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Convection of Polymerization Front with Solid Product

under Quasi-Periodic Gravitational Modulation

Karam Allali 1, Saadia Assiyad 1 and Mohamed Belhaq 2∗

1 University Hassan II-Mohammedia, Department of Mathematics, Mohammadia, Morocco
2 University Hassan II-Casablanca, Laboratory of Mechanics, Casablanca, Morocco

Received: April 26, 2014; Revised: October 14, 2014

Abstract: The effect of quasi-periodic gravitational modulation on the convective
instability of polymerization front with solid product is studied in this paper. The
model we consider includes the heat equation, the concentration equation and the
Navier-Stokes equations under the Boussinesq approximation. The linear stability
analysis of the problem is carried out and the interface problem is established applying
the narrow zone method and the matched asymptotic expansions. The convective
instability threshold is determined using numerical simulation. It was shown that
the frequencies ratio has a significant effect on the convective stability domain. In
particular, the stability domain changes and undergoes a shift as the frequencies ratio
of the quasi-periodic modulation varies.

Keywords: convective instability; frontal polymerization; quasi-periodic modulation.

Mathematics Subject Classification (2010): 35K57, 76D05, 76E15.

1 Introduction

Frontal polymerization phenomenon is the process of converting monomer to polymer
via a narrow located zone, called reaction front [1]. The influence of periodic gravi-
tational modulation on the convective instability of polymerization reaction front with
solid product was studied in [2] and it was shown that the reaction front gains stability
for increasing values of the modulation frequency. In this paper, we investigate the in-
fluence of quasi-periodic (QP) gravitational modulation on the convective instability of
polymerization front with solid product. Such a QP modulation may result, for instance,
from the existence of two simultaneous vibrations consisting of a basic vibration with

∗ Corresponding author: mailto:mbelhaq@yahoo.fr
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a certain frequency and of an additional residual vibration having another frequency,
such that the two involved frequencies are incommensurate. It is worth noticing that the
influence of QP excitation on the dynamics of mechanical systems and the transition to
chaos is studied in [3, 4].

To study the influence of QP gravitational modulation on the convective instability
of polymerization front with solid product, we consider a system of reaction-diffusion
equations coupled with incompressible Navier-Stokes equations. We notice that the case
considering the influence of QP gravitational modulation on the reaction front in porous
media has been examined in [5]. In this case [5], the system of reaction-diffusion equations
is coupled with the equations of motion taking into account the Darcy law.

It is worthy to point out that only few works have been devoted to examine the effect
of QP vibration on the convective instability. For instance, Boulal et al. [6] reported on
the effect of a QP gravitational modulation on the convective instability of a heated fluid
layer and it was shown that the frequencies ratio of QP vibration strongly influences the
convective instability threshold. Moreover, the influence of QP gravitational modulation
on convective instability in Hele-Shaw cell was analyzed in [7]. Similar study has been
made to investigate the thermal instability in horizontal Newtonian magnetic liquid layer
with non-magnetic rigid boundaries in the presence of a vertical magnetic field [8]. In
[6, 7], the original problem was systematically reduced to a QP Mathieu equation using
Galerkin method truncated to the first order. Since the Floquet theory cannot be applied
in the case of QP modulation, the approach used to obtain the marginal stability curves
was principally based on the harmonic balance method combined with Hill’s determinants
[9, 10].

Because one cannot truncate the problem under consideration to a QP Mathieu equa-
tion using Galerkin method and the Floquet theory as in [9, 10], the marginal stability
curves are obtained by using the approximately narrow zone method (Frank-Kamenetskii
method) and the matched asymptotic expansions. This approach leads to the interface
problem which is solved by numerical simulation.

To introduce a QP gravitational modulation, we consider that the acceleration acting
on the fluid is given by g+b(t), where g is the gravity acceleration and b(t) = λ1sin(µ1t)+
λ2sin(µ2t) in which λ1, λ2 and µ1, µ2 are the amplitudes and the frequencies of the QP
vibration, respectively.

This paper is organized as follows. In Section 2, the frontal polymerization model is
introduced. The linear stability analysis is performed in Section 3, while the interface
problem and the perturbation analysis are provided in Section 4. Results obtained by
numerical simulations are given in Section 5 and the last section concludes the work.

2 Frontal Polymerization Model

The propagation of polymerization reaction front with solid product submitted to a QP
gravitational modulation can be modeled by the system of equations

∂T

∂t
+ (v.∇)T = κ∆T + qW, (1)

∂α

∂t
+ (v.∇)α = W, (2)

∂v

∂t
+ (v.∇)v = −1

ρ
∇p+ ν∆v + g(1 + λ1 sin(µ1t) + λ2 sin(µ2t))β(T − T0)γ, (3)
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div(v) = 0, (4)

with the following boundary conditions

z → +∞, T = Ti, α = 0, and v = 0, (5)

z → −∞, T = Tb, α = 1, and v = 0, (6)

where the gradient, divergence and Laplace operators are defined as

∇ v =

(

∂v

∂x
,
∂v

∂y
,
∂v

∂z

)

, div −→v =
∂v1

∂x
+

∂v2

∂y
+

∂v3

∂z
, ∆ v =

∂2v

∂2x
+

∂2v

∂2y
+

∂2v

∂2z
.

Here (x, y, z) are the spatial coordinates, such that −∞ < x, y, z < +∞, T is the
temperature, α is the depth of conversion, v is the velocity of the medium, p is the
pressure, κ is the coefficient of thermal diffusivity, q is the adiabatic heat release, ρ is the
density, is ν the coefficient of kinematic viscosity, γ is the unit vector in the z-direction
(upward), β is the coefficient of thermal expansion, g is the gravitational acceleration,
T0 is a mean value of temperature, Ti is the initial temperature and Tb = Ti + q is the
temperature of the burned mixture. The reaction source term is given by

W = k(T )φ(α), φ(α) =

{

1, if α < 1,
0, if α = 1,

in which the temperature dependence of the reaction rate is given by the Arrhenius
Law k(T ) = k0exp(−E/R0T ) [11], where k0 is the pre-exponential factor, E is the
activation energy assumed to be sufficiently large and R0 is the universal gas constant.
It is assumed that the liquid monomer and the solid polymer involved in the reaction
are incompressible and the term of diffusivity in the concentration equation is neglected
so that the diffusivity coefficient is very small comparing to the coefficient of thermal
diffusivity.

We introduce the dimensionless spatial variables

x′ =
xc1
κ

, y′ =
yc1
κ

, z′ =
zc1
κ

,

t′ =
tc21
κ

, p′ =
p

c21ρ
, c1 =

c√
2
,

v′ =
v

c1
, θ =

T − Tb

q
, c2 =

2k0κR0T
2
b

qE
exp(− E

R0Tb

),

where c denotes the stationary front velocity, which can be calculated asymptotically for
large Zeldovich number [12]. For convenience, we drop the primes in variables, velocity
and pressure, so that the system (1)–(6) takes the form

∂θ

∂t
+ (v.∇)θ = ∆θ + Z exp

(

θ

Z−1 + δθ

)

φ(α), (7)

∂α

∂t
+ (v.∇)α = Z exp(

(

θ

Z−1 + δθ

)

φ(α), (8)

∂v

∂t
+ (v.∇)v = −∇p+ P∆v + PR(1 + λ1 sin(σ1t) + λ2 sin(σ2t))(θ + θ0)γ, (9)
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div(v) = 0, (10)

with the boundary conditions

z → +∞, θ = −1, α = 0, and v = 0, (11)

z → −∞, θ = 0, α = 1, and v = 0. (12)

Here P =
ν

κ
is the Prandtl number, R = gβqκ2/(νc3) is the Rayleigh number, Z =

qE/R0T
2
b is the Zeldovich number, δ = R0Tb/E, θ0 = (Tb − T0)/q, σ1 = 2κµ1/c

2 and
σ2 = 2κµ2/c

2.

3 Linear Stability Analysis

To perform the linear stability analysis, it is convenient to reduce the original problem
to a singular perturbation one assuming that the reaction zone is infinitely narrow and
the reaction term is neglected outside the zone [13]. To implement a formal asymptotic
analysis, it is convenient to choose ǫ = Z−1 as a small parameter ensuring the reaction
occurrence in a narrow zone.

We assume that the new independent variable is given by z1 = z − ζ(x, y, t), where
ζ(x, y, t) denotes the location of the reaction zone. Upon introducing the new functions
θ1, α1, v1, p1 such that

θ(x, y, z, t) = θ1(x, y, z1, t), α(x, y, z, t) = α1(x, y, z1, t),

v(x, y, z, t) = v1(x, y, z1, t), p(x, y, z, t) = p1(x, y, z1, t),

the problem (7)-(12) can be rewritten in the following form (the index 1 in the new
function is omitted)

∂θ

∂t
− ∂θ

∂z1

∂ζ

∂t
+ (v.∇̃)θ = ∆̃θ + Z exp

(

θ

Z−1 + δθ

)

φ(α), (13)

∂α

∂t
− ∂α

∂z1

∂ζ

∂t
+ (v.∇̃)α = Z exp

(

θ

Z−1 + δθ

)

φ(α), (14)

∂v

∂t
− ∂v

∂z1

∂ζ

∂t
+ (v.∇̃)v = −∇̃p+ P ∆̃v +Q(1 + λ1 sin(σ1t) + λ2 sin(σ2t))(θ + θ0)γ, (15)

∂vx
∂x

− ∂vx
∂z1

∂ζ

∂x
+

∂vy
∂y

− ∂vy
∂z1

∂ζ

∂y
+

∂vz
∂z1

= 0, (16)

where

∆̃ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z21
− 2

∂2

∂x∂z1

∂ζ

∂x
− 2

∂2

∂y∂z1

∂ζ

∂y
+

∂2

∂z21

(

(

∂ζ

∂x

)2

+

(

∂ζ

∂y

)2
)

− ∂

∂z1

(

∂2ζ

∂x2
+

∂2ζ

∂y2

)

,

∇̃ =

(

∂

∂x
− ∂

∂z1

∂ζ

∂x
,
∂

∂y
− ∂

∂z1

∂ζ

∂y
,

∂

∂z1

)

, Q = PR.
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Using the matched asymptotic expansions, the outer solution of the problem (13)–(16)
is sought in the form

θ = θ0 + ǫθ1 + . . . , α = α0 + ǫα1 + . . . , v = v0 + ǫv1 + . . . , p = p0 + ǫp1 + . . . .

Moreover, to obtain the jump conditions toward the reaction zone, the inner problem
is considered assuming the stretched coordinate as η = z1ǫ

−1. Then, the inner solution
can be sought in the form

θ = ǫθ̃1 + . . . , α = α̃0 + ǫα̃1 + . . . , (17)

v = ṽ0 + ǫṽ1 + . . . , p = p̃0 + ǫp̃1 + . . . , ζ = ζ0 + εζ1 + . . . . (18)

Substituting these expansions into (13)-(16), we obtain to the leading-order the fol-
lowing inner problem

(

1 +

(

∂ζ0
∂x

)2

+

(

∂ζ0
∂y

)2
)

∂2θ̃1
∂η2

+ exp
(

θ̃1

)

φ(α̃0) = 0, (19)

− ∂α̃0

∂η

∂ζ0
∂t

− ∂α̃0

∂η

(

ṽ0x
∂ζ0
∂x

+ ṽ0y
∂ζ0
∂y

− ṽ0z

)

= exp
(

θ̃1

)

φ(α̃0), (20)

(

1 +

(

∂ζ0
∂x

)2

+

(

∂ζ0
∂y

)2
)

∂2ṽ0
∂η2

= 0, (21)

− ∂ṽ0x
∂η

∂ζ0
∂x

− ∂ṽ0y
∂η

∂ζ0
∂y

+
∂ṽ0z
∂η

= 0. (22)

The matching conditions as η → +∞ are given by

ṽ0 ∼ v0|z1=+0,

θ̃1 ∼ θ1 |z1=+0 +

(

∂θ0
∂z1

∣

∣

∣

∣

z1=+0

)

η, α̃0 → 0,

and as η → −∞, they read

θ̃1 ∼ θ1 |z1=−0 α̃0 → 1 ṽ0 ∼ v0 |z1=−0 .

From (21), we obtain
∂2ṽ0
∂η2

= 0.

One concludes that ṽ0(η) is a linear function of η and identically constant because the
velocity is bounded. Thus, the first term in the expression of the velocity is continuous
at the front.

Since the reaction is of order zero, one obtains φ(α̃0) ≡ 1. Multiplying (19) by
∂θ̃1
∂η

and integrating, we get





∂θ̃1
∂η

)2
∣

∣

∣

∣

∣

∣

+∞

−





∂θ̃1
∂η

)2
∣

∣

∣

∣

∣

∣

−∞

= 2A−1exp(θ1) (23)
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Subtracting (19) from (20) and integrating, we obtain

∂θ̃1
∂η

∣

∣

∣

∣

∣

+∞

− ∂θ̃1
∂η

∣

∣

∣

∣

∣

−∞

= −A−1

(

∂ζ0
∂t

+ s

)

, (24)

where

s = ṽ0x
∂ζ0
∂x

+ ṽ0y
∂ζ0
∂y

− ṽ0z.

From the last equations (23)-(24), the temperature jump conditions across the reaction
front can be calculated. Indeed, using the matching conditions above and truncating the
expansion as

θ ≈ θ0, θ1 |z1=−0 ≈ Zθ |z1=+0 , ζ ≈ ζ0, v ≈ v0,

the jump conditions read

(

∂θ

∂z1

)2
∣

∣

∣

∣

∣

+0

−
(

∂θ

∂z1

)2
∣

∣

∣

∣

∣

−0

= 2Z

(

1 +

(

∂ζ

∂x

)2

+

(

∂ζ

∂y

)2
)−1

exp (Zθ|0) ,

∂θ

∂z1

∣

∣

∣

∣

z1=+0

− ∂θ

∂z1

∣

∣

∣

∣

z1=−0

= −
(

1 +

(

∂ζ

∂x

)2

+

(

∂ζ

∂y

)2
)−1

.

4 The Interface Problem and Perturbation

Next, we consider the case of the solid product where the velocity is zero behind the
reaction zone, v ≡ 0 for z < ζ. In this case, we obtain the interface problem:

In the liquid monomer (z > ζ), we have the following system of equations

∂θ

∂t
+ (v.∇)θ = ∆θ, (25)

α = 0, (26)

∂v

∂t
+ (v.∇)v = −∇p+ P∆v +Q(1 + λ1 sin(σ1t) + λ2 sin(σ2t))(θ + θ0)γ, (27)

div(v) = 0. (28)

In the solid polymer (z < ζ), the system of equations is given by

∂θ

∂t
+ (v.∇)θ = ∆θ, (29)

α = 1, (30)

v = 0. (31)

While at the interface (z = ζ), the system of equations reads

θ |ζ−0 = θ |ζ+0 , (32)

∂θ

∂z

∣

∣

∣

∣

ζ=−0

− ∂θ

∂z

∣

∣

∣

∣

ζ=+0

=

(

1 +

(

∂ζ

∂x

)2

+

(

∂ζ

∂y

)2
)−1

(

∂ζ

∂t

)

, (33)
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(

∂θ

∂z

)2
∣

∣

∣

∣

∣

ζ−0

−
(

∂θ

∂z

)2
∣

∣

∣

∣

∣

ζ+0

= −2Z

(

1 +

(

∂ζ

∂x

)2

+

(

∂ζ

∂y

)2
)−1

exp(Zθ|ζ), (34)

vx = vy = vz = 0, (35)

with the conditions at infinity

z = −∞ : θ = 0, v = 0; z = +∞ : θ = −1, v = 0. (36)

This problem has a travelling wave solution in the form

(θ(x, y, z, t), α(x, y, z, t), v) = (θs(z − ut), αs(z − ut), 0)

(θs(z − ut), αs(z − ut)) =

{

(0, 1) , z2 < 0,
(exp(−uz2)− 1, 0), z2 > 0,

(37)

and

z2 = z − ut,

where u is the speed of the stationary reaction front. This solution, referred to as a basic
solution, is a stationary solution of (26), (28), (30)-(36) and

∂θ

∂t
+ (v.∇)θ = ∆θ + u

∂θ

∂z2
, (38)

∂v

∂t
+ (v∇)v = −∇p+ P∆v + u

∂θ

∂z2
+Q(1 + λ1 sin(σ1t) + λ2 sin(σ2t))(θ + θ0)γ, (39)

for the liquid monomer, and
∂θ

∂t
= ∆θ + u

∂θ

∂z2
, (40)

for the solid polymer.
To study the reaction front stability, we seek the solution of the problem in the form

of a perturbed stationary solution as follows

θ = θs + θ̃, p = ps + p̃, v = vs + ṽ, (41)

where θ̃, p̃ and ṽ are, respectively, small perturbations of temperature, pressure and
velocity.

Substituting (41) into (28), (38)–(40), we obtain to the first-order
for z2 > ξ :

∂θ̃

∂t
= ∆θ̃ + u

∂θ̃

∂z2
− ṽzθ

′

s,

∂ṽ

∂t
= −∇p̃+ P∆ṽ + u

∂θ̃

∂z2
+Q(1 + λ1 sin(σ1t) + λ2 sin(σ2t))θ̃γ,

div(ṽ) = 0,

for z2 < ξ :

∂θ̃

∂t
= ∆θ̃ + u

∂θ̃

∂z2
.
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We note

(θ̃, ṽz) =

{

(θ̂1, v̂z1), for z2 > ξ,

(θ̂2, v̂z2), for z2 < ξ,

and we consider the perturbation in the form

θ̂i = θi(z2, t) exp(j(k1x+ k2y), (42)

v̂zi = vzi(z2, t) exp(j(k1x+ k2y), (43)

ξ = ǫ1(t) exp(j(k1x+ k2y), (44)

where ki, (i = 1, 2) and ǫ1 are, respectively, the wave numbers (in x and y directions)
and the amplitude of the perturbation and j2 = −1. Linearizing the jump conditions by
taking into account that

θ |ξ=±0 = θs(±0) + ξθ′s(±0) + θ̃(±0),
∂θ

∂z2

∣

∣

∣

∣

ξ=±0

= θ′s(±0) + ξθ′′s (±0) +
∂θ̃

∂z2

∣

∣

∣

∣

∣

ξ=±0

,

we obtain up to the higher-order

θ̂2|z2=0 − θ̂1|z2=0 = uξ,
∂θ̂2
∂z2

∣

∣

∣

∣

∣

z2=0

− ∂θ̂1
∂z2

∣

∣

∣

∣

∣

z2=0

= −u2ξ − ∂ξ

∂t
,

u2ξ +
∂θ̂2
∂z2

∣

∣

∣

∣

∣

z2=0

= −Z

u
θ̂1|z2=0,

v̂2z |z2=0 = v̂1z |z2=0 = 0,
∂v̂z2
∂z2

∣

∣

∣

∣

z2=0

=
∂v̂1z
∂z2

∣

∣

∣

∣

z2=0

= 0.

By applying twice the operator curl to the Navier-Stokes equations, the pressure can
be eliminated. Considering only the z component in velocity in (38)–(40), one obtains
the following system of equations

∂θ̃

∂t
= ∆θ̃ + u

∂θ̃

∂z2
− ṽzθ

′

s, (45)

∂∆ṽz
∂t

= P∆∆ṽz + u
∂ṽz
∂z2

+Q(
∂2

∂x2
+

∂2

∂y2
)(1 + λ1 sin(σ1t) + λ2 sin(σ2t))θ̃γ, (46)

Substituting the perturbation forms (42)–(43) in the two last equations (45)-(46), we
obtain

∂

∂t

(

v′′ − k2v
)

− u(v′′′ − k2v′)− P
(

(v(4) − k2v′′)− k2(v′′ − k2v)
)

= (47)

−Qk2(1 + λ1 sin(σ1t) + λ2 sin(σ2t))θ,

∂θ

∂t
− θ′′ − uθ′ + k2θ = u exp(−uz2)v, (48)

where k =
√

k21 + k22 , and the boundary conditions

v′(0, t) = v(0, t) = 0, (49)

θ′(0, t) = −uθ(0, t) = 0. (50)
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Figure 1: The evolution of the maximum of temperature versus time for λ1 = 1, λ2 = 2,

P = 10, σ1 = 20,
σ2

σ1

=
√

2 and different values of R.

5 Main Results

Introducing the vorticity w = v′′ − k2v, the system of equations (47)–(50) becomes

∂w

∂t
− uw′ − P (w′′ − k2w) = −Qk2(1 + λ1 sin(σ1t) + λ2 sin(σ2t))θ, (51)

w = v′′ − k2v, (52)

∂θ

∂t
− θ′′ − uθ′ + k2θ = u exp(−uz)v (53)

with the following conditions

z = 0 : θ′ = −uθ, v′ = v = 0, (54)

z = L : θ = v = w = 0. (55)

In order to determine the stability threshold, we solve numerically the problem (51)–
(55) using the finite-difference approximation with implicit scheme. The onset of stability
is determined by evaluating the evolution of maximum of temperature versus time for
different values of the Rayleigh number R. The jump between bounded and unbounded
values of maximum of temperature leads precisely to the convective instability onset.

Figure 1 shows the maximum of temperature as function of time for different values
of the Rayleigh number R. It can be observed that the evolution of the maximum of
temperature becomes unbounded when the Rayleigh number exceeds a certain critical
value.

The critical Rayleigh number as a function of the amplitude of vibration λ2 is shown
in Figure 2 for P = 10, k = 1.5, λ1 = 5, σ1 = 5 and for different frequencies ratio.
It can be clearly seen that an increase of the frequencies ratio leads to an increase of
the stability region, especially in certain interval of the amplitude λ2 (approximately
between 7 and 20). In contrast, a decrease of the frequencies ratio produces instability in
the whole range of the amplitude λ2. This result indicates that for appropriate values of
parameters, a decrease in the frequencies ratio has a destabilizing effect on the reaction
front.
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Figure 2: The critical Rayleigh number versus the amplitude of vibration λ2 for λ1 = 5, P = 10,
σ1 = 5, k = 1.5 and for different frequencies ratio.

Figure 3: The critical Rayleigh number versus the frequency σ1 for λ1 = λ2 = 5, P = 10,
k = 1.5 and for different frequencies ratio (left); zoomed region (right).

The critical Rayleigh number versus the frequency σ1 is shown in Figure 3 for the
given values P = 10, k = 1.5, λ1 = λ2 = 5 and for different frequencies ratio. It
can be observed from this figure that in the absence of modulation, the modulated
critical value of the Rayleigh number RC ≃ 83 is found [2]. In the presence of QP
vibration, the convective instability boundaries are illustrated in the figure showing that
as the frequencies ratio decreases, the stability domain becomes larger and shifts toward
higher values of the frequency σ1. It can be concluded that the location of the stability
domain can be controlled by tuning the frequencies ratio. It is worthy to notice that this
phenomenon has not been depicted in the case where the reaction front propagates in
porous media [5]. It is interesting to notice that for large values of the frequency σ1, the
critical Rayleigh number tends to the unmodulated critical value RC which means that
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Figure 4: The critical Rayleigh number versus the amplitude of vibration λ2 for different wave
number and for P = 10, λ1 = 1, σ1 = 20, σ2

σ1

=
√

2.

Figure 5: The critical Rayleigh number versus the amplitude of vibration λ2 for P = 10, λ1 = 1
and σ2

σ1

=
√

3 (compare with the case σ2

σ1

=
√

2 in Figure 4); S: stable, U : unstable.

the case of QP modulation with high frequency σ1 is similar to the unmodulated case.
In Figure 4, we show the variation of Rc versus λ2 for different values of the wave

number. It can be observed that an increase of the wave number has a stabilizing effect
and gives rise to a new domain of stability.

The influence of the frequency ratio on the convective instability boundary is shown
in Figure 5 indicating that increasing the frequencies ratio increases significantly the new
domain of stability.

