t) = 0

and if t ∈ (0, τ ] then we get

x(t)− y(t) =

∫ t

0

T (t− s)[−Bw(s) +A1xs]

=

∫ t

0

T (t− s)[−Bw(s) +A1ys]ds

+

∫ t

0

T (t− s)[A1xs −A1ys]ds.

(23)

Take the norm on both sides

‖x(t)− y(t)‖ ≤ K0

∫ t

0

‖Bw(s)−A1xs‖ds

+K0

∫ t

0

‖A1xs −A1ys‖ds

≤ K0τ‖Bw(s) −A1xs‖Z +K0

∫ t

0

K1‖xs − ys‖ds

≤ K0ǫτ +K0

∫ t

0

K1‖xs − ys‖ds

≤ K0ǫτ +K0

∫ t

−h

K1‖x(η)− y(η)‖dη,

(24)

where ‖A1‖ ≤ K1, since A1 is bounded linear operator from CL0
([−h, τ ], X) to

L2([0, τ ], X) and ˜A : L2([0, τ ], X) → C0([0, τ ], X) defined by ˜A(x) =
∫ t

0
T (t − s)A1xsds

This implies

||x(t) − y(t)|| ≤ K0ǫτ +K0K1

∫ t

−h

‖x(η) − y(η)‖dη. (25)

Using Gronwall’s inequality

||x(t)− y(t)|| ≤ K0ǫτ exp(K0K1{τ + h}).

Since RHS depends on ǫ, it can be made as small as possible. This implies that the
reachable set of linear delay control system is dense in the reachable set of the linear
control system (2) which in turn is dense in X as (7) is apprroximately controllable.
Hence the linear delay control system is controllable.
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Theorem 3.3 The semilinear control system (1) is approximately controllable if the
linear delay control system (7)

dx(t)

dt
= Ax(t) +A1xt +Bu(t),

x(t) = φ(t), −h ≤ t ≤ 0,

is approximately controllable.

Proof. Let x(.) be the mild solution of the linear delay control system (7) given by

x(t) = S(t)φ(0) +KBu(t), t ∈ (0, τ ],

x(t) = φ(t), t ∈ [−h, 0].

We prove
y(t) = x(t) +m0(t)

to be mild solution of semilinear problem (1). Since

KFh(x +m0)(t) = Kn(t) +Kq(t),

operating K on both sides at m = m0, fixed point of fx,

KFh(x +m0)(t) = Kn(t) +Kq(t)

= m0(t) +Kq(t). (26)

Add x(.) to both sides and using y(t) = x(t) +m0(t), we have

x(t) +KFh(x+m0)(t) = x(t) +m0(t) +Kq(t),

x(t) +KFh(y)(t) = y(t) +Kq(t),

⇒ y(t) = x(t) +KFh(y)(t)−Kq(t),

⇒ y(t) = S(t)φ(0) +K(Bu− q)(t) +KFh(y)(t). (27)

This is the mild solution of semilinear problem with control (Bu − q). By following the
same proof in [13] we get the following conclusion that since q ∈ R(B), there exists a
v ∈ U such that ‖Bv − q‖ < ǫ for any given ǫ > 0. Let xv be a solution of the given
semilinear delay control system (1.1) corresponding to the control v. Then as shown
by [7] we have ||y(τ) − xv(τ)|| = ||x(τ) − xv(τ)|| ≤ ǫ. This implies that x(τ) ∈ Kτ (f).
Then it follows that Kτ (0) ⊂ Kτ (f). Thus (1) is approximately controllable, since the
corresponding linear system (7) is approximately controllable.

4 Example

Let us consider the heat control system with finite delay

∂y(t, x)

∂t
=

∂2y(t, x)

∂x2
+ y(t+ θ, x) +Bu(t, x) + f(t, x(t+ θ), x(a(x(s), s)))ds

0 < t < T, −h < θ < 0, 0 < x < π,

y(t, 0) = y(t, π) = 0, 0 ≤ t ≤ T,

y(t, x) = ξ(x), −h ≤ t ≤ 0, 0 ≤ x ≤ π. (28)
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Let X = L2(0, π) and A = − d2

dx2 . Define

D(A) = {y ∈ X : y,
dy

dx
are absolutely continuous,

d2y

dx2
∈ X and y(0) = y(π) = 0}.

For y ∈ D(A) , y =
∑

∞

n=1 < y, φn > φn and Ay = −
∑

∞

n=1 n
2 < y, n > φn.

where φn(x) = 2
π

1

2 sinnx, 0 ≤ x ≤ π, n = 1, 2, 3... is the eigenfunction corresponding
to the eigenvalue λn = −n2 of the operator A. φn is an orthonormal base. A will
generate a compact semigroup T (t) such that T (t)y =

∑

∞

n=1 e
−n2t < y, φn > φn, n =

1, 2, ... ∀ y ∈ X. Let the infinite dimensional control space be defined as U = {u : u =
∑

∞

n=2 unφn,
∑

∞

n=2 u
2
n < ∞} with norm ‖u‖U = (

∑

∞

n=2 u
2
n)

1

2 . Thus U is a Hilbert space.

Let ˜B : U → X : ˜Bu = 2u2φ1 +
∑

∞

n=2 unφn for u =
∑

∞

n=2 unφn ∈ U. The bounded

linear operator B : L2(0, T : U) → L2(0, T ;X) is defined by (Bu)(t) = ˜Bu(t). Then
this problem (28) can be reformulated into an abstract semilinear differential equation
with deviated argument and finite delay by substituting I = A1. If the hypotheses
(H1) − (H3) and assumption (A1) are satisfied then it can be shown that this system
(28) is approximately controllable.

5 Conclusion

Thus, we prove the existence and uniqueness and approximate controllability of the
functional differential equation (1) with deviated argument and finite delay by using
Schuader fixed point theorem and fundamental solution instead of C0 semigroup.
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Laboratoire LARA Automatique, École Nationale d’Ingénieurs de Tunis,

BP 37, 1002 Tunis, Tunisie

Received: November 27, 2013; Revised: July 20, 2014

Abstract: In this paper, stability analysis for a class of nonlinear time delay system
is done. A state space representation of the class of system under consideration is
used and a transformation is carried out to represent the system by an arrow form
matrix. Taking advantage of this representation and applying the Kotelyanski lemma
in combination with properties of M-matrices, some new sufficient stability conditions
are determined. An illustrative example is presented to show the effectiveness of the
proposed approach.
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1 Introduction

Time delay exists in many practical systems. This includes chemical processes, teleop-
erators, mechanical systems, network control systems etc. see [2, 3, 8, 11]. The delay can
be an inherent part of the dynamics of the system or can be a result of actuators and
sensors used and the time needed for transmission of control signals. Presence of delay
complicates the analysis of such systems and can even cause instability [6,10,11]. In many
situations industrial models have to represent nonlinear phenomena for the delay or the
system itself. This is justified by the insufficiency of the first order linear approximations
to explain the typically nonlinear problem of instability linked to excessive initial condi-
tions or perturbations. Difficulties are greater when delays appear in nonlinear systems,
see [1,3–5] for an excellent exposition of nonlinear delay equations. For all these reasons,
there has been an extensive literature on stability of time delay systems [7,19,21]. In this
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paper, we determine sufficient stability conditions for nonlinear systems with constant
delay.

There are mainly two main approaches in determining stability conditions for time
delay systems, namely, delay independent conditions and delay dependent conditions.
To this extent most of the existing results are delay-independent [6, 9, 12, 20] and few
are delay-dependent, see [13,18,22] and the references therein. Even fewer give practical
results which can be applied to nonlinear systems. In this paper, we determine sufficient
delay dependent stability conditions for nonlinear systems with a constant delay.

The paper is organized as follows. In Section 2, the main result is given. Delay de-
pendent sufficient conditions for stability of the nonlinear system with delay are derived.
Section 3 is devoted to the application of the obtained result to delayed Lurie systems.
An illustrative example is given in Section 4. We finish this paper by some concluding
remarks in Section 5.

2 Sufficient Stability Conditions

Our work consists of determining stability conditions for systems described by the fol-
lowing equation:

S̃ :











y(n)(t) +

n−1
∑

i=0

f̃i(t, xt, ℘)y
(i)(t) +

n−1
∑

i=0

g̃i(t, xt, ℘)y
(i)(t− τ) = 0,

y(i)(t) = φi(t), ∀t ∈ [−τ 0], i = 0, . . . , n− 1,

(1)

where τ is a constant delay and f̃i, g̃i i = 0, . . . , n− 1 are nonlinear functions. Let us fix
the notation used. Let Cn= C([−τ 0] , Rn) be the Banach space of continuous functions
mapping the interval [−τ 0] into Rn with the topology of uniform convergence. Let
xt ∈ Cn be defined by xt(θ) = x(θ), θ ∈ [−τ 0]. For a given φ ∈ Cn, we define ‖φ‖ =
sup

−τ≤θ≤0 ‖φ(θ)‖, φ(θ) ∈ Rn. Let xt ∈ Cn be defined by xt(θ) = x(θ), θ ∈ [−τ 0]. The

functions f̃i, g̃i, i = 0, 1, .., n−1 are completely continuous mapping the set Ja×CH
n ×S℘

into R, where CH
n = {φ ∈ Cn, ‖φ‖ < H}, H > 0, Ja = [a +∞), a ∈ R and S℘ = {℘ ∈

R,℘ ≤ ℘ ≤ ℘ where ℘ ≤ ℘ ∈ R} . Finally we say that the function g satisfies the finite

sector condition if g ∈ E([k1 , k2]) =
{

g | g(0) = 0, k1σ
2 < σg(σ) < k2σ

2, σ 6= 0 and
k1 < k2}. In the sequel, we denote (t, xt, ℘) = (.). We start by making the following
changes:

xi+1(t) = y(i)(t), i = 0, . . . , n− 1

which implies that
ẋi(t) = xi+1(t), i = 0, . . . , n− 1,

therefore,

ẋn(t) = −

n
∑

i=1

f̃i−1(.)xi(t)−

n
∑

i=1

g̃i−1(.)xi(t− τ).

The studied system is described by the following state space representation:

{

ẋ(t) = F̃ (.)x(t) + G̃(.)x(t − τ),
x(t) = φ(t), ∀t ∈ [−τ 0],

(2)

where
x(t) =

(

x1(t) x2(t) . . . xn−1(t) xn(t)
)
′

,
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φ(t) =
(

φ1(t) φ2(t) . . . φn−1(t) φn(t)
)
′

.

The matrices F̃ (.) and G̃(.) are given by

F̃ (.) =

















0 1 · · · 0 0

0 0
. . . 0 0

...
...

. . .
. . .

...
0 0 . . . 0 1

−f̃0(.) −f̃1(.) · · · −f̃n−2(.) −f̃n−1(.)

















