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Abstract: This paper presents the formulation of the time-fractional generalized
Equal Width Wave (EWW) equation and generalized Equal Width Wave-Burgers
(EWW-Burgers) equation using the Euler-Lagrange variational technique in the
Riemann-Liouville derivative sense, and derive respectively an approximate solitary
wave solution. Our results witness that He’s variational-iteration method was very
efficient and powerful technique in finding the solution of the proposed equation.
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1 Introduction

The generalized EWW equation has been used to describe approximately the unidirec-
tional propagation of the regularized long wave in certain nonlinear dispersive systems [1],
and has been proposed by Benjamin, Bona and Mahony as a model for small-amplitude
long waves on the surface of water in a channel [2]. In physical situations one has unidi-
rectional waves propagating in a water channel, long-crested waves in near-shore zones
and many others. This equation also serves as an alternative model to the generalized
regularised long wave equation and generalized Korteweg-de Vries equation (KdV) [3–5].

During the past three decades or so, fractional calculus has gained considerable pop-
ularity and importance as generalizations of integer-order evolution equations, and is
applied to model problems in neurons, hydrology, viscoelasticity and rheology, image
processing, mechanics, mechatronics, physics, finance and control theory, see [6–11]. If
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the Lagrangian of conservative system is constructed using fractional derivatives, the
resulting equations of motion can be nonconservative. Therefore, in many cases, the
real physical processes could be modeled in a reliable manner using fractional-order dif-
ferential equations rather than integer-order equations [12]. In [13], the semi-inverse
method has been used to derive the Lagrangian of the KdV equation, the time operator
of the Lagrangian of the KdV equation has been transformed into fractional domain in
terms of the left-Riemann-Liouville fractional differential operator, the variational of the
functional of this Lagrangian leads neatly to Euler-Lagrange equation. Based on the
stochastic embedding theory, Cresson [14] defined the fractional embedding of differen-
tial operators and provided a fractional Euler-Lagrange equation for Lagrangian systems,
then investigated a fractional Noether theorem and a fractional Hamiltonian formulation
of fractional Lagrangian systems. Herzallah and Baleanu [15] presented the necessary and
sufficient optimality conditions for the Euler-Lagrange fractional equations of fractional
variational problems with determining in which spaces the functional must exist. Ma-
linowska [16] proposed the Euler-Lagrange equations for fractional variational problems
with multiple integrals and proved the fractional Noether-type theorem for conservative
and nonconservative generalized physical systems. Riewe [17] formulated a version of
the Euler-Lagrange equation for problems of calculus of variation with fractional deriva-
tives. Wu and Baleanu [18] developed some new variational-iteration formulae to find
approximate solutions of fractional differential equations and determined the Lagrange
multiplier in a more accurate way. For generalized fractional Euler-Lagrange equations
we can refer to the works by Odzijewicz [19, 20]. Other known results can be found in
Agrawal [21–23], Baleanu et al [24], Inokuti et al [25] and Zhang [26]. In view of the
fact that most of physical phenomena may be considered as nonconservative, they can be
described using fractional-order differential equations. Recently, several methods have
been used to solve nonlinear fractional evolution equation using techniques of nonlinear
analysis, such as Adomian decomposition method [27], homotopy analysis method [28,29]
and homotopy perturbation method [30]. It was mentioned that the variational-iteration
method has been used successfully to solve different types of integer and fractional non-
linear evolution equations. Making use of the variational-iteration method, this work’s
main motivation is to formulate the time-fractional generalized EWW equation and gen-
eralized EWW-Burgers equation and to derive an approximate solitary wave solution,
respectively.

This paper is organized as follows: Section 2 states some background material from
fractional calculus. Section 3 presents the principle of He’s variational-iteration method.
Sections 4 and 5 are devoted to describing the formulation of the time-fractional general-
ized EWW equation and generalized EWW-Burgers equation using the Euler-Lagrange
variational technique and to deriving an approximate solitary wave solution, respec-
tively. Section 6 makes some analysis for the obtained graphs and figures and discusses
the present work.