6 Conclusion

In this work, we have studied the influence of the QP gravitational modulation on the
convective instability of polymerization front with liquid reactant and solid product.
The model we have considered includes the heat equation, the concentration equation
and the Navier-Stokes equations under Boussinesq approximation. The Zeldovich Frank-
Kamenetskii method has been applied assuming that the reaction occurs in a narrow zone.
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A linear stability analysis was performed to determine the interface problem assuming
that the solution is chosen as a perturbed stationary solution. To find the convective
instability threshold, the reduced system of equations has been discretized using the finite
difference method with implicit scheme. The obtained numerical results have shown that
for fixed value of the amplitude λ1, an increase of the frequencies ratio stabilizes the
reaction front, especially for moderate values of the amplitude of vibration λ2. Instead,
a decrease of the frequencies ratio destabilizes the reaction front in the whole range of
the amplitude λ2. More interestingly, it was observed that decreasing the frequencies
ratio shifts the stability domain toward higher values of the frequency σ1. The influence
of the wave number on the convective instability of the reaction front was also examined
showing that, as in the periodic modulation case [2], an increase of the wave number has
a stabilizing effect and gives rise to a new stability domain.
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Abstract: This paper proposes a solution to the problem of re-phasing circular or
low eccentricity orbiting, short-distance spacecraft, by integrating existing analyti-
cal guidance solutions based on input-shaping and analytical control techniques for
differential drag based on Lyapunov theory. The combined guidance and control ap-
proach is validated via numerical simulations in a full nonlinear environment using
Systems Tool Kit. The results show promise for future onboard implementation on
propellant-less spacecraft.
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1 Introduction

Small spacecraft flying in close proximity for scientific, commercial, and defense applica-
tions, are increasingly appealing to space services providers and researchers (see [1–4]).
In fact, for certain applications they are preferable to larger single spacecraft, due to their
lower cost, and the inherent redundancy, in general, of a multiple-spacecraft system [5].
However, spacecraft solutions, such as those based on the CubeSat format, present a
new set of design challenges, mainly related to the vehicles’ limited size and power. The
ability to incorporate thrusters and carry on-board propellant is extremely limited on
nano-spacecraft weighting a few kilograms [6]. A valid alternative for planar maneuvering
of spacecraft relative motion at low Earth orbits (LEO) is represented by atmospheric
differential drag, where the differential accelerations necessary to control the satellites are
generated by varying the relative cross-wind surface area. C.L. Leonard [7] introduced
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this method for generating the control forces that are required by rendezvous maneu-
vers at LEO (<600 km). The differential drag-based methodology allows for virtually
propellant-free control of spacecraft relative motion on the orbital plane, since maneuver-
able dedicated drag surfaces can be powered by solar energy. The differential drag-based
methodology was used for the ORBCOMM constellation’s formation keeping [8], and
it will be potentially used by the JC2Sat-FF project developed by the Canadian and
Japanese Space Agencies [9, 10]. It must be noted that differential drag forces only lie
in the along-track direction, limiting controllability to the orbital plane. In addition,
differential drag forces are usually represented as an on-off control profile [7]. The differ-
ential drag concept holds the potential for replacing, or partially substituting, on-board
thrusters and propellant tanks with clear benefits, especially for long-term, repeated rel-
ative maneuvering on the orbital plane. It should be noted that using the differential
drag concept results in additional decay on the orbits of the spacecraft whenever their
cross-wind surface area is increased.

In order to contribute to the field of spacecraft relative motion control and mission
implementation, this paper creates a framework combining analytical guidance solutions
for short distance re-phasing, based on along track, on-off control (presented in [11]) with
an adaptive Lyapunov control method (presented in [12,13]). The guidance solutions are
based on a technique known as input-shaping, to be described below. Considering that
the trajectories can be planned immediately, with no need for numerical iterations, the
analytical nature of the solutions supports satellites with limited computing capabilities
(e.g.: nano-satellites). The open loop guidance solutions obtained via input-shaping are
tracked using a Lyapunov-based control strategy, also analytical and computationally
inexpensive, previously developed specifically for differential drag maneuvering [12, 13].

Short distance re-phasing involves baselines up to several kilometers. This is in con-
trast to cases where the spacecraft may be even on the opposite side of the orbit with
respect to the desired final location. The re-phasing maneuvers herein are performed
with respect to a (real or virtual) circular reference orbit, with a semi-major axis equal
to that of the reference orbit, and in the same orbital plane. In particular, a satellite
starting from a circular orbit or a slightly eccentric one, can be re-phased to a new polar
angle (if starting from a circular course) or re-phased to have a closed relative motion
with respect to a desired point on the reference circular path. In general, the re-phasing
solutions proposed in this paper apply to maneuvers going from an equilibrium configu-
ration to a new equilibrium configuration, where equilibrium means a non-drifting state
with respect to the final desired target location.

The analytical design of guidance for short distance re-phasing can be valuable not
only for a spacecraft’s relocation on its orbit but also for spacecraft proximity oper-
ations, where the target point can be actually occupied by another space vehicle. In
fact, spacecraft rendezvous is an increasingly important topic given the potential for
its application, for example, in on-orbit maintenance and servicing missions, spacecraft
monitoring, etc. Additional applications of proximity flight and docking are seen in de-
orbiting space debris, another pressing problem for future space exploitation: spacecraft
capable of changing their cross-wind surface area may be envisioned docking to inactive
resident space objects (RSO), and controlling their decay.

Input-shaping is a convolution technique based on the knowledge of a system’s nat-
ural frequencies of oscillation. Given a feed-forward control signal, which is designed to
perform a desired maneuver but not to take into account potential excitation of undesired
oscillations, input-shaping consists of the convolution of the signal itself and a specified
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train of impulses so that the system’s resulting behavior presents minimal residual vibra-
tions at the end of the maneuver. The impulses and their locations in time are computed
based on the frequencies that need to be suppressed, i.e., the modes one wants to limit in
amplitude. The majority of input-shaping applications fall under the category of flexible
structures control, such as space manipulators control, as seen in References [14–21].
It is important to emphasize that input-shaping is not intended to reduce the energy
of a system, i.e., existing oscillations cannot be damped. However, maneuvers from an
equilibrium condition to a new equilibrium are possible. In addition, appropriate modi-
fications of the input-shaping parameters can inject energy into the system, and lead it
to a new equilibrium configuration, with desired higher oscillations, as shown in [11]. In
addition, to differential drag maneuvering, input-shaping can be applied to on-off thrust
profiles, maintaining the nature of the control signal.

The main contribution of this paper consists in demonstrating the feasibility of differ-
ential drag for rephasing maneuvers, combining an analytical guidance technique (devel-
oped in [11]) and a control method (developed in [12, 13]), and simulating their use in a
realistic spacecraft relative maneuvering scenario. Thus, illustrating how such analytical
approaches could be orchestrated and used in real time, during a real space flight.

2 Spacecraft Relative Motion Dynamics and Input-Shaping Analytical
Guidance

2.1 Spacecraft relative motion dynamics

Spacecraft relative motion dynamics is used to model how a spacecraft moves with respect
to the final desired point, regardless of the presence of a reference spacecraft at the re-
phasing desired location. Thus, the re-phasing target point can be represented by the
origin of a Local Vertical Local Horizontal (LVLH) reference frame. In such a frame, x
points from Earth to the reference spacecraft (virtual or real), y points along the track
(direction of motion), and z completes the right-handed frame (see Figure 1). For this
paper, the origin of the LVLH frame moves on a circular orbit, with a semi-major axis
equal to that of the active spacecraft’s orbit.

The out-of-plane z and in-plane xy motions are usually assumed to be decoupled.
In this paper it is assumed that the spacecraft’s and its target’s re-phasing location lie
in the same orbital plane, and the out-of-plane motion will be neglected. Furthermore,
it is assumed that the commands to the drag surfaces are on-off, i.e., instantaneously
changing from open to close and vice versa (see [12, 13, 22–25]).

The atmospheric differential drag control concept is based on the assumption that
two spacecraft can change their respective cross-wind surface area, generating differential
values of drag acceleration along track y, as depicted in Figure 1. In this example, one
spacecraft increases its drag by opening a surface, thus lowering its orbit and increasing
its speed with respect to the other spacecraft. The main limitations of this propellant-
less control are that only planar motion can be addressed x and y, and that the orbits
decay faster whenever the surfaces are opened.

In the equations presented in this paper, bolded symbols represent vectors, while
underlining refers to matrices.

The in-plane, linearized equations of spacecraft relative motion, or HCW equations,
described in References [26, 27], with along-track control only, are given by (1). The
assumptions to derive these equations are: two-body force, circular reference orbit, and
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Figure 1: Conceptual sketch explaining differential drag control. Spacecraft 2 increases its
drag, thus lowering its orbit and increasing its speed, to catch up with spacecraft 1 in terms of
orbital polar angle.

close proximity:
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(1)

where T is the circular orbital period. When drag is used as the control variable, the
expression for uy depends on the atmospheric density, the spacecraft cross-wind surface
area, its drag coefficient, mass, and the velocity of the spacecraft relative to the medium.
This velocity can be assumed to be equal to the orbital velocity, since the relative velocity
between the spacecraft and the origin of the LVLH frame is negligible and the medium
can be assumed to rotate with the Earth. As an approximation, the differential is only
driven by changes in cross-wind surface area (see [22, 23]).

2.2 Input-shaped control

Input-shaping is based on the concept of providing and then removing energy to/from an
oscillatory system. A train of specific impulses, based on the system’s natural frequency
and damping ratio, are used in convolution with an original control signal, shaping it to
achieve the desired final state with minimal residual vibration, as seen in [21].

The train of impulses used herein is defined as a function of the variables yfd (along-
track desired final location) and ∆t (duration of coasting phases) in (2). The final
analytical solution, that takes into account the HCW dynamics and drives the state to
the desired final value yfd is obtained by solving for ∆t and an adjusted value of yfd.
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The control signal to be shaped is chosen as a bang-bang profile of amplitude ū, and a
three-impulse shaper as described in (2) (originally presented in [11])

uy = A1ft1 +A2ft2 +A3ft3 , A1 =
1

4
, A2 =

1

2
, A3 =

1

4
,

ft1 =







ū sign (yfd − y (t0)) , if t ≤ t∗/2,
−ū sign (yfd − y (t0)) , if t∗/2 < t ≤ t∗,

0, if t > t∗,
ft2 = ft1 (t−∆t) , ft3 = ft1 (t− 2∆t) ,

t∗ =
√

2 |yfd − y (t0)|/ū .

(2)

In particular, the quantities Ai in (2) represent the three impulses, convoluted with
an original signal. They are given in Reference [19] as 1/(1 + K)2, 2K/(1 + K)2, and
K2/(1 +K)2, respectively, with K = exp(−ζ/pi/(1− ζ2)1/2). ζ indicates the damping
ratio of the given dynamic system. The assumed model presents ζ = 0, leading to the
Ai values in Equation (2).

Control profiles as the one represented in (2) can be tracked using Pulse Width
Modulation (PWM) by on-off, single magnitude engines or differential drag devices.
Continuously changing profiles are harder to reproduce with PWM. A more effective
option is given in previous work using Lyapunov theory to control a nonlinear system
with on-off actuation only (see [12, 13]), as will be shown in the remainder of the paper.

As outlined in [11], the control profile of Equation (2) can be applied on the HCW
relative motion equations, obtaining several analytical solutions for rephasing from point
to a different point, point to equilibrium relative motion and equilibrium relative motion
to another equilibrium relative motion.

2.3 Analytical solution for leader-follower re-phasing

Re-phasing, in the linear approximation of the LVLH frame means maneuvering the
spacecraft from an initial stationary y location, to a final, also stationary new y. For
the remainder of the paper such configurations will be called leader-follower, and so the
related re-phasing maneuvers will be named.

In [11], the control signal shown in (2) was applied to the dynamics of Equation (1),

starting from an equilibrium leader-follower initial condition (x(t0) =
[

0 y0 0 0
]T

),
and considering a variable ∆t. This resulted in an analytical expression for the final
state, which is not included in this paper for brevity, but can be found in [11]. The
resulting trajectory will have the center located at the desired along-track location yfd,
if a new desired virtual location yfd (given in (3)) is selected and combined with the
expressions for the center of the ellipse representing the final relative orbit (ȳ and x̄ in
(3))

yfd
′ = (2/3 ) yfd + (1/3 ) y0,

x̄ = 4xf + 2ẏf/ω = 0, ȳ = yf − 2ẋf/ω = −0.5y0 + 1.5yfd.
(3)

Using the expression for the final state, Equation (3), and the relative eccentricity
(erel, which represents the physical dimension of the obtained closed orbit), the direct
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dependency of erel from ∆t was obtained:

erel = 0.5
√
2
ū

ω2

√

√

√

√

√
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√

6 c
(
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)
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1
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+6 c (2ω∆t) + 24 c (ω∆t) + 4 c
(

ω∆t+ 2
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)

,

α2 = ω

√

3yfd − 3y0
ū

.

(4)

For a detailed derivation of this expression refer to [11].
If classical input-shaping is applied, with ∆t = 0.5T = π/ω (Equation (2)),

the resulting relative eccentricity is zero, and the final state is obtained as x(tf ) =
[0 yfd 0 0]T , that is, the initial leader-follower condition (both spacecraft on the
same orbit) is reproduced at the end of the maneuver, and the desired along-track baseline
is achieved.

Equation (4) also enables the design of different types of re-phasing by adjusting
the value of ∆t to obtain a final closed relative orbit around the along-track point yfd,
with desired relative eccentricity. These types of maneuvers may be envisioned for close
approach to a target and fly-around for monitoring purposes. In doing this, an oscillation
at the end of the maneuver is added, in a quantifiable and desired fashion.

It must be noted that (4) shows 2ω as the highest frequency. The Nyquist-Shannon
sampling theorem (see [28]) can be used to determine how many points are needed to
approximate the function in (4). By computing (4) at ∆t points spaced by a 1/(4ω) time
distance, that is, theoretically 8π points total (i.e. at least 26) an entire orbital period is
approximated. A desired erel value can be then interpolated using these points (e.g. using
splines), posing minimal computational burden. The equilibrium-to-equilibrium erel case
presented later in the paper shows an example of how to set up such approximation and
interpolation.

2.4 Analytical solution for equilibrium-to-equilibrium closed relative orbit
re-phasing

Any maneuver re-phasing an eccentric periodic relative orbit of the active spacecraft
with respect to a center point along-track (in the linear LVLH environment) will be
called equilibrium-to-equilibrium. Re-phasing in this case implies shifting the center of
this equilibrium relative motion, justifying the choice of the equilibrium-to-equilibrium
nomenclature.

The control signal (2) was applied to on the dynamics of system (1), starting from
an equilibrium closed relative orbit x(t0) = [x0 y0 ẋ0 −2ωx0]

T [26], and considering
a variable ∆t, thus yielding an expression for the final state (see [11] for details). The
center of the ellipse representing the final relative orbit, computed as in (3), is obtained
as:

x̄ = 0, ȳ = yfd −
2

ω
ẋ0. (5)

Equation (5) shows that re-phasing to a final equilibrium relative orbit, with center
at a desired location, is possible. In fact, starting from t0, and waiting for any instant
when ẋ = 0 (there are two positions along the closed relative orbit that correspond to
this condition), the input-shaped control signal can be applied then. The wait time is



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 14 (4) (2014) 335–354 341

given by:

twait =
1

ω
tan−1

(

ẋ0

ωx0

)

+ kπ, k = 0, 1, 2, . . . (6)

Reference [11] shows how following the same reasoning for the re-phasing from a
leader-follower configuration, the direct dependency of erel from can be obtained as:
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(7)

The Nyquist-Shannon sampling theorem [28] must be invoked again, to find the num-
ber of points to approximate the function in (7), and then interpolation to compute the
correct ∆t for a desired ∆erel.

3 The Lyapunov-Based Nonlinear Controller for Differential Drag

The problem of designing a real-time controller using differential drag consists of finding
an analytical expression to command the opening or closing of the drag surfaces (see
Figure 1) that will force the spacecraft to follow the desired guidance. In particular,
the following assumptions are commonly made when using atmospheric differential drag
control:

1. The control is only along the y direction, as described earlier.
2. The opening/closing of the drag surfaces is instantaneous, i.e., their actuation time

is negligible with respect to the duration of the maneuver, resulting in an on-off sequence
for commands for opening or closing the drag surfaces.

3. Atmospheric density is known with poor accuracy ( 30%, as suggested by previous
work [22]).

The poor knowledge of atmospheric density requires the design of a command logic,
capable of dealing with an unknown and continuously variable control magnitude. The
authors previously devised such a command strategy, using an adaptive Lyapunov ap-
proach. The fine details of the methodology are presented in [12,13], while only the most
important results are presented here, along with a discussion on the expected behavior
of the atmospheric density.

The controller is based on the idea of being conservative and maintaining a sufficient
margin of control authority on the system. In particular, at the initial time of the
maneuver the atmospheric density is underestimated (30% less than what is provided
by atmospheric models, see [29]), underestimating the available differential drag. At
the same time, the initial adjustable parameters for the controller are chosen such that
the initial underestimated differential drag is above a critical, or minimum, value that
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guarantees Lyapunov stability. From that instant on, the controllers parameters are
adapted to maintain a low critical value (shown in (11)). This critical value is the
minimum amount of differential drag acceleration that will ensure Lyapunov stability
for the controller. This conservative procedure relies on the assumption that in average
the atmospheric density will only increase throughout the maneuver, since the orbits
of the spacecraft are decaying. The critical differential drag value is maintained low,
or possibly reduced throughout the maneuver, by adapting the controller. With this
methodology, a positive control margin is maintained between real differential drag and
minimum differential drag for Lyapunov stability.

The controller is devised as follows. A quadratic Lyapunov function of the tracking
error between the spacecraft state and the desired state (e.g., the input-shaping-designed
guidance) is defined as:

VL = eTPe, e = xn − x, P > 0, (8)

where P is a symmetric positive definite matrix, e is the tracking error vector, xn and
x are the actual spacecraft relative state vector and a reference desired state vector (the
guidance obtained controlling system (1) with the input (2), solved with the solutions in
(3) or (5) and (6), depending on the type of maneuver), respectively. The drag surfaces
activation strategy is obtained by differentiating (8) with respect to time, and imposing
a negative sign in this time derivative, leading to an expression for the signal, indicating
the open/closed condition for the drag surfaces (1 = open; 0 = closed; -1 = other S/C
opens). See References [12, 13] for details to obtain the formula

û = −sign(eTPB). (9)

The same steps leading to Equation (9) (see References [12, 13]) define the matrix P
as the solution of the Lyapunov equation

AT
dP+PAd = −Q, (10)

where Q is a symmetric positive definite matrix and Ad is a Hurwitz matrix. These two
matrices are user defined, and represent the controllers adjustable parameters, affecting
the Lyapunov function and thus the systems behavior.

The information needed to command the drag surfaces (tracking error and matrix
P and vector B in (9)) would be available in real-time onboard a spacecraft, and the
command is a straightforward instruction that poses no issues in terms of onboard com-
puter implementation. In addition, there is no information about the actual density
value required by the control law. The Lyapunov algebraic developments also lead to
the expression of a critical value (aDcrit) of differential drag that is needed to maintain
stable Lyapunov control (see References [12, 13] for details). This critical value is given
as:

aDcrit =
eTP (Adxn − f(xn) +Bud)

|eTPB| (11)

with f(xn) representing the nonlinear relative motion dynamics. f(xn) can be as accurate
as the number of higher order gravitational terms that can be expressed analytically. ud

is a desired control, i.e. the acceleration profile generated in the guidance. The analytical
expressions for the partial derivatives of the critical value with respect to the adjustable
matrices were developed in [12, 13]. A real-time adaptation of the matrices themselves
(shown in (12)), with the intent to maintain the critical value as low as possible (see
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References [12, 13] for details) was designed based on the partial derivatives. In (12) δA
and δQ are increments in the matrices components, chosen such thatAd remains Hurwitz,
and Q positive definite. The adaptation occurs at discrete time steps, as explained in
the simulations section

∆Aij = κA

[

−sign(
∂aDcrit

∂Aij

)δA

]
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(12)

Depending on the spacecraft computing capabilities the non-adaptive or the adaptive
controller can be chosen. The adaptive controller requires the additional computation of
the matrix derivative expressions, and the adaptation rule of (12). Once again, all these
expressions are analytical, and can be computed provided knowledge of the spacecraft’s
state vector. Both types of controller perform satisfactorily, as shown in the next section,
with expected increased performance when adapting the parameters Ad and Q.

4 Numerical Simulations

This section starts by presenting the different types of maneuvers achievable with the
analytical guidance, using illustrations obtained from numerical simulations of the linear
dynamics, and concludes by illustrating the closed-loop nonlinear simulations and a dis-
cussion of the results. In particular, the first subsection shows several leader-follower ma-
neuvers obtained by varying ∆t. The second subsection shows the equilibrium-relative-
orbit-to-equilibrium-relative-orbit approach, while changing ∆t to show how the final rel-
ative eccentricity can be varied. The Lyapunov closed-loop control is then used to track
the guidance in a full nonlinear environment available in Systems Tool Kit (STK). The
analytical guidance assumes a maximum control acceleration of approximately 2 ∗ 10−5

m/s2, typical of atmospheric differential drag at the simulations’ given altitude.
It is important to underline that relative navigation is beyond the scope of this paper,

and that robust estimation techniques will be needed to accurately compute the analytical
guidance and use the closed-loop controller. In the following, perfect knowledge of the
relative state between the two spacecraft is assumed, envisioning, for example, a high
precision differential GPS technique running on the two spacecraft (example: [30]).

4.1 Leader-follower re-phasing guidance

The initial conditions in Table 1, in terms of orbital parameters, are used, with the goal
of re-phasing the S/C position to match a desired one. The initial location and desired
final location are in the same orbit, with different polar angles. In particular, backward
and forward re-phasing maneuvers are presented.

With the parameters in Table 1 the correct initial S/C state vectors in the LVLH
frame centered at the desired target locations are x(t0) = 103[−0.0013 −4.2588 0 0]T

for the 27.216 degrees case, and x(t0) = 103[−0.0009 3.5490 0 0]T for the 27.15
degrees case, with units in meters and meters per second. In the linearized environ-
ment, a leader-follower configuration does not present any cross-track displacement nor
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any along-track velocity component. The linear approximation to obtain the analyti-
cal solutions described earlier requires the use of x(t0) = 103[0 −4.2588 0 0]T and

x(t0) = 103[0 3.590 0 0]T , respectively.

Orbital Parameter Desired S/C initial
Semi-major axis a 6, 778.1 km 6, 778.1 km
Eccentricity e 0 0
Inclination i 97.9908 deg 97.9908 deg

Right Ascension of the
Ascending Node (RAAN) Ω

261.621 deg 261.621 deg

Argument of Perigee ωp 30 deg 30 deg

Polar Angle ν
27.15 deg and
27.216 deg

27.18 deg

Table 1: Initial Orbital parameters for S/C and desired location for Leader-Follower case, plus
general data for simulations.

Figure 2 shows the backwards maneuver, that is, re-phasing to a smaller polar an-
gle using the input shaping technique of Equation (2). A value of ∆ = 0.5T is used,
corresponding to a new leader-follower configuration.

Figure 2: Re-phasing to a lower polar angle, with ∆t = 0.5T , obtaining a new leader-follower
configuration (linear dynamics case).

In Figure 3 the forward maneuver is shown for three different values of ∆t. For
∆ = 0.5T , an input-shaped control is applied, with no residual oscillation at the target
point (the LVLH origin). The maximum relative eccentricity is obtained for ∆ = 0, while
∆ = 0.25T is an example of intermediate relative eccentricity (see (4)) The simulation
is propagated beyond the end of the control signal, to show the closed relative motion
about the target along-track point.
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Figure 3: Re-phasing to a higher polar angle. 1) ∆t = 0.5T , obtaining a new leader-follower
configuration; 2) ∆t = 0, obtaining the maximum relative eccentricity for the final equilibrium
orbit around the target point; 3) ∆t = 0.25T , obtaining an intermediate value of relative
eccentricity for the final equilibrium relative orbit around the target point (linear dynamics
case).

The initial conditions in Table 2, in terms of orbital parameters, are used with the
goal of re-phasing the S/C, from an equilibrium relative orbit about an initial along-track
point, to a final equilibrium relative orbit about a desired final along-track point. In this
case, a small eccentricity is given to the S/C, to generate an equilibrium initial relative
orbit. The semi-major axes are the same to guarantee boundedness of the relative motion.
Only a forward re-phasing maneuver is presented for this case.

Orbital Parameter Desired S/C initial
Semi-major axis a 6, 778.1 km 6, 778.1 km
Eccentricity e 0 0.0001
Inclination i 97.9908 deg 97.9908 deg

Right Ascension of the
Ascending Node (RAAN) Ω

261.621 deg 261.621 deg

Argument of Perigee ωp 30 deg 30 deg
Polar angle ν 27.216 deg 27.18 deg

Table 2: Initial Orbital parameters for S/C and desired location for Leader-Follower case, plus
general data for simulations.

With the parameters in Table 2 the correct initial S/C state vectors
in the LVLH frame, centered at the desired target locations, are x(t0) =
103[−0.6043 −4.2584 0.0004 0.0014]T , where the units are m and m/sec. In the
linearized environment, an equilibrium configuration requires the modification of this
initial condition to x(t0) = 103[−0.6043 −4.2584 0.0004 −2ωxo]T . From the above
initial modified condition for the linear model, a waiting time (coasting) is used (Equation
(6)), with k = 0, before applying the control signal.

Figure 4 represents equilibrium-relative-orbit-to-equilibrium-relative-orbit maneuvers
with the same target point as center (origin of LVLH), varying the ∆t value. The
simulations are propagated beyond the end of the control signal to show the closed
relative motion about the target along-track point.
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Figure 4: Re-phasing to a higher polar angle for equilibrium-to-equilibrium maneuver. 1) ∆t =
0.5T , obtaining an intermediate relative eccentricity (between initial and maximum achievable)
on final relative orbit; 2) ∆t = 625s, obtaining the minimum relative eccentricity for the final
equilibrium orbit around the target point; 3) ∆t = 4440s, obtaining the maximum relative
eccentricity for the final equilibrium relative orbit around the target point.

The above examples are valid in the simplified linear dynamics case. In order to
implement these solutions on a real spacecraft, a closed-loop controller is needed, to
track the analytical guidance profiles. This controller is used for the simulations in the
following subsection.

4.2 Closed-loop control in the full nonlinear case

In this section, the Lyapunov controller described earlier, both the non-adaptive and
adaptive versions, is used to track the following guidance:

• CASE 1: re-phasing and generation of closed relative orbit at target (Figure 3
with ∆t = 0).

• CASE 2: pure re-phasing (Figure 3 with ∆t = 0.5T ).