(3)

and

G̃(.) =















0 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...
...

0 0 . . . 0 0
−g̃0(.) −g̃1(.) . . . −g̃n−2(.) −g̃n−1(.)















. (4)

Applying the following transformation:

x = Pz, (5)

where

P =















1 1 · · · 1 0
α1 α2 · · · αn−1 0
...

... · · ·
...

...
αn−2
1 αn−2

2 · · · αn−2
n−1 0

αn−1
1 αn−1

2 · · · αn−1
n−1 1















αi 6= αj ∀i, j (6)

leads to the following state representation

S : ż(t) = F (.)z(t) + ∆(.)z(t− τ) (7)

which describes the dynamics of system (1) by using the new state vector z. The matrix
F (.) is given by

F (.) = P−1F̃ (.)P =















α1 β1

α2 β2

. . .
...

αn−1 βn−1

γ1(.) γ2(.) · · · γn−1(.) γn(.)















. (8)

Elements of the matrix F (.) are defined in [15] by

γi(.) = −D(αi, .) i = 1...n− 1, (9)

where

D(s, .) = sn +

n−1
∑

i=0

f̃i(.)s
i (10)
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and

γn(.) = −f̃n−1(.)−

n−1
∑

i=1

αi, (11)

βi =
αi − λ

Q(λ)

∣

∣

∣

∣

λ=αi

i = 1...n− 1, (12)

where

Q(λ) =

n−1
∏

j=1

(λ − αj). (13)

The matrix ∆(.) is given by

∆(.) = P−1G̃(.)P =





On−1,n−1 On−1,1

δ1(.) · · · δn−1(.) δn(.)



 (14)

with

δi(.) = −N(αi, .), i = 1, . . . , n− 1, (15)

where

N(s, .) =

n−1
∑

i=0

g̃i(.)s
i (16)

and
δn(.) = −g̃n−1(.). (17)

Based on this transformation and the arbitrary choice of parameters αi, i = 1, . . . , n−
1 which play an important role in simplifying the use of aggregate techniques, we give
now the main result. Let us start by writing our system in another form. By using the
Newton-Leibniz formula

z(t− τ) = z(t)−

∫ t

t−τ

ż(θ)dθ, (18)

equation (7) becomes

ż(t) = (F (.) + ∆(.))z(t) −∆(.)

∫ t

t−τ

ż(θ)dθ. (19)

Let Ω be a domain of Rn, containing a neighborhood of the origin, and sup
Jτ , Ω,S℘

the

suprema calculated for t ∈ Jτ (i.e t ≥ τ), for functions x with values in Ω, and for ℘ in S℘.
Next, using the special form of system (1) and applying the notation sup[.] = sup

Jτ , Ω,S℘

,

we can announce the following theorem.

Theorem 2.1 The system (1) is asymptotically stable, if there exist distinct param-

eters αi < 0 i = 1, ..., n − 1, such that the matrix T (.) is the opposite of an M-matrix,

where T (.) is given by

T (.) =















α1 |β1|
α2 |β2|

. . .
...

αn−1 |βn−1|
t1(.) t2(.) · · · tn−1(.) tn(.)















(20)
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and the elements ti(.), i = 1, ..., n are given by

ti(.) =
|γi(.) + δi(.)|+ τ |αi| sup[.] |δi(.)|

1− τ sup[.] |δn(.)|
(21)

and

tn(.) = γn(.) + δn(.) +
τ sup[.] |δn(.)||γn(.) + δn(.)|

1− τ sup[.] |δn(.)|
+

τ

n−1
∑

i=1

|βi| sup
[.]

|δi(.)|

1− τ sup[.] |δn(.)|
.

(22)

Proof. We use the following vector norm

p(z) = ( p1(z) p2(z) p3(z) ... pn(z) )
′

, (23)

where pi(z) = |zi|, i = 1, . . . , n− 1 and pn(z) is given by

pn(z) = |zn|+

n
∑

i=1

sup
[.]

|δi(.)|

1− τ

(

sup
[.]

|δn(.)|

)

∫ 0

−τ

∫ t

t+θ

|żi(ϑ)|dϑdθ (24)

with the condition

τ

(

sup
[.]

|δn(.)|

)

< 1. (25)

Let V (t) be a radially unbounded Lyapunov function given by (26).

V (t) =
〈

(p(z(t)))
′

, w
〉

=

n
∑

i=1

wipi(z(t)), (26)

where w ∈ Rn
+, wi > 0, i = 1, . . . , n. First, note that

V (t0) ≤

n−1
∑

i=1

wi |zi(t0)|+ wn (|zn(t0)| +
sup[.](|δn(.)|)

1− τ sup[.](|δn(.)|)
sup
[−τ,0]

|φ̇n|
τ2

2
) := r < +∞

(27)
and

V (t) ≥

n
∑

i=1

wi |zi(t)| . (28)

The right Dini derivative of V (t), along the solution of (19), gives

D+V (t) =

n
∑

i=1

wi

d+pi(z(t))

dt+
. (29)

For clarification reasons, each element of d+pi(z(t))
dt+

, i = 1, ..., n is calculated separately.
Let us begin with the first (n− 1) elements. Because |zi| = zisign(zi), we can write, for
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i = 1, ..., n− 1,
d+pi(z(t))

dt+
=

d+|zi(t)|

dt+

=
d+zi(t)

dt+
sign(zi(t))

= (αizi(t) + βizn(t))sign(zi(t))
≤ αi |zi(t)|+ |βi| |zn(t)|

(30)

and d+pn(z)
dt+

is given by

d+pn(z)
dt+

=
d+ |zn|

dt+
+

n
∑

i=1

sup
[.]

|δi(.)|

1− τ sup
[.]

|δn(.)|

d+

dt+

[∫ 0

−τ

∫ t

t+θ

|żi(ϑ)|dϑdθ

]

.
(31)

Finally, it is easy to see that equation (31) can be overvalued by the following one

d+pn(z)

dt+
≤

n
∑

i=1

ti(.) |zi| , (32)

where elements ti(.), i = 1, ..., n are given by

ti(.) = |γi(.) + δi(.)|+
τ sup[.] |δn(.)||γi(.) + δi(.)|

1− τ sup[.] |δn(.)|
+

τ |αi| sup[.] |δi(.)|

1− τ sup[.] |δn(.)|

=
|γi(.) + δi(.)| + τ |αi| sup[.] |δi(.)|

1− τ sup[.] |δn(.)|

(33)

and

tn(.) = γn(.) + δn(.) +
τ sup[.] |δn(.)||γn(.) + δn(.)|

1− τ sup[.] |δn(.)|
+

τ

n−1
∑

i=1

|βi| sup
[.]

|δi(.)|

1− τ sup[.] |δn(.)|
.

(34)

Then the inequality (29) becomes

D+V (t) <
〈

T
′

(.)w, |z|
〉

, (35)

where T (.) is given by (36)

T (.) =















α1 |β1|
α2 |β2|

. . .
...

αn−1 |βn−1|
t1(.) t2(.) · · · tn−1(.) tn(.)















. (36)

Because the nonlinear elements of T (.) are isolated in the last row, the eigenvec-
tor v(t, xt, ℘) relative to the eigenvalue λm is constant [17], where λm is such that
Re(λm) = max{Re(λ), λ ∈ λ(T (.))}. Then, in order to have D+V (t) < 0, it is suffi-
cient to have T (.) as the opposite of an M−matrix. Indeed, according to properties of
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M−matrices, we have ∀ σ ∈ R∗n
+ , ∃ w ∈ R∗n

+ such that −
(

T
′

(.)
)

−1

σ = w. This enables

us to write the following equation

〈

T
′

(.)w, |z(t)|
〉

= 〈−σ, |z(t)|〉 = −

n
∑

i=1

σi|zi(t)| (37)

which yields

D+V (t) ≤ −

n
∑

i=1

σi|zi(t)|. (38)

This completes the proof of theorem.

Remark 2.1 If the couple (D(s, .) +N(s, .), Q(s)) forms a positive pair, then
there exist distinct negative parameters αi, i = 1, ..., n − 1, verifying the condition
(γi(.) + δi(.))βi > 0 for i = 1, ..., n− 1.

Using Theorem 2.1 and Remark 2.1, the obtained supremum is a function of αi values,
i = 1, ..., n− 1. As a result, a sufficient condition for asymptotic stability of our system
is when values of the time delay are less than this supremum.

Corollary 2.1 If the couple (D(s, .) +N(s, .), Q(s)) forms a positive pair and there

exist distinct negative parameters αi, i = 1, ..., n− 1, such that:

2τ

(

(γn(.) + δn(.)) sup
[.]

|δn(.)| − ν(.)

)

+
D(0, .) +N(0, .)

Q(0)
> 0, (39)

then the system (1) is asymptotically stable.

Proof. According to Remark 2.1, we find that

γn(.) + δn(.) −
n−1
∑

j=1

|γj(.) + δj(.)||βj |

αj

= γn(.) + δn(.)−
n−1
∑

j=1

(γj(.) + δj(.))βj

αj

= −
D(0, .) +N(0, .)

Q(0)
.

The result of Theorem 2.1 becomes

−2τ(γn(.) + δn(.)) sup
[.]

|δn(.)|+ 2τν(.)−
D(0, .) +N(0, .)

Q(0)
< 0

which is equivalent to

2τ

(

(γn(.) + δn(.)) sup
[.]

|δn(.)| − ν(.)

)

+
D(0, .) +N(0, .)

Q(0)
> 0.

This completes the proof of corollary.

Remark 2.2

•• Theorem 2.1 depends on the new basis change, where parameters αi of the matrix
P are arbitrary chosen such that matrix T (.) is the opposite of an M -matrix.
The appropriate choice of the set of free parameters αi makes the given stability
conditions satisfied.
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• The theorem takes into account the fact that delayed terms may stabilize our
system [22]. Theorem 2.1 can hold even if D(s, .) is unstable. This is another
advantage as the majority of previously published results assume that D(s) is
linear and stable.

• The theorem can easily be extended to the study of systems with multiple time-
delays and can generalize the work of [14] in the case of fuzzy TS systems with
time-delay and the work of [16] in the case of discrete time delay system.

3 Application to Delayed Nonlinear n-th Order All Pole Plant

Consider the complex system S given in Figure 1.

e(t) u
g(.) g(u) e−τs

D(s)

y(t)

Figure 1: Block representation of the studied system.

D(s) is defined by (10) and N(s) = 1, respectively. In this case f̃i(.) are constants
and g is a function satisfying the finite sector condition. Let ĝ be a function defined as
follows

ĝ(e(θ), y(θ)) =
g(e(θ)− y(θ))

e(θ)− y(θ)
, e(θ) 6= y(θ) ∀θ ∈ [−τ +∞[, (40)

sup
[.]

|ĝ(e(t), y(t))| = ḡ ∈ R∗

+.