2 Preliminaries

We recall the necessary definitions for the fractional calculus (see, e.g. [31–33]) which is
used throughout the remaining sections of this paper.

Definition 2.1 A real multivariable function ϕ(x, t), t > 0 is said to be in the
space Cγ , γ ∈ R, with respect to t if there exists a real number p > γ, such that
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ϕ(x, t) = tpϕ1(x, t), where ϕ1 ∈ C(Ω × T ), Ω ⊆ R and T = [0, t0](t0 > 0). Obviously,
Cγ ⊂ Cδ if δ ≤ γ.

Definition 2.2 The left-hand side Riemann-Liouville fractional integral of a function
ϕ ∈ Cγ , (γ ≥ −1) is defined by

0I
α
t ϕ(x, t) =

1

Γ(α)

∫ t

0

(t− τ)α−1ϕ(x, τ)dτ, α > 0, t ∈ T,

0I
0
t ϕ(x, t) = ϕ(x, t).

Definition 2.3 The Riemann-Liouville fractional derivatives of the order n − 1 ≤
α < n of a function ϕ ∈ Cγ , (γ ≥ −1) are defined as

0D
α
t ϕ(x, t) =

1

Γ(n− α)

∂n

∂tn

∫ t

0

(t− τ)n−α−1ϕ(x, τ)dτ,

tD
α
t0
ϕ(x, t) =

1

Γ(n− α)

∂n

∂tn

∫ t0

t

(τ − t)n−α−1ϕ(x, τ)dτ, t ∈ T.

Lemma 2.1 The integration of Riemann-Liouville fractional derivative of the order

0 < α < 1 of the functions ϕ, φ, tD
α
t0
ϕ(x, t) and 0D

α
t φ(x, t) ∈ C(Ω × T ) by parts are

given by the rule
∫

T

ϕ(x, t)0D
α
t φ(x, t)dt =

∫

T

φ(x, t)tD
α
t0
ϕ(x, t)dt.

Definition 2.4 The Riesz fractional integral of the order n−1 ≤ α < n of a function
ϕ ∈ Cγ , (γ ≥ −1) is defined as

R
0 I

α
t ϕ(x, t) =

1

2

(

0I
α
t ϕ(x, t) + tI

α
t0
ϕ(x, t)

)

=
1

2Γ(α)

∫ t0

0

|t− τ |α−1ϕ(x, τ)dτ,

where 0I
α
t and tI

α
t0

are respectively the left- and right-hand side Riemann-Liouville frac-
tional integral operators.

Definition 2.5 The Riesz fractional derivative of the order n − 1 ≤ α < n of a
function ϕ ∈ Cγ , (γ ≥ −1) is defined by

R
0 D

α
t ϕ(x, t) =

1

2

(

0D
α
t ϕ(x, t) + (−1)ntD

α
t0
ϕ(x, t)

)

=
1

2Γ(n− α)

dn

dtn

∫ t0

0

|t− τ |n−α−1ϕ(x, τ)dτ,

where 0D
α
t and tD

α
t0

are respectively the left- and right-hand side Riemann-Liouville
fractional differential operators.

Lemma 2.2 Let α > 0 and β > 0 be such that n − 1 < α < n, m − 1 < β < m

and α + β < n, and let ϕ ∈ L1(Ω× T ) and 0I
m−α
t ϕ ∈ ACm(Ω × T ). Then we have the

following index rule:

R
0 D

α
t

(

R
0 D

β
t ϕ(x, t)

)

= R
0 D

α+β
t ϕ(x, t)−

m
∑

i=1

R
0 D

β−i
t ϕ(x, t)|t=0

t−α−i

Γ(1− α− i)
.