• CASE 3: intermediate change of the size of the relative orbit, and re-phasing it
(Figure 4 with ∆t = 0.5T ).

To reduce the frequency of actuation and allow the drag forces enough time to change the
orbits, the controllers are activated every 10 minutes. The same simulations are also run
activating the drag devices every 5 minutes to show improvement in accuracy in guidance
tracking as the control frequency increases. Numerical simulations are run using the High
Precision Orbital Propagator (HPOP) in STK and Matlab. Matlab extracts the relative
state vectors from STK, and generates the command to the drag surfaces, going back to
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STK. An STK scenario with full gravitational field model, variable atmospheric density
(using NRLMSISE-00 available in STK) and solar pressure radiation effects is used.

Two identical maneuvering spacecraft are considered, with one at the origin of LVLH,
masses of 2kg, maximum surface of 0.5m2, and minimum of 10cm2 (representing what
is depicted in Figure 1), and a drag coefficient of 2.2. The initial adaptable matrix Ad

is chosen as A−BK, where A represents the dynamics matrix of the spacecraft relative
motion linear equations, stabilized through a LQR-based K vector, to make Ad Hurwitz.
In the LQR problem K is obtained from Q

LQR
= I4x4, and RLQR = 1.5∗108. The initial

adaptable matrix is chosen to be I4x4 ∗ 10−2. The chosen increments for the adaptable
matrices in Equation (12) are the values δA = 10−6 for Ad and δQ = 10−6 for Q.

The ultimate goals of these simulations are a critical comparison between the two
controllers and a discussion helping a potential spacecraft developer in choosing what
type of guidance and control should be used on the spacecraft.

4.2.1 CASE 1: re-phasing from leader-follower, and generating a closed rel-
ative motion at the target

Figure 5 shows the results of a nonlinear STK simulation using the Lyapunov controllers
to track a re-phasing guidance with final desired closed motion about the target (origin
of the LVLH frame) (Figure 3). The simulation is stopped when the guidance reaches its
end. The bottom image clearly shows the benefit of using the adaptive controller versus
the non-adaptive. The non-adaptive approach cannot reach the final desired motion,
while the adaptation does reach a final motion very close to the desired one. Likewise,
the adaptation allows for increased accuracy in tracking the guidance, especially in the
last phases of the maneuver, as depicted by the bottom image.

Figure 5: Nonlinear Simulation result (control update every 10 minutes): re-phasing to higher
polar angle from leader-follower initial condition and generation of a closed relative motion
around the target point. Guidance from Figure 3, with ∆t = 0. (TOP) full trajectory; (BOT-
TOM) zoom of last phase.
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Figure 6: Nonlinear Simulation result (control update every 5 minutes): re-phasing to higher
polar angle from leader-follower initial condition and generation of a closed relative motion
around the target point. Guidance from Figure 3, with ∆t = 0. (TOP) full trajectory; (BOT-
TOM) zoom of last phase.

Figure 6 shows the same scenario as Figure 5, with an increased control frequency
(from 10 to 5 minutes). While an improvement in performance and accuracy is observed
for both the adaptive and non-adaptive controllers, the increase in frequency particularly
benefits the non-adaptive solution, but it still does not achieve performance equal to
that of the adaptive case. This additional result further supports the thesis of preferring
adaptation since similar performance can be achieved without the need of increasing
frequency of actuation.

4.2.2 CASE 2: re-phasing from leader-follower to leader-follower

Figure 7 shows the results of a nonlinear STK simulation using the Lyapunov controllers
to track a pure re-phasing guidance with final desired location at the origin of the LVLH
frame (Figure 3). The simulation is stopped when the guidance reaches its end. As
in CASE 1, the bottom image shows that the adaptation allows for better accuracy in
tracking the guidance.

Figure 8 shows the same scenario as Figure 7, with an increased control frequency
(from 10 to 5 minutes). In this case both controllers enhance their performance sig-
nificantly. In particular, the final distance from the desired location reached with the
adaptive controller, makes the differential drag approach a viable candidate for very close
proximity operations. In fact, such distances are in the order of magnitude of the reach
envelope for existing space robotic arms (Canadarm [31]). The maneuver is stopped when
the guidance reaches its end, but additional control could be performed via differential
drag, at a higher frequency of actuation, to move the spacecraft even closer to the target
location, or small thrusters could be used for the very final approach for rendezvous and
grappling.
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Figure 7: Nonlinear Simulation result (control update every 10 minutes): re-phasing to higher
polar angle from leader-follower initial condition to leader-follower final condition. Guidance
from Figure 3, with ∆t = 0.5T . (TOP) full trajectory; (BOTTOM) zoom of last phase.

Figure 8: Nonlinear Simulation result (control update every 5 minutes): re-phasing to higher
polar angle from leader-follower initial condition to leader-follower final condition. Guidance
from Figure 3, with ∆t = 0.5T . (TOP) full trajectory; (BOTTOM) zoom of last phase.

4.2.3 CASE 3: re-phasing from equilibrium-relative-orbit-to-equilibrium-
relative-orbit

Figure 9 shows the results of a nonlinear STK simulation using the Lyapunov controllers
to track a re-phasing guidance starting from an initial closed relative motion with a final
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goal of creating a new closed motion around the origin of the LVLH frame (Figure 4).
The simulation is stopped when the guidance reaches its end. The bottom plot shows
how the adaptation allows for more precise tracking of the guidance towards the end of
the maneuver.

Figure 9: Nonlinear Simulation result (control update every 10 minutes): re-phasing to higher
polar angle from equilibrium relative orbit initial condition and generation of a new closed
relative motion around the target point. Guidance from Figure 4, with ∆t = 0.5T . (TOP) full
trajectory; (BOTTOM) zoom of last phase.

Figure 10 shows the same scenario as Figure 9, with an increased control frequency
(from 10 to 5 minutes). In this case in the bottom image it is clear that both controllers
provide good tracking. A preliminary interpretation of this behavior can be found in
the nature of the maneuver. Since the spacecraft starts with a motion which is already
oscillatory, the control action is only required to shift that motion and then stop the
shift once the new desired location is reached. Roughly speaking, this maneuver is less
challenging from the controllers point of view since the dynamics starts in a favorable
initial condition.

In CASES 1 and 2 the spacecraft starts in a leader-follower state, thus requiring more
effort from the input signal. In CASE 1, the controller is required to move the spacecraft
away from its initial state, thus exciting the oscillations as well. These oscillations are
controlled by choosing the correct ∆t, and there is no need to drive them back to zero.
In CASE 2, instead, the controller moves the spacecraft away from its leader-follower
state, thus exciting oscillations, but it is also required to drive this motion to zero once
the final desired location is approached. Once again, intuitively speaking, this implies
more work for the controller. The above described differences in the maneuvers provide
an interpretation for the fact that the benefits of adaptation are clearer in CASE 1 and
2 than in CASE 3.

Finally, Table 3 compares adaptive and non-adaptive simulations by showing the
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Figure 10: Nonlinear Simulation result (control update every 5 minutes): re-phasing to higher
polar angle from equilibrium relative orbit initial condition and generation of a new closed
relative motion around the target point. Guidance from Figure 4, with ∆t = 0.5T . (TOP) full
trajectory; (BOTTOM) zoom of last phase.

number of switches required (i.e. control effort, since electrical power would be required
to actuate the devices), the average drag and critical drag, and the average control
margin during the maneuvers, where the margin is calculated as the difference between
real differential drag (it would not be known in real flight) and critical value. All the
values in the table support the preference for the adaptation.

4.3 Results discussion

Both the closed-loop controllers require no numerical iterations, making them viable
candidates for onboard implementation. The adaptive controller requires the implemen-
tation of the formulas for the derivatives ( [12]) which is still analytical, but imposes
more instructions on the spacecraft computer. Depending on the available memory, the
designer may decide to only implement the non-adaptive controller. Overall, the adap-
tation provides better accuracy and less control effort (number of state switches for the
drag surfaces), particularly allowing for better tracking of the guidance as the maneuver
approaches the final stages. This is especially true for more demanding maneuvers in
terms of guidance, where the dynamics may not be favorable with respect to the final
desired state. For cases such as equilibrium-relative-orbit to equilibrium-relative-orbit,
the non-adaptive controller may be equivalent to the adaptive in terms of control effort
required, that is number of open/closed cycles.
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10 minutes control
update

5 minutes control
update

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3
Maneuver time (hr) 13.15 16.23 17.55 13.23 16.32 17.63

Non
Adaptive

Control
changes

41 68 64 80 133 127

Mean critical
value

(m/s2 ∗ 10−6)
-6.50 -4.30 -3.75 -5.90 -4.51 -3.40

Mean actual
drag

(m/s2 ∗ 10−5)
3.38 3.42 3.39 3.37 3.41 3.34

Mean
margin

(m/s2 ∗ 10−5)
4.03 3.85 3.77 3.96 3.86 3.68

Adaptive

Control
changes

37 58 72 76 112 112

Mean critical
value

(m/s2 ∗ 10−6)
-7.23 -5.38 -3.81 -6.24 -4.87 -4.28

Mean actual
drag

(m/s2 ∗ 10−5)
3.38 3.44 3.39 3.40 3.41 3.33

Mean
margin

(m/s2 ∗ 10−5)
4.10 3.98 3.77 4.03 3.90 3.75

Table 3: Nonlinear simulations results (number of status switches for the drag devices, mean
critical and real values of differential drag, and mean differential drag margin).

5 Conclusions

This paper introduced a novel framework combining previously presented analytical guid-
ance and Lyapunov control solutions for propellant-less, drag-based spacecraft re-phasing
relative maneuvers. The framework studied in this work, provides the groundwork for
realistic finite magnitude and finite duration control, such as the control obtained via
atmospheric differential drag. The analytical solutions can lead a spacecraft from an
initial location along the orbit to a desired final location on the same course, as well as
modify its path so that it will fly in an equilibrium fashion about a desired point ahead or
behind its initial location. The guidance is graphically illustrated and employed within
nonlinear models, where a closed-loop Lyapunov technique is used to track the guidance
trajectory with satisfactory accuracy in the full nonlinear STK environment. The relative
maneuvers are performed assuming differential drag control capability, which does not
use any propellant. Observations derived from the results of the nonlinear simulations
provide useful insights to spacecraft developers, and particularly to the mission designer
who needs to implement the correct control law on the spacecraft onboard computer.
Overall, the achieved results hold a promise for straightforward implementation onboard
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real spacecraft, particularly small spacecraft with limited computing capabilities.
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1 Introduction

The study of nonlinear time-dependent ordinary differential equations (ODEs) has been
going on for several years now. Since there are hardly any general methods for dealing
with such equations one is often forced to look for interesting transformations which either
enable us to simplify the equation or to map it to some linear or nonlinear equation whose
features are already known. The linear harmonic oscillator has been a time honored
favorite and has enhanced our understanding of several key areas of mathematics and
physics. It has the added advantage of being a Hamiltonian system and serves as a first
approximation for many nonlinear differential equations. In [4] Bartuccelli and Gentile
made a beautiful observation regarding the equation of a linear harmonic oscillator,

ẍ+ ω2x = 0. (1.1)

Here the over dot represents differentiation with respect to the independent variable t.
As is well known its solution is

x(t) = A sin(ωt+ φ), (1.2)

where A and φ are arbitrary constants representing the amplitude and phase respectively.
They observed that if (1.1), which may also be written as

d

dt

(

ẋ

ω

)

+ ωx = 0, (1.3)

one assumes that ω, instead of being a constant, is any arbitrary function of the inde-
pendent variable t so that one actually has the following equation:

d

dt

(

ẋ

ω(t)

)

+ ω(t)x = 0, (1.4)

then its solution is similar in structure to (1.2) in the sense that

x(t) = A sin(

∫

ω(t)dt+ φ). (1.5)

It was stressed in [4,5] that the equation in the form (1.4) is still quite interesting and can
be generalized to various directions and gives new results. Our main aim is to explore
all these directions in this paper.

It is obvious that (1.4) is not reducible to the equation of a time-dependent linear
harmonic oscillator

ẍ+ ω2(t)x = 0. (1.6)

Nevertheless the fact that the solution of (1.4) clearly reduces to that of the usual har-
monic oscillator when ω is a constant is indeed remarkable. In fact the following gener-
alization is also possible, namely we replace (1.4) by

d

dt

(

ẋ

ω(t)

)

+ ω(t)F (x) = 0, (1.7)

where F (x) is some nonlinear C1 function of x. Note that (1.7) may be written as the
following system

ẋ = ω(t)y, ẏ = −ω(t)
dU(x)

dx
, (1.8)
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with F (x) = dU/dx. In this paper equations (1.4) and (1.7) will be called the Bartuccelli-
Gentile equations. In general for the linear equation

ẍ+ P (t)ẋ +Q(t)x = 0, (1.9)

one can make use of Jacobi’s Last Multiplier to derive a suitable Lagrangian. Indeed the
last multiplier turns out to be the integrating factor of such an equation given by

M = exp(

∫ t

P (s)ds).

The relationship between a last multiplier and the Lagrangian is given by

M =
∂2L

∂ẋ2
,

from which it follows that a Lagrangian for (2.12) is given by

L(t, x, ẋ) = e
∫
P (t)dt

(

1

2
ẋ2 − 1

2
Q(t)x2

)

. (1.10)

By using the standard Legendre transformation it follows that the corresponding Hamil-
tonian is

H(t, x, px) =
1

2

(

e−
∫
P (t)dtp2x +Q(t)e

∫
P (t)dtx2

)

, (1.11)

where the conjugate momentum is defined in the usual manner

px =
∂L

∂ẋ
= e

∫
P (t)dtẋ.

In case of (1.4) it is clear that P (t) = − ˙ω(t)/ω(t) and Q(t) = ω2(t), so that M = ω−1(t),
and the Hamiltonian therefore assumes the form

H =
1

2
ω(t)

(

p2x + x2
)

.

Note that (1.7) admits the following first integral

I(x, ẋ, t) =
1

2

(

ẋ

ω(t)

)2

+ U(x), (1.12)

where U(x) is a primitive of F (x), as is easy to verify. Clearly the level sets I(x, ẋ, t) = E
allow us to write

∫

dx
√

E − U(x)
= ±

√
2

∫

ω(t)dt,

which in turn means that it is effectively a time-reparametrization of the usual time-
independent case. The invariant (1.12) will be referred to as the Bartuccelli-Gentile
invariant. The special case of F (x) = x allows us to express this invariant as

I =
1

2

(

p2x + x2
)

,

where the definition of px = ẋ/ω has been used, and write

H(t, x, px) = Iω.
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Clearly the invariant I must have the dimension of action. It can be readily seen that
dH
dt

6= 0, as is to be expected of a dissipative system. It is also necessary to mention that
the expressions for the Lagrangian and Hamiltonian given in (2.32) and (2.36) reduce
to those of Caldirola [9] and Kanai [22] when P (t) = γ(t) and the case of H = Iω also
appeared in connection with the derivation of Hannay’s angle in [42].

The celebrated Ermakov-Pinney equation (see [21] for brief introduction) was intro-
duced in the nineteenth century by V.P. Ermakov [15] to find the first integral for the
time-dependent harmonic oscillator. In 1950 E. Pinney [34] found the solution of this
equation. Ermakov systems have been extensively studied in physics as they often arise
in the context of Bose-Einstein condensates, cosmological models, plasma confinements
etc. Lewis [28,29] found independently an exact invariant for this system. Several meth-
ods have subsequently been devised for the derivation of the Lewis invariant, which was
originally obtained in closed form through an application of the asymptotic theory of
Kruskal [24]. Leach [26] has obtained the same result using a time-dependent canoni-
cal transformation. On the other hand Lutzky’s [30] derivation was based on Noether’s
theorem. Moyo and Leach [31] used Noether symmetries to discuss the source of the
Ermakov-Lewis invariant. Ray and Reid [37,38] by resurrecting Ermakov’s original tech-
nique were able to obtain the existence of a Lewis-type invariant for the case of two
coupled nonlinear equations. Grammaticos and Dorizzi [20] proposed a direct method
to investigate the existence of an exact invariant for 2D time-dependent Hamiltonian
systems. The construction of Bartuccelli and Gentile didn’t consider the Ermakov issue.
Although it is clear from their construction that there should be an explicit link between
the Ermakov-Pinney equation and the Bartuccelli-Gentile equation.

The Emden-Fowler equation was first studied in an astrophysical context by Em-
den [14] and subsequently by Fowler who was instrumental in laying its mathemati-
cal foundation [16]. The celebrated Emden-Fowler equation appears in many areas in
physics [33]. More recently Berry and Shukla [7] presented a class of models for particles
moving under curl forces alone. They could not find closed-form solutions for general
motions, but the dynamics can be reduced to the Emden-Fowler equation, for which a
particular exact solution exists for a wide class of cases. In the study of stellar structure
a star is usually considered as a gaseous sphere in thermodynamic and hydrostatic equi-
librium described by a certain equation of state. In particular the polytropic equation of
state yields the Lane-Emden equation, given by

xy′′ + 2y′ + xyn = 0.

This was originally proposed by Jonathan Lane [25] and was analysed by R. Emden [14].
Several applications of the Emden-Fowler and Lane-Emden equations of various forms
arising in astrophysics [11] and nonlinear dynamics have been reported. The Lane-Emden
equation also arises in the study of fluid mechanics, relativistic mechanics, nuclear physics
and in the study of chemical-reaction systems. A detailed account, though somewhat
dated, can be found in the survey by Wong [43].

In recent years this equation has been generalized in many ways. For example, Goen-
ner [17] studied a generalized class of the Lane-Emden equation

xy′′ + k1y
′ + k2x

νyn = 0, first kind,

y′′ + f(x)y′ + g(x)yn = 0, second kind .
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Kara and Mahomed [23] showed that when n = −3 the Lane-Emden equation,

y′′ + (k/x)y′ = σxwyn, n 6= 0, 1, σ 6= 0,

generates the three-dimensional algebra sl(2, R) in which case general solutions are known
for w = −2k. Ranganathan [35, 36] has obtained solutions and first integrals for some
classes of the Emden-Fowler equation.

1.1 Motivation, result and organization

In this paper we explore two important sets of integrable ODEs, namely, the Ermakov-
Pinney systems and the Emden-Fowler systems. Many papers were devoted to the con-
struction of the first integrals of these set of equations. We demonstrate in this survey
that one can give a unified method to describe the first integrals of all these equations
using Bartuccelli-Gentile’s method.

At first we show how the Bartuccelli-Gentile invariant can be mapped to invari-
ants of Ermakov type systems, then we present the two-component generalization of the
Bartuccelli-Gentile construction. We extend their method to compute the first integrals
of the Emden-Fowler equations and second first integrals for Lane-Emden type systems.
It is true that the first integrals for many of these equations have already been found by
means of a variety of different methods [6, 8, 19, 27, 35, 36, 40, 41]. In this paper we give
an alternative and easy method to compute the first integrals of the Emden-Fowler class
of equations.

This paper is organized as follows. In Section 2 we give an intimate connection
between the Bartuccelli-Gentile construction and the Ermakov-Pinney equation, and
extend this connection to coupled system also. We illustrate our construction through
examples. Section 3 is devoted to Emden-Fowler type equations. We show just extending
slightly the method of Bartuccelli-Gentile’s construction one can easily obtain the first
integrals of the Lane-Emden equations.

2 Ermakov-Pinney Equation and Bartuccelli-Gentile Construction

We begin by considering the equation of motion of a linear harmonic oscillator with
time-dependent frequency, namely,

ẍ+ ω2(t)x = 0. (2.1)

The problem of the time-dependent oscillator was first solved by Ermakov [15] who
obtained an invariant for (2.1) by introducing the auxiliary equation

ρ̈+ ω2(t)ρ = ρ−3. (2.2)

Equation (2.2) is usually called the Ermakov-Pinney equation since Pinney provided the
solution, some years after Ermakov’s derivation of its first integral [34]. Ermakov obtained
a first integral for the system of equations (2.1) and (2.2), by first of all eliminating ω2(t)
by multiplying (2.1) with ρ and (2.2) with x and subtracting the two and then finally by
multiplying the resulting equation with the integrating factor (ẋρ − xρ̇). The resulting
first integral is given by

I =
1

2

[

(ρẋ− ρ̇x)2 + (x/ρ)2
]

, (2.3)
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and is called the Ermakov-Lewis invariant after Lewis independently recalculated it in
1966.

As mentioned in the previous section equation (1.7) which is explicitly given by

ẍ− ω̇

ω
ẋ+ ω2(t)F (x) = 0, (2.4)

admits the first integral (1.12). Upon introducing the substitution

x =
y

ρ
, (2.5)

into the first integral (1.12) the latter has the following appearance

I =
1

2

(

ρẏ − yρ̇

ω(t)ρ2

)2

+ U(y/ρ). (2.6)

The transformation (2.5) is a particular case of a general transformation contained in
Magnus and Winkler’s book [32]. Moreover, under the above change of variables, (2.4)
becomes

ρÿ − yρ̈

ρ2
−
(

ρẏ − yρ̇

ρ2

)(

ω̇

ω
+ 2

ρ̇

ρ

)

+ ω2(t)F (y/ρ) = 0. (2.7)

Setting
ω̇

ω
+ 2

ρ̇

ρ
= 0

so that
ω(t)ρ2 = c(> 0) then leads to ρ2 =

c

ω(t)
, (2.8)

and causes (2.7) after partial elimination of the variable ρ, to reduce to the following
equation (assuming c = 1),

ÿ +
1

2

(

ω̈

ω
− 3

2

(

ω̇

ω

)2
)

y + ω2ρF (y/ρ) = 0. (2.9)

In view of (2.8) the first integral (2.6) therefore becomes

I =
1

2

(

ρẏ − ρ̇y

c

)2

+ U(y/ρ).

Such a form of the first integral is suggestive of a deeper relation with the Ermakov
system. Indeed if one assumes F (x) = x, then clearly (2.9) reduces to the time-dependent
linear harmonic oscillator equation,

ÿ +Ω2(t)y = 0, (2.10)

with

Ω2(t) = ω2(t) +
1

2

(

ω̈

ω
− 3

2

(

ω̇

ω

)2
)

. (2.11)

On the other hand elimination of y from (2.7) leads to

ρ̈+ (Ω2(t)− w2(t))ρ = 0,
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which in view of (2.8) is equivalent to the equation

ρ̈+Ω2(t)ρ = ρ−3. (2.12)

We are thus led to the following proposition.

Proposition 2.1 Given the second-order linear time-dependent differential equation

d

dt

(

ẋ

ω(t)

)

+ ω(t)x(t) = 0, (2.13)

then under the transformation x = y/ρ, the equation is equivalent to the coupled system

ÿ +Ω2(t)y = 0, ρ̈+Ω2(t)ρ = ρ−3, (2.14)

provided ρ2ω = 1, where Ω2(t) is defined by (2.11). The solution x = sin
( ∫

ω(t) dt
)

of
the time-dependent equation (2.13) can also be mapped to the solution of the (y, ρ) pair
of equations.

As to the proof of the latter part of the above proposition we note that the solution
of the Bartuccelli-Gentile equation is x = sin

( ∫

ω(t) dt
)

. Consequently substituting

x = y/ρ we obtain y = ρ sin
( ∫

1/ρ2 dt
)

, which is a solution of

1 =
ρ

√

ρ2 − y2
(ẏρ− ρ̇y). (2.15)

Differentiating (2.15) one can easily obtain the TDHO and the Ermakov-Pinney
equations.✷

2.1 Generalized Ermakov-Pinney equations

By an unbalanced Ermakov system [1] is meant a coupled second-order nonlinear system
of the form

ẍ+ ω2
1(t)x = x−3f(y/x), ÿ + ω2

2(t)y = y−3g(x/y), (2.16)

where f and g are arbitrary functions of their arguments and where in general ω1 6= ω2.
When ω1 = ω2 the system is said to be balanced. Systems of the former type were
studied by Ray and Reid [38] and as a result (2.16) is also known as the Ermakov-Ray-
Reid system.

A crucial property of the balanced Ermakov system (i.e., when ω1 = ω2 = ω(t)) is
that it possesses an invariant, given by

IERR =
1

2
(xẏ − ẋy)2 +

∫ y/x

[uf(u)− u−3g(u)]du. (2.17)

The invariance of IERR can be directly verified by checking that dIERR/dt = 0 along the
trajectories of the Ermakov-Ray-Reid system.

The generalized Ermakov-Pinney equation is an Ermakov system in two-dimension
given by a pair of coupled nonlinear second-order differential equations of the form

ẍ+ ω2(t)x =
1

yx2
f(y/x), ÿ + ω2(t)y =

1

xy2
g(x/y), (2.18)
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where f and g are once again arbitrary functions of their arguments. This coupled system
possesses the Lewis-Ray-Reid invariant

IGE =
1

2
(xẏ − ẋy)2 + U(y/x), (2.19)

where U(y/x) =
∫ y/x

f(u)du+
∫ x/y

g(u)du.

We can generalize this result to the time-dependent damped harmonic oscillator equa-
tion

ẍ+ P (t)ẋ +Q(t)x = 0, (2.20)

in which case the invariant turns out to be

IdampedTD =
1

2

(

(x/ρ)2 + (ρ̇x− ρẋ)2 exp
(

2

∫ t

0

P (t) dt
)

)

(2.21)

with ρ(t) satisfying the equation

ρ̈+ P (t)ρ̇+Q(t)ρ = ρ−3 exp
(

− 2

∫ t

0

P (t) dt
)

. (2.22)

The invariant IdampedTD of the damped time-dependent oscillator equation is called the
Eliezer-Grey invariant.