The presence of delay in the system of Figure 1 makes stability study difficult. The
following steps show how to represent this system in the form of system (1). Then we
can write

y(n)(t) +
n−1
∑

i=0

ai

diy(t)

dti
= −ĝ(e(t− τ ), y(t− τ ))y(t− τ ) + ĝ(e(t− τ ), y(t− τ ))e(t− τ ). (41)

We use the following notation

ĝ(.) = ĝ(e(t− τ), bx(t − τ)),

therefore,

y(n)(t) +

n−1
∑

i=0

aiy
(i)(t) + ĝ(.)y(t− τ) = ĝ(.)e(t− τ). (42)

It is clear that system (42) is equivalent to system (1) in the special cases e(θ) = 0 and

e(θ) = −Kx(θ), x(t) =
(

y(t), ẏ(t), ..., y(n)(t)
)

′

, ∀ θ ∈ [−τ +∞[. We will now consider
each case separately.
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3.1 Case e(t) = 0

In the case e(t) = 0 ∀t ∈ [−τ +∞[, the description of the system becomes

y(n)(t) +

n−1
∑

i=0

aiy
(i)(t) + ĝ(.)y(t− τ) = 0. (43)

This is a special representation of system (1) where f̃i(.) = ai,g̃1(.) = ĝ(.) g̃i(.) = 0

∀ i = 2, ..., n − 1, D(s, .) = D(s), N(s, .) = ĝ(.), γn(.) = γn = −an−1 −
∑n−1

i=1 αi

and δn(.) = 0. A sufficient stability condition for this system is given in the following
proposition.

Proposition 1 If there exist distinct αi < 0 i = 1, ..., n− 1, such that the following

conditions
{

γn < 0,
µ1(.) + 2τν1(.)− ξ1(.) < 0,

(44)

where






µ1(.) = γn,

ν1(.) = ḡ,

ξ1(.) =
|D(α1)+ĝ(.)||β1|

α1
+
∑n−1

i=2
|D(αi)||βi|

αi
,

(45)

are satisfied. Then the system S is asymptotically stable.

Suppose that D(s) admits n distinct real roots pi, i = 1, ..., n among which there
are n− 1 negative ones. We use the fact that an−1 = −

∑n

i=1 pi, then the choice αi = pi,

∀i = 1, .., n−2 and αn−1 = pn−1+ε permits us to write γn = −an−1−
∑n−1

i=1 pi = pn−ε.
In this case the last proposition becomes

Proposition 2 If D(s) admits n−1 distinct real negative roots such that the following

conditions
{

pn − ε < 0,
µ2(.) + 2τν2(.)− ξ2(.) < 0,

(46)

are satisfied, where






µ2(.) = pn − ε,

ν2(.) = ḡ,

ξ2(.) =
|ĝ(.)||β1|

α1

+ |D(αn−1)||βn−1|

αn−1

,

(47)

then the system S is asymptotically stable.

3.2 Case e(t) = −Kx(t)

In this case, take e(t) = −Kx(t) with K = (k0, k1, . . . , kn−1), then the obtained system
has the same form as (1), with ĝK1 (.) = ĝK(.) (k0 + 1) and ĝKi (.) = ĝK(.)ki−1, i =
2, . . . , n. The stabilizing values of K can be obtained by making the following changes:

γn = −an−1 −
∑n−1

i=1 αi, δKn (.) = −ĝK(.)kn−1, νK1 (.) = ḡK
n−1
∑

i=1

∣

∣

∣Ñ(αi)
∣

∣

∣ where ḡK =

sup[.] |ĝ
K(.)| and Ñ(α) = (1 + k0) +

n−1
∑

i=1

(bi + ki)α
i.
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Proposition 3 If there exist distinct αi < 0, i = 1, ..., n− 1, such that the following

conditions














γn − ĝK(.)kn−1 < 0,

τ <
1

2ḡK |kn−1|
,

µK
1 (.) + 2τνK1 (.)− ξk1 (.) < 0,

(48)

where










µK
1 (.) = (1− 2ḡKτ |kn−1|)(γn + δKn (.)),

νK1 (.) = ḡK
∑n−1

i=1 |βi||Ñ(αi)|,

ξK1 (.) =
∑n−1

i=1
|D(αi)+ĝK(.)Ñ(αi)||βi|

αi
,

(49)

are satisfied. Then the system S is asymptotically stable.

By a special choice of K the result of Proposition 3 can be simplified. In fact, if
the conditions of this proposition are verified we can choose the vector K such that
D(pi) = Ñ(pi). In this case we obtain D(pi) = Ñ(pi) = 0, ∀, i = 1, ..., n − 1 and
ν1(.) = ξ1(.) = 0 which yields the following new proposition.

Proposition 4 If D(s) admits n − 1 distinct real negative roots pi such that the

following conditions







pn − ḡK(.)kn−1 < 0, pn is the n-th root of D(s),

τ <
1

2ḡK |kn−1|
,

(50)

are satisfied. Then the system S is asymptotically stable.

4 Illustrative Example

Let us consider the block diagram in Figure 2 which describes the dynamics of a time-
delayed DC motor speed control system with nonlinear gain, where:

Processing 

delay

Measurement and

communication delay

Nonlinear gain DC Motor

e−τc

e−τf

e(t)
g(.)

wu g(u) 1

s (s+ p1) (s+ p2)

Figure 2: Block diagram of time-delayed DC motor speed control system with nonlinear gain.
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• p1 = 1
Te

and p2 = 1
Tm

where Te and Tm are respectively electrical constant and
mechanical constant.

• τf present the feedback delay between the output and the controller. This delay
represents the measurement and communication delays (sensor-to-controller delay).

• τc the controller processing and communication delay (controller-to-actuator
delay) is placed in the feedforward part between the controller and the DC motor.

• g(.) : R → R is a function that represents a nonlinear gain.

The process of Figure 2 can also be modeled by Figure 3, where τ = τf + τc.

e(t)
g(.)

yu g(u) e−τs

s (s+ p1) (s+ p2)

Figure 3: Delayed nonlinear model of DC motor speed control.

It is clear that model of Figure 3 is a particular form of delayed Lurie system in the
case where D(s) = s(s+p1)(s+p2) = s3+(p1+p2)s

2+p1p2s and N(s) = 1. Thereafter,
applying the result of Theorem 2.1, a stability condition of the system is that the matrix
T (.) given by

T (.) =





α1 0 | (α1 − α2)
−1

|

0 α2 | (α2 − α1)
−1

|
t1(.) t2(.) t3(.)



 , (51)

where

t1(.) = |γ1 + ĝ(.)|+ τ |α1|ḡ, t2(.) = |γ2|, t3(.) = γ3 + τ |β1|ḡ,

must be the opposite of an M-matrix. By choosing αi, i = 1, 2, negative real and distinct,
we get the following stability condition:

γ3 + 2τ |β1|ḡ −
|β1||γ1 + ĝ(.)|

α1
−

|β2||γ2|

α2
< 0. (52)

For the particular choice of α1 = −p1 and α2 = −p2 + ε, ε > 0 yields |β1| = |β2| =
|(ε+ p1 − p2)

−1| and we obtain the new stability condition:

2τ ḡ + |p1|
−1|ĝ(.)|+ |α2|

−1|D(α2)| < ε|ε+ p1 − p2|. (53)



290 S. ELMADSSIA, K. SAADAOUI AND M. BENREJEB

Assume that we have this inequality:

ḡ < |D(α2)|.

We can find from (53) the stabilizing delay given by the following condition:

τ <
1

2

(

ε|ε+ p1 − p2|

|D(α2)|
− |p1|

−1| − |α2|
−1

)

.

By applying the control e(t) = −Kx(t) with K = (k0, k1, k2), we can determine the
stabilizing values of K that can be obtained by making the following changes: γ3 =
− (p1 + p2)−

∑2
i=1 αi, δ

K
1 (.) = −ĝK(.) (k0 + 1) , δKi (.) = −ĝK(.)ki−1, i = 2, 3. νK1 (.) =

ḡK
∑2

i=1 |βi||Ñ(αi)| where ḡK = sup[.] |ĝ
K(.)| and Ñ(α) = 1 + k0 +

2
∑

i=1

kiα
i.

If we choose αi < 0, i = 1, 2, such that the following conditions D(αi) = Ñ(αi) = 0,

∀, i = 1, 2 hold, we get
1 + k0

k2
= p1 + p2,

k1

k2
= p1p2 and from Proposition 3 the

stabilizing gain values satisfying the following relations:






0− ḡK(.)k2 < 0,

|k2| <
1

2τ ḡK
.

Finally we find the domain of stabilizing k0, k1, k2 as follows











0 < k2 <
1

2τ ḡK
,

k1 = p1p2k2,

k0 = (p1 + p2) k2 − 1.

5 Conclusion

In this paper, new sufficient stability conditions for a class of time delay systems are
derived. The proposed method is based on a specific choice of a Lyapunov function.
The obtained conditions are explicit and easy to apply. Indeed, the proposed approach
is successfully applied to nonlinear n-th order all pole plant that is a particular form of
delayed Lurie Postnikov systems. In addition, the simplicity of the application of these
criteria is demonstrated on model of time-delayed DC motor speed control.
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[2] Nuño, E., Basañez, L. and Ortega, R. Control of Teleoperators with Time-Delay: A Lya-
punov Approach. In: Topics in Time Delay Systems Analysis, Algorithms and Control,
(eds: J.J. Loiseau, W. Michiels, S.I. Niculescu and R. Sipahi). Berlin, Heidelberg, New
York: Springer-Verlag, 2009, 371–382.

[3] Hahn, W. Stability of the Motion. New York: Springer-Verlag, 1967.

[4] Hale, J.K. Theory of Functional Differential Equations. New York: Springer-Verlag, 1977.

[5] Bellman, R. and Cooke, K.L. Differential-Difference Equations. New York: Academic Press,
1963.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 14 (3) (2014) 279–291 291

[6] Gu, K., Kharitonov, V. L. and Chen, J. Stability of Time-Delay Systems. Boston, MA:
Birkhuser, 2003.

[7] Li, H., Chen, B., Zhou, Q. and Su, Y. New results on delay-dependent robust stability
of uncertain time delay systems. International Journal of Systems Science 41 (2) (2010)
627–634.

[8] Silvia, G.J., Datta, A. and Bhattacharyya, S.P. PID Controllers for Time Delay Systems.
Springer, Birkhauser: Boston, 2005.

[9] Bliman, P.A. Extension of Popov absolute stability criterion to non-autonomous systems
with delays. International Journal on Control 73 (15) (2000) 1349–1361.