Remark 2.1 One can express the Riesz fractional differential operator R
0 D

α−1
t of the

order 0 < α < 1 as the Riesz fractional integral operator R
0 I

1−α
τ , i.e.

R
0 D

α−1
t ϕ(x, t) = R

0 I
1−α
t ϕ(x, t), t ∈ T.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 14 (4) (2014) 410–425 413

3 Variational-iteration Method

The variational-iteration method [34–36] provides an effective procedure for explicit and
solitary wave solutions of a wide and general class of differential systems representing
real physical problems. Moreover, the variational-iteration method can overcome the
foregoing restrictions and limitations of approximate techniques so that it provides us
with a possibility to analyze strongly nonlinear evolution equations. Therefore, we extend
this method to solve the time-fractional generalized EWW equation. The basic features
of the variational-iteration method are outlined as follows.

Considering a nonlinear evolution equation consists of a linear part Lu, nonlinear
part Nu, and a free term f = f(x, t) represented as

Lu+Nu = f. (1)

According to the variational-iteration method, the n+ 1-th approximate solution of (1)
can be read using iteration correction functional as

un+1 = un +

∫ t

0

λ(τ)
(

Lũ+N ũ− f
)

dτ, (2)

where λ(τ) is a general Lagrange’s multiplier, which can be identified via the variational
theory and ũ is considered as a restricted variation function which means δũ = 0. Ex-
treming the variation of the correction functional (2) leads to the Lagrangian multiplier
λ(τ). The initial iteration u0 can be used as the initial value u(x, 0), as n tends to infinity,
the iteration leads to the solitary wave solution of (1), i.e.

u = lim
n→∞

un.

4 Time-fractional Generalized EWW Equation

In this section, He’s variational-iteration method is applied to solve time-fractional gen-
eralized EWW equation

R
0 D

α
t u+ aupux − µuxxt = 0,

where a 6= 0, p and µ > 0, u = u(x, t) is a field variable, x ∈ Ω ⊆ R is a space
coordinate in the propagation direction of the field and t ∈ T = [0, t0](t0 > 0) is the
time, the subscripts denote the partial differentiation of the function u with respect to
the parameter x and t, R

0 D
α
t is the Riesz fractional derivative.

The generalized EWW equation in (1+1) dimensions is given as

ut + aupux − µuxxt = 0. (3)

Employing a potential function v on the field variable, set u = vx yields the potential
equation of the generalized EWW equation (3) in the form,

vxt + avpxvxx − µvxxxt = 0. (4)

The Lagrangian of this generalized EWW equation (3) can be defined using the semi-
inverse method [37, 38] as follows. The functional of the potential equation (4) can be
represented as

J(v) =

∫

Ω

dx

∫

T

(

v
(

c1vxt + ac2v
p
xvxx − µc3vxxxt

)

)

dt, (5)
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with ci (i = 1, 2, 3) as an unknown constant to be determined later. Integrating (5) by
parts and taking vx|∂Ω = vx|∂T = vxxt|∂Ω = 0 yield

J(v) =

∫

Ω

dx

∫

T

(

− c1vtvx − ac2

p+ 1
vp+2
x + µc3vxxtvx

)

dt. (6)

The constants ci (i = 1, 2, 3) can be determined taking the variation of the functional (6)
to make it optimal. By applying the variation of the functional, integrating each term
by parts, and making use of the variation optimum condition of the functional J(v), it
yields the following representation

2c1vtx + (p+ 2)ac2v
p
xvxx − 2µc3vxxxt = 0. (7)

Note that the obtained result (7) is equivalent to (4), so one has that the constants
ci (i = 1, 2, 3) are respectively

c1 =
1

2
, c2 =

1

p+ 2
, c3 =

1

2
.

In addition, the functional representation given by (6) obtains directly the Lagrangian
form of the generalized EWW equation,

L(vt, vx, vxxt) = −1

2
vtvx − a

(p+ 1)(p+ 2)
vp+2
x +

µ

2
vxxtvx.