Proposition 2.2 The Eliezer-Grey invariant may be mapped to that of the time-
dependent harmonic oscillator (TDHO) equation

d

dt

(

ẋ

ω(t)

)

+ ω(t)x(t) = 0

by setting P = −ẇ/w, Q = w2(t) and ρ = 1.

Proof. If we expand the time-dependent equation we can easily map it to damped
TDHO provided P = −ω̇/ω and Q = ω2(t). Hence we obtain

exp
(

2

∫ t

0

P (t) dt
)

=
1

ω2
.

If we put ρ = 1, then from the Eliezer-Grey invariant we obtain the invariant

I =
1

2

(

ẋ2

ω2(t)
+ x2

)

. ✷

2.2 Ermakov-Ray-Reid system and Bartuccelli-Gentile construction

Let us consider the generalized time-dependent system

d

dt

(

ẋ

ω(t)

)

+ ω(t)F (x) = 0,

where F (x) is some nonlinear C1 function of x, such that

F (x(t)) =
1

x3
g(x−1) + xf(x). (2.23)
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Proposition 2.3 Given the second-order nonlinear time-dependent differential equa-
tion

d

dt

(

ẋ

ω(t)

)

+ ω(t)F (x) = 0,

if x = y/ρ, then this equation may be transformed to the coupled system:

ÿ +
1

y3
g
(ρ

y

)

= 0, ρ̈+
1

ρ3
f
(y

ρ

)

= 0. (2.24)

Proof. By direct calculation. ✷

Moreover, if we set f = g = 1 then an invariant can be readily found as

I = c1
(y

ρ

)2
+ c2

(ρ

y

)2
+ (yρ̇− ẏρ)2.

Proposition 2.4 Given the matrix second-order linear time-dependent differential
equation

d

dt

(

Θ−1Ẋ
)

+ΘX = 0, (2.25)

where Θ = Θ(t) is a differentiable function, such that its entries are all positive functions
of time. This system has a first integral of motion given by

H =
1

2

(

< Θ−1Ẋ,Θ−1Ẋ > + < X,X >
)

= E = constant . (2.26)

Proof. By explicit differentiation. ✷

Let

Θ =

(

ω1(t) ω0(t)
ω0(t) ω2(t)

)

, X =

(

x
y

)

.

Then the time-dependent matrix equation yields

ẍ− 1

∆

(

(ω̇1ω2 − ω̇0ω0)ẋ) + (ω̇0ω1 − ω̇1ω0)ẏ
)

+ (ω2
1 + ω2

2)x+ ω0(ω1 + ω2)y = 0, (2.27)

ÿ − 1

∆

(

(ω̇2ω1 − ω̇0ω2)ẏ) + (ω̇0ω2 − ω̇2ω0)ẋ
)

+ (ω2
2 + ω2

2)x+ ω0(ω1 + ω2)x = 0, (2.28)

where ∆(t) = ω1ω2 − ω2
0 . We consider now a special case.

Suppose ω0 = 0 and ω1 6= ω2 then we obtain two decoupled equations of the form deduced
earlier by Bartuccelli and Gentile, viz

d

dt

( ẋ

ω1

)

+ ω1x = 0,
d

dt

( ẏ

ω2

)

+ ω2y = 0. (2.29)

Finally if we define ω2 = iω1 ≡ ω and z = x + iy, then equations (2.27) and (2.28)
can be expressed as the following single complex differential equation

d

dt

( ż

ω

)

− iωz = 0. (2.30)

Proposition 2.5 The complex version of the Bartuccelli-Gentile equation has a first
integral of motion given by

Icomplex =
1

2

(

ż

ω

)2

− iz2. (2.31)

Proof. By explicit differentiation we may obtain the desired first integral. ✷



364 P. GUHA AND A. GHOSE CHOUDHURY

2.3 Integrable coupled Milne-Pinney type dissipative systems

The study of coupled nonlinear ordinary differential equations of Ermakov-type origi-
nated in 1880 and in modern days the classical Ermakov-Pinney system was extended
by Ray-Reid [37]. There is a class of Ermakov systems [2] given by

q̈ + ω2(t)q =
1

q3
f(q/p), p̈+ ω2(t)p =

1

p3
g(p/q), (2.32)

where ω(t), f and g are essentially arbitrary functions of their arguments. In this case
the Lewis-Ray-Reid invariant is

I =
1

2
(qṗ− q̇p)2 −

∫ q/p
(

u−3f(u)− u g(u)
)2

du. (2.33)

We propose to study, in this section, the following time-dependent generalization of
(2.32)

d

dt

( q̇

ω(t)

)

+ ω(t)q =
ω(t)

q3
f(q/p),

d

dt

( ṗ

ω(t)

)

+ ω(t)p =
ω(t)

p3
g(p/q). (2.34)

In the following proposition an invariant of this system of coupled equation is provided.

Proposition 2.6 The first integral of the coupled integrable Bartuccelli-Gentile equa-
tion of type (2.34) is

I =
1

2

(q̇p− qṗ)2

ω(t)
2 +

∫ p/q
(

uf(u−1)− 1

u3
g(u)

)

du, (2.35)

where ω(t) is a differentiable function.

We can extend this result to a more general case. Consider the following generalized
Ermakov system

d

dt

( q̇

ω(t)

)

+ ω(t)q = ω(t)qmpnf(q/p),
d

dt

( ṗ

ω(t)

)

+ ω(t)p = ω(t)qnpmg(p/q), (2.36)

where ω(t) is a differentiable positive function.

Proposition 2.7 The system (2.36) has a first integral of motion given by

I =
1

2

(q̇p− qṗ)2

ω(t)
2 +

∫ p/q
(

un+1f − 1

un+3
g
)

du, (2.37)

where m = −(n+ 3) and u = p/q.

2.3.1 Generalized Ince equation and coupled Bartuccelli-Gentile equation

Consider the class of second-order homogeneous differential equations

d2p

dt2
+

α+ β cos 2t+ γ cos 4t

(1 + a cos 2t)2
p = 0, where |a| < 1. (2.38)
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It is a four parameter family of Hill’s equation which has been christened as the Ince
equation by Magnus and Winkler [32]. A subclass of this system was studied by Athorne
[3], and is given by

d2p

dt2
+
(

1 +
α′

(1 + a cos 2t)2
)

p = 0. (2.39)

One must note that q(t) = B(1 + a cos 2t)1/2 is a solution of the Ermakov-Pinney equa-
tion. It has been shown by Athorne that this equation can be replaced by the following
coupled nonlinear equations of Ermakov type, namely

p̈+ p = −α′B4

q4
p, q̈ + q =

δ

q3
. (2.40)

We propose to analyze a time-dependent generalization of (2.39) and consider the
following generalization of the two-parameter version of the Ince equation

d

dt

( ṗ

ω(t)

)

+
(

1 +
α′

(1 + acos 2t)2
)

ω(t)p = 0. (2.41)

This equation may also be replaced by the pair of equations:

d

dt

( ṗ

ω(t)

)

+ ω(t)p = −α′B4

q4
p,

d

dt

( q̇

ω(t)

)

+ ω(t)q =
ω(t)δ

q3
, (2.42)

and possesses a first integral which, in this case, is given by

I =
1

2

[ 1

ω2(t)
(qṗ− q̇p)2 +

(p

q

)2
]

, (2.43)

as may easily be checked.

3 A Simple Algorithmic Method to Compute First Integrals of the Emden-
Fowler Family

We can apply this straight forward scheme to compute the first integrals of the Lane-
Emden equation. Consider the equation

y′′ + p(x)y′ = Ke−2F yn,

where
∫ x

F dx = p(x). We can rewrite this equation as

(y′eF )′ = Ke−Fyn,

from the prescription of Bartuccelli and Gentile one can immediately obtain the first
integral

I =
1

2
(y′eF )2 −K/(n+ 1)yn+1,

where ω(x) = e−F .
We modify the preceding scheme to incorporate the Emden-Fowler equation. This

will now be described.
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Proposition 3.1 The second-order ODE y′′ + dxrys = 0 with d > 0 and s 6= 1
admits a first integral of the form

I =
1

2
(y′x− y)2 + V (x, y),

where V (x, y) = dxr+2ys+1/(s+ 1) and r + s = −3.

Proof. Setting dI/dx = 0 and using the given equation lead to

Vx = −dxr+1ys+1 and Vy = dxx+2ys,

respectively. The consistency of these partial derivatives then yields the condition r+s =
−3 and V (x, y) has the stated form. ✷

Remark 3.1 If we compare with the Bartucelli-Gentile construction we can readily
see here ω(x) = x−1, furthermore there is a shift to define the first integral I of the
Emden-Fowler equation. The nature of ω(x) is fixed for the entire family of the Emden-
Fowler systems.

Proposition 3.2 The second-order ODE y′′ = γ2
1y + e−(2γ1−γ2)xh(y) admits a first

integral of the form

I =
1

2
(y′ − γ1y)

2e2γ1x − eγ2x

∫ y

h(u)du

provided h(y) = y−(1+γ2/γ1).

Proof. By an explicit calculation. ✷

Example 3.1 We can apply this scheme to compute the first integrals of the follow-
ing Lane-Emden-Fowler equation [17]

y′′ +
k1
x
y′ = λxk2yn. (3.1)

This equation has been the subject of study by Rosenau [39] for its solution. It is worth
mentioning here that from this equation one obtains immediately a generalization of
Chandrasekhar’s homology theorem. We can rewrite this equation as

(y′x+ (k1 − 1)x)′ = x−1λxk2+2yn

and from our prescription one can immediately obtain the first integral

I =
1

2
(y′x+ (k1 − 1)x)2 − λ

n+ 1
xk2+2yn+1,

where (n+ 1)(k1 − 1) = λ(k2 + 2).

We present a slightly different method to compute the first integrals for the Emden-
Fowler equation y′′+dxrys = 0 for other sets of values of (r, s) than given in the previous
section.

Proposition 3.3 The Emden-Fowler equation y′′ + dxrys = 0 with d > 0 and
r 6= 1 admits a first integral of the form I = y′(y′x − y) + V (x, y), where V (x, y) =
dxr+1ys+1/(r + 1) and 2r + s = −3.

Proof. It is clear that (y′x−y)′ = y′′x. We can recast the equation y′′+dxrys = 0 as
(y′x− y)′ + dxr+1ys = 0. We compute d

dx
(y′(y′x− y)) using the Emden-Fowler equation

and equate it with the derivative of V (x, y). This immediately yields the condition
2r + s = −3. ✷
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3.1 The (Generalized) Lane-Emden equation

Consider the Lane-Emden equation

y′′ + 2
y′

x
+ y5 = 0.

One can rewrite this equation in either of the following two different forms, namely

(x2y′)′ + x2y5 = 0, (y′x+ y)′ + xy5 = 0.

Once again we use these two equations to compute
(

x2y′(y′x+y)
)′
. Finally equating with

a potential V (x, y) = Kxnym we obtain the first integral of the Lane-Emden equation

I = x3(y′)2 + x2yy′ +
1

3
x3y6.

We can extend this scheme to more complicated systems. Let us compute the first
integrals of the above Emden-Fowler equation for different values of (r, s). The gener-
alized Lane-Emden equation as proposed by Goenner (3.1) in [17, 18] can be expressed
either as

(y′x+ (k1 − 1)x)′ = λxk2+1yn or (y′xk1)′ = λxk2+k1yn.

Using these two forms we obtain

d

dx

(

y′xk1(y′x+ (k1 − 1)x)
)

= 2λxk1+k2+1yny′ + λ(k1 − 1)xk1+k2yn+1.

If we take V = −2λ/(n+1)yn+1xβ we obtain β = k1 + k2 +1 = (k1 − 1)(n+1)/2. Thus
we can get the first integral for equation (3.1)

I = y′xk1(y′x+ (k1 − 1)x)− 2
λ

n+ 1
yn+1x(k1−1)(n+1)/2, n 6= −1.

Incidentally this first integral was first derived by Crespo Da Silva [12]. In this way we
can find new first integrals for the Emden-Fowler type systems.

3.2 First integrals for other type of equations

One can extend the scheme to compute the first integral of more complicated equation
with more terms, such as

y′′ +
k1
x
y′ +

k3
x2

y = λxk2yn. (3.2)

We then use our old trick to club the first two terms and express them either as

(y′x+ (k1 − 1)x)′ = λxk2+1yn − k3
x
y or (y′xk1)′ = λxk2+k1yn − k3x

k1−1y.

Once again we differentiate (y′xk
1)(y

′x + (k1 − 1)x) and equate it with the derivative of
V and obtain the first integral of (3.2) in the form

I = y′xk1(y′x+ (k1 − 1)x)− 2
λ

n+ 1
yn+1x(k1−1)(n+1)/2 + k3y

2xk1−1.
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For an isothermal gaseous sphere, Emden studied also the equation

xy′′ + 2y′ + xeny = 0.

We can also compute the first integral from our method. It is easy to see that this
equation can be rewritten either (x2y′)′ + x2eny = 0 or (xy′ + y)′ + xeny = 0. Again
using our scheme we obtain the first integral

I = (x2y′(xy′ + y) +
1

3
x3eny, for n = 6.

Hence we have shown in this section how one can generalize the Barucelli-Gentile
scheme to encompass various classes of Emden-Fowler systems.

4 Conclusion

In this paper we have examined the connection between a time-dependent second-order
ODE due to Bartuccelli and Gentile which was derived by modifying the equation of a
linear harmonic oscillator and the Ermakov-Pinney system of ODEs. It is interesting to
note that though the system (1.8) can be generalized further to the following

ẋ = ω(x, y, t)
∂G

∂y
, ẏ = −ω(x, y, t)

∂G

∂x
,

with G = G(x, y) and one can easily verify that G(x, y) is an invariant, the solution of
the above system is in general not known in closed form unlike that of (1.8) which can be
obtained explicitly. This is the main reason for our interest in the Bartuccelli and Gentile
construction. It is found that by a simple rational transformation of the dependent
variable one can easily extract the well known Ermakov-Lewis invariant. Furthermore a
matrix formulation is also considered and a decoupled version of the Bartuccelli-Gentile
equation is obtained. Finally we present a simple scheme to compute the first integrals
of several equations belonging to the Emden-Fowler and Lane-Emden class.
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Abstract: In this paper, we study the existence and uniqueness of extremal mild
solutions for finite delay differential equations of fractional order in Banach spaces
with the help of the monotone iterative technique based on lower and upper solutions.
This technique uses the iterative procedure starting from a pair of ordered lower and
upper solutions to obtain the extremal mild solutions. We also use the theory of
fractional calculus, semigroup theory and measures of noncompactness to obtain the
results. An example is presented to illustrate the main result.
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1 Introduction

In this paper, our aim is to study the existence of extremal mild solutions for the following
finite delay differential equations of fractional order in an ordered Banach space X of the
form:

{

cDαx(t) = Ax(t) + f(t, xt), t ∈ J = [0, b],
x0(ν) = φ(ν), ν ∈ [−a, 0], (1)

where state x(.) takes value in the Banach space X endowed with norm ‖.‖; cDα is the
Caputo fractional derivative of order α, 0 < α < 1; A : D(A) ⊂ X → X is a closed
linear densely defined operator; A is an infinitesimal generator of a strongly continuous
semigroup {T (t)}t≥0 on X . The function f : J × D → X is given nonlinear function,
here D = C([−a, 0], X). If x : [−a, b] → X is a continuous function, then xt denotes the
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function in D defined as xt(ν) = x(t + ν) for ν ∈ [−a, 0], here xt(.) represents the time
history of the state from the time t− a up to the present time t, and φ(.) ∈ D.

Fractional calculus is generalization of ordinary differential equations and integration
to arbitrary non integer orders. The subject is as old as differential calculus when it was
invented by Newton and Leibnitz in the seventieth century. It has proved a valuable tool
to describe many phenomena, arising in Engineering, Physics, Economics and Science.
Indeed, we can find numerous applications in electrochemistry, control, porous media,
electromagnetic, etc. (see [1–8]). Hence, in recent years, the researchers have paid more
attention to fractional differential equations. In [9–19], the authors have discussed the
existence of solutions of delay differential equations with or without fractional order.

This work is motivated by works [24, 26]. In this paper, we study the existence of
extremal mild solutions of delay system (1) by using the monotone iterative technique.
In the recent years, the monotonic iterative technique is also used to deal with fractional
differential equations (see, for instance, [20–26] and references therein). The monotone
iterative technique based on lower and upper solutions helps us to solve the differential
equation with various kinds of boundary conditions. This technique uses the iterative
procedure starting from a pair of ordered lower and upper solutions. The sequences of
iterations uniformly converge to the extremal mild solutions between the lower and upper
solutions. Further we prove the uniqueness of the solutions of the system. We also use
the theory of fractional calculus, semigroup theory and measures of noncompactness to
obtain the results. To the best of our knowledge, up to now, no work has been reported
on finite delay differential equations of fractional order by using the monotone iterative
technique.

The rest of paper is organized as follows. In the next Section we give some basic
definitions and notations. In Section 3, we study the existence of extremal mild solution
of delay system (1) and uniqueness of solutions of the system. Finally, in Section 4, we
present an example to illustrate our results.

2 Preliminaries

In this section, we introduce some basic definitions and notations which are used through-
out this paper. We denote by X a Banach space with the norm ‖.‖ and A : D(A) → X is
the infinitesimal generator of a strongly continuous semigroup {T (t), t ≥ 0}. This means
that there exists M ≥ 1 such that supt∈J ‖T (t)‖ ≤M .

Definition 2.1 (see [8]) The Riemann-Liouville fractional integral of order α > 0 for
a function f is given by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t > 0,

where Γ is the gamma function, and f ∈ L1([0, b], X).

Definition 2.2 (see [8]) The fractional derivative of order 0 ≤ n− 1 < α < n in the
Caputo sense is defined as

cDαf(t) =
1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α+1−n
ds, t > 0,

where f is an n-times continuous differentiable function and Γ is a gamma function.
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If f is an abstract function with values in a Banach space X , then integrals which appear
in Definitions 2.1 and 2.2 are taken in Bochner’s sense.

Let P = {y ∈ X : y ≥ θ} (θ is a zero element of X) be positive cone in X which
defines a partial ordering in X by x ≤ y if and only if y − x ∈ P . If x ≤ y and
x 6= y we write x < y. The cone P is said to be normal if there exists a positive
constant N such that θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖ and P is said to be fully regular if
x1 ≤ x2 ≤ . . . ≤ xn ≤ . . . , supn ‖xn‖ < ∞ implies ‖xn − x‖ → 0 as n → ∞ for some
x ∈ X . Clearly full regularity of P implies the normality of P .

Since C([−a, b], X) is the Banach space of all continuous X-valued functions on inter-
val [−a, b] with norm ‖.‖C = supt∈[−a,b] ‖x(t)‖. Then C([−a, b], X) is an ordered Banach
space whose partial ordering ≤ reduced by positive cone PC = {x ∈ C([−a, b], X) | x(t) ≥
θ, t ∈ [−a, b]}. Similarly D is also an ordered Banach space with norm ‖.‖D =
supt∈[−a,0] ‖x(t)‖ and partial ordering ≤ reduced by PD = {x ∈ C([−a, 0], X) | x(t) ≥
θ, t ∈ [−a, 0]}. PC and PD are also normal cones with the same normal constant N . For
x, y ∈ C(I,X) with x ≤ y, denote the ordered interval [x, y] = {z ∈ C(I,X), x ≤ z ≤ y}
in C(I,X), and [x(t), y(t)] = {u ∈ X |x(t) ≤ u ≤ y(t)} (t ∈ I) in X , here I = [−a, b] or
I = [−a, 0].

Let Cα([−a, b], X) = {u ∈ C([−a, b], X) : cDαu exists on [0, b], cDαu|[0,b] ∈
C([0, b], X) and u(t) ∈ D(A) for t ≥ 0}. An abstract function u ∈ Cα([−a, b], X) is
called a solution of (1) if u(t) satisfies equation (1).

Definition 2.3 (see [26]) The function y ∈ Cα([−a, b], X) is called a lower solution
of the problem (1) if it satisfies the following inequalities

{

cDαy(t) ≤ Ay(t) + f(t, yt), t ∈ I = [0, b],
y0(ν) ≤ φ(ν), ν ∈ [−a, 0]. (2)

If all inequalities of (2) are reversed, we call y(·) an upper solution of the problem (1).

Lemma 2.1 If h satisfies a uniform Hölder condition, with exponent β ∈ (0, 1], then
the unique solution of the linear initial value problem

{

cDαx(t) = Ax(t) + h(t), t ∈ J,
x(0) = x0 ∈ X,

(3)

is given by

x(t) = U(t)x0 +

∫ t

0

(t− s)α−1V (t− s)h(s))ds, t ∈ J, (4)

where

U(t) =

∫ ∞

0

ψα(ϑ)T (t
αϑ)dϑ, V (t) = α

∫ ∞

0

ϑψα(ϑ)T (t
αϑ)dϑ, (5)

ψα(ϑ) =
1

α
ϑ−1−1/αρα(ϑ

−1/α).

Note that ψα(ϑ) satisfies the condition of a probability density function defined on
(0,∞), that is ψα(ϑ) ≥ 0,

∫∞

0
ψα(ϑ)dϑ = 1 and

∫∞

0
ϑψα(ϑ) = 1

Γ(1+α) . Also the term

ρα(ϑ) is defined as

ρα(ϑ) =
1

π

∞
∑

n=1

(−1)n−1ϑ−nα−1Γ(nα+ 1)

n!
sin(nπα), ϑ ∈ (0,∞).
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Definition 2.4 A function x(.) ∈ C([−a, b], X) is said to be a mild solution of the
system (1) if x(t) = φ(t) on [−a, 0] and the following integral equation is satisfied:

x(t) = U(t)φ(0) +

∫ t

0

(t− s)α−1V (t− s)f(s, xs)ds, t ∈ J, (6)

where U(t) and V (t) are defined by (5).

Lemma 2.2 The following properties are valid:

(i) for fixed t ≥ 0 and any x ∈ X, we have

‖U(t)x‖ ≤M‖x‖, ‖V (t)x‖ ≤ αM

Γ(1 + α)
‖x‖ =

M

Γ(α)
‖x‖.

(ii) The operators are U(t) and V (t) are strongly continuous for all t ≥ 0.

(iii) If S(t)(t > 0) is a compact semigroup in X, then U(t) and V (t) are norm-

continuous in X for t > 0.

(iv) If S(t)(t > 0) is a compact semigroup in X, then U(t) and V (t) are compact

operators in X for t > 0.

Definition 2.5 A C0-semigroup {T (t)}t≥0 is called a positive semigroup, if T (t)x ≥
θ for all x ≥ θ and t ≥ 0.

Now we recall the definition of Kuratowski’s measure of noncompactness, which is
used in the next section to study the existence of extremal mild solutions for finite delay
differential equation of fractional order.

Definition 2.6 (see [27,28]) LetX be a Banach space and B(X) be family of bounded
subset of X . Then µ : B(X) → R

+, defined by

µ(S) = inf{δ > 0 : S admits a finite cover by sets of diameter ≤ δ },

where S ∈ B(X), is called the Kuratowski measure of noncompactness.
Clearly 0 ≤ µ(S) <∞.

We need to use the following basic properties of the µ measure.

Lemma 2.3 (see [27, 28]) Let S, S1 and S2 be bounded sets of a Banach space X.

Then:

(i) µ(S) = 0 if and only if S is relatively compact set in X;

(ii) µ(S1) ≤ µ(S2) if S1 ⊂ S2;

(iii) µ(S1 + S2) ≤ µ(S1) + µ(S2);

(iv) µ(λS) ≤ |λ|µ(S) for any λ ∈ R.

Lemma 2.4 (see [27,28]) IfW ⊂ C([a, b], X) is bounded and equicontinuous on [a, b],
then µ(W (t)) is continuous for t ∈ [a, b] and

µ(W ) = sup{µ(W (t)), t ∈ [a, b]}, where W (t) = {x(t) : x ∈W} ⊆ X.
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Remark 2.1 (see [27,28]) If B is a bounded set in C([a, b], X), then B(t) is bounded
in X , and µ(B(t)) ≤ µ(B).

Lemma 2.5 (see [27, 28]) Let B = {un} ⊂ C(I,X)(n = 1, 2, . . .) be a bounded and

countable set. Then µ(B(t)) is Lebesgue integrable on I, and

µ

({∫

I

un(t)dt | n = 1, 2, . . .

})

≤ 2

∫

I

µ(B(t))dt, here I = [a, b]. (7)

3 Main Result

In this section, we prove the existence of extremal mild solutions of the problem (1) and
then prove the uniqueness in the next theorem.

Theorem 3.1 Let X be an ordered Banach space, whose positive cone P is normal

with normal constant N and T (t)(t ≥ 0) be a positive operator. Also assume that the

Cauchy delay problem (1) has a lower solution x(0) ∈ C([−a, b], X) and an upper solution

y(0) ∈ C([−a, b], X) with x(0) ≤ y(0). The system (1) has minimal and maximal mild

solutions between x(0) and y(0) if the following assumptions (H1)-(H4) are satisfied:

(H1) The function f : J×D → X is such that for t ∈ J , the function f(t, .) : D×X → X
is continuous and for all ϕ ∈ D, the function f(., ϕ) is strongly measurable.