[10] Richard, J.P., Goubet-Bartholomefis, A., Tchangani, P.A. and Dambrine, M. Nonlinear
Delay Systems: Tools for a Quantitative Approach to Stabilization. In: Stability and Control

of Time-delay Systems, (eds: Dugard L., Verriest E.I.) London, Springer-Verlag, 1998, 218–
239.

[11] Niculescu, S. I., Verriest, E. I., Dugard, L. and Dion, J. M. Stability and Robust Stability
of Time-Delay Systems: A Guided Tour. In: Stability and Control of Time-delay Systems,
(eds: Dugard L., Verriest E.I.). Springer-Verlag, London, 1998, 1–71.

[12] Altshuller, D. A. A Partial Solution of the Aizerman Problem for Second-Order Systems
With Delays. IEEE Transaction on Automatic Control 53 (9) (2008) 2158–2160.
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Abstract: In this paper, a method is proposed to design asymptotic observers for a
class of semilinear descriptor systems satisfying the complete detectability condition
on the corresponding linear part. The method is based on the properties of restricted
system equivalent, derived here from a given descriptor system by means of simple
matrix theory. Using restricted system equivalent form, coefficient matrices of the
proposed observer have been synthesized by linear matrix inequality (LMI) approach
based on the Lyapunov stability theory.
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1 Introduction

In the last three decades, considerable amount of research was focused on the analysis,
design, and numerical simulation techniques for descriptor systems, which arise in mod-
eling of many real and practical systems, e.g. electrical network analysis, power systems,
constrained mechanics, economic systems, chemical process control, see, [1–7] and the
references therein. Depending on the area, descriptor systems are termed by a variety of
names, viz. differential algebraic equations (DAEs), singular, implicit, generalized state
space, noncanonic, degenerate, semi-state and nonstandard systems. In this paper, we
consider the following semilinear system:

E∗ẋ = A∗x+B∗u+D∗f(Hx, u, t), (1a)

y = Cx, (1b)

∗ Corresponding author: mailto:nktomar@iitp.ac.in
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where x ∈ R
n, u ∈ R

m, y ∈ R
p, are the state vector, the input vector and the output

vector, respectively, E∗ ∈ R
n×n A∗ ∈ R

n×n, B∗ ∈ R
n×m, D∗ ∈ R

n×nd , H ∈ R
nh×n, and

C ∈ R
p×n are known constant matrices, rank(E∗) = r < n. Without loss of generality,

we assume that rank(B∗) = m, rank(D∗) = nd, rank(C) = p, and rank(H) = nh. If E is
nonsingular or E ≡ I, then the system is called normal system.

To design a controller, the knowledge about the states of the system is important. But
it is not always possible or necessary to measure all the state variables. In such cases, the
states can be estimated from the output of another dynamical system, which is called an
observer for the given system. An observer is a mathematical realization which uses the
input and output information of a given system and its output asymptotically approaches
to the true state values of the given system.

Observer design problem for normal linear systems has received a great attention in
the literature [8–11] and the techniques used for them have been extended successfully
to descriptor linear systems, see [6,7,12,13] and references therein. For normal nonlinear
systems, in general, literature concerned with the design of observers could broadly be
classified into two categories based on the solution approach. In the first approach, the
states are transformed in such a way that the given nonlinear system converts into a
system, where linear theory is applicable [14–17]. In another approach, the observers are
designed for nonlinear systems without any state transformation [18–21]. For a compar-
ison of these approaches, we refer to [22]. On the other hand literature on observers for
descriptor nonlinear systems is not so rich. However some researchers have extended the
approaches mentioned above to descriptor nonlinear systems [23–32].

In [23], authors extended linearization technique to design state observers for de-
scriptor nonlinear systems and illustrated its application to AC/DC converter model.
Boutayeb et al. [24] extended the results of [23] to the rectangular descriptor systems.
In [25], a method for observing the states of continuous quasilinear descriptor systems
is developed by casting the given system as an equivalent system of explicit differential
equations on a restricted manifold. In [26], authors considered a nonlinear observer for
a class of continuous nonlinear descriptor systems with unknown inputs and faults. In
last few years, due to availability of computationally fast and reliable algorithms for
solving convex optimization problems subjected to LMI constraints (like MATLAB LMI
tool box [33]), researchers developed LMI based approaches to design controllers and ob-
servers for normal [34,35] and descriptor systems [27–32]. Semilinear descriptor systems
with the Lipschitz nonlinearities and arbitrary unknown inputs with or without distur-
bances were considered in [26–32] and existence conditions were derived for full-order,
reduced-order, minimal-order, or H∞ observers in the form of LMIs.

In this paper, we develop a method for full-order state observer design for a class
of Lipschitz nonlinear descriptor systems. Contrary to the results available in [31, 32],
the observer presented in this paper has normal system form. The sufficient condition
for the stability of error dynamics is given in terms of an LMI. In square system case,
the proposed method is simple, easy to understand and implement compared to the
methods available in the literature. Numerical examples are provided in the last section
to illustrate our results.

2 Problem Description and Design Approach

Let us make the following conditions on the system (1):
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(H1) rank

[

E∗

C

]

= n,

(H2) nonlinear function f(Hx, u, t) satisfies the Lipschitz property in its first argument,
i.e. there exists a λ > 0 such that

‖f(Hx1, u, t)− f(Hx2, u, t)‖ ≤ λ‖H(x1 − x2)‖, (2)

(H3) rank

[

λE∗ −A∗

C

]

= n ∀ λ ∈ C̄
+, where C represents the set of complex numbers.

C̄
+ = {s|s ∈ C, Re(s) ≥ 0} is the closed right half complex plane.

The problem is to design the matrices N , L, M , and D of compatible dimensions
such that the following normal system becomes a full-order state observer (i.e., x̂ → x

as t → ∞) for system (1)

ż = Nz +Bu+ Ly +Df(Hx̂, u, t), (3a)

x̂ = z +My. (3b)

Our approach is as follows.
First, using the algorithm, which we have designed in the Appendix of this paper, a

nonsingular matrix R ∈ R
n×n is constructed such that the system (1) is restricted system

equivalent to the following descriptor system:

Eẋ = Ax+Bu+Df(Hx, u, t) (4a)

y = Cx, (4b)

where E = RE∗, A = RA∗, B = RB∗, and D = RD∗. It is easy to verify that if the
system (1) satisfies (H1), then the system (4) satisfies the following property:

rank

[

I − E

C

]

= p. (5)

It should be noted that this matrix R is not unique. The proof of the existence of such
matrix R can be found in [36].

Second, solution of a system does not change by multiplying a nonsingular matrix,
observer for the system (4) works for the system (1). From equations (3) and (4) the
error

e = x− x̂

= x− z −MCx

= (I −MC)x− z

= Ex− z (6)

gives the dynamics

ė = Eẋ− ż

= Ax+Bu+Df(Hx, u, t)

−(Nz +Bu + LCx+Df(Hx̂, u, t))

= (A− LC)x−N(Ex− e) +D∆f

= Ne+ (A− LC −NE)x+D∆f

= Ne+ (A− LC −N +NMC)x+D∆f,

= Ne+D∆f (7)
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where ∆f = f(Hx, u, t)−f(Hx̂, u, t). Moreover, in the construction of equations (6) and
(7), we have assumed the existence of matrices M , K, N , and L of compatible orders
such that

I −MC = E, (8)

N = A−KC, (9)

K = L−NM. (10)

Finally, the problem of designing the state observer (3) boils down to determining
the matrices M , K, N , and L such that the equations (8)–(10) are satisfied with the
stability of error dynamics (7).

3 Main Result

Theorem 3.1 Suppose the assumptions (H1) and (H2) hold for the system (1).
Then system (3) is observer for the system (1) if the following LMI has a solution for
any P > 0

[

PA+ATP − K̃C − CT K̃T + λ2HTH PD

DTP −I

]

< 0, (11)

where K̃ = PK.

Proof. Equation (5) implies that there exists a matrix M such that (8) is satisfied.
Now, we show the existence of matrix K such that matrix N (in equation (9)) and the
error dynamics (7) are stable if the LMI (11) has a solution for P > 0. Considering a
Lyapunov function V = eTPe, and using (7) and (9) we have

V̇ = ėTPe+ eTP ė

= (Ne +D∆f)TPe+ eTP (Ne+D∆f)

= eT (NTP + PN)e+∆fTDTPe+ eTPD∆f

≤ eT (NTP + PN)e+∆fTDTPe+ eTPD∆f

+λ2eTHTHe−∆fT∆f

=
[

eT ∆fT
]

[

NTP + PN + λ2HTH PD

DTP −I

] [

e

∆f

]

=
[

eT ∆fT
]

[

NTP + PN + λ2HTH PD

DTP −I

] [

e

∆f

]

.

According to the stability theory, the error dynamics (7) is stable if
[

NTP + PN + λ2HTH PD

DTP −I

]

< 0

⇒

[

(A−KC)TP + P (A−KC) + λ2HTH PD

DTP −I

]

< 0

⇒

[

PA+ATP − K̃C − CT K̃T + λ2HTH PD

DTP −I

]

< 0.

Hence by a solution of LMI (11), we can find a matrix K, and hence matrix N , such that
the error dynamics (7) is stable. Finally using the equation (10), we can find the matrix
L.



296 M.K. GUPTA, N.K. TOMAR AND S. BHAUMIK

Remark 3.1 If the LMI (11) is solvable then it is clear that

PA+ATP − K̃C − CT K̃T + λ2HTH < 0.

That implies
PA+ATP − K̃C − CT K̃T < 0,

which is equivalent to the detectability of matrix pair (A,C). It can be proved easily
that under assumption (H1), condition (H3) is equivalent to the detectability of matrix
pair (A,C). Hence the condition (H3) is a necessary condition for the solvability of LMI
(11).

4 Numerical Examples

Example 4.1 Consider the descriptor system (1) described by the following matri-
ces. (This example is taken from [28] with zero disturbance vector.)

E∗ =





0 1 0
0 0 1
0 0 0



 , A∗ =





1 0 0
0 1 0
1 0 1



 , B∗ =
[

1 1 1
]T

,

C =
[

1 0 0
]

, D∗ =
[

1 1 1
]T

, H =
[

0 1 0
]

,

u(t) = sin(2t). The nonlinearity function f(x, u, t) = sin(x2(t)). Since rank

[

E∗

C

]

= 3

and rank

[

I − E∗

C

]

6= 1, using the algorithm given in the Appendix, we calculate

R =





0 0 1
1 0 0
0 1 0



 .

Then

E =





0 0 0
0 1 0
0 0 1



 , A =





1 0 1
1 0 0
0 1 0



 , B =
[

1 1 1
]

, D =
[

1 1 1
]T

.

Now, we can check that rank

[

I − E

C

]

= 1 and M =
[

1 0 0
]T

.

By using MATLAB LMI tool box we solve (11) and find

K =
[

4.4252 4.3573 4.5410
]T

.