Similarly, the Lagrangian of the time-fractional version of the generalized EWW equa-
tion could be read as

F (0D
α
t v, vx, vxxt) = −1

2
0D

α
t vvx − a

(p+ 1)(p+ 2)
vp+2
x +

µ

2
vxxtvx, α ∈]0, 1]. (8)

Then the functional of the time-fractional generalized EWW equation will take the rep-
resentation

J(v) =

∫

Ω

dx

∫

T

F (0D
α
t vt, vx, vxxt)dt, (9)

where the time-fractional Lagrangian F (0D
α
t vt, vx, vxx, vxxt, vxxx) is given by (8). Fol-

lowing Agrawal’s method [21–23], the variation of functional (9) with respect to v leads
to

δJ(v) =

∫

Ω

dx

∫

T

( ∂F

∂0D
α
t v

δ(0D
α
t v) +

∂F

∂vx
δvx +

∂F

∂vxxt
δvxxt

)

dt. (10)

By Lemma 2.1, upon integrating the right-hand side of (10), one has

δJ(v) =

∫

Ω

dx

∫

T

(

tD
α
T

( ∂F

∂0D
α
t v

)

− ∂

∂x

( ∂F

∂vx

)

− ∂3

∂x2∂t

( ∂F

∂vxxt

)

)

δvdt,

noting that δv|∂T = δv|∂Ω = δvx|∂Ω = δvxx|∂T = 0.
Obviously, optimizing the variation of the functional J(v), i.e., δJ(v) = 0, yields the

Euler-Lagrange equation for time-fractional generalized EWW equation in the following
representation

tD
α
T

( ∂F

∂0D
α
t v

)

− ∂

∂x

( ∂F

∂vx

)

− ∂3

∂x2∂t

( ∂F

∂vxxt

)

= 0. (11)
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Substituting the Lagrangian of the time-fractional generalized EWW equation (8) into
Euler-Lagrange formula (11) gives

−1

2
tD

α
T0
vx +

1

2
0D

α
t vx + avpxvxx − µvxxxt = 0.

Once again, substituting the potential function vx for u, yields the time-fractional
generalized EWW equation for the state function u as

1

2

(

0D
α
t u− tD

α
T0
u
)

+ aupux − µuxxt = 0. (12)

According to the Riesz fractional derivative R
0 D

α
t u, the time-fractional generalized

EWW equation represented in (12) can be written as

R
0 D

α
t u+ aupux − µuxxt = 0. (13)

Acting from the left-hand side by the Riesz fractional operator R
0 D

1−α
t on (13) leads to

∂

∂t
u− R

0 D
α−1
t u|t=0

tα−2

Γ(α− 1)
+ R

0 D
1−α
t

(

aupux − µuxxt

)

= 0, (14)

from Lemma 2.2. In view of the variational-iteration method, combining with (14), the
n + 1-th approximate solution of (13) can be read using iteration correction functional
as

un+1 = un +

∫ t

0

λ(τ)

(

∂

∂τ
un − R

0 D
α−1
τ un|τ=0

τα−2

Γ(α− 1)

+ R
0 D

1−α
τ

(

aũp
n

∂

∂x
ũn − µ

∂3

∂x2∂t
ũn

)

)

dτ,

(15)

where the function ũn is considered as a restricted variation function, i.e., δũn = 0. The
extreme of the variation of (15) subject to the restricted variation function straightfor-
wardly yields

δun+1 = δun +

∫ t

0

λ(τ)δ
∂

∂τ
undτ = δun + λ(τ)δun|τ=t −

∫ t

0

∂

∂τ
λ(τ)δundτ = 0.