(H2) For any t ∈ [0, b], the function f(t, .) : D → X satisfies the following

f(t, ϕ1) ≤ f(t, ϕ2),

where ϕ1, ϕ2 ∈ D with x0t ≤ ϕ1 ≤ ϕ2 ≤ y0t .

(H3) There exists a constant L ≥ 0 such that

µ(f(t, E)) ≤ L

[

sup
−a≤ν≤0

µ(E(ν))

]

,

for a.e. t ∈ J and E ⊂ D, where E(ν) = {ϕ(ν) : ϕ ∈ E}.

(H4) K = 2MLbα

Γ(α+1) < 1,

Proof. Let B = [x(0), y(0)] = {x ∈ C([−a, b], X) | x(0) ≤ x ≤ y(0)}. We define a map
Q : B → C([−a, b], X) by

Qx(t) =

{

U(t)φ(0) +
∫ t

0
(t− s)α−1V (t− s)f(s, xs)ds, t ∈ [0, b],

φ(t), t ∈ [−a, 0]. (8)

By (H2) and for any x ∈ B, we have that

f(t, x
(0)
t ) ≤ f(t, xt) ≤ f(t, y

(0)
t ).

By the normality of the positive cone P , there exists a constant k > 0 such that

‖f(t, xt)‖ ≤ k, x ∈ B. (9)
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Clearly Q : B → C([−a, b], X) is continuous. Let x, y ∈ B and x ≤ y, then x(t) ≤
y(t), t ∈ [−a, b]. Therefore, for any t ∈ [0, b], xt ≤ yt in the ordered Banach space D.
Now by positivity of operators U(t) and V (t), (H2), we have

Qx ≤ Qy. (10)

For showing x(0) ≤ Qx(0) and Qy(0) ≤ y(0), we let cDαx(0)(t) = Ax(0)(t) + ξ(t), t ∈ J ,
then by Definition 2.3, Lemma 2.1 and the positivity of U(t) and V (t) for t ∈ J , we get
that

x(0)(t) =U(t)x(0)(0) +

∫ t

0

(t− s)α−1V (t− s)ξ(s)ds

≤ U(t)φ(0) +

∫ t

0

(t− s)α−1V (t− s)f(s, x(0)s )ds, t ∈ J

and also x(0)(t) ≤ φ(t) = Qx(0)(t), t ∈ [−a, 0]. Thus x(0)(t) ≤ Qx(0)(t), t ∈ [−a, b].
Similarly we can prove that Qy(0)(t) ≤ y(0)(t), t ∈ [−a, b]. Thus Q : B → B is an
increasing monotonic operator. Now we define the sequences as

x(n) = Qx(n−1) and y(n) = Qy(n−1), n = 1, 2, . . . , (11)

and from (10), we have

x(0) ≤ x(1) ≤ . . . x(n) ≤ . . . ≤ y(n) ≤ . . . ≤ y(1) ≤ y(0). (12)

Now we show that Q is equicontinuous on [−a, b]. For this, we let any x ∈ B and
t1, t2 ∈ [−a, b] with t1 ≤ t2. First we take t1, t2 ∈ [−a, 0], then ‖Qx(t2) − Qx(t1)‖ =
‖φ(t2)− φ(t1)‖ → 0 as φ(.) is continuous and t1 → t2 independent of x ∈ B. Further, if
t1, t2 ∈ J with t1 ≤ t2 and by (9), then we have that

‖Qx(t2)−Qx(t1)‖ ≤‖U(t2)φ(0)− U(t1)φ(0)‖

+ ‖
∫ t1

0

(t2 − s)α−1 [V (t2 − s)− V (t1 − s)] f(s, xs)ds‖

+ ‖
∫ t1

0

[

(t2 − s)α−1 − (t1 − s)α−1
]

V (t1 − s)f(s, xs)ds‖

+

∫ t2

t1

(t− s)α−1V (t2 − s)f(s, xs)ds

≤‖U(t2)φ(0)− U(t1)φ(0)‖

+ k

∫ t1

0

(t2 − s)α−1‖V (t2 − s)− V (t1 − s)‖ds

+
Mk

Γ(α)

∫ t1

0

|(t2 − s)α−1 − (t1 − s)α−1|ds

+
Mk

Γ(α)

∫ t2

t1

(t− s)α−1ds

=I1 + I2 + I3 + I4, (13)
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where

I1 =‖U(t2)φ(0)− U(t1)φ(0)‖,

I2 =k

∫ t1

0

(t2 − s)α−1‖V (t2 − s)− V (t1 − s)‖ ds,

I3 =
Mk

Γ(α)

∫ t1

0

|(t2 − s)α−1 − (t1 − s)α−1| ds,

I4 =
Mk

Γ(α)

∫ t2

t1

(t− s)α−1ds.

For any ǫ ∈ (0, t1), we have

I2 ≤k
∫ t1−ǫ

0

(t2 − s)α−1‖V (t2 − s)− V (t1 − s)‖ds

+ k

∫ t1

t1−ǫ

(t2 − s)α−1‖V (t2 − s)− V (t1 − s)‖ds

≤k
∫ t1−ǫ

0

(t2 − s)α−1ds. sup
s∈[0,t1−ǫ]

‖V (t2 − s)− V (t1 − s)‖

+
2Mk

Γ(α)

∫ t1

t1−ǫ

(t2 − s)α−1ds. (14)

By Lemma 2.2, we get that I2 → 0 as t1 → t2 and ǫ → 0 independent of x ∈ B. From
expression of I1, I3 and I4, we can easily show that I2 → 0, I3 → 0 and I4 → 0 as
t2 → t1 independent of x ∈ B. Therefore ‖Qx(t2)−Qx(t1)‖ → 0 as t1 → t2 independent
of x ∈ B. Thus for t1, t2 ∈ [−a, b] with t1 ≤ t2, we have that ‖Qx(t2)−Qx(t1)‖ → 0 as
t1 → t2 independent of x ∈ B. Therefore Q(B) is equicontinuous on [−a, b].

From (8), we must have x(n)(t) = y(n)(t) = φ(t), n = 1, 2, . . . , t ∈ [−a, 0]. So
x(n) → φ and y(n) → φ on [−a, 0]. Let S = {x(n)}∞n=1. The normality of positive cone
P and (12) imply that S is bounded. Note that µ(S(t)) = 0, for any t ∈ [−a, 0]. Since
S(t) = {x(1)(t)} ∪ {Q(S)(t)} for any t ∈ J , then µ(S(t)) = µ(Q(S)(t)) for any t ∈ J . By
using (H3), (8), (11) and for t ∈ J , we have that

µ(S(t)) =µ

(

{

U(t)φ(0) +

∫ t

0

(t− s)α−1V (t− s)f(s, x(n)s )ds

}∞

n=1

)

≤µ
(

{
∫ t

0

(t− s)α−1V (t− s)f(s, x(n)s )ds

}∞

n=1

)

≤ 2M

Γ(α)

∫ t

0

(t− s)α−1µ
({

f(s, x(n)s )
}∞

n=1

)

ds

≤ 2M

Γ(α)

∫ t

0

(t− s)α−1L sup
−a≤ν≤0

µ
({

x(n)(s+ ν)
}∞

n=1

)

ds
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≤2ML

Γ(α)

∫ t

0

(t− s)α−1 sup
0≤τ≤s

µ
({

x(n)(τ)
}∞

n=1

)

ds

≤2ML

Γ(α)

∫ t

0

(t− s)α−1ds. sup
0≤τ≤b

µ
({

x(n)(τ)
}∞

n=1

)

≤ 2MLbα

Γ(α+ 1)
sup

0≤τ≤b

µ
({

x(n)(τ)
}∞

n=1

)

. (15)

Since
{

Qx(n)
}∞

n=0
, i.e.

{

x(n)
}∞

n=1
, are equicontinuous on [−a, b] and µ(S(t)) = 0, for any

t ∈ [−a, 0], then Lemma 2.4 and inequality (15) imply that

µ(S) ≤ 2MLbα

Γ(α+ 1)
µ
({

x(n)
}∞

n=1

)

= Kµ(S). (16)

Since K < 1 as given in (H4), this implies that µ(S) = 0, i.e. µ({x(n)}∞n=1) = 0. Thus
the set {x(n) : n ≥ 1} is relatively compact in B. So we have that the sequence {x(n)}
has a convergent subsequence in B. In view of (12), we can easily show that {x(n)} itself
is convergent in B. So there exists x ∈ B such that x(n) → x as n→ ∞. By (8)and (11),
we have that

x(n)(t) =

{

U(t)φ(0) +
∫ t

0 (t− s)α−1V (t− s)f(s, x
(n−1)
s )ds, t ∈ [0, b],

φ(t), t ∈ [−a, 0].
(17)

Taking n→ ∞ and Lebesgue dominated convergence theorem, we have that

x(t) =

{

U(t)φ(0) +
∫ t

0
(t− s)α−1V (t− s)f(s, xs)ds, t ∈ [0, b],

φ(t), t ∈ [−a, 0].
(18)

Then x ∈ C([−a, b], X) and x = Qx. Thus x is a fixed point of Q, hence x becomes
a mild solution of (1). Similarly we can prove that there exists x ∈ C([−a, b], X) such
that y(n) → x as n → ∞ and x = Qx. Let x ∈ B be any fixed point of Q, then by (10),
x(1) = Qx(0) ≤ Qx = x ≤ Qy(0) = y(1). By induction, x(n) ≤ x ≤ y(n). Using (12)
and taking the limit as n → ∞ we conclude that x(0) ≤ x ≤ x ≤ x ≤ y(0). Hence x, x
are the minimal and maximal mild solutions of the finite delay differential equations of
fractional order (1) on [x(0), y(0)] respectively. ✷

In the next theorem, we shall prove the uniqueness of the solution of system (1)
by using monotone iterative procedure. For this we make the the following additional
assumption:

(H5) f : J×D → X is a continuous function and there exists a constant η ≥ 0 such that

f(t, ϕ2)− f(t, ϕ1) ≤ η(ϕ2(ν)− ϕ1(ν)), for some ν ∈ [−a, 0]

for any t ∈ J and x
(0)
t ≤ ϕ1 ≤ ϕ2 ≤ y

(0)
t .

Theorem 3.2 Let X be an ordered Banach space, whose positive cone P is normal

with normal constant N and T (t)(t ≥ 0) be a positive operator. Also assume that the

Cauchy delay problem (1) has a lower solution x(0) ∈ C([−a, b], X) and an upper solution

y(0) ∈ C([−a, b], X) with x(0) ≤ y(0). If the assumptions (H2) and (H5) hold and K =
2MNηbα

Γ(α+1) < 1, then the Cauchy delay problem (1) has a unique mild solution between x(0)

and y(0).
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Proof. Let {x(n)} ⊂ B be monotone increasing sequence. For any m,n = 1, 2, . . .,
with m > n, by H(4) and H(6), we have that

θ ≤ f(t, x
(m)
t )− f(t, x

(n)
t ) ≤ η(x

(m)
t (ν)− x

(n)
t (ν)).

Using the normality of the positive cone P , we get

‖f(t, x(m)
t )− f(t, x

(n)
t )‖ ≤ Nη‖x(m)

t (ν) − x
(n)
t (ν)‖. (19)

From the definition of measure of noncompactness and (19), we get

µ
({

f
(

s, x
(n)
t

)})

≤Nη sup
−a≤ν≤0

µ
({

x
(n)
t (ν)

})

. (20)

From (19), f is a Lipschitz continuous for second variable. So f satisfies the assump-
tions (H1) and (H3) with L = Nη. Thus all the conditions of Theorem 3.1 are satisfied,
the Cauchy delay problem (1) has maximal and minimal solutions on the ordered interval
B = [x(0), y(0)].

Let x(t) and x(t) be the minimal solution and maximal solution of Cauchy delay
problem (1) respectively on the ordered interval B = [x(0), y(0)]. Since x(t) ≡ x(t) for
t ∈ [−a, 0], then we have to prove that x(t) ≡ x(t) on J for the uniqueness. By (8), (H5)
and the positivity of operator U(t) and V (t) and take t ∈ J , we get

θ ≤ x(t)− x(t) = Qx(t)−Qx(t)

=

∫ t

0

(t− s)α−1V (t− s) [f(s, xs)− f(s, xs)] ds

≤ η

∫ t

0

(t− s)α−1V (t− s)(xs(ν) − xs(ν))ds, for some ν ∈ [−a, 0].

By applying the normality of the positive cone P , we get

‖x(t)− x(t)‖ ≤ Nη‖
∫ t

0

(t− s)α−1V (t− s)(xs(ν)− xs(ν))ds‖

≤ MNη

Γ(α)

∫ t

0

(t− s)α−1‖xs(ν) − xs(ν)‖ds

=
MNη

Γ(α)

∫ t

0

(t− s)α−1‖x(s+ ν)− x(s+ ν)‖ds

≤ MNη

Γ(α)

∫ t

0

(t− s)α−1‖x− x‖ds

≤ MNηbα

Γ(α+ 1)
‖x− x‖. (21)

Inequality implies that ‖x− x‖ ≤ K‖x− x‖. Since K < 1
2 , then ‖x− x‖ = 0, i.e. x = x

on [−a, b]. Hence x = x is the unique mild solution of the Cauchy delay problem (1)
between x(0) and y(0). ✷
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4 Example

Let X = L2([0, π],R). Consider the following finite delay patial differential equation of
fractional order:















∂
1

2

∂t
1

2

z(t, y) = ∂2

∂y2 z(t, y) + 2η sin( z(t−1,y)
2 ), (t, y) ∈ [0, π2 ]× [0, π],

z(t, 0) = z(t, π) = 0, t ∈ [0, π2 ],

z(ν, y) = φ(ν, y) ν ∈ [−1, 0],

(22)

where ∂
1

2

∂t
1

2

is the Caputo fractional partial derivative, 0 ≤ η ≤ min{ 2
√
π
,
√
π

4M }, f : J×D →
X is a nonlinear functions, here D = C([−1, 0]× [0, π], X) and φ(ν, y) ∈ D.

Let P = {φ ∈ X |φ(y) ≥ 0 a.e. y ∈ [0, π]}. Then P is a normal cone in Banach space
X and its normal constant is 1, i.e. N = 1. We define an operator A : X → X by
Av = v′′ with domain

D(A) = {v ∈ X : v, v′ is absolutely continuous v′′ ∈ X, v(0) = v(π) = 0}.

It is well known that A is an infinitesimal generator of a compact analytic semigroup of
uniformly bounded linear operator {T (t), t ≥ 0} in X . Now we define x(t)(y) = z(t, y),
cD

1

2

t x(t)(y) = ∂
1

2

∂t
1

2

z(t, y), f(t, xt)(y) = 2η sin( z(t−1,y)
2 ), x(ν)(y) = φ(ν)(y) = φ(ν, y).

Therefore, the above impulsive fractional differential equation (22) can be written as the
abstract form (1).

The continuous function φ is such that 0 ≤ φ(ν, y) ≤ −νy(π − y), (ν, y) ∈ [−1, 0]×
[0, π]. Let v(t, y) = 0, (t, y) ∈ [−1, π2 ] × [0, π]. Then f(t, vt(ν, y)) = 0 for t ∈ [0, π2 ] and
φ(ν, y) ≥ v(ν, y) for ν ∈ [−1, 0]. Thus v becomes a lower solution of the problem (1).
Now we take w(t, y) such that

w(t, x) =

{

ty(π − y), (t, y) ∈ [0, π2 ]× [0, π],

−ty(π − y), (t, y) ∈ [−1, 0]× [0, π].

Note that ∂
1

2

∂t
1

2

w(t, y) = 2t
1

2 y(π−y)
√
π

and ∂2

∂y2w(t, y) = −2t. Since t
1

2 y(π−y)
2 ≥ ty(π−y)

2 for

0 ≤ t ≤ 1, the function sin(.) is increasing for interval [−π
2 ,

π
2 ] and

4
√
π
≥ 2η, these imply

that
2t

1

2 y(π − y)√
π

≥ 2η sin(
ty(π − y)

2
) ≥ 2η sin(

(t− 1)y(π − y)

2
).

Thus
∂

1

2

∂t
1

2

w(t, y) ≥ ∂2

∂y2
w(t, y) + 2η sin(

w(t− 1, y)

2
),

and w(ν, y) ≥ φ(ν, y) for ν ∈ [−1, 0]. So w is an upper solution of the problem (1).
Clearly the function f(t, ϕ) is increasing in ϕ for v ≤ ϕ ≤ w, so the assumptions (H2)
is satisfied. Since the function sin(.) is Lipschitz function and is increasing for interval
[−π

2 ,
π
2 ]. So the function f satisfies the following condition:

0 ≤ f(t, z(2)(t− 1, y))− f(t, z(1)(t− 1, y)) ≤ η(z(2)(t− 1, y)− z(1)(t− 1, y)), ν ∈ [−1, 0]
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for any v(t, y) ≤ z(1)(t, y) ≤ z(2)(t, y) ≤ w(t, y), (t, y) ∈ [−1, π2 ]× [0, π]. This means

θ(y) ≤ f(t, x
(2)
t )(y)− f(t, x

(1)
t )(y) ≤ η(x

(2)
t (−1)(y)− x

(1)
t (−1)(y))

for any v ≤ x(1) ≤ x(2) ≤ w. Thus the assumption (H5) is also satisfied. At last
K = 2MNη

Γ(1+ 1

2
)
= 4Mη

√
π
< 1. All the conditions of the Theorem 3.2 are satisfied, hence the

system (22) has a unique solution. ✷
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1 Introduction

Consider the nonlinear boundary Cauchy problem for arbitrary s ∈ R











d
dt
u(t) = Amax(t)u(t), t ∈ [s,∞),

L(t)u(t) = f(t, u(t)), t ∈ [s,∞),

u(s) = x,

(1)

where Amax(t) is a closed operator on a Banach space X endowed with a maximal
domain D(Amax(t)), and L(t) : D(Amax(t)) → ∂X , with a ‘boundary space’ ∂X and a
function f : R × X → ∂X , the solution u : [s,∞) → X takes the initial value x ∈ X
at time s. Moreover, the restriction A(t) := Amax(t)|ker(L(t)) is assumed to generate an
evolution family (U(t, s))t≥s, on the state space X . That is U(t, s)x is a solution of the
corresponding linear boundary Cauchy problem of (1) given by











d
dt
u(t) = Amax(t)u(t), t ∈ [s,∞),

L(t)u(t) = 0, t ∈ [s,∞),

u(s) = x.

(2)
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This type of equations has recently been suggested and investigated as a model
class with various applications like population equations, retarded differential (differ-
ence) equations, dynamical population equations and boundary control problems (see
e.g. [2, 3, 7] and the references therein).

A crucial question concerning nonautonomous boundary equations is the existence of
solutions. Recently, in [3,9], the existence and uniqueness of classical solutions for (1) in
the case that f(t, x(t)) ≡ f(t) was proved. Moreover, it was shown that these solutions
are given by a variation of constants formula which can be easily extended, using the
contraction fixed point theorem, to the following variation of constants formula solution
of (1):

x(t, s) = U(t, s)x0 + lim
λ→+∞

∫ t

s

U(t, σ)λLλ,σf(σ, x(σ)) dσ, t ≥ s. (3)

Here Lλ,t is the inverse of L(t)|ker(λ−Amax(t)).

The study of the regularity properties and the long-time behavior of infinite dimen-
sional dynamical systems is one of the most important problems of modern mathematical
physics. In this direction, some studies have been done for the problem (1), we cite for
example the compactness of solutions [3], the study of controllability [2], the almost
periodicity and automorphicity of solutions [1].

Another important question concerning the long-time behavior is the existence of
invariant manifolds. This question was recently studied in [7].

The long-time behavior of the above systems can be also expressed by the term of
attractors. To the best of our knowledge, the existence of attractors for nonautonomous
dynamical systems is not as well developed as for the autonomous case. There exist sev-
eral non equivalent definitions for nonautonomous attractors, e.g. forward and pullback
attractors describing, respectively, the future and the past of nonautonomous equations
(see e.g. [6, 15] and the references therein).

Recently, in [5], the authors showed the existence of pullback attractors for evolution
processes. Inspired by the ideas in [5], we are concerned in the present work with the
study of the existence of pullback attractors for the boundary evolution equation (1), our
main tool is the variation of constants formula (3).

Roughly speaking, our goal is to establish sufficient conditions for guaranteeing the
existence of a pullback attractor which is a family of compact invariant subsets pullback
attracting bounded subsets. More precisely, by assuming some regularity conditions on
(U(t, s))t≥s, we will prove that the solution x given in (3) is both pullback strongly
bounded dissipative and pullback asymptotically compact.

Finally, to illustrate our general assumptions we give an application to the following
reaction diffusion equation:























∂

∂t
v(t, x) =

∂2v

∂x2
(t, x)− β(t)v(t, x), t ≥ 0, x ∈ [0, 1],

∂

∂x
v(t, 0) = g1(t, v);

∂

∂x
v(t, 1) = g2(t, v), t ≥ 0,

v(0, x) = v0(x), x ∈ [0, 1].

(4)

The structure of the paper is as follows. In Section 2 we list natural assumptions for
well-posedness of equation (1) and the concepts of mild solution. Section 3 is devoted to
a pullback attractors theorem for (1) which yields sufficient conditions for the existence
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of pullback attractors. Section 4 is devoted to an application of the reaction diffusion
equation (4).

2 Preliminaries

In this section we recall some definitions and results and formulate assumptions.

2.1 Linear nonautonomous boundary Cauchy problems

A family of linear (unbounded) operators (A(t))t≥0 defined on a Banach spaceX is called
a stable family if there are constants M ≥ 1 and ω ∈ R such that (ω,∞) ⊂ ρ(A(t)) for
all t ≥ 0 and

∥

∥

∥

k
∏

i=1

R(λ,A(ti))
∥

∥

∥ ≤ M(λ− ω)
−k

for λ > ω and any finite sequence 0 ≤ t1 ≤ · · · ≤ tk, where

ρ(A(t)) := {λ ∈ C | λ idX −A(t) : D(A(t)) → X is bijective}

denotes the resolvent set of A(t). For λ ∈ ρ(A(t)), the inverse R(λ,A(t)) :=

(λ idX −A(t))−1 is called the resolvent of A(t).

Remark 2.1 If there exists a constant ω ∈ R such that

‖R(λ,A(t))‖ ≤ 1

λ− ω
,

for all λ > ω and t ≥ 0, then (A(t))t≥0 is a stable family.

Definition 2.1 A family of linear bounded operators (U(t, s))t≥s∈J , J := R+ or R,
on a Banach space X is called evolution family if

(1) U(t, s) = U(t, r)U(r, s) and U(s, s) = idX for all t ≥ r ≥ s ∈ J ,

(2) the mapping {(t, s) ∈ J × J : t ≥ s} ∋ (t, s) 7→ U(t, s) ∈ L(X) is strongly
continuous.

The growth bound of (U(t, s))t≥s is defined by

ω(U) := inf
{

ω ∈ R : ∃ Mω ≥ 1 with ‖U(t, s)‖ ≤ Mωe
ω(t−s) ∀ t ≥ s ∈ J

}

.

The evolution family (U(t, s))t≥s is called exponentially bounded provided that ω(U) < ∞
and exponentially stable provided that ω(U) < 0.

Let X,D, ∂X be Banach spaces such that D is dense and continuously embedded in
X . On these spaces, the operators Amax(t) ∈ L(D,X), L(t) ∈ L(D, ∂X), for t ∈ R, are
supposed to satisfy the following hypotheses:

(H1) There are positive constants C1, C2 such that

C1‖x‖D ≤ ‖x‖+ ‖Amax(t)x‖ ≤ C2‖x‖D

for all x ∈ D and t ∈ R;
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(H2) for each x ∈ D the mapping R ∋ t 7→ Amax(t)x ∈ X is continuously differentiable;

(H3) the operators L(t) : D → ∂X, t ∈ R, are surjective;

(H4) for each x ∈ D the mapping R ∋ t 7→ L(t)x ∈ ∂X is continuously differentiable;

(H5) there exist constants γ > 0 and ω ∈ R such that

||L(t)x||∂X ≥ γ−1(λ− ω)||x||X ,

for x ∈ ker(λ idX −Amax(t)), λ > ω and t ∈ R;

(H6) the family of operators (A(t))t∈R
, A(t) := Amax(t)|kerL(t), is stable.

In the following lemma, we cite consequences of the above assumptions from [10, Lemma
1.2] which will be needed below.

Lemma 2.1 The restriction L(t)|ker(λ idX−Amax(t)) is an isomorphism from

ker(λ idX − Amax(t)) into ∂X and its inverse Lλ,t := [L(t)|ker(λ idX−Amax(t))]
−1

:
∂X → ker(λ idX −Amax(t)) satisfies

‖Lλ,t‖ ≤ γ(λ− ω)−1 for λ > ω, t ∈ R.

Under assumptions (H1)-(H6), it was shown that the linear boundary Cauchy problem
(2) is well-posed. More precisely, there exists an evolution family (U(t, s))t≥s generated
by the family of operators (A(t))t∈R

. See [12, 13].