Thus

N =





−3.4252 0 1.0000
−3.3573 0 0
−4.5410 1.0000 0





and
L =

[

1 1 0
]T

.
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If we take

x(0) =
[

−2.8415 1 2
]T

,

z(0) =
[

2 3 5
]T

,

then the truth and estimated states are plotted in Figure 1. The graph of the error vector
is shown in Figure 2, which clearly shows the efficiency of the proposed observer.
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Figure 1: Plot of the true and estimated values of the states in Example 4.1.

Example 4.2 Consider the descriptor system (1) described by the following matri-
ces:

E∗ =





0 0 0
0 1 0
0 0 1



 , A∗ =





1 2 0
0 −2 0
1 0 −3



 , B∗ =
[

0 1 2
]T

, C =

[

1 0 0
0 1 0

]

,
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Figure 2: Estimation performance in Example 4.1.

D∗ =
[

1 2 1
]T

, H =
[

0 0 1
]

,

u(t) = t2. The nonlinearity function f(x, u, t) = cos(x3(t)). Since rank

[

I − E∗

C

]

= 2,

R = I3 and M =





1 0
0 0
0 0



 . By using MATLAB LMI tool box we solve (11) and find

K =





−172.2387 132.1813
−386.6106 180.5962
−193.7974 103.5193



 .

Thus,

N =





173.2387 −130.1813 0
386.6106 −182.5962 0
194.7974 −103.5193 −3.0000





and

L =





1.0000 132.1813
0 180.5962

1.0000 103.5193



 .

If we take
x(0) =

[

−1.5839 1 2
]T

,

z(0) =
[

10 12 15
]T

,

then the truth and estimated states are plotted in Figure 3. The graphs of the errors are
plotted in Figure 4, which clearly shows that error vector converges to zero.

5 Conclusions

A method has been developed to design the state observers for a class of semilinear
descriptor systems. This class is characterized by two properties: (i) the linear part
of each member system is completely detectable, and (ii) the nonlinear part satisfies
the Lipschitz property. The sufficient condition for the stability of error dynamics is
given in terms of an LMI. A new restricted equivalent system which follows the same
state representation as the given descriptor system, has been made with the help of an
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Figure 3: Plot of the true and estimated values of the states in Example 4.2
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Figure 4: Estimation performance in Example 4.2
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invertible matrix R. The advantage of using this equivalent system is the fact that the
detectability of its corresponding normal system is equivalent to the detectability of the
given descriptor system, and this fact gave necessary condition for the solution of the
proposed LMI (see Remark 3.1). The extension of this work to rectangular semilinear
and nonlinear descriptor system is under construction.
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Appendix

Algorithm to find the matrix R:

1. Determine
p := rank of matrix C,
n :=order of matrix E∗.

2. Check

(i) If rank

[

I − E∗

C

]

= p. Take R = In and stop.

(ii) If rank

[

E∗

C

]

= n, then go to steps 3-8.

3. Carry out the singular value decomposition (SVD) of matrix C = U1

[

D1 0
]

V T
1 .

4. Calculate P = V1

[

D−1
1 UT

1 0
0 In−p

]

.

5. Calculate Ẽ = E∗P

[

0
In−p

]

.

6. Carry out the SVD of matrix Ẽ = U2

[

D2

0

]

V2.

7. Calculate R0 =

[

0 Ip
V T
2 D−1

2 0

]

UT
2 .

8. Calculate R = PR0.
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Abstract: The stabilization of homogeneous bilinear systems constitutes the main
interest of this paper. A sliding mode control is suggested and a stability study
is held leading to sufficient conditions of global stabilization. The sliding surface
is determined through the resolution of the nonlinear constraints of stabilization.
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1 Introduction

Bilinear systems constitute an important class of nonlinear systems. Since their in-
troduction in the early sixties, they have got great interest and have been used to model
processes in several fields; biologic, ecologic, economic, social ... [4, 16, 17]. As they are
partially linear in state and in input without being jointly linear in both, they constitute
a gateway between linear and nonlinear systems and that’s why they need special atten-
tion in their study. In the last decades, many researchers investigated the control design
and the stability analysis of this special category of systems [1, 9, 13, 15, 19, 20].

Many results in this field are yet demonstrated, since the stabilization by linear or
quadratic state feedback has been widely treated especially for non homogeneous bilinear
systems. However it was shown that there exists a large class of homogeneous bilinear
systems which can not be stabilized by a continuous feedback even in planar case [6]. In
fact for this type of systems the relative degree isn’t defined in zero and the linearized
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system is control independent. For such systems, R. Chabour and al. proposed, in the
case of second order dimension, zero degree homogeneous positive controls. For three
dimensional systems, Celikovsky investigated in [5] the global asymptotic stabilization
by constant feedback and the practical stabilization by a family of linear feedbacks for
a special class of single input homogeneous bilinear system (ẋ = Ax + uNx), where
A is a diagonal matrix with a negative trace and N is a skew-symmetric matrix. This
work was extended by O. Chabour for n dimensional systems where matrix A has not to
be diagonal and its trace has not to be negative, [7]. An integrated overview of bilinear
system research presented by Mohler and al. in [18] deals with the efficiency of the optimal
control and the variable structure control such as bang-bang control. Later, in [2] Amato
and al. suggested a procedure to design a stabilizing state feedback controller formulated
in a convex optimisation problem involving LMIs.

In this paper, we interest in the stabilization of homogenous bilinear systems of any
dimension. No restriction on the system’s structure are imposed. The sliding mode
approach is adopted to design a variable structure control. Stability study is investi-
gated leading to sufficient conditions of global stabilization formulated in computation-
ally resolvable nonlinear matrix constraints. Besides a simplified algorithm is provided
making use of the linear quadratic control approach. The resolution of the stabilization
constraints system enables to provide the matrix C characterising the sliding surface
(S = Cx). The proposed approach is successfully applied to homogeneous bilinear sys-
tems of different orders.

In the following section the control design procedure is detailed for homogeneous
bilinear systems leading to the definition of two control laws; the switching control needed
in the reaching phase toward the sliding surface, and the equivalent control required
while the system slides on the surface. In Section 4 an extended stabilization study is
carried out based on quadratic Lyapunov function. To formulate the global stabilization
conditions during the sliding mode in resolvable matrix constraints the ”vec” operator
and the tensor product are employed. Finally two numeric examples are considered in
Section 6 to underline the effectiveness of the proposed approach.

2 Homogeneous Bilinear Systems and Sliding Mode Control Design

Bilinear systems are generally represented by a state equation of the form:

ẋ = Ax(t) + Bu(t) +

m
∑

j=1

Njx(t)uj(t), (1)

where x ∈ X ⊂ ℜn is the state vector, u = [u1 . . . um]T ∈ U ⊂ ℜm is the control input,
A, B and Nj , j = 1 . . .m, are matrices of suitable dimensions.

When the matrix B is not null, this general form characterises non-homogeneous
bilinear systems, and if B is null, the represented system is said to be homogeneous.

As we are interested in this paper in this last class of systems, we will consider the
state space equations of the form:

ẋ = Ax(t) +

m
∑

j=1

Njx(t)uj(t). (2)

The sliding mode approach consists in bringing the system’s state up to a well defined
surface where it will slide toward the equilibrium point. Thus the sliding mode control is
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usually constituted by two parts, the switching control and the equivalent control. The
first is discontinuous and it is needed during the reaching phase until the system’s state
attend the sliding surface, and the second is continuous and aims to keep the state on
this surface while sliding.

2.1 Reaching condition and switching control

Let define the sliding surface with C ∈ ℜp×n:

S(t) = Cx(t) = 0. (3)

The reaching mode to the sliding surface is guaranteed if 1

d

dt
(STS) = 2xTCTCẋ < 0. (4)

When substituting ẋ by its expression (2) one gets:

2xTCTC(Ax +
m
∑

i=1

Nixui) < 0. (5)

So the controls ui (i = 1...m) must be designed such that to satisfy the inequality above.
We consider a switching control law defined by:

uis =







−α
x
T
N

T

i
C

T
Cx|x

T
C

T
CAx|

‖xTCTCNix‖2 , if S 6= 0 and xTCTCNix 6= 0,

0, else.

(6)

Let  L be the set of the indices i such that xTCTCNix 6= 0,∀x 6= 0, and let l be the number
of its elements, then when substituting ui by uis , the left hand term of the inequality (5)
will be reduced to:

xTCTCAx− αl|xTCTCAx| (7)

which is negative for all α > 1 and l ≥ 1.

2.2 Sliding mode and equivalent control

In order to keep the system’s state on the surface S during the sliding mode, the following
condition must be fulfilled:

Ṡ = 0 when S = 0, (8)

Ṡ = CAx +
m
∑

i=1

CNixui. (9)

Let Ψ be the set of the indices i such that CNix 6= 0, ∀x 6= 0, and let s be the number
of its elements, so we can write

Ṡ =

s
∑

i=1

[
1

s
CAx + CNixui]. (10)

1 In the following we will omit the time symbol ′(t)′ of dynamic variables for the aim of simplification
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Thus Ṡ = 0 if we have ui = uieqv for all i = 1, . . . ,m, where

uieqv =







− 1
s

(CNix)
TCAx

(CNix)T (CNix)
, if S = 0 and CNix 6= 0, ∀x 6= 0,

0, else.

(11)

The homogeneous bilinear system (2) can then be efficiently controlled by the sliding
mode control defined by:

u = [u1 . . . um]T (12)

where for all i = 1, . . . ,m

ui = uis + uieqv , (13)

The switching control uis and the equivalent control uieqv are those defined by (6) and
(11).

3 Stability Analysis

As the considered bilinear system is controlled by the sliding mode control, its behav-
ior depends on two phases: the reaching mode and the sliding mode. The stability of the
controlled system is guarantied unless the reaching condition is fulfilled and the system
remains stable on the sliding surface. The first condition is already verified ( d

dt
(STS) < 0

when S 6= 0), so we must prove the stability during the sliding mode.
On the sliding surface the function S(x) = Cx(t) = 0 where C is a matrix of dimension

p× n. One can write C = [C1 C2] where C1 ∈ ℜp×p and C2 ∈ ℜp×(n−p) then we have:
Cx = C1x1 + C2x2 = 0 with x1 ∈ ℜp and x2 ∈ ℜn−p.