This representation reduces the following stationary conditions

∂

∂τ
λ(τ) = 0, 1 + λ(τ) = 0,

which converted to the Lagrangian multiplier at λ(τ) = −1. Therefore, the correction
functional (15) takes the following form

un+1 = un −
∫ t

0

(

∂

∂τ
un − R

0 I
1−α
τ un|τ=0

τα−2

Γ(α− 1)
+ R

0 D
1−α
τ

(

aup
n

∂

∂x
un − µ

∂3

∂x2∂t
un

)

)

dτ,

(16)

since α − 1 < 0, the fractional derivative operator R
0 D

α−1
t reduces to fractional integral

operator R
0 I

1−α
t by Remark 2.1.
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In view of the right-hand side Riemann-Liouville fractional derivative is interpreted
as a future state of the process in physics. For this reason, the right-derivative is usually
neglected in applications, when the present state of the process does not depend on the
results of the future development, and so the right-derivative is used equal to zero in the
following calculations. The zero order solitary wave solution can be taken as the initial
value of the state variable, which is taken in this case as

u0(x, t) = u(x, 0) =
( (p+ 1)(p+ 2)c

2a
sech2

( p

2
√
µ
(x − x0)

)

)
1
p

,

where c and x0 are constants.

Substituting this zero order solitary wave solution into (16) and using the Definition
2.5 lead to the first order solitary wave solution

u1(x, t) =
((p+ 1)(p+ 2)c

2a
sech2

( p

2
√
µ
(x− x0)

)

)
1
p

+
tα

Γ(α+ 1)

a√
µ

( (p+ 1)(p+ 2)c

2a

)

1+p

p

× sinh
( p

2
√
µ
(x− x0)

)

sech
2+3p

p

( p

2
√
µ
(x− x0)

)

.

Substituting first order solitary wave solution into (16) and using the Definition 2.5
then lead to the second order solitary wave solution in the following form

u2(x, t) =
((p+ 1)(p+ 2)c

2a
sech2

( p

2
√
µ
(x− x0)

)

)
1
p

+
tα

Γ(α+ 1)

(p+ 1)2(p+ 2)2c2

2ap

((p+ 1)(p+ 2)c

2a
sech2

( p

2
√
µ
(x− x0)

)

)

1−p

p

× sinh
( p

2
√
µ
(x− x0)

)

sech5
( p

2
√
µ
(x− x0)

)

− t2α

Γ(2α+ 1)

((p+ 1)(p+ 2)c

2a

)

1+p

p

(

acp(p+ 1)(p+ 2)

4µ
sech

2+4p

p

( p

2
√
µ
(x− x0)

)

− ac(p+ 1)(p+ 2)(2 + 3p)

4µ
sinh2

( p

2
√
µ
(x − x0)

)

sech
2+6p

p

( p

2
√
µ
(x− x0)

)

− a2c(p+ 1)(p+ 2)√
µ

sinh2
( p

2
√
µ
(x− x0)

)

sech
2+6p

p

( p

2
√
µ
(x− x0)

)

)

− t3αΓ(2α+ 1)

Γ(3α+ 1)Γ2(α+ 1)

ap(p+ 1)2(p+ 2)2c2

8µ
√
µ

((p+ 1)(p+ 2)c

2a

)

1+p

p

×
(

psech
2
p

( p

2
√
µ
(x− x0)

)

− (2 + 3p) sinh2
( p

2
√
µ
(x− x0)

)

× sech
2+2p

p

( p

2
√
µ
(x− x0)

)

)

sinh
( p

2
√
µ
(x − x0)

)

sech7
( p

2
√
µ
(x− x0)

)
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+
t2α−1a

2
√
µΓ(2α)

( (p+ 1)(p+ 2)c

2a

)

1+p

p

(

(−3p− 4p2) sinh
( p

2
√
µ
(x − x0)

)

× sech
2+3p

p

( p

2
√
µ
(x− x0)

)

+ (1 + 2p)(2 + 3p) sinh3
( p

2
√
µ
(x− x0)

)

× sech
2+5p

p

( p

2
√
µ
(x− x0)

)

)

.