2.2 Nonlinear boundary Cauchy problems

In case f ≡ 0 the boundary Cauchy problem (1) reduces to the linear boundary Cauchy
problem (2) which was studied in the last subsection under the assumptions (H1)-(H6).
In particular, let (U(t, s))t≥s denote the evolution family solution to the problem (2).
We want to study nonlinear perturbations (1) of (2) and therefore assume that the
nonlinearity f satisfies:

(H7) The nonlinear part f : R × X → ∂X is assumed to be continuous and there
exists a positive constant ℓ such that one has the global Lipschitz estimate

‖f(t, x)− f(t, x̄)‖ ≤ ℓ‖x− x̄‖ for all x, x̄ ∈ X, t ∈ R.

Under the assumptions (H1)-(H7) the semilinear boundary Cauchy problem (1) ad-
mits a unique mild solution. For s ∈ R, x ∈ X , a function u = u(·, s, x) : [s,∞) → X is
called mild solution of (1) if it satisfies the integral equation

u(t, s, x) = U(t, s)x+ lim
λ→∞

∫ ∞

s

U(t, σ)λLλ,σf(σ, u(σ, s, x)) dσ, t ≥ s. (5)

The unique existence follows with the usual contraction arguments (see e.g. [2,11,14]) and
uses the variation of constants formula from [3] for solutions v : [s,∞) → X of inhomo-
geneous boundary Cauchy problems, i.e. systems (1) with f(t, u(t)) ≡ g(t) independent
of u(t)

v(t) = U(t, s)x+ lim
λ→∞

∫ ∞

s

U(t, σ)λLλ,σg(σ) dσ, t ≥ s.
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Let us define on X the family of operators:

V (t, s)x := u(t, s, x) for x ∈ X and t ≥ s. (6)

Our goal in the next section is to study the existence of pullback attractors for the family
of operators (V (t, s))t≥s.

3 Pullback Attractors of Nonlinear Boundary Cauchy Problems

In this section, we consider the following system

{

d
dt
u(t) = Amax(t)u(t), t ∈ R,

L(t)u(t) = f(t, u(t)), t ∈ R,
(7)

where Amax(t), L(t), f(t, x) are assumed to satisfy assumptions (H1)-(H7). We want to
study the existence of pullback attractors of the nonlinear problem (7), therefore the
evolution family (U(t, s))t≥s associated with the linear problem (2) is assumed to satisfy
the following:

(H8) (U(t, s))t≥s is exponentially stable, that is, there exist constants α > 0 and
M1 ≥ 1 such that

‖U(t, s)‖ ≤ M1e
−α(t−s), t ≥ s;

(H9) for all t > s, U(t, s) is a compact operator on X .

To get our aim, we will use the following sufficient condition result shown in [5,
Theorem 2.3].

Theorem 3.1 If (V (t, s))t≥s is pullback strongly bounded dissipative and pullback
asymptotically compact, then it has a pullback attractor (A(t))t∈R

with the property that
⋃

s≤t

A(s) is bounded for each t ∈ R.

The concepts of pullback strongly bounded dissipative and pullback asymptotically
compact are given in the following definitions.

Definition 3.1 We say that (V (t, s))t≥s is pullback strongly bounded dissipative if,
for each t ∈ R, there is a bounded subset B(t) of X which pullback attracts bounded
subsets of X at time t, that is, given a bounded subset B ⊂ X and t ∈ R, there exists
s(t, B) ≤ t such that V (t, s)B ⊂ B(t) for all s ≤ s(t, B).

Definition 3.2 We say that (V (t, s))t≥s is pullback asymptotically compact if, for
each t ∈ R, sequence (sk)k∈N

in (−∞, t] and bounded sequence (xk)k∈N
in X such

that sk −→ −∞ as k → +∞ and {V (t, sk)xk : k ∈ N} is bounded, the sequence
(V (t, sk)xk)k∈N

has a convergent subsequence.

We first show the following lemma.

Lemma 3.1 The family of operators (V (t, s))t≥s is pullback strongly bounded dissi-
pative provided that M1γℓ− α < 0.
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Proof. Let x ∈ X and t ≥ s. From (H7) we obtain

‖f(t, x)‖ ≤ ‖f(t, 0)‖+ ‖f(t, x)− f(t, 0)‖ ≤ ‖f(t, 0)‖+ ℓ‖x‖.

We put C := sup
t∈R

‖f(t, 0)‖. Using (H8) and Lemma 2.1 we obtain

‖V (t, s)x‖ ≤ M1e
−α(t−s)‖x‖+ lim

λ→∞

∫ t

s

M1e
−α(t−σ) λγ

λ− ω
‖f(σ, V (σ, s)x)‖dσ

≤ M1e
−α(t−s)‖x‖+M1γ

∫ t

s

e−α(t−σ)(C + ℓ‖V (σ, s)x‖)dσ

≤ M1e
−α(t−s)‖x‖+M1γC

∫ t

s

e−α(t−σ) dσ

+M1γℓ

∫ t

s

e−α(t−σ)‖V (σ, s)x‖ dσ

then we get

eαt‖V (t, s)x‖ ≤ M1e
αs‖x‖+M1γC

∫ t

s

eασ dσ +M1γℓ

∫ t

s

eασ‖V (σ, s)x‖ dσ

= M1e
αs‖x‖+ M1γC

α
(eαt − eαs) +M1γℓ

∫ t

s

eασ‖V (σ, s)x‖ dσ

Using the generalized Gronwall’s lemma we obtain

eαt‖V (t, s)x‖ ≤ M1e
αs‖x‖+ M1γC

α
(eαt − eαs)

+

∫ t

s

[

M1e
αs‖x‖+ M1γC

α
(eασ − eαs)

]

M1γℓe
∫

t

σ
M1γℓ du dσ

=
M1γC

α
eαt +M1e

αs‖x‖eM1γℓ(t−s) +
M1γℓM1γC

α(α−M1γℓ)
eαt

− M1γℓM1γC

α(α−M1γℓ)
eM1γℓte(α−M1γℓ)s − M1γC

α
eαseM1γℓ(t−s).

It follows that

‖V (t, s)x‖ ≤ M1γC

α
+M1e

−α(t−s)‖x‖eM1γℓ(t−s) +
M1γℓM1γC

α(α−M1γℓ)

− M1γℓM1γC

α(α−M1γℓ)
eM1γℓ(t−s)e(−α(t−s) − M1γC

α
e−α(t−s)eM1γℓ(t−s)

=
M1γC

α
+

M1γℓM1γC

α(α −M1γℓ)

+e(M1γℓ−α)(t−s)

[

M1‖x‖ −
M1γℓM1γC

α(α−M1γℓ)
− M1γC

α

]

=
M1γC

α−M1γℓ
+

(

M1‖x‖ −
M1γC

α−M1γℓ

)

e(M1γℓ−α)(t−s).

We have then
‖V (t, s)x‖ ≤ K + (M1‖x‖ −K)e−βseβt
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with K :=
M1γC

α−M1γℓ
and β := M1γℓ− α. By hypothesis, β < 0.

Since (M1‖x‖ −K)e−βs −→ 0 as s −→ −∞. Then for fixed t ∈ R and x ∈ B bounded,
there exists s0(t, B) such that (M1‖x‖ −K)e−βs < 1 for all s ≤ s0(t, B). This implies

‖V (t, s)x‖ ≤ K + eβt.

We take B(t) = B(0, K + eβt) the ball with center 0 and radius K + eβt. Then the
dissipativity of the family (V (t, s))t≥s holds.

To get the main result, it remains to show that V (t, s), t ≥ s, is pullback asymptoti-
cally compact. To do that, from [5, Theorem 2.4], it is sufficient to prove the following
lemma.

Lemma 3.2 There exist (T (t, s))t≥s and (R(t, s))t≥s such that V (t, s) = T (t, s) +
R(t, s), where

(i) R(t, s), t > s, is compact,

(ii) there exists a non-increasing function k : R+ × R
+ −→ R with k(σ, r) −→ 0 when

σ → ∞, and for all s ≤ t and x ∈ X with ‖x‖ ≤ r, ‖T (t, s)‖ ≤ k(t− s, r).

Proof. Define the families of operators R(t, s) := U(t, s) and

T (t, s) := lim
λ→+∞

∫ t

s

U(t, σ)λLλ,σf(σ, V (σ, s)·)) dσ. (8)

The assertion (i) is satisfied by hypothesis (H9).

To prove (ii), we assume that M1γl < α and we will show that

‖T (t, s)x‖ ≤ M1‖x‖e(M1γl−α)(t−s) − M1γC

α−M1γl
e(M1Ml−α)(t−s)

−M1‖x‖e−α(t−s) +
M1γC

α−M1Ml
.

In fact, we have

‖T (t, s)x‖ ≤ lim
λ→∞

∫ t

s

M1e
−α(t−σ) λγ

λ− ω
‖f(σ, V (σ, s)x)‖dσ

≤ M1γ

∫ t

s

e−α(t−σ)(C + ℓ‖V (σ, s)x‖)dσ

≤ M1γC

∫ t

s

e−α(t−σ) dσ

+M1γℓ

∫ t

s

e−α(t−σ)(‖U(σ, s)x‖ + ‖T (σ, s)x‖) dσ.
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Then we get

eαt‖T (t, s)x‖ ≤ M1γC

∫ t

s

eασ dσ +M1γℓ

∫ t

s

eασ‖U(σ, s)x‖ dσ

+M1γℓ

∫ t

s

eασ‖T (σ, s)x‖ dσ

≤ M1γC

∫ t

s

eασ dσ +M1M1γℓ

∫ t

s

eαs‖x‖ dσ

+M1γℓ

∫ t

s

eασ‖T (σ, s)x‖ dσ

=
M1γC

α
(eαt − eαs) +M1M1γℓe

αs(t− s)‖x‖

+M1γℓ

∫ t

s

eασ‖T (σ, s)x‖ dσ.

Using the generalized Gronwall’s lemma we obtain

eαt‖T (t, s)x‖ ≤ M1γC

α
(eαt − eαs) +M1M1γℓe

αs(t− s)‖x‖

+

∫ t

s

[

M1γC

α
(eασ − eαs) +M1M1γℓe

αs(σ − s)‖x‖
]

×M1γℓe
∫

t

σ
M1γℓ du dσ

=
M1γC

α
eαt − M1γC

α
eαs +M1M1γℓe

αs(t− s)‖x‖

+

∫ t

s

M1γC

α
eασM1γℓe

M1γℓ(t−σ) dσ

−
∫ t

s

M1γC

α
eαsM1γℓe

M1γℓ(t−σ) dσ

+

∫ t

s

M1M1γ1γℓe
αs(σ − s)‖x‖M1γℓe

M1γℓ(t−σ) dσ

=
M1γC

α
eαt − M1γC

α
eαs +M1M1γℓe

αs(t− s)‖x‖

+

∫ t

s

M1γC

α
M1γℓe

M1γℓte(α−M1γℓ)σ dσ

−
∫ t

s

M1γC

α
eαsM1γℓe

M1γℓ(t−σ) dσ

+M1M1γℓ‖x‖M1γℓe
αs

∫ t

s

(σ − s)eM1γℓ(t−σ) dσ
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=
M1γC

α
eαt − M1γC

α
eαs +M1M1γℓe

αs(t− s)‖x‖

+
M1γC

α
M1γℓe

M1γℓt
1

α−M1γℓ

(

e(α−M1γℓ)t − e(α−M1γℓ)s
)

−M1γC

α
eαs

(

−1 + eM1γℓ(t−s)
)

+M1M1γℓ‖x‖M1γℓe
αs

∫ t

s

(σ − s)eM1γℓ(t−σ) dσ

=
M1γC

α
eαt − M1γC

α
eαs +M1M1γℓe

αs(t− s)‖x‖

+
M1γC

α

M1γℓ

α−M1γℓ
eM1γℓt

(

e(α−M1γℓ)t − e(α−M1γℓ)s
)

+
M1γC

α
eαs − M1γC

α
eαseM1γℓ(t−s)

+M1M1γℓ‖x‖M1γℓ

[

− (t− s)

M1γℓ
− 1

(M1γℓ)
2 (1− eM1γℓ(t−s))

]

=
M1γC

α
eαt +

M1γC

α

M1γℓ

α−M1γℓ
eαt − M1γC

α

M1γℓ

α−M1γℓ
eαseM1γℓ(t−s)

−M1γC

α
eαseM1γℓ(t−s) − M1M1γℓ

M1γℓ
eαs‖x‖+ M1M1γℓ

M1γℓ
eαs‖x‖eM1γℓ(t−s).

Multiplying both sides by e−αt, we get

‖T (t, s)x‖ ≤ M1γC

α
+

M1γC

α

M1γℓ

α−M1γℓ
− M1γC

α

M1γℓ

α−M1γℓ
e(M1γℓ−α)(t−s)

−M1γC

α
e(M1γℓ−α)(t−s) − M1M1γℓ

M1γℓ
e−α(t−s)‖x‖

+
M1M1γℓ

M1γℓ
‖x‖e(M1γℓ−α)(t−s)

= M1‖x‖e(M1γl−α)(t−s) − M1γC

α−M1γl
e(M1γl−α)(t−s)

−M1‖x‖e−α(t−s) +
M1γC

α−M1γl
.

To end the proof, we take the function k(·, ·) as follows

k(σ, r) = M1re
βσ +

M1γC

β
eβσ −M1re

−ασ − M1γC

β

with β := M1γl−α. Since, by hypothesis, β < 0, it is clear that k(t, s) satisfies assertion
(ii). Then the proof is achieved.

From the previous lemmas, we are now ready to state our main result.

Theorem 3.2 Assume that (7) satisfies the assumptions (H1)-(H9) with M1γl < α.
Then the family of operators (V (t, s))t≥s has a pullback attractor (A(t))t∈R

with the

property that
⋃

s≤t

A(s) is bounded for each t ∈ R.
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4 Application

consider the following reaction diffusion equation






















∂

∂t
v(t, x) =

∂2v

∂x2
(t, x)− β(t)v(t, x), t ≥ 0, x ∈ [0, 1],

∂

∂x
v(t, 0) = g1(t, v);

∂

∂x
v(t, 1) = g2(t, v) t ≥ 0,

v(0, x) = v0(x), x ∈ [0, 1].

(9)

Here β(·) is a continuously differentiable positive function. Moreover, we assume that

(i) There exist positive constants β and β such that β ≤ β(t) ≤ β for all t ≥ 0.

(ii) g1 : R+ × L1[0, 1] −→ R and g2 : R
+ × L1[0, 1] −→ R are continuous functions and

globally Lipschitz with respect to the second variable uniformly to the first one.

Our aim is to write equation (9) as a boundary Cauchy problem of the form (7)
satisfying the assumptions (H1)-(H9). For this purpose, we define the Banach spaces

∂X := R
2, X := L1[0, 1] and D := W 2,1[0, 1],

with
W 2,1[0, 1] =

{

u ∈ L1[0, 1] | u′

, u
′′ ∈ L1[0, 1]

}

endowed with the norm

‖u‖D := ‖u‖1 + ‖u′‖1 + ‖u′′‖1 for u ∈ W 2,1[0, 1].

Here ‖u‖1 denotes the norm of L1[0, 1].
(D, ‖ · ‖D) is a Banach space dense and continuously embedded in X .
For each t ≥ 0 the operator Amax(t) : X → X is defined by D(Amax(t)) = D and

(Amax(t)ϕ)(a) = ϕ
′′ − β(t)ϕ (10)

for all ϕ ∈ D.
For each t ≥ 0, we define L(t) : D −→ ∂X by

L(t)ϕ = (ϕ
′

(0), ϕ
′

(1))T for all ϕ ∈ D. (11)

We show now that the hypotheses (H1)–(H9) are satisfied.
Verification of (H1): since, from [4, Remarque 11], the norms ‖ϕ‖D and ‖ϕ‖1+‖ϕ′′‖1

are equivalent in D, then (H1) holds.
Verification of (H2): holds from assumptions on t → β(t).
Verification of (H3): to show the surjectivity of L(t), let (a, b) ∈ R

2 be arbitrary.
Define

u(x) = bx+ a(1 − x) for all x ∈ [0, 1].

We have u ∈ D and L(t)u = (a, b). Therefore L(t) is surjective.
Verification of (H4): is obvious since L(t) is independent of t.
Verification of (H5): let u ∈ ker(λ−Amax(t)) for λ > β, then there exists (a, b) ∈ R

2

such that u(x) = aeα(t) + be−α(t) for x ∈ [0, 1] with α(t) :=
√

λ− β(t). We have

|u(x)| = |aeα(t)x + be−α(t)x| ≤ |a|eα(t)x + |b|e−α(t)x =
1

α(t)

[

|a| d
dx

eα(t)x − |b| d
dx

e−α(t)x

]

.
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Integrating both sides on x, one can have

∫ 1

0

|u(x)| dx ≤ 1

α(t)

∫ 1

0

|a| d
dx

eα(t)x − |b| d
dx

e−α(t)x dx

=
1

α(t)

[

|a|eα(t) − |b|e−α(t) − |a|+ |b|
]

≤ 1

α(t)

[

|aeα(t) − be−α(t)|+ |a− b|
]

=
1

α2(t)
(|u′

(0)|+ |u′

(1)|).

We obtain then ‖Lu‖R2 ≥ (λ− β)‖u‖1. This shows (H5) with γ = 1 and ω = β.
Verification of (H6): Define the operator

Au := ∆u, D(A) =
{

u ∈ W 2,1[0, 1] | u′

(0) = u
′

(1) = 0
}

.

It is known that A generates an immediately compact analytic semigroup (T (t))t≥0 of

contraction on the Banach space L1[0, 1], that is T (t) is compact for all t > 0 and

‖T (t)u‖ ≤ 1 for t ≥ 0 and u ∈ L1[0, 1]. (12)

See, for example, [8]. Then from Hille-Yosida theorem (see [8, Theorem II.3.8]), ∀λ > 0
one has λ ∈ ρ(A) and

‖R(λ,A)‖ ≤ 1

λ
.

Then, for every λ+ β > 0, we have λ ∈ ρ(A(t)). Moreover,

R(λ,A(t)) = R(λ+ β(t), A).

Therefore,

‖R(λ,A(t))‖ ≤ 1

λ+ β
=

1

λ− (−β)
,

by Remark 2.1, it follows that

∥

∥

∥

n
∏

i=1

R(λ,A(ti))
∥

∥

∥ ≤ 1

(λ− (−β))
n

for λ > −β and any finite sequence 0 ≤ t1 ≤ · · · ≤ tn. Hence (H6) is satisfied.
Verification of (H7): Follows from assumptions on the functions g1 and g2.
Verification of (H8): We note that the evolution family (U(t, s))t≥s generated by

(A(t))t≥0 is given by

U(t, s) = exp

(∫ t

s

−β(σ) dσ

)

T (t− s), t ≥ s ≥ 0.

Then, from (12) one can see that ‖U(t, s)‖ ≤ e−β(t−s), t ≥ s. Hence (U(t, s))t≥s is
exponentially stable and (H8) holds.

Verification of (H9): Is obvious from the fact that the semigroup T (t) is compact for
all t > 0.
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Abstract: In this paper, we propose a simple method for chaos synchronization
in continuous-time based on a new criterion for stability. This criterion implies the
Lyapunov stabilization criterion, and is applicable to some typical chaotic systems.
Numerical simulations in 3D and 4D are presented to demonstrate the effectiveness
of the synchronization results derived in this paper.
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1 Introduction

During the last decade, chaos synchronization has become an active research area, due to
its potential applications in information processing such as secure communication [1, 2].
Many types of synchronization have been presented [3–6] and various methods have been
developed for synchronization of chaotic systems such as active and adaptive control
method [7, 8], backstepping design technique [9], sliding mode control [10], generalized
Hamiltonian systems approach [11, 12], and so on. Most of synchronization methods
are based on Lyapunov stability theory to guarantee zero stability of errors dynamical
system between master and slave chaotic systems.

In this paper, based on some lemma derived from Halanay inequality, we intro-
duce a new and simple stability criterion to synchronize chaotic dynamical systems in
continuous-time. In [13], authors derived an important result using Halanay inequality,
we give it in the following lemma:
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Lemma 1.1 Suppose that the continuous functional h satisfies:

|h (t, zτ )| ≤ max |zτ | (1)

and

ess sup |β(t)| = β ≤ α. (2)

Then every solution z (t) of

ż (t) = −αz (t) + β(t)h (t, zτ ) (3)

converges to zero.

This lemma allows us to achieve synchronization without using Lyapunov theory.
This paper is organized as follows: In Section 2, a new synchronization criterion for
different chaotic systems is proposed. In Section 3, the case of two identical chaotic
systems is investigated. In Section 4, numerical examples of 3D chaotic systems and 4D
hyperchaotic systems are discussed and numerical simulations are given. In Section 5,
conclusion follows.

2 Synchronization Criterion for Different Systems

Consider the chaotic system described by

Ẋ(t) = f(X(t)), (4)

where X(t) ∈ R
n and f : Rn → R

n. We consider the system (4) as the master system,
as the slave system we consider the following chaotic system described by

Ẏ (t) = BY (t) + g(Y (t)) + U, (5)

where Y (t) ∈ R
n, B is the n × n matrix of parameters system, g : Rn → R

n is the
nonlinear part of the system (5) and U is the vector controller. The synchronization
problem is to find a controller U , which stabilizes the error system

e(t) = Y (t)−X(t), (6)

then the aim of synchronization is to make lim t−→+∞ ‖e(t)‖ = 0, where ‖.‖ is the
Euclidean norm.

Remark 2.1 Most of chaotic systems, including all Lur’e nonlinear systems and Lip-
schitz nonlinear systems, can be described by form of (5) without the function controller
U .

The error dynamical system between the master system (4) and the slave system (5),
can be derived as follows

ė(t) = Be(k) +BX(t) + g(Y (t))− f(X(t)) + U. (7)

To achieve synchronization between the master system (4) and the slave system (5),
we can choose the vector controller U as follows

U = (C −K)Y (t) + (K − C −B)X(t) + f(X(t))− g(Y (t)), (8)
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where C = (cij) ∈ R
n×n such that

cij =

{

−bij , if i 6= j,
0, if i = j,

(9)

and K = diag (k1, k2, ..., kn) is unknown control diagonal matrix to be determined.
By substituting Eq.(8) into Eq.(7), the error system can be written as

ė(t) = −e(t) + (B + C −K + I) e(t). (10)

Theorem 2.1 If the control constants (ki)1≤i≤n are chosen such that

bii < ki < 2 + bii, 1 ≤ i ≤ n, (11)

then the two systems (4) and (5) are globally synchronized.

Proof. The Eq. (10) allows us to get the following scalar systems

ėi(t) = −ei(t) + (bii − ki + 1) ei(t), 1 ≤ i ≤ n. (12)

If we put τ = 0 in Eq. (3), we can see that the Eq.(14) is the same as Eq.(3) in
Lemma 1.1 with: z (t) = ei(t), α = 1, β (t) = 1 and h (t, z (t)) = (bii − ki + 1) ei(t). Now,
by using condition (11), we can verify conditions of Lemma 1.1 to (12)

|(bii − ki + 1) ei(t)| = |bii − ki + 1| |ei(t)| ≤ max |ei(t)| (13)

and
ess sup |β(t)| = β = 1 ≤ α, (14)

hence
lim
t→∞

ei(t) = 0, (1 ≤ i ≤ n) , (15)

and from the fact limt→∞ ‖e(t)‖ = 0, we conclude that systems (4) and (5) are globally
synchronized.

Proposition 2.1 The stability criterion of Theorem 2.1 implies Lyapunov stabiliza-

tion criterion.

Proof. Assume that systems (4) and (5) are globally synchronized with the criterion
of Theorem 2.1, and we consider the following Lyapunov function:

V (e(t)) =
n
∑

i=1

1

2
e2i (t), (16)

we get
V̇ (e(t)) =

∑n

i=1 ėi(t)ei(t)
=

∑n

i=1 (−ei(t) + (bii − ki + 1) ei(t)) ei(t)
=

∑n

i=1 (bii − ki) e
2
i (t)

and by Theorem 2.1, we have

− 2 < bii − ki < 0, 1 ≤ i ≤ n, (17)

then V̇ (e(t)) < 0, and the implication is verified.
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3 Synchronization Criterion for Identical Systems

Now, we consider the master system and the slave system in the following forms

X(t) = AX(t) + f(X(t)), (18)

Y (t) = AY (t) + f(Y (t)) + U, (19)

where X(t) ∈ R
n, Y (t) ∈ R

n are the state vectors of the master system and the slave
system, respectively, A is the n×n matrix of parameters of system, f = (fi (X(t)))1≤i≤n,
such that fi are continuous nonlinear scalar functions and verifying the following condi-
tion

|fi(Y (t))− fi(X(t))| ≤ ρi |yi(t)) − xi(t)| , 1 ≤ i ≤ n, (20)

where 0 < ρi < 1 and U is the vector controller to be determined.
The error system between the master system (18) and the slave system (19), can be

derived as folow:
ė(t) = Ae(t) + f(Y (t))− f(X(t)) + U, (21)

To achieve synchronization between systems (18) and (19), we choose the vector
controller as

U = (C −K) e(t), (22)

where C = (cij) ∈ R
n×n, such that:

cij =

{

−aij , if i 6= j,
0, if i = j,

(23)

and K = diag (k1, k2, ..., kn) ∈ R
n×n is unknown control diagonal matrix to be designed

later.
By substituting Eq.(22) into Eq.(21), one can obtain the following formula for the

error system:
ė(t) = (A+ C −K) e(t) + f(Y (t))− f(X(t)). (24)

Theorem 3.1 If the control constants (ki)1≤i≤n are chosen such that

aii + ρi < ki < 2 + aii − ρi, 1 ≤ i ≤ n, (25)

then the two systems (18) and (19) are globally synchronized.