Suppose that 1 C1 = Ip , so we obtain a relationship between x1 and x2:

x1 = −C2x2. (14)

Thanks to the above relationship, the convergence of the system’s state to the zero
equilibrium point can be demonstrated by the convergence of its second part x2. Then
we can eliminate x1 from the system and the control formulations. For this consider the
following notations:

A =

[

A11 A12

A21 A22

]

, Ni =

[

Ni11 Ni12

Ni21 Ni22

]

, ∀i = 1 . . .m, with A11,Ni11 ∈ ℜp×p,

A12, Ni12 ∈ ℜp×(n−p), A21, Ni21 ∈ ℜ(n−p)×p, A22 and Ni22 ∈ ℜ(n−p)×(n−p). So the
equation (2) can be detailed as follows:

[

ẋ1

ẋ2

]

=

[

Ai11x1 + Ai12x2

Ai21x1 + Ai22x2

]

+

m
∑

j=1

(

[

Nij11x1 + Nij12x2

Nij21x1 + Nij22x2

]

)uij . (15)

Replacing x1 by its expression in (14), the derivative of x2 can be expressed by:

ẋ2 = (A22 −A21C2)x2 +

m
∑

i=1

(Ni22 −Ni21C2)x2ui. (16)

1 Ip denotes the identity matrix of dimension p
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The control ui on the sliding surface is equal to the equivalent control uieqv and it can
also be expressed as function of x2:

ui = uieqv = −
1

s

(CNix)TCAx

(CNix)T (CNix)
, ∀i = 1, . . . , s. (17)

It is easy to obtain:

CNix(t) = Gix2(t), CAx(t) = Hx2(t),

where

Gi = C2(Ni22 −Ni21C2) + Ni12 −Ni11C2,

H = C2(A22 −A21C2) + A12 −A11C2,

so

ui = uieqv = −
1

s

xT
2 G

T
i Hx2

xT
2 G

T
i Gix2

. (18)

Consider the Lyapunov function V (x2) = xT
2 Px2 where P is a positive definite sym-

metric matrix, we have to prove that V̇ (x2) < 0 for all x ∈ X ⊂ ℜn.

V̇ (x2) = xT
2 P ẋ2 + ẋT

2 Px2. (19)

Let
A = A22 −A21C2. (20)

Ni = Ni22 −Ni21C2, ∀i = 1 . . .m. (21)

Then the derivative of the Lyapunov function becomes:

V̇ (x2) = xT
2 P [A −

1

s

s
∑

i=1

xT
2 G

T
i Hx2

xT
2 G

T
i Gix2

Ni]x2 + xT
2 [A −

1

s

s
∑

i=1

xT
2 G

T
i Hx2

xT
2 G

T
i Gix2

Ni]
TPx2. (22)

Noting that V̇ (x2) can be rearranged in the following form

V̇ (x2) = xT
2 (PA + A

TP )x2 −
1

s

s
∑

i=1

xT
2 G

T
i Hx2

xT
2 G

T
i Gix2

xT
2 (PNi + N

T
i P )x2 (23)

and since the term xT
2 G

T
i Gix2 is usually positive, then we can deduce that V̇ (x2) < 0 if

for all i = 1, . . . , s we verify:
{

xT
2 (PA + A

TP )x2 < 0,
xT
2 G

T
i Hx2x

T
2 (PNi + N

T
i P )x2 ≥ 0,

∀ x2 6= 0. (24)

The first inequality is equivalent to the definite negativity of the matrix (PA+A
TP )

while the second necessitates additional developments. This latter represents a product
of two scalars:

(xT
2 Vix2)(xT

2 Wix2), (25)

where
{

Vi = GT
i H,

Wi = PNi + N
T
i P.

(26)
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Using the relation between the ’vec’ operator and the tensor product (⊗) [3]:

vec(AXB) = (BT ⊗A)vec(X), (27)

where A, X and B are any matrices of coherent dimensions, the expression (26) can be
reformulated as follows:

xT
2 Vix2x

T
2 Wix2 = vec(xT

2 Vix2x
T
2 Wix2) = (x

[2]
2 )T (WT

i ⊗ Vi)(x
[2]
2 ). (28)

This expression is strictly positive for all x2 6= 0 if the matrix W
T
i ⊗ Vi is positive

definite. However, since the vector x
[2]
2 has redundant terms, it might exist a solution

to this problem even with non-positive definite matrix. Therefore, it is possible to relax

this condition by eliminating the redundancy in the vector x
[2]
2 . For that a transition

matrix T can be introduced, [3],such that:

x
[2]
2 = T x̃

[2]
2 . (29)

Hence the expression(28) becomes:

xT
2 Vix2x

T
2 Wix2 = (x̃

[2]
2 )TT T (WT

i ⊗ Vi)T x̃
[2]
2 . (30)

Finally we can confirm that the derivative of the Lyapunov function (23) is negative
definite if we have:

{

PA + A
TP < 0,

T T (WT
i ⊗ Vi)T ≥ 0, ∀i = 1 . . . s.

(31)

The above results are then summarized in the following theorem.

Theorem 3.1 The homogeneous bilinear system (2) is stabilizable by the sliding mode
control (12), (13), (6), (11) for all real α > 1 if there exist a positive definite symmetric
matrix P and a matrix C2 verifying the conditions (31), with all defined notations re-
spected.

The conditions (31) constitute nonlinear matrix inequalities system which can be
solved via a multi-objective optimization function such as ’fgoalattain’ or ’fmincon’ of
the Matlab optimization toolbox. The resolution of this problem will provide the matrix
C2 and the positive definite symmetric matrix P if there exist any.

One way to get round this nonlinear optimization problem is to search C2 that sta-
bilizes the pair (A22, A21), for example by the linear quadratic regulator function ’lqr’
(which ensures the negativity of the first inequality), while verifying the positivity of the
second inequality of the system (31).

Consider the linear system

ż(t) = A22z(t) + A21u(t). (32)

If the pair (A22, A21) is stabilizable then we can calculate C2 as the optimal gain
matrix such that the state-feedback law u = −C2z minimizes the quadratic cost function:

J(u) =

∫

∞

0

(zTQz + uTRu)dt, (33)
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while verifying the Riccati equation:

PA22 + AT
22P − PA21R

−1A21)TP + Q = 0, (34)

where Q and R are matrices satisfying:







R > 0,
Q ≥ 0,
Q and A22 have no unobservable mode on the imaginary axis.

The gain matrix C2 is then deduced by the expression:

C2 = R−1AT
21P. (35)

When choosing R = In,the Riccati equation and the matrix gain become:

PA22 + AT
22P = PA21A

T
21P −Q,

C2 = AT
21P.

So the constraint (P (A22−A21C2)+(A22−A21C2)TP < 0) will be satisfied for whatever
Q ≥ 0. Then it will be easy to find a C2 fulfilling the constraints (31) by adjusting the
matrix parameter Q.

4 Simulation Examples

4.1 Second order bilinear system

In the case of second order homogeneous bilinear systems the state subvector x2 is scalar
and so does C2, so all the matrices involved in the inequality system (31) are also scalar
terms. Hence this latter leads to the following conditions of global stability:

{

P (A22 −A21C2) < 0,
GiHiP (Ni22 −Ni21C2) ≥ 0,

∀i = 1, ..., s, (36)

where P is a positive scalar.
Since Gi and H do not depend on P , the problem can be reduced to the search for

only one unknown variable which is C2 such that:

{

A22 −A21C2 < 0,
GiHi(Ni22 −Ni21C2) ≥ 0,

∀i = 1, ..., s. (37)

Consider the second order homogeneous bilinear system defined by (2) where m = 2
and

A =

(

13 -12
10 -10

)

, N1 =

(

0.7 0.1
0.1 0.7

)

, N2 =

(

-2 0
0 -1

)

.

In free run mode, the systems’ states are divergent. The sliding mode control law is
designed according to the expressions (12), (13), (6), (11). The sliding surface is defined
by S = Cx = 0 with C = [1 C2].

To search C2 that guarantees the stability of the controlled system, we solve the
matrix inequalities system (36) and we obtain P = 0.1449 and C2 = 2.3 .
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Figure 1: Second order system responses with sliding mode control, X(0) = [3 2]T and α =
1.01.

When implementing the proposed control law with the sliding surface C = [1 2.3]
for α = 1.01 and the initial conditions x(0) = [3 2]T , we obtain the simulation results
presented in Figure 1. We note that the states converge to zero before 3s and with low
control levels (between -8 and +4).

Even when trying to enlarge the initial conditions values or the uncertainties domains,
the designed control ensure the convergence of the system’s states, as shown in Figure 2.
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Figure 2: Second order system responses with large initial values X(0) = [30 20]T and α = 1.01.

4.2 Third order bilinear system

Consider the third order bilinear system defined by (2), where m = 1 and

A =





-2 3 1
1 -7 1
2 1 0.5



, N =





2 0 0
0 2 0
0 0 2



.

The resolution of the stabilization constraints system (31) gives the symmetric pos-

itive definite matrix P and the vector C2 defined by: P =

(

0.0777 0.0661
0.0661 0.6308

)

,

C2 = [0.2100 1.3278].
Simulations of the so controlled system are presented in Figures 3 and 4 respectively

for small and large initial conditions, with α = 2.5. We notice that the states converge
to zero within two seconds at least. The control amplitude doesn’t exceed four units.
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Figure 3: Third order system responses with sliding mode control, X(0) = [3 5 2]T and α = 2.5.
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Figure 4: Third order system responses with large initial values X(0) = [30 50 20]T and
α = 2.5.

5 Conclusions

A sliding mode control approach is proposed for homogeneous bilinear systems. The
control design strategy detailed in this paper enabled to provide an efficient sliding mode
control constituted by two components: a switching control law basically built so as to
ensure the system stability during the reaching phase, and an equivalent control law
deduced from the condition of keeping the system’s state quietly on the sliding surface
once reached. The meticulous study held on the system’s closed loop stability during
this sliding phase allowed to provide sufficient conditions of global stabilization formu-
lated in a set of linear and nonlinear matrix inequalities. The sliding surface can be
automatically defined through the resolution of the stability constraints problem. Ana-
lytical and numerical cleverness have permitted to facilitate the resolution of so complex
optimisation problem. In fact, for the second order systems, simplified form of the sta-
bilization constraints is retrieved showing that the problem can be reduced to the search
for only one unknown variable. On the other hand, for higher order systems the linear
quadratic based algorithm suggested enables to obtain feasible solutions to the nonlinear
constrained problem if there exist ones.
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1 Introduction

As we know the qualitative theory refers to the investigation of the behaviors of solutions
of differential equations such as the stability, instability, boundedness,convergence of
solutions etc. without determining explicit formulas for the solutions.The relative works
can be summarized as follows:

In [1, 15, 16], the authors investigated the asymptotic behaviour of the solutions of
certain fourth-order differential equations. In [11, 13, 19–25], the authors considered the
stability, instability and boundedness properties of the solutions of some nonlinear third,
fourth and fifth-order differential equations (see, also, [10, 14]). In [7], Afuwape studied
the existence of a limiting regime in the sense of Demidovic for a certain fourth-order
nonlinear differential equations. These studies were done using the Lyapunov’s second
method. In [2,5,8,9], the authors created conditions for the existence of periodic, almost
periodic, exponential stability and dissipative solutions by using the frequency domain
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method. In [3, 4, 6, 12], the authors discussed the convergence of solutions. In [17],
Tejumola studied periodic solutions of boundary value problems for some fifth, fourth and
third order ordinary differential equations. In [18], Tiryaki and Tunc created Lyapunov
functions for certain fourth-order autonomous differential equations.