Making use of Definition 2.5 and the Maple or Mathematics and substituting n − 1
order solitary wave solution into (16), lead to the solitary wave solution u3, u4, . . .,
un, . . .. As n tends to infinity, the iteration leads to the solitary wave solution of the
time-fractional generalized EWW equation

u(x, t) = lim
n→∞

un =
((p+ 1)(p+ 2)c

2a
sech2

( p

2
√
µ
(x− ct− x0)

)

)
1
p

.

Selecting the appropriate values of p, a, µ, c and x0, we can present the distribution
function u as a 3-dimensions graph and 2-dimensions graph to the approximate solitary
wave solution.

Figure 1: The distribution function u as a 3-dimensions graph for different order α.
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Figure 2: The distribution function u as a function of space x at time t = 1 for different order α: (B1)

3-dimensions graph, (B2) 2-dimensions graph.

Figure 3: The distribution function u as a function of time t at space x = 1 of the different order α:

(C1) 3-dimensions graph, (C2) 2-dimensions graph.

5 Time-fractional Generalized EWW-Burgers Equation

In this section, He’s variational-iteration method is applied to solve time-fractional gen-
eralized EWW-Burgers equation

R
0 D

α
t u+ aupux − λuxx − µuxxt = 0.

The generalized EWW-Burgers equation in (1+1) dimensions is given as

ut + aupux − λuxx − µuxxt = 0. (17)

Employing a potential function v on the field variable, and setting u = vx yield the
potential equation of the generalized EWW-Burgers equation (17) in the form,

vxt + avpxvxx − λvxxx − µvxxxt = 0. (18)

The Lagrangian of this generalized EWW-Burgers equation (17) can be defined using
the semi-inverse method as follows. The functional of the potential equation (18) can be
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represented as

J(v) =

∫

Ω

dx

∫

T

(

v
(

d1vxt + ad2v
p
xvxx − λd3vxxx − µd4vxxxt

)

)

dt, (19)

with di (i = 1, 2, 3, 4) as an unknown constant to be determined later. Integrating (19)
by parts and taking vx|∂Ω = vx|∂T = vxxt|∂Ω = 0 yield

J(v) =

∫

Ω

dx

∫

T

(

− d1vtvx − ad2

p+ 1
vp+2
x + λd3vxxvx + µd4vxxtvx

)

dt. (20)

The constants di (i = 1, 2, 3, 4) can be determined taking the variation of the functional
(20) to make it optimal. By applying the variation of the functional, integrating each
term by parts, and making use of the variation optimum condition of the functional J(v),
yield the following representation

2d1vtx + (p+ 2)ad2v
p
xvxx − 2λd3vxxx − 2µd4vxxxt = 0. (21)

Notice that the obtained result (21) is equivalent to (18), so one has that the constants
di (i = 1, 2, 3, 4) are respectively

d1 =
1

2
, d2 =

1

p+ 2
, d3 = d4 =

1

2
.

In addition, the functional representation given by (20) obtains directly the Lagrangian
form of the generalized EWW-Burgers equation,

L(vt, vx, vxx, vxxt) = −1

2
vtvx − a

(p+ 1)(p+ 2)
vp+2
x +

λ

2
vxxvx +

µ

2
vxxtvx.

Similarly, the Lagrangian of the time-fractional version of the generalized EWW-
Burgers equation could be read as

F (0D
α
t v, vx, vxx, vxxt) = −1

2
0D

α
t vvx − a

(p+ 1)(p+ 2)
vp+2
x +

λ

2
vxxvx +

µ

2
vxxtvx,

α ∈]0, 1].
(22)

Then the functional of the time-fractional generalized EWW-Burgers equation will take
the form