Proof. According to the same procedure as in the proof of Theorem 2.1, the Eq.
(24) provides the following scalar equations

ėi(t) = −ei(t) + (aii − ki + 1) ei(t) + fi(Y (t)) − fi(X(t)), 1 ≤ i ≤ n, (26)

and we can see that Eq.(26) is the same as Eq.(3) with: z (t) = ei(t), α = 1, β (t) = 1
and h (t, z (t)) = (aii − ki + 1) ei(t) + fi(Y (t))− fi(X (t).

Thus, we apply Lemma 1.1 to Eq.(26) and by using Theorem 3.1, we obtain

|h (t, z (t))| ≤ (|aii − ki + 1|+ ρi) |ei (t)| ≤ max (|ei (t)|) , (27)

and we have also
ess sup |β(t)| = 1 ≤ α, (28)

Hence
lim
t→∞

ei (t) = 0, 1 ≤ i ≤ n, (29)

implying limt→∞ ‖e (t)‖ = 0, i.e., systems (18) and (19) are globally synchronized.
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4 Numerical Examples and Simulations

In this section, to demonstrate the use of chaos synchronization criterion proposed herein,
two numerical examples are considered.

4.1 Example 1

Here, as the master system we consider the Chen system [14] described by







ẋ1 = a (x2 − x1) ,
ẋ2 = (c− a)x1 + cx2 − x1x3,
ẋ3 = −bx3 + x1x2,

(30)

when a = 35, b = 3 and c = 28, the Chen system has chaotic attractor.

As the slave system, we consider the controlled Lü system [15] described by







ẏ1 = α(y2 − y1) + u1,
ẏ2 = βy2 − y1y3 + u2,
ẏ3 = −γy3 + y1y2 + u3,

(31)

where u1, u2, u3 are synchronization controllers and when α = 36, β = 3, γ = 20, the
Lü system is chaotic.

Corollary 4.1 For the two coupled Chen system and Lü system, if (ki)1≤i≤3 are

chosen such that the inequalities: −36 < k1 < −34, 3 < k2 < 5 and −20 < k3 < −18,
holds. Then they are globally synchronized.

Figure 1: Time evolution of synchronization errors between the master system (30) and the
slave system (31).
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4.2 Example 2

Now, as the master system we consider the hyperchaotic Lü system [16], described by















ẋ1 = a (x2 − x1) + x4,
ẋ2 = cx2 − x1x3,
ẋ3 = −bx3 + x1x2,
ẋ4 = x1x3 + dx4,

(32)

when a = 36, b = 3, c = 20 and −0.35 < d ≤ 1.3, the 4D Lü system has hyperchaotic
attractor.

As the slave system, we consider the controlled hyperchaotic Chen system [17] de-
scribed by















ẏ1 = b1 (y2 − y1) + u1,
ẏ2 = 4 (y1 + y4) + b2y2 − 10y1y3 + u2,
ẏ3 = −b3y3 + y22 + u3,
ẏ4 = −b4y1 + u4,

(33)

where u1, u2, u3 and u4.are synchronization controllers. The 4D Chen system is hyper-
chaotic when the parameter values are taken as b1 = 35, b2 = 21, b3 = 3, b4 = 2.

Corollary 4.2 For the two coupled, hyperchaotic Lü system and hyperchaotic Chen

system, if (ki)1≤i≤4 are chosen such that the inequalities: −35 < k1 < −33, 21 < k2 < 23,
−3 < k3 < −1 and 0 < k4 < 2, hold. Then they are globally synchronized.

Figure 2: Time evolution of synchronization errors between the master system (32) and the
slave system (33).

5 Conclusion

In this paper, using Lemma 1.1, a new criterion was derived. It was also demonstrated
that this criterion can be applied to some chaotic and hyperchaotic systems. Finally,
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we remark that in the first case when the chaotic systems are different the controller is
taken in a nonlinear form, but in the case of identical systems the controller is linear.
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Physica A 364 (2006) 103–110.

[17] Li-Xin, J., Hao, D. and Meng, H. A new four-dimensional hyperchaotic Chen system and
its generalized synchronization. Chinese Physics B 19 (2010) 501–517.



Nonlinear Dynamics and Systems Theory, 14 (4) (2014) 402–409

Using Dynamic Vibration Absorber for Stabilization of

a Double Pendulum Oscillations

V.E. Puzyrev and N.V. Savchenko ∗

Institute of Applied Mathematics and Mechanics of NAS of Ukraine,

Roza Luksemburg st., 74, Donetsk, 83114, Ukraine

Received: March 3, 2014; Revised: October 29, 2014

Abstract: In this paper a stability problem for double pendulum is discussed. A
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1 Introduction

The double pendulum may be considered as a simplified model of the coupled rigid
bodies and finds wide use in engineering and technology. Both mathematical and physical
interest to this model arises from the phenomena of its motion. Although this motion is
described by rather simple ODE system, the pendulum exhibits the dynamical behavior
which may be complex and unpredictable [1,2]. In particular, the motion of the double
pendulum has the ability of beats and is strongly sensitive to the initial perturbations.
These perturbations may provoke an increased amplitude of the second limb oscillations
and, as a result, the switch from regular regime to chaotic one [3,4].

The problem of elimination or reduction of the undesired vibration in various technical
systems has a long history and great achievements [5], mostly during the last century. For
this purpose the damping devices are used, which may be divided into active and passive
dampers. The classical example of passive damper is a dynamic vibration absorber (DVA)
[6,7] or vibration neutralizer. It represents the mechanical appendage comprising inertia,
stiffness, and damping elements and is connected to a given structure, named herein the
primary [5] or original [8] system, with the aim to absorb the excessive vibratory energy.
A DVA may be used both in cases of free oscillations and vibrations caused by harmonic
excitations. For the case of a simple pendulum, DVA was used in papers [8,9].
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2 Description of the Model

Consider the double pendulum with distributed mass (Fig. 1) which has a fixed point O
and is in a gravitational field. Assume that the mass center of the first limb is located at
C1. At the point O1 located on the axis OC1 a second limb is pivotally attached. The
point C2 is mass center of the second link. The first limb (configuration A) is attached
with a dynamic absorber with stiffness k and damping coefficient h. The absorber oscil-
lates along the axis O2x

′, which is orthogonal to the line OO1 and intersects it at the
point O2. Hinges at the points O, O1 are supposed frictionless.

Figure 1: Double pendulum with dynamic vibration absorber in first limb.

Let us write the Lagrange function for the described mechanical system. One can get
the kinetic energy K of the system in the form

K = Kp +Ka,

whereKp, Ka are the kinetic energies of the primary system (pendulum without absorber)
and vibration absorber, respectively, calculated by the formulas

Kp =
1

2
[J1ϕ̇

2
1 + J2ϕ̇

2
2 +m2l

2ϕ̇2
1 + 2m2ll2ϕ̇1ϕ̇2cos(ϕ1 − ϕ2)],

Ka =
1

2
ma[ϕ̇

2
1(l

2
a + u2) + 2laϕ̇1u̇+ u̇2].

Here J1, J2 are the moments of inertia of the first and second limbs of pendulum with
respect to poles O, O1 respectively, m1,m2,ma are the masses of the first and second
links, and absorber respectively, u is the extension of the spring, ϕ1, ϕ2 are the angles of
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deflection of the pendulum limbs about a vertical axis, l is the length of the first limb,
l1, l2 are the distances from the suspension points of each of the links to its mass center,
la is the distance OO2.

The potential energy can be written as

Π = −gcosϕ1(mala +m1l1 +m2l)−m2l2gcosϕ2 +magusinϕ1 +
1

2
ku2.

The equations of motion can be written in the form of Lagrange

(J1 +m2l
2 +mal

2
a)ϕ̈1 +m2ll2ϕ̈2cos(ϕ1 − ϕ2) +m2ll2ϕ̇2(ϕ̇1 − ϕ̇2)sin(ϕ1 − ϕ2)+

+malaü+ gsinϕ1(m1l1 +m2l +mala) +magucosϕ1 = 0, (2.1)

J2ϕ̈2 +m2ll2ϕ̈1cos(ϕ1 − ϕ2)−m2ll2ϕ̇1(ϕ̇1 + ϕ̇2)sin(ϕ1 − ϕ2) +m2gl2sinϕ2 = 0,

malaϕ̈1 +maü+magsinϕ1 + ku = −hu̇.

Let us define the conditions of stability of motion of the system (2.1) when the
pendulum is in the lower position of equilibrium, i.e. solution

ϕ1 = 0, ϕ2 = 0, u = 0, ϕ̇1 = 0, ϕ̇2 = 0, u̇ = 0. (2.2)

3 Stabilization Conditions

Firstly, we write the linear approximation of the system (2.1)

(J1 +m2l
2 +mal

2
a)ϕ̈1 +m2ll2ϕ̈2 +malaü+ g(m1l1 +m2l +mala)ϕ1 +magu = 0,

J2ϕ̈2 +m2ll2ϕ̈1 +m2gl2ϕ2 = 0, (3.1)

malaϕ̈1 +maü+magϕ1 + ku = −hu̇.

We introduce the dimensionless parameters by the formulas

m̃a =
ma

m1
, m̃2 =

m2

m1
, ˜la =

la
l1
, ˜l =

l

l1
, ˜l2 =

l2
l1
, τ =

√

g

l1
t,

˜k =
kl1
m1g

, ˜h =
h

m1
, ũ =

u

l1
. (3.2)

The system (3.1) can be rewritten as

(J1 + m̃2
˜l2 + m̃a

˜l2a)ϕ̃
′′

1 + m̃2
˜l˜l2ϕ̃

′′

2 + m̃a
˜laũ

′′ + (1 + m̃2
˜l + m̃a

˜la)ϕ̃1 + m̃aũ = 0,

˜J2ϕ̃
′′

2 + m̃2
˜l˜l2ϕ̃

′′

1 + m̃2
˜l2ϕ̃2 = 0, (3.3)

m̃a
˜laϕ̃

′′

1 + m̃aũ
′′ + m̃aϕ̃1 + ˜kũ = −˜hũ′.

For simplicity, we omit the symbol ˜ in what follows.
To investigate the problem of the stability of motion (2.2) we will use the results from

[10] below.
Suppose that the motion equations of a mechanical system are described by the

following system of differential equations

Aq̈ +Bq̇ +Cq = F (t, q̇, q)q̇1 +N (t, q̇, q), (3.4)
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where square matrices A, C of order m + n, and F (t, q, q̇) of order m are symmetric,
square matrix B is skew-symmetric, q = (q1, q2)

T , i.e. vector q is divided into sub-
vectors q1, q2 with ordersm,n respectively. Denotation “T” means transposition, vector
N(t, q̇, q) represents a set of arbitrary nonlinear terms. Dependence on t is periodic or
quasi-periodic.

We assume that the system provides steady motion:

q = 0, q̇ = 0. (3.5)

It is supposed that the matrix F 0 = F (t, 0, 0) is positive definite for t ≥ 0. Denote
by d,d22 the linear differential operators

d = A
d2

dt2
+ (B + F 0)

d

dt
+C, d22 = A22

d2

dt2
+B22

d

dt
+C22,

and D(λ),D22(λ) are the corresponding λ-matrices:

D(λ) = Aλ2 + (B + F 0)λ+C, D22(λ) = A22λ
2 +B22λ+C22.

Let λ0 be an eigenvalue of d22, and γ20 be the corresponding eigenvector. Introduce
the equality

D12(λ0)γ20 = 0. (3.6)

Theorem 3.1 Let us consider a mechanical system whose motion equations are dis-

cribed by (3.4) and suppose that none of the eigenvectors of operator d22 satisfies con-

dition (3.6). Then adding to system an arbitrary dissipative force, which provides full

dissipation (by linear terms) on q̇1 leads to the following results:

I) If all eigenvalues of matrix C are positive, then equilibrium (3.5) becomes asymp-

totically stable. Stability is exponential and uniform.

II) If matrix C has some negative eigenvalues, then equilibrium (3.5) is unstable,

even if it was stabilized before by gyroscopic forces. Among particular solutions of the

system at least one has negative Liapunov characteristic number.

According to the above statements, matrices A and C (B = 0) for the system (3.3)
take the following form

A =





J1 +m2l
2 +mal

2
a m2ll2 mala

m2ll2 J2 0
mala 0 ma



 ,

C =





1 +m2l +mala 0 ma

0 m2l2 0
ma 0 k



 .

To verify condition (3.6) one may investigate the compatibility of the following system

[λ2(J1 +m2l
2 +mal

2
a) + 1 +m2l +mala]γ1 + λ2m2ll2γ2 = 0,

λ2m2ll2γ1 + (λ2J2 +m2l2)γ2 = 0, (3.7)

(λ2la + 1)γ1 = 0.
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The third equation of (3.7) implies that λ2 = −1/la. Then the condition of compati-
bility of the system (3.7) takes the form

δ1 = (m2l2 +m2
2ll2)l

2
a − (J1m2l2 +m2

2l
2l2 +m2lJ2 + J2)la+

+J1J2 +m2l
2J2 −m2

2l
2l22 = 0. (3.8)

Choosing an arbitrary la (la ≤ l), excluding the value which transforms (3.8) into
true equality, we obtain an inconsistent system (3.7). Consequently, the conditions of
the theorem are satisfied and we have asymptotic stability of the studied solution.

For more clarity let us compare the results obtained with the standart procedure
based on the Routh–Hurwitz criterion [11].

Characteristic equation of system (3.3) is written in the form

a0λ
6 + a1λ

5 + a2λ
4 + a3λ

3 + a4λ
2 + a5λ+ a6 = 0,

where the coefficients are given by the formulas

a0 = ma[J1J2 +m2l
2(J2 −m2l

2
2)], a1 = h[m2l

2(J2 −m2l
2
2) + J2(J1 + l2ama)],

a2 = m2l
2k(J2 −m2l

2
2) + J1J2k + [m2l2(J1 +m2l

2) + J2(1 +m2l)]ma+

+J2mala(kla −ma), a3 = h[J2 + J1m2l2 +m2l(J2 +m2ll2) +mala(J2 + lam2l2)],

a4 = k[m2l2(J1 +m2l
2) + J2(1 +m2l)] + (1 +m2l)mam2l2 − J2m

2
a+

+(J2k −mam2l2)lama +m2l2kmal
2
a, a5 = m2l2h(1 +m2l +mala),

a6 = m2l2k(1 +m2l) +mam2l2(kla −ma).

The solution of the system will be asymptotically stable if and only if the following
conditions hold

a0 > 0, a3 > 0, a5 > 0, a6 > 0, ∆3 =

∣

∣

∣

∣

∣

∣

a1 a0 0
a3 a2 a1
a5 a4 a3

∣

∣

∣

∣

∣

∣

> 0,

∆5 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a0 0 0 0
a3 a2 a1 a0 0
a5 a4 a3 a2 a1
0 a6 a5 a4 a3
0 0 0 a6 a5

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0. (3.9)

It is not hard to see that a0, a3, a5, a6 are positive.

∆3 = h2m2
a∆30 = h2m2

a(p0 − 2p1la + p2l
2
a +mal

4
am

4
2l

4
2l

2),

where
p0 = J2[l

2m2(J2 −m2l
2
2) + J1J2]

2,

p1 = (m3
2l

3
2l

2 +m2lJ
2
2 + J2

2 )[l
2m2(J2 −m2l

2
2) + J1J2],

p2 = J2(1 +m2l)[J
2
2 (1 +m2l) + 2m3

2l
3
2l

2] +m4
2l

2l42(m2l
2 + J1).

Let us transform the expression for ∆30 to the following form

∆30 = p0(la −
p1
p2

)2 +m4
2l

4
2l

2(J1J2 +m2l
2J2 −m2

2l
2l22)

3 +mam
4
2l

4
2l

2l4a.
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So, it is obviously positive, because of p0 > 0, J2 ≥ m2l
2
2.

The determinant ∆5 can be represented as ∆5 = m4
2l

2l42h
3m4

aδ
2
1 .

Obviously, the conditions of criterion Routh–Hurwitz for system (3.3) are always
satisfied, except for δ1 = 0.

Therefore, δ1 6= 0 is a necessary and sufficient condition for asymptotic stability of
motion of the system (2.1). That is, selecting a value of parameter la that does not
satisfy (3.7), we can achieve the exponential stability of a double pendulum motion with
additionally introduced mass.

Consider the case where the vibration absorber is located in the second link of the
pendulum (Fig. 2).

Figure 2: Double pendulum with dynamic vibration absorber in second limb.

In this situation, the choice of dimensionless parameters should be replaced by m1 to
m2 and l1 to l2. Then the matrices take the form

A =





J1 + l2 +mal
2 l +malla mal

l +malla J2 +mal
2
a mala

mal mala ma



 ,

C =





m1l1 + l +mal 0 0
0 1 +mala ma

0 ma k



 .

Obtain a system of conditions

[λ2(J1 + l2 +mal
2) +m1l1 + l +mal]γ1 + λ2(l +malla)γ2 = 0,
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λ2(l +malla)γ1 + [λ2(J2 +mal
2
a) + 1 +mala]γ2 = 0, (3.10)

λ2lγ1 + γ2λ
2la + γ2 = 0.

To check the consistency of the system express from the second equation (3.10)

γ2 = − λ2l(1 +mala)γ1
λ2J2 + λ2mal2a + 1 +mala

.

Upon substituting this expression into the third equation (3.10) we obtain

λ2lγ1(λ
2J2 + 2 + 2mala − λ2la)

λ2J2 + λ2mal2a + 1 +mala
= 0,

whence λ2 = −2(1 +mala)/(J2 − la).
The condition of compatibility of the system of (3.10) can be represented in the form

δ2 = l3ama[(4l
2 + 4J1 + 2l)ma + 2l+ 2m1l1]− l2a[(6l

2 + 2lJ2)m
2
a − (l − 2lJ2 − 2m1l1J2+

+6J1 + 6l2)ma − l −m1l1] + la[(2l
2m2

a + 2J1ma + 2mal
2)J2 − 10mal

2 + 2J1+

+2l2]− (mal +m1l1 + l)J2
2 + (2J1 + 2mal

2 + 2l2)J2 − 4l2 = 0. (3.11)

Similarly to the first case by selecting la that does not satisfy equality (3.11) asymp-
totic stability of the studied solutions can be obtained.

It is possible to verify that the conditions of asymptotic stability obtained by using
the Routh–Hurwitz criterion, are also satisfied for δ2 6= 0.

Remark 3.1 In the case when equality (3.7) or (3.11) holds, this fact does not
prevent the asymptotic stability of equilibrium. The linear approximation has a pair
of pure imaginary roots, and we get the critical case in Liapunov sense. To prove the
asymptotic stability, the Liapunov function may be constructed [8]. This function is
a sum of positively defined quadratic form and form of fourth order and has negative
derivative on time. Basically, this procedure is not difficult, but it leads to extremely
huge analytical expressions for coefficients of the function (and its derivative) and cannot
be given here.

Remark 3.2 The approach employed to prove the asymptotic stability of the motion
is relatively simple and much more easier than the use of determinants or innors tech-
nique. However, it does not provide the estimation of the damping rate for perturbed
oscillations of primary system. For this purpose our approach can be modified, or added
by some special evaluating procedure. Obviously, in exchange for this gain, it (approach)
will lose a part of simplicity.

We don’t discuss now the problem about choice of absorbers parameters with
the aim to optimize the decaying rate. For arbitrary set of the pendulum
parameters this problem leads to extrema problem for function of high order
and, probably, has no explicit finite solution. However, if the pendulum mass
distribution is given, numerical calculations may help. Our simulations witness,
that configuration B with small distance la is a bet, and values k, h strongly
depend on primary system parameters. For example, with m1 = m2 = m,
l1 = l2 = l,J1 = J2 = ml2, m̃a = 2m/5, for configuration A one gets ˜la = 0.552,
˜k = 0.45,˜h = 0.463, and σ = max{Reλj} ≈ −0.0140. For configuration B

corresponding values are ˜la = 0.05, ˜k = 0.486,˜h = 0.234, and σ = max{Reλj} ≈
≈ −0.0943.
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4 Conclusion

In the paper we prove that attaching a DVA to double pendulum stabilizes its equilibrium
i.e. provides the exponential stability. Special simple procedure to verify the conditions
of stabilization is applied. Some aspects of the optimal absorber’s configuration are
discussed.
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Abstract: This paper presents the formulation of the time-fractional generalized
Equal Width Wave (EWW) equation and generalized Equal Width Wave-Burgers
(EWW-Burgers) equation using the Euler-Lagrange variational technique in the
Riemann-Liouville derivative sense, and derive respectively an approximate solitary
wave solution. Our results witness that He’s variational-iteration method was very
efficient and powerful technique in finding the solution of the proposed equation.
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1 Introduction

The generalized EWW equation has been used to describe approximately the unidirec-
tional propagation of the regularized long wave in certain nonlinear dispersive systems [1],
and has been proposed by Benjamin, Bona and Mahony as a model for small-amplitude
long waves on the surface of water in a channel [2]. In physical situations one has unidi-
rectional waves propagating in a water channel, long-crested waves in near-shore zones
and many others. This equation also serves as an alternative model to the generalized
regularised long wave equation and generalized Korteweg-de Vries equation (KdV) [3–5].

During the past three decades or so, fractional calculus has gained considerable pop-
ularity and importance as generalizations of integer-order evolution equations, and is
applied to model problems in neurons, hydrology, viscoelasticity and rheology, image
processing, mechanics, mechatronics, physics, finance and control theory, see [6–11]. If
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the Lagrangian of conservative system is constructed using fractional derivatives, the
resulting equations of motion can be nonconservative. Therefore, in many cases, the
real physical processes could be modeled in a reliable manner using fractional-order dif-
ferential equations rather than integer-order equations [12]. In [13], the semi-inverse
method has been used to derive the Lagrangian of the KdV equation, the time operator
of the Lagrangian of the KdV equation has been transformed into fractional domain in
terms of the left-Riemann-Liouville fractional differential operator, the variational of the
functional of this Lagrangian leads neatly to Euler-Lagrange equation. Based on the
stochastic embedding theory, Cresson [14] defined the fractional embedding of differen-
tial operators and provided a fractional Euler-Lagrange equation for Lagrangian systems,
then investigated a fractional Noether theorem and a fractional Hamiltonian formulation
of fractional Lagrangian systems. Herzallah and Baleanu [15] presented the necessary and
sufficient optimality conditions for the Euler-Lagrange fractional equations of fractional
variational problems with determining in which spaces the functional must exist. Ma-
linowska [16] proposed the Euler-Lagrange equations for fractional variational problems
with multiple integrals and proved the fractional Noether-type theorem for conservative
and nonconservative generalized physical systems. Riewe [17] formulated a version of
the Euler-Lagrange equation for problems of calculus of variation with fractional deriva-
tives. Wu and Baleanu [18] developed some new variational-iteration formulae to find
approximate solutions of fractional differential equations and determined the Lagrange
multiplier in a more accurate way. For generalized fractional Euler-Lagrange equations
we can refer to the works by Odzijewicz [19, 20]. Other known results can be found in
Agrawal [21–23], Baleanu et al [24], Inokuti et al [25] and Zhang [26]. In view of the
fact that most of physical phenomena may be considered as nonconservative, they can be
described using fractional-order differential equations. Recently, several methods have
been used to solve nonlinear fractional evolution equation using techniques of nonlinear
analysis, such as Adomian decomposition method [27], homotopy analysis method [28,29]
and homotopy perturbation method [30]. It was mentioned that the variational-iteration
method has been used successfully to solve different types of integer and fractional non-
linear evolution equations. Making use of the variational-iteration method, this work’s
main motivation is to formulate the time-fractional generalized EWW equation and gen-
eralized EWW-Burgers equation and to derive an approximate solitary wave solution,
respectively.

This paper is organized as follows: Section 2 states some background material from
fractional calculus. Section 3 presents the principle of He’s variational-iteration method.
Sections 4 and 5 are devoted to describing the formulation of the time-fractional general-
ized EWW equation and generalized EWW-Burgers equation using the Euler-Lagrange
variational technique and to deriving an approximate solitary wave solution, respec-
tively. Section 6 makes some analysis for the obtained graphs and figures and discusses
the present work.

2 Preliminaries

We recall the necessary definitions for the fractional calculus (see, e.g. [31–33]) which is
used throughout the remaining sections of this paper.

Definition 2.1 A real multivariable function ϕ(x, t), t > 0 is said to be in the
space Cγ , γ ∈ R, with respect to t if there exists a real number p > γ, such that



412 Y. ZHANG

ϕ(x, t) = tpϕ1(x, t), where ϕ1 ∈ C(Ω × T ), Ω ⊆ R and T = [0, t0](t0 > 0). Obviously,
Cγ ⊂ Cδ if δ ≤ γ.