This paper is concerned with differential equations of the form

x(iv) + f1(x, x
′, x′′, x′′′) + f2(x, x

′, x′′) + f3(x, x
′) + f4(x) = p(t, x, x′, x′′, x′′′), (1)

where the functions f1, f2, f3, f4 and p are real valued and continuous in their respective
arguments such that the uniqueness theorem is valid, the solutions are continuously
dependent on the initial conditions. The function p(t, x, x′, x′′, x′′′) is assumed to have
the form

p(t, x, x′, x′′, x′′′) = q(t) + r(t, x, x′, x′′, x′′′)

with the functions q and r depending explicitly on the arguments displayed and being
continuous in their respective arguments. Furthermore, it is assumed that r(t, 0, 0, 0, 0) =
0 for all t.

Definition 1.1 Any two solutions x1(t), x2(t) of Eq.(1) are said to converge (to
each other) if x1 − x2 → 0, x′

1 − x′

2 → 0, x′′

1 − x′′

2 → 0, x′′′

1 − x′′′

2 → 0 as t → ∞.

Our results assert the existence of convergence of solutions with the functions f1, f2, f3
and f4 not necessarily differentiable. Here, the functions f4 are only required to satisfy
the increment ratio

f4(ξ + η)− f4(ξ)

η
∈ I0,

where I0 is closed sub-interval of the Routh -Hurwitz interval defined by

I0 =

[

∆0, K0

[

(ab− c) c

a2

]]

,

for some positive constants a, b, c, d,D,∆0, K0, and (ab− c) c− a2d > 0, ab− c > 0.

2 Main Results

Theorem 2.1 In addition to the basic assumptions imposed on the functions

f1, f2, f3 and f4, we assume that f1(x, y, z, 0) = f2(x, y, 0) = f3(x, 0) = f4(0) = 0 and

that:

(i) there are positive constants δ, δ0, γ, γ0, β and β0 such that

δ ≤
f1(x2, y2, z2, u2)− f1(x1, y1, z1, u1)

u2 − u1
≤ δ0, (u2 6= u1),

γ ≤
f2(x2, y2, z2)− f2(x1, y1, z1)

z2 − z1
≤ γ0, (z2 6= z1), (2)

β ≤
f3(x2, y2)− f3(x1, y1)

y2 − y1
≤ β0, (y2 6= y1) ,

(ii) for any ξ, η (η 6= 0), the increment ratios for f4 satisfy

f4(ξ + η)− f4(ξ)

η
∈ I0,
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(iii) there is a continuous function φ(t) such that

|r(t, x2, y2, z2, u2)− r(t, x1, y1, z1, u1)| (3)

≤ φ(t) {|x2 − x1|+ |y2 − y1|+ |z2 − z1|+ |u2 − u1|}

holds for arbitrary t, x1, y1, z1, u1, x2, y2, z2, u2.
Then,there exists a constant D1 such that if

∫ t

0

φv(τ)dτ ≤ D1t (4)

for some v in the range 1 ≤ v ≤ 2, then all solutions of Eq.(1) converge.

Theorem 2.2 Let x1(t), x2(t) be any two solutions of Eq.(1). Suppose that all the

conditions of Theorem 2.1 hold. Then, for each fixed v in the range 1 ≤ v ≤ 2 , there

exist constants D2, D3, and D4 such that

S(t2) ≤ D2S(t1) exp

{

−D3 (t2 − t1) +D4

∫ t2

t1

φv(τ)dτ

}

for t2 ≥ t1, (5)

where

S(t) = [x2(t)− x1(t)]
2
+ [x′

2(t)− x′

1(t)]
2
+ [x′′

2 (t)− x′′

1(t)]
2
+ [x′′′

2 (t)− x′′′

1 (t)]
2
.

We have the following corollaries when x1(t) = 0 and t1 = 0.

Corollary 2.1 Suppose that p = 0 in Eq.(1) and assumptions (i) and (ii) of Theorem

2.1 hold for arbitrary η 6= 0. Then the trivial solution of Eq.(1) is exponentially stable.

Corollary 2.2 If p 6= 0 and assumptions (i) and (ii) of Theorem 2.1 hold for arbi-

trary η 6= 0 and ξ = 0, then there exists a constant D5 > 0 such that every solution x(t)
of Eq.(1) satisfies

|x(t)| ≤ D5, |x′(t)| ≤ D5, |x′′(t)| ≤ D5, |x′′′(t)| ≤ D5.

Proof of Theorem 2.2 Writing Eq.(1) as a system of first order equations, we
obtain

x′ = y,

y′ = z,

z′ = u, (6)

u′ = −f1(x, y, z, u)− f2(x, y, z)− f3(x, y)− f4(x) + r(t, x, y, z, u) + q(t).

Let (xi(t), yi(t), zi(t), ui(t)), (i = 1, 2), be two solutions of (1), such that

∆0 ≤
f4(x2)− f4(x1)

x2 − x1
≤ K0

[

(ab− c) c

a2

]

hold. For the proof of the convergence theorem, we define a function

2V = [β(1− ǫ)x+ γy + δz + u]
2
+ [(1− ǫ)D − 1] (δz + u)

2

+βδ [ǫ+ (1− ǫ)D − 1] y2 + γ (D − 1) z2 + ǫDu2 (7)

+β2ǫ (1− ǫ)x2 + 2γδ
[

(1 − ǫ)2D − 1
]

yz,
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where 0 < ǫ < 1
2 ,

γδ
β

> (1 − ǫ), β, γ, δ are positive real numbers and D = 1 +
β(1−ǫ)[γδ−β(1−ǫ)]

γδ−βǫ
with D > 1

(1−ǫ)2 always. Indeed, we can rearrange the terms in (7)

to obtain
2V = 2V1 + 2V2, (8)

where

2V1 = [β(1 − ǫ)x+ γy + δz + u]
2
+ [(1 − ǫ)D − 1] (δz + u)

2

+ǫDu2 + β2ǫ (1− ǫ)x2 + ǫβδy2,

2V2 = βδ [(1− ǫ)D − 1] y2 + 2γδ
[

(1 − ǫ)2D − 1
]

yz + γ (D − 1) z2.

We note that V1 is obviously positive definite. This follows from the condition above.
Also V2 can be regarded as quadratic form in y and z, and is always positive.

Let us recall that a real 2× 2 matrix
(

a1 a2
a3 a4

)

is positive definite ⇔ a1 > 0, a4 > 0 and a1a4 − a2a3 > 0. Thus we can rearrange the
terms in V2 as

(y, z)

(

βδ [(1− ǫ)D − 1] γδ
[

(1− ǫ)2D − 1
]

γδ
[

(1− ǫ)2D − 1
]

γ (D − 1)

)(

y

z

)

.

Hence V is positive definite. We can therefore find a constant D6 > 0, such that

D6(x
2 + y2 + z2 + u2) ≤ V . (9)

Furthermore, by using the Schwartz inequality |y| |z| ≤ 1
2 (y

2 + z2), we obtain the
following estimate:

2 |V2| ≤ D∗(y2 + z2), D∗ = D∗(β, γ, δ,D, ǫ) > 0.

Thus there exists a constant D7 > 0 such that

V ≤ D7(x
2 + y2 + z2 + u2), (10)

Using inequalities (9) and (10), we obtain

D6(x
2 + y2 + z2 + u2) ≤ V ≤ D7(x

2 + y2 + z2 + u2). (11)

The following lemma can be easily verified for W ≡ V . ✷

Lemma 2.1 Let the function W (t) = W (x2 − x1, y2 − y1, z2 − z1, u2 − u1) be defined

by

2W = [β(1 − ǫ)(x2 − x1) + γ(y2 − y1) + δ(z2 − z1) + (u2 − u1)]
2

+ [(1− ǫ)D − 1] (δ(z2 − z1) + (u2 − u1))
2

+βδ [ǫ+ (1 − ǫ)D − 1] (y2 − y1)
2 + γ (D − 1) (z2 − z1)

2

+ǫD(u2 − u1)
2 + β2ǫ (1− ǫ) (x2 − x1)

2

+2γδ
[

(1 − ǫ)2D − 1
]

(y2 − y1)(z2 − z1),
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where 0 < ǫ < 1
2 ,

γδ
β

> (1 − ǫ), β, γ, δ are positive real numbers and D = 1 +
β(1−ǫ)[γδ−β(1−ǫ)]

γδ−βǫ
with D > 1

(1−ǫ)2 always.

i) W (0, 0, 0, 0) = 0.

ii) There exist finite positive constants D6, D7 such that

W ≥ D6

{

(x2 − x1)
2
+ (y2 − y1)

2
+ (z2 − z1)

2
+ (u2 − u1)

2
}

,

W ≤ D7

{

(x2 − x1)
2
+ (y2 − y1)

2
+ (z2 − z1)

2
+ (u2 − u1)

2
}

. (12)

The solutions (xi, yi, zi, ui), (i = 1, 2) satisfy the system (6). Then S(t) as defined
in (6) becomes

S(t) = [x2(t)− x1(t)]
2
+ [y2(t)− y1(t)]

2
+ [z2(t)− z1(t)]

2
+ [u2(t)− u1(t)]

2
.

Next we prove a result on the derivative of W (t) with respect to t.

Lemma 2.2 Assume that conditions (i) and (ii) of Theorem 2.1 hold. Then there

exist positive constants D8 and D9 such that

dW

dt
≤ −2D8S +D9S

1

2 |θ| , (13)

where θ = r (t, x2, y2, z2, u2)− r (t, x1, y1, z1, u1).

Proof of Lemma 2.2 Using the system (6), a direct computation of dW
dt

gives after
simplification

.