J(v) =

∫

Ω

dx

∫

T

F (0D
α
t vt, vx, vxx, vxxt)dt, (23)

where the time-fractional Lagrangian F (0D
α
t vt, vx, vxx, vxxt, vxxx) is given by (22). Fol-

lowing Agrawal’s method, the variation of functional (23) with respect to v leads to

δJ(v) =

∫

Ω

dx

∫

T

( ∂F

∂0D
α
t v

δ(0D
α
t v) +

∂F

∂vx
δvx +

∂F

∂vxx
δvxx +

∂F

∂vxxt
δvxxt

)

dt. (24)

By Lemma 2.1, upon integrating the right-hand side of (24), one has

δJ(v) =

∫

Ω

dx

∫

T

(

tD
α
T

( ∂F

∂0D
α
t v

)

− ∂

∂x

( ∂F

∂vx

)

+
∂2

∂x2

( ∂F

∂vxx

)

− ∂3

∂x2∂t

( ∂F

∂vxxt

)

)

δvdt,
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noting that δv|∂T = δv|∂Ω = δvx|∂Ω = δvxx|∂T = 0.
Obviously, optimizing the variation of the functional J(v), i.e., δJ(v) = 0, yields the

Euler-Lagrange equation for time-fractional generalized EWW-Burgers equation in the
following form

tD
α
T

( ∂F

∂0D
α
t v

)

− ∂

∂x

( ∂F

∂vx

)

+
∂2

∂x2

( ∂F

∂vxx

)

− ∂3

∂x2∂t

( ∂F

∂vxxt

)

= 0. (25)

Substituting the Lagrangian of the time-fractional generalized EWW-Burgers equation
(22) into Euler-Lagrange formula (25) one obtains

−1

2
tD

α
T0
vx +

1

2
0D

α
t vx + avpxvxx − λvxxx − µvxxxt = 0.

Once again, substituting the potential function vx for u, yields the time-fractional
generalized EWW-Burgers equation for the state function u as

1

2

(

0D
α
t u− tD

α
T0
u
)

+ aupux − λuxx − µuxxt = 0. (26)

According to the Riesz fractional derivative R
0 D

α
t u, the time-fractional generalized

EWW-Burgers equation represented in (26) can be written as

R
0 D

α
t u+ aupux − λuxx − µuxxt = 0. (27)

Acting from the left-hand side by the Riesz fractional operator R
0 D

1−α
t on (27) leads to

∂

∂t
u− R

0 D
α−1
t u|t=0

tα−2

Γ(α− 1)
+ R

0 D
1−α
t

(

aupux − λuxx − µuxxt

)

= 0, (28)

from Lemma 2.2. In view of the variational-iteration method, combining with (28), the
n + 1-th approximate solution of (27) can be read using iteration correction functional
as

un+1 = un +

∫ t

0

λ(τ)

(

∂

∂τ
un − R

0 D
α−1
τ un|τ=0

τα−2

Γ(α− 1)

+ R
0 D

1−α
τ

(

aũp
n

∂

∂x
ũn − λ

∂2

∂x2
ũn − µ

∂3

∂x2∂t
ũn

)

)

dτ,

(29)

where the function ũn is considered as a restricted variation function, i.e., δũn = 0.
By the same argument as in Section 4, it is converted to the Lagrangian multiplier at
λ(τ) = −1. Therefore, the correction functional (29) takes the following form

un+1 = un −
∫ t

0

(

∂

∂τ
un − R

0 I
1−α
τ un|τ=0

τα−2

Γ(α− 1)

+ R
0 D

1−α
τ

(

aup
n

∂

∂x
un − λ

∂2

∂x2
un − µ

∂3

∂x2∂t
un

)

)

dτ,

(30)

since α − 1 < 0, the fractional derivative operator R
0 D

α−1
t reduces to fractional integral

operator R
0 I

1−α
t by Remark 2.1.
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The zero order solitary wave solution can be taken as the initial value of the state
variable, which is taken in this case as

u0(x, t) =
(

A−A tanhκ(x− x0)−
A

2
sech2κ(x− x0)

)
1
p

.