Definition 2.2 The left-hand side Riemann-Liouville fractional integral of a function
ϕ ∈ Cγ , (γ ≥ −1) is defined by

0I
α
t ϕ(x, t) =

1

Γ(α)

∫ t

0

(t− τ)α−1ϕ(x, τ)dτ, α > 0, t ∈ T,

0I
0
t ϕ(x, t) = ϕ(x, t).

Definition 2.3 The Riemann-Liouville fractional derivatives of the order n − 1 ≤
α < n of a function ϕ ∈ Cγ , (γ ≥ −1) are defined as

0D
α
t ϕ(x, t) =

1

Γ(n− α)

∂n

∂tn

∫ t

0

(t− τ)n−α−1ϕ(x, τ)dτ,

tD
α
t0
ϕ(x, t) =

1

Γ(n− α)

∂n

∂tn

∫ t0

t

(τ − t)n−α−1ϕ(x, τ)dτ, t ∈ T.

Lemma 2.1 The integration of Riemann-Liouville fractional derivative of the order

0 < α < 1 of the functions ϕ, φ, tD
α
t0
ϕ(x, t) and 0D

α
t φ(x, t) ∈ C(Ω × T ) by parts are

given by the rule
∫

T

ϕ(x, t)0D
α
t φ(x, t)dt =

∫

T

φ(x, t)tD
α
t0
ϕ(x, t)dt.

Definition 2.4 The Riesz fractional integral of the order n−1 ≤ α < n of a function
ϕ ∈ Cγ , (γ ≥ −1) is defined as

R
0 I

α
t ϕ(x, t) =

1

2

(

0I
α
t ϕ(x, t) + tI

α
t0
ϕ(x, t)

)

=
1

2Γ(α)

∫ t0

0

|t− τ |α−1ϕ(x, τ)dτ,

where 0I
α
t and tI

α
t0

are respectively the left- and right-hand side Riemann-Liouville frac-
tional integral operators.

Definition 2.5 The Riesz fractional derivative of the order n − 1 ≤ α < n of a
function ϕ ∈ Cγ , (γ ≥ −1) is defined by

R
0 D

α
t ϕ(x, t) =

1

2

(

0D
α
t ϕ(x, t) + (−1)ntD

α
t0
ϕ(x, t)

)

=
1

2Γ(n− α)

dn

dtn

∫ t0

0

|t− τ |n−α−1ϕ(x, τ)dτ,

where 0D
α
t and tD

α
t0

are respectively the left- and right-hand side Riemann-Liouville
fractional differential operators.

Lemma 2.2 Let α > 0 and β > 0 be such that n − 1 < α < n, m − 1 < β < m
and α + β < n, and let ϕ ∈ L1(Ω× T ) and 0I

m−α
t ϕ ∈ ACm(Ω × T ). Then we have the

following index rule:

R
0 D

α
t

(

R
0 D

β
t ϕ(x, t)

)

= R
0 D

α+β
t ϕ(x, t)−

m
∑

i=1

R
0 D

β−i
t ϕ(x, t)|t=0

t−α−i

Γ(1− α− i)
.

Remark 2.1 One can express the Riesz fractional differential operator R
0 D

α−1
t of the

order 0 < α < 1 as the Riesz fractional integral operator R
0 I

1−α
τ , i.e.

R
0 D

α−1
t ϕ(x, t) = R

0 I
1−α
t ϕ(x, t), t ∈ T.
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3 Variational-iteration Method

The variational-iteration method [34–36] provides an effective procedure for explicit and
solitary wave solutions of a wide and general class of differential systems representing
real physical problems. Moreover, the variational-iteration method can overcome the
foregoing restrictions and limitations of approximate techniques so that it provides us
with a possibility to analyze strongly nonlinear evolution equations. Therefore, we extend
this method to solve the time-fractional generalized EWW equation. The basic features
of the variational-iteration method are outlined as follows.

Considering a nonlinear evolution equation consists of a linear part Lu, nonlinear
part Nu, and a free term f = f(x, t) represented as

Lu+Nu = f. (1)

According to the variational-iteration method, the n+ 1-th approximate solution of (1)
can be read using iteration correction functional as

un+1 = un +

∫ t

0

λ(τ)
(

Lũ+N ũ− f
)

dτ, (2)

where λ(τ) is a general Lagrange’s multiplier, which can be identified via the variational
theory and ũ is considered as a restricted variation function which means δũ = 0. Ex-
treming the variation of the correction functional (2) leads to the Lagrangian multiplier
λ(τ). The initial iteration u0 can be used as the initial value u(x, 0), as n tends to infinity,
the iteration leads to the solitary wave solution of (1), i.e.

u = lim
n→∞

un.

4 Time-fractional Generalized EWW Equation

In this section, He’s variational-iteration method is applied to solve time-fractional gen-
eralized EWW equation

R
0 D

α
t u+ aupux − µuxxt = 0,

where a 6= 0, p and µ > 0, u = u(x, t) is a field variable, x ∈ Ω ⊆ R is a space
coordinate in the propagation direction of the field and t ∈ T = [0, t0](t0 > 0) is the
time, the subscripts denote the partial differentiation of the function u with respect to
the parameter x and t, R

0 D
α
t is the Riesz fractional derivative.

The generalized EWW equation in (1+1) dimensions is given as

ut + aupux − µuxxt = 0. (3)

Employing a potential function v on the field variable, set u = vx yields the potential
equation of the generalized EWW equation (3) in the form,

vxt + avpxvxx − µvxxxt = 0. (4)

The Lagrangian of this generalized EWW equation (3) can be defined using the semi-
inverse method [37, 38] as follows. The functional of the potential equation (4) can be
represented as

J(v) =

∫

Ω

dx

∫

T

(

v
(

c1vxt + ac2v
p
xvxx − µc3vxxxt

)

)

dt, (5)
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with ci (i = 1, 2, 3) as an unknown constant to be determined later. Integrating (5) by
parts and taking vx|∂Ω = vx|∂T = vxxt|∂Ω = 0 yield

J(v) =

∫

Ω

dx

∫

T

(

− c1vtvx − ac2
p+ 1

vp+2
x + µc3vxxtvx

)

dt. (6)

The constants ci (i = 1, 2, 3) can be determined taking the variation of the functional (6)
to make it optimal. By applying the variation of the functional, integrating each term
by parts, and making use of the variation optimum condition of the functional J(v), it
yields the following representation

2c1vtx + (p+ 2)ac2v
p
xvxx − 2µc3vxxxt = 0. (7)

Note that the obtained result (7) is equivalent to (4), so one has that the constants
ci (i = 1, 2, 3) are respectively

c1 =
1

2
, c2 =

1

p+ 2
, c3 =

1

2
.

In addition, the functional representation given by (6) obtains directly the Lagrangian
form of the generalized EWW equation,

L(vt, vx, vxxt) = −1

2
vtvx − a

(p+ 1)(p+ 2)
vp+2
x +

µ

2
vxxtvx.

Similarly, the Lagrangian of the time-fractional version of the generalized EWW equa-
tion could be read as

F (0D
α
t v, vx, vxxt) = −1

2
0D

α
t vvx − a

(p+ 1)(p+ 2)
vp+2
x +

µ

2
vxxtvx, α ∈]0, 1]. (8)

Then the functional of the time-fractional generalized EWW equation will take the rep-
resentation

J(v) =

∫

Ω

dx

∫

T

F (0D
α
t vt, vx, vxxt)dt, (9)

where the time-fractional Lagrangian F (0D
α
t vt, vx, vxx, vxxt, vxxx) is given by (8). Fol-

lowing Agrawal’s method [21–23], the variation of functional (9) with respect to v leads
to

δJ(v) =

∫

Ω

dx

∫

T

( ∂F

∂0Dα
t v

δ(0D
α
t v) +

∂F

∂vx
δvx +

∂F

∂vxxt
δvxxt

)

dt. (10)

By Lemma 2.1, upon integrating the right-hand side of (10), one has

δJ(v) =

∫

Ω

dx

∫

T

(

tD
α
T

( ∂F

∂0Dα
t v

)

− ∂

∂x

( ∂F

∂vx

)

− ∂3

∂x2∂t

( ∂F

∂vxxt

)

)

δvdt,

noting that δv|∂T = δv|∂Ω = δvx|∂Ω = δvxx|∂T = 0.
Obviously, optimizing the variation of the functional J(v), i.e., δJ(v) = 0, yields the

Euler-Lagrange equation for time-fractional generalized EWW equation in the following
representation

tD
α
T

( ∂F

∂0Dα
t v

)

− ∂

∂x

( ∂F

∂vx

)

− ∂3

∂x2∂t

( ∂F

∂vxxt

)

= 0. (11)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 14 (4) (2014) 410–425 415

Substituting the Lagrangian of the time-fractional generalized EWW equation (8) into
Euler-Lagrange formula (11) gives

−1

2
tD

α
T0
vx +

1

2
0D

α
t vx + avpxvxx − µvxxxt = 0.

Once again, substituting the potential function vx for u, yields the time-fractional
generalized EWW equation for the state function u as

1

2

(

0D
α
t u− tD

α
T0
u
)

+ aupux − µuxxt = 0. (12)

According to the Riesz fractional derivative R
0 D

α
t u, the time-fractional generalized

EWW equation represented in (12) can be written as

R
0 D

α
t u+ aupux − µuxxt = 0. (13)

Acting from the left-hand side by the Riesz fractional operator R
0 D

1−α
t on (13) leads to

∂

∂t
u− R

0 D
α−1
t u|t=0

tα−2

Γ(α− 1)
+ R

0 D
1−α
t

(

aupux − µuxxt

)

= 0, (14)

from Lemma 2.2. In view of the variational-iteration method, combining with (14), the
n + 1-th approximate solution of (13) can be read using iteration correction functional
as

un+1 = un +

∫ t

0

λ(τ)

(

∂

∂τ
un − R

0 D
α−1
τ un|τ=0

τα−2

Γ(α− 1)

+ R
0 D

1−α
τ

(

aũp
n

∂

∂x
ũn − µ

∂3

∂x2∂t
ũn

)

)

dτ,

(15)

where the function ũn is considered as a restricted variation function, i.e., δũn = 0. The
extreme of the variation of (15) subject to the restricted variation function straightfor-
wardly yields

δun+1 = δun +

∫ t

0

λ(τ)δ
∂

∂τ
undτ = δun + λ(τ)δun|τ=t −

∫ t

0

∂

∂τ
λ(τ)δundτ = 0.

This representation reduces the following stationary conditions

∂

∂τ
λ(τ) = 0, 1 + λ(τ) = 0,

which converted to the Lagrangian multiplier at λ(τ) = −1. Therefore, the correction
functional (15) takes the following form

un+1 = un −
∫ t

0

(

∂

∂τ
un − R

0 I
1−α
τ un|τ=0

τα−2

Γ(α− 1)
+ R

0 D
1−α
τ

(

aup
n

∂

∂x
un − µ

∂3

∂x2∂t
un

)

)

dτ,

(16)

since α − 1 < 0, the fractional derivative operator R
0 D

α−1
t reduces to fractional integral

operator R
0 I

1−α
t by Remark 2.1.
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In view of the right-hand side Riemann-Liouville fractional derivative is interpreted
as a future state of the process in physics. For this reason, the right-derivative is usually
neglected in applications, when the present state of the process does not depend on the
results of the future development, and so the right-derivative is used equal to zero in the
following calculations. The zero order solitary wave solution can be taken as the initial
value of the state variable, which is taken in this case as

u0(x, t) = u(x, 0) =
( (p+ 1)(p+ 2)c

2a
sech2

( p

2
√
µ
(x − x0)

)

)
1

p

,

where c and x0 are constants.

Substituting this zero order solitary wave solution into (16) and using the Definition
2.5 lead to the first order solitary wave solution

u1(x, t) =
((p+ 1)(p+ 2)c

2a
sech2

( p

2
√
µ
(x− x0)

)

)
1

p

+
tα

Γ(α+ 1)

a√
µ

( (p+ 1)(p+ 2)c

2a

)
1+p

p

× sinh
( p

2
√
µ
(x− x0)

)

sech
2+3p

p

( p

2
√
µ
(x− x0)

)

.

Substituting first order solitary wave solution into (16) and using the Definition 2.5
then lead to the second order solitary wave solution in the following form

u2(x, t) =
((p+ 1)(p+ 2)c

2a
sech2

( p

2
√
µ
(x− x0)

)

)
1

p

+
tα

Γ(α+ 1)

(p+ 1)2(p+ 2)2c2

2ap

((p+ 1)(p+ 2)c

2a
sech2

( p

2
√
µ
(x− x0)

)

)
1−p

p

× sinh
( p

2
√
µ
(x− x0)

)

sech5
( p

2
√
µ
(x− x0)

)

− t2α

Γ(2α+ 1)

((p+ 1)(p+ 2)c

2a

)
1+p

p

(

acp(p+ 1)(p+ 2)

4µ
sech

2+4p

p

( p

2
√
µ
(x− x0)

)

− ac(p+ 1)(p+ 2)(2 + 3p)

4µ
sinh2

( p

2
√
µ
(x − x0)

)

sech
2+6p

p

( p

2
√
µ
(x− x0)

)

− a2c(p+ 1)(p+ 2)√
µ

sinh2
( p

2
√
µ
(x− x0)

)

sech
2+6p

p

( p

2
√
µ
(x− x0)

)

)

− t3αΓ(2α+ 1)

Γ(3α+ 1)Γ2(α+ 1)

ap(p+ 1)2(p+ 2)2c2

8µ
√
µ

((p+ 1)(p+ 2)c

2a

)
1+p

p

×
(

psech
2

p

( p

2
√
µ
(x− x0)

)

− (2 + 3p) sinh2
( p

2
√
µ
(x− x0)

)

× sech
2+2p

p

( p

2
√
µ
(x− x0)

)

)

sinh
( p

2
√
µ
(x − x0)

)

sech7
( p

2
√
µ
(x− x0)

)
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+
t2α−1a

2
√
µΓ(2α)

( (p+ 1)(p+ 2)c

2a

)
1+p

p

(

(−3p− 4p2) sinh
( p

2
√
µ
(x − x0)

)

× sech
2+3p

p

( p

2
√
µ
(x− x0)

)

+ (1 + 2p)(2 + 3p) sinh3
( p

2
√
µ
(x− x0)

)

× sech
2+5p

p

( p

2
√
µ
(x− x0)

)

)

.

Making use of Definition 2.5 and the Maple or Mathematics and substituting n − 1
order solitary wave solution into (16), lead to the solitary wave solution u3, u4, . . .,
un, . . .. As n tends to infinity, the iteration leads to the solitary wave solution of the
time-fractional generalized EWW equation

u(x, t) = lim
n→∞

un =
((p+ 1)(p+ 2)c

2a
sech2

( p

2
√
µ
(x− ct− x0)

)

)
1

p

.

Selecting the appropriate values of p, a, µ, c and x0, we can present the distribution
function u as a 3-dimensions graph and 2-dimensions graph to the approximate solitary
wave solution.

Figure 1: The distribution function u as a 3-dimensions graph for different order α.
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Figure 2: The distribution function u as a function of space x at time t = 1 for different order α: (B1)

3-dimensions graph, (B2) 2-dimensions graph.

Figure 3: The distribution function u as a function of time t at space x = 1 of the different order α:

(C1) 3-dimensions graph, (C2) 2-dimensions graph.

5 Time-fractional Generalized EWW-Burgers Equation

In this section, He’s variational-iteration method is applied to solve time-fractional gen-
eralized EWW-Burgers equation

R
0 D

α
t u+ aupux − λuxx − µuxxt = 0.

The generalized EWW-Burgers equation in (1+1) dimensions is given as

ut + aupux − λuxx − µuxxt = 0. (17)

Employing a potential function v on the field variable, and setting u = vx yield the
potential equation of the generalized EWW-Burgers equation (17) in the form,

vxt + avpxvxx − λvxxx − µvxxxt = 0. (18)

The Lagrangian of this generalized EWW-Burgers equation (17) can be defined using
the semi-inverse method as follows. The functional of the potential equation (18) can be
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represented as

J(v) =

∫

Ω

dx

∫

T

(

v
(

d1vxt + ad2v
p
xvxx − λd3vxxx − µd4vxxxt

)

)

dt, (19)

with di (i = 1, 2, 3, 4) as an unknown constant to be determined later. Integrating (19)
by parts and taking vx|∂Ω = vx|∂T = vxxt|∂Ω = 0 yield

J(v) =

∫

Ω

dx

∫

T

(

− d1vtvx − ad2
p+ 1

vp+2
x + λd3vxxvx + µd4vxxtvx

)

dt. (20)

The constants di (i = 1, 2, 3, 4) can be determined taking the variation of the functional
(20) to make it optimal. By applying the variation of the functional, integrating each
term by parts, and making use of the variation optimum condition of the functional J(v),
yield the following representation

2d1vtx + (p+ 2)ad2v
p
xvxx − 2λd3vxxx − 2µd4vxxxt = 0. (21)

Notice that the obtained result (21) is equivalent to (18), so one has that the constants
di (i = 1, 2, 3, 4) are respectively

d1 =
1

2
, d2 =

1

p+ 2
, d3 = d4 =

1

2
.

In addition, the functional representation given by (20) obtains directly the Lagrangian
form of the generalized EWW-Burgers equation,

L(vt, vx, vxx, vxxt) = −1

2
vtvx − a

(p+ 1)(p+ 2)
vp+2
x +

λ

2
vxxvx +

µ

2
vxxtvx.

Similarly, the Lagrangian of the time-fractional version of the generalized EWW-
Burgers equation could be read as

F (0D
α
t v, vx, vxx, vxxt) = −1

2
0D

α
t vvx − a

(p+ 1)(p+ 2)
vp+2
x +

λ

2
vxxvx +

µ

2
vxxtvx,

α ∈]0, 1].
(22)

Then the functional of the time-fractional generalized EWW-Burgers equation will take
the form

J(v) =

∫

Ω

dx

∫

T

F (0D
α
t vt, vx, vxx, vxxt)dt, (23)

where the time-fractional Lagrangian F (0D
α
t vt, vx, vxx, vxxt, vxxx) is given by (22). Fol-

lowing Agrawal’s method, the variation of functional (23) with respect to v leads to

δJ(v) =

∫

Ω

dx

∫

T

( ∂F

∂0Dα
t v

δ(0D
α
t v) +

∂F

∂vx
δvx +

∂F

∂vxx
δvxx +

∂F

∂vxxt
δvxxt

)

dt. (24)

By Lemma 2.1, upon integrating the right-hand side of (24), one has

δJ(v) =

∫

Ω

dx

∫

T

(

tD
α
T

( ∂F

∂0Dα
t v

)

− ∂

∂x

( ∂F

∂vx

)

+
∂2

∂x2

( ∂F

∂vxx

)

− ∂3

∂x2∂t

( ∂F

∂vxxt

)

)

δvdt,
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noting that δv|∂T = δv|∂Ω = δvx|∂Ω = δvxx|∂T = 0.
Obviously, optimizing the variation of the functional J(v), i.e., δJ(v) = 0, yields the

Euler-Lagrange equation for time-fractional generalized EWW-Burgers equation in the
following form

tD
α
T

( ∂F

∂0Dα
t v

)

− ∂

∂x

( ∂F

∂vx

)

+
∂2

∂x2

( ∂F

∂vxx

)

− ∂3

∂x2∂t

( ∂F

∂vxxt

)

= 0. (25)

Substituting the Lagrangian of the time-fractional generalized EWW-Burgers equation
(22) into Euler-Lagrange formula (25) one obtains

−1

2
tD

α
T0
vx +

1

2
0D

α
t vx + avpxvxx − λvxxx − µvxxxt = 0.

Once again, substituting the potential function vx for u, yields the time-fractional
generalized EWW-Burgers equation for the state function u as

1

2

(

0D
α
t u− tD

α
T0
u
)

+ aupux − λuxx − µuxxt = 0. (26)

According to the Riesz fractional derivative R
0 D

α
t u, the time-fractional generalized

EWW-Burgers equation represented in (26) can be written as

R
0 D

α
t u+ aupux − λuxx − µuxxt = 0. (27)

Acting from the left-hand side by the Riesz fractional operator R
0 D

1−α
t on (27) leads to

∂

∂t
u− R

0 D
α−1
t u|t=0

tα−2

Γ(α− 1)
+ R

0 D
1−α
t

(

aupux − λuxx − µuxxt

)

= 0, (28)

from Lemma 2.2. In view of the variational-iteration method, combining with (28), the
n + 1-th approximate solution of (27) can be read using iteration correction functional
as

un+1 = un +

∫ t

0

λ(τ)

(

∂

∂τ
un − R

0 D
α−1
τ un|τ=0

τα−2

Γ(α− 1)

+ R
0 D

1−α
τ

(

aũp
n

∂

∂x
ũn − λ

∂2

∂x2
ũn − µ

∂3

∂x2∂t
ũn

)

)

dτ,

(29)

where the function ũn is considered as a restricted variation function, i.e., δũn = 0.
By the same argument as in Section 4, it is converted to the Lagrangian multiplier at
λ(τ) = −1. Therefore, the correction functional (29) takes the following form

un+1 = un −
∫ t

0

(

∂

∂τ
un − R

0 I
1−α
τ un|τ=0

τα−2

Γ(α− 1)

+ R
0 D

1−α
τ

(

aup
n

∂

∂x
un − λ

∂2

∂x2
un − µ

∂3

∂x2∂t
un

)

)

dτ,

(30)

since α − 1 < 0, the fractional derivative operator R
0 D

α−1
t reduces to fractional integral

operator R
0 I

1−α
t by Remark 2.1.
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The zero order solitary wave solution can be taken as the initial value of the state
variable, which is taken in this case as

u0(x, t) =
(

A−A tanhκ(x− x0)−
A

2
sech2κ(x− x0)

)
1

p

.

Substituting zero order solitary wave solution into (30) and using the Definition 2.5
lead to the first order solitary wave solution

u1(x, t) =
(

A−A tanhκ(x− x0)−
A

2
sech2κ(x− x0)

)
1

p

− tα

Γ(α+ 1)

[

a

p

(

A−A tanhκ(x− x0)−
A

2
sech2κ(x− x0)

)
1

p

×
(

Aκsech2κ(x− x0) tanhκ(x− x0)−Aκsech2κ(x− x0)
)

− λ(1 − p)

p2

(

A−A tanhκ(x− x0)−
A

2
sech2κ(x− x0)

)
1−2p

p

×
(

Aκsech2κ(x− x0) tanhκ(x− x0)−Aκsech2κ(x− x0)
)2

− λ

p

(

A−A tanhκ(x− x0)−
A

2
sech2κ(x− x0)

)
1−p

p

×
(

2Aκ2sech2κ(x− x0) tanhκ(x− x0)− 2Aκ2sech2κ(x− x0) tanh
2 κ(x− x0)

+Aκ2sech4κ(x− x0)
)

]

.

Substituting first order solitary wave solution into (30) and using the Definition 2.5
then lead to the solitary wave solution u2, u3, . . ., un, . . .. As n tends to infinity, the
iteration leads to the solitary wave solution of the time-fractional generalized EWW-
Burgers equation

u(x, t) = lim
n→∞

un =
(

A−A tanhκ(x− ct− x0)−
A

2
sech2κ(x− ct− x0)

)
1

p

.

Selecting the appropriate values of p, a, λ, µ,A, κ, c and x0, we can present the distri-
bution function u as a 3-dimensions graph and 2-dimensions graph to the approximate
solitary wave solution.
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Figure 4: The distribution function u as a 3-dimensions graph for different order α.

Figure 5: The distribution function u as a function of space x at time t = 1 for different order α: (B1)

3-dimensions graph, (B2) 2-dimensions graph.

Figure 6: The distribution function u as a function of time t at space x = −1 for different order α:

(C1) 3-dimensions graph, (C2) 2-dimensions graph.
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6 Discussion

The purpose of the present work is to explore the effect of the fractional order derivative
on the structure and propagation of the resulting solitary waves obtained from time-
fractional generalized EWW equation. We derive the Lagrangian of the generalized
EWW equation by the semi-inverse method, then take a similar form of Lagrangian
to the time-fractional generalized EWW equation. Using the Euler-Lagrange variational
technique, we continue our calculations until the high-order iteration. During this period,
our approximate calculations are carried out concerning the solution of the time-fractional
generalized EWW equation as well as generalized EWW-Burgers equation. The results
of approximate solitary wave solution of time-fractional generalized EWW equation and
generalized EWW-Burgers equation are obtained. In addition, 3-dimensional representa-
tion of the solution u for the time-fractional generalized EWW equation and generalized
EWW-Burgers equation with space x and time t for different values of the order α are pre-
sented respectively in Figures 1 and 4, the solution u is still a single soliton wave solution
for all values of the order α. It shows that the balancing scenario between nonlinearity
and dispersion is still valid. Figures 2 and 5 present respectively the change of amplitude
and width of the soliton due to the variation of the order α, 2- and 3-dimensional graphs
depicted the behavior of the solution u at time t = 1 corresponding to different values
of the order α. This behavior indicates that the increases of the value α increasing both
the height and the width of the solitary wave solution. That is, the order α can be used
to modify the shape of the solitary wave without change of the nonlinearity and the dis-
persion effects in the medium. Figures 3 and 6 are respectively devoted to studying the
representation between the amplitude of the soliton and the fractional order at different
time values, these figures show that at the same time, the increasing of the fractional α
decreases the amplitude of the solitary wave to some value of α.
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