W =
dW

dt
= −W1 +W2, (14)

where

W1 = β(1− ǫ)F4(x2 − x1)
2 + γ [F3 − β (1− ǫ)] (y2 − y1)

2

+ (1− ǫ)Dδ [F2 − γ (1− ǫ)] (z2 − z1)
2
+D [F1 − δ (1− ǫ)] (u2 − u1)

2

+ {β(1 − ǫ) [F3 − β] + γF4} (x2 − x1) (y2 − y1)

+ {β(1 − ǫ) [F2 − γ] + (1− ǫ)DδF4} (x2 − x1) (z2 − z1)

+ {β(1 − ǫ) [F1 − δ] +DF4} (x2 − x1) (u2 − u1)

+ {γ [F2 − γ] + (1− ǫ)Dδ [F3 − β]} (y2 − y1) (z2 − z1)

+ {γ [F1 − δ] +D [F3 − β] + γδ +Dβ − β(1 − ǫ)

−γδ (1− ǫ)
2
D
}

(y2 − y1) (u2 − u1)

+ {D [F2 − γ] + (1− ǫ)Dδ [F1 − δ]} (z2 − z1) (u2 − u1) ,

W2 = θ(t) {β(1 − ǫ)(x2 − x1) + γ(y2 − y1) + (1− ǫ)Dδ(z2 − z1)

+D (u2 − u1)} , (15)
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F1 =
f1(x2, y2, z2, u2)− f1(x1, y1, z1, u1)

u2 − u1
, (u2 6= u1),

F2 =
f2(x2, y2, z2)− f2(x1, y1, z1)

z2 − z1
, (z2 6= z1),

F3 =
f3(x2, y2)− f3(x1, y1)

y2 − y1
, (y2 6= y1),

F4 =
f4(x2)− f4(x1)

x2 − x1
, (x2 6= x1),

and λi, µi, τi, σi are strictly positive constants such that

7
∑

i=1

λi = 1,

8
∑

i=1

µi = 1,

7
∑

i=1

τi = 1,

8
∑

i=1

σi = 1.

Then W1 can be rearranged as

W1 = W11 +W12 +W13 +W14 +W15 +W16 +W17 +W18 +W19 (16)

+W20 +W21 +W22 +W23 +W24,

where

W11 = λ1β(1 − ǫ)F4(x2 − x1)
2 + {γ [F3 − β] + µ1γβǫ} (y2 − y1)

2

+ {(1− ǫ)Dδ [F2 − γ] + τ1 (1− ǫ)Dδγǫ} (z2 − z1)
2

+ {D [F1 − δ] + σ1Dδǫ} (u2 − u1)
2
,

W12 = λ2β(1− ǫ)F4(x2 − x1)
2 + β(1− ǫ) [F3 − β] (x2 − x1) (y2 − y1) + µ2γβǫ (y2 − y1)

2
,

W13 = λ3β(1 − ǫ)F4(x2 − x1)
2 + γF4 (x2 − x1) (y2 − y1) + µ3γβǫ (y2 − y1)

2
,

W14 = λ4β(1 − ǫ)F4(x2 − x1)
2 + β(1 − ǫ) [F2 − γ] (x2 − x1) (z2 − z1)

+τ2 (1− ǫ)Dδγǫ (z2 − z1)
2
,

W15 = λ5β(1− ǫ)F4(x2 − x1)
2 + (1− ǫ)DδF4 (x2 − x1) (z2 − z1)

+τ3 (1− ǫ)Dδγǫ (z2 − z1)
2
,

W16 = λ6β(1− ǫ)F4(x2 −x1)
2 +β(1− ǫ) [F1 − δ] (x2 − x1) (u2 − u1)+σ2Dδǫ (u2 − u1)

2
,

W17 = λ7β(1 − ǫ)F4(x2 − x1)
2 +DF4 (x2 − x1) (u2 − u1) + σ3Dδǫ (u2 − u1)

2
,

W18 = µ4γβǫ (y2 − y1)
2
+ γ [F2 − γ] (y2 − y1) (z2 − z1) + τ4 (1− ǫ)Dδγǫ (z2 − z1)

2
,

W19 = µ5γβǫ (y2 − y1)
2
+ (1− ǫ)Dδ [F3 − β] (y2 − y1) (z2 − z1)

+τ5 (1− ǫ)Dδγǫ (z2 − z1)
2
,

W20 = µ6γβǫ (y2 − y1)
2
+ γ [F1 − δ] (y2 − y1) (u2 − u1) + σ4Dδǫ (u2 − u1)

2
,

W21 = µ7γβǫ (y2 − y1)
2
+D [F3 − β] (y2 − y1) (u2 − u1) + σ5Dδǫ (u2 − u1)

2
,
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W22 = µ8γβǫ (y2 − y1)
2
+
{

γδ +Dβ − β(1 − ǫ)− γδ (1− ǫ)
2
D
}

(y2 − y1) (u2 − u1)

+σ6Dδǫ (u2 − u1)
2
,

W23 = τ6 (1− ǫ)Dδγǫ (z2 − z1)
2
+D [F2 − γ] (z2 − z1) (u2 − u1) + σ7Dδǫ (u2 − u1)

2
,

W24 = τ7 (1− ǫ)Dδγǫ (z2 − z1)
2
+ (1− ǫ)Dδ [F1 − δ] (z2 − z1) (u2 − u1)

+σ8Dδǫ (u2 − u1)
2
.

It is clear thatW11 ≥ 0. Since eachW12,W13, ...,W23,W24 are quadratic forms in their
respective variables, then from the fact that any quadratic of the form Ap2 +Bpq+Cq2

is non negative if 4AC −B2 ≥ 0, it follows that

W12 ≥ 0 if [F3 − β]
2
≤ 16λ3µ3λ2µ2(ǫβ)

2,

W13 ≥ 0 if F4 ≤
4λ3µ3ǫβ

2 (1− ǫ)

γ
,

W14 ≥ 0 if [F2 − γ]
2
≤ 16λ4λ5τ2τ3 (γǫ)

2
,

W15 ≥ 0 if F4 ≤
4λ5τ3ǫβγ

Dδ
,

W16 ≥ 0 if [F1 − δ]
2
≤ 16λ6λ7σ2σ3 (δǫ)

2
,

W17 ≥ 0 if F4 ≤
4λ7σ3β (1− ǫ) δǫ

D
,

W18 ≥ 0 if [F2 − γ]
2
≤ 4µ4τ4βDδǫ2 (1− ǫ) ,

W19 ≥ 0 if [F3 − β]2 ≤
4µ5τ5β (γǫ)2

(1− ǫ)Dδ
,

W20 ≥ 0 if [F1 − δ]
2
≤

4µ6σ4βǫ
2Dδ

γ
,

W21 ≥ 0 if [F3 − β]
2
≤

4µ7σ5βǫ
2γδ

D
,

W22 ≥ 0 if 4µ8γβǫσ6Dδǫ ≥
{

γδ +Dβ − β(1− ǫ)− γδ (1− ǫ)
2
D
}2

,

W23 ≥ 0 if [F2 − γ]
2
≤ 4τ6σ7γ (1− ǫ) (δǫ)

2
,

W24 ≥ 0 if [F1 − δ]
2
≤

4τ7σ8γǫ
2

(1− ǫ)
.

That is,

[F1 − δ]
2
≤ min

{

4τ7σ8γǫ
2

(1− ǫ)
,
4µ6σ4βǫ

2Dδ

γ
, 16λ6λ7σ2σ3 (δǫ)

2

}

,

[F2 − γ]2 ≤ min
{

16λ4λ5τ2τ3 (γǫ)
2
, 4µ4τ4βDδǫ2 (1− ǫ) , 4τ6σ7γ (1− ǫ) (δǫ)2

}

,
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[F3 − β]
2
≤ min

{

16λ3µ3λ2µ2(ǫβ)
2,

4µ5τ5β (γǫ)2

(1− ǫ)Dδ
,
4µ7σ5βǫ

2γδ

D

}

,

F4 ≤ min

{

4λ3µ3ǫβ
2 (1− ǫ)

γ
,
4λ5τ3ǫβγ

Dδ
,
4λ7σ3β (1− ǫ) δǫ

D

}

,

Because of W12 ≥ 0, W13 ≥ 0, ...,W24 ≥ 0, we obtain W1 ≥ W11. Then we find a
constant D8 such that

W1 ≥ W11 ≥ 2D8S(t), (17)

where

2D8 = min {β(1 − ǫ)∆0, γβǫ, (1− ǫ)Dδγǫ,Dδǫ} .

Similarly, we can find from the value of W2, a constant D9 > 0 small enough such
that

W2 ≤ D9S
1

2 |θ| , (18)

where D9 = max {β(1− ǫ), γ, (1− ǫ)Dδ,D} .
Writing (17) and (18) in (14), we get

dW

dt
≤ −2D8S +D9S

1

2 |θ| .

Let v be any constant in the range 1 ≤ v ≤ 2 and 2µ = 2− v, so that 0 ≤ µ ≤ 1/2.
One can arrange the estimate in (13) as

dW

dt
+D8S ≤ −D8S +D9S

1/2 |θ| = D10S
µW ∗,

where

W ∗ =
(

|θ| −D11S
1/2

)

S1/2−µ, (19)

with D11 = D8D
−1
10 . We consider the following two cases:

a) |θ| < D11S
1/2, b) |θ| ≥ D11S

1/2.

If |θ| < D11S
1/2, then W ∗ < 0. On the other hand, if |θ| ≥ D11S

1/2 , then the
definition of W∗ in (19) gives at least

W ∗ ≤ S1/2−µ |θ| ,

and also S1/2 ≤ |θ| /D11. The foregoing inequality leads to

S1/2(1−2µ) ≤

[

|θ|

D11

](1−2µ)

,

so that

S1/2(1−2µ) |θ| ≤

[

|θ|

D11

](1−2µ)

|θ| .

The above estimate implies

W ∗ ≤ D12 |θ|
2(1−µ)

,
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where D12 = D
(2µ−1)
11 . Hence, it is clear that

dW

dt
+D8S ≤ D10D12S

µ |θ|2(1−µ) ≤ D13S
µφ2(1−µ)S(1−µ),

where D13 = S1−µD10D12 which follows from

|θ| = |r (t, x2, y2, z2, u2)− r (t, x1, y1, z1, u1)|

≤ φ (t) {|x2 − x1|+ |y2 − y1|+ |z2 − z1|+ |u2 − u1|} .

Using the estimate v = 2 (1− µ), we obtain

dW

dt
≤ −D8S +D13φ

vS.

By the inequality (12), we find

dW

dt
+ (D14 −D15φ

v (t))W ≤ 0 (20)

for some positive constants D14 and D15. Integrating (20) from t1 to t2 (t2 ≥ t1), we
have

W (t2) ≤ W (t1) exp

{

−D14 (t2 − t1) +D15

∫ t2

t1

φv(τ)dτ

}

.

Again, using Lemma 2.1, we obtain (5) with D2 = D7D
−1
6 , D3 = D14, andD4 = D15.

This completes the proof of Theorem 2.2. ✷

Proof of Theorem 2.1 Choose D1 = D3D
−1
4 in (4). From the estimate (5), if

∫ t2

t1

φv(τ)dτ ≤ D3D
−1
4 (t2 − t1) ,

then the exponential index remains negative for all t2−t1 ≥ 0. Then, as t = t2−t1 → ∞,
we have S (t) → 0, and this gives

x2 − x1 → 0, y2 − y1 → 0, z2 − z1 → 0, u2 − u1 → 0

as t → ∞. This completes the proof of Theorem 2.1. ✷
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