Substituting zero order solitary wave solution into (30) and using the Definition 2.5
lead to the first order solitary wave solution

u1(x, t) =
(

A−A tanhκ(x− x0)−
A

2
sech2κ(x− x0)

)
1
p

− tα

Γ(α+ 1)

[

a

p

(

A−A tanhκ(x− x0)−
A

2
sech2κ(x− x0)

)
1
p

×
(

Aκsech2κ(x− x0) tanhκ(x− x0)−Aκsech2κ(x− x0)
)

− λ(1 − p)

p2

(

A−A tanhκ(x− x0)−
A

2
sech2κ(x− x0)

)

1−2p

p

×
(

Aκsech2κ(x− x0) tanhκ(x− x0)−Aκsech2κ(x− x0)
)2

− λ

p

(

A−A tanhκ(x− x0)−
A

2
sech2κ(x− x0)

)

1−p

p

×
(

2Aκ2sech2κ(x− x0) tanhκ(x− x0)− 2Aκ2sech2κ(x− x0) tanh
2 κ(x− x0)

+Aκ2sech4κ(x− x0)
)

]

.

Substituting first order solitary wave solution into (30) and using the Definition 2.5
then lead to the solitary wave solution u2, u3, . . ., un, . . .. As n tends to infinity, the
iteration leads to the solitary wave solution of the time-fractional generalized EWW-
Burgers equation

u(x, t) = lim
n→∞

un =
(

A−A tanhκ(x− ct− x0)−
A

2
sech2κ(x− ct− x0)

)
1
p

.

Selecting the appropriate values of p, a, λ, µ,A, κ, c and x0, we can present the distri-
bution function u as a 3-dimensions graph and 2-dimensions graph to the approximate
solitary wave solution.
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Figure 4: The distribution function u as a 3-dimensions graph for different order α.

Figure 5: The distribution function u as a function of space x at time t = 1 for different order α: (B1)

3-dimensions graph, (B2) 2-dimensions graph.

Figure 6: The distribution function u as a function of time t at space x = −1 for different order α:

(C1) 3-dimensions graph, (C2) 2-dimensions graph.
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6 Discussion

The purpose of the present work is to explore the effect of the fractional order derivative
on the structure and propagation of the resulting solitary waves obtained from time-
fractional generalized EWW equation. We derive the Lagrangian of the generalized
EWW equation by the semi-inverse method, then take a similar form of Lagrangian
to the time-fractional generalized EWW equation. Using the Euler-Lagrange variational
technique, we continue our calculations until the high-order iteration. During this period,
our approximate calculations are carried out concerning the solution of the time-fractional
generalized EWW equation as well as generalized EWW-Burgers equation. The results
of approximate solitary wave solution of time-fractional generalized EWW equation and
generalized EWW-Burgers equation are obtained. In addition, 3-dimensional representa-
tion of the solution u for the time-fractional generalized EWW equation and generalized
EWW-Burgers equation with space x and time t for different values of the order α are pre-
sented respectively in Figures 1 and 4, the solution u is still a single soliton wave solution
for all values of the order α. It shows that the balancing scenario between nonlinearity
and dispersion is still valid. Figures 2 and 5 present respectively the change of amplitude
and width of the soliton due to the variation of the order α, 2- and 3-dimensional graphs
depicted the behavior of the solution u at time t = 1 corresponding to different values
of the order α. This behavior indicates that the increases of the value α increasing both
the height and the width of the solitary wave solution. That is, the order α can be used
to modify the shape of the solitary wave without change of the nonlinearity and the dis-
persion effects in the medium. Figures 3 and 6 are respectively devoted to studying the
representation between the amplitude of the soliton and the fractional order at different
time values, these figures show that at the same time, the increasing of the fractional α
decreases the amplitude of the solitary wave to some value of α.
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