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1 Introduction

Let Q be a bounded open set of RY, p be a real number such that 2 < p < 00, Q =
Q x [0,T] and w = {w;(z) : 0 < i < N} be a vector of weight functions (i.e., every
component w;(x) is a measurable almost everywhere strictly positive function on ),
satisfying some integrability conditions (see Section 2). Let Au = —div(a(z,t,u, Du))
be a Leray-Lions operator defined from the weighted Sobolev space LP(0,T; Wol’p(Q, w))
into its dual L?' (0, T; W12 (Q, w*)).
Now, we consider the degenerated parabolic problem associated with the differential
equation
Ob(x,u)
ot

+ Au+ H(x,t,u,Du) = p in Q,

w=0 on d0x]0,T], (2)
b(x,u)(t =0) = b(x,ug) on Q.

In problem (@), the data p and b(z,ug) are in LY(Q) + LP (0,T; W~ (Q,w*)) and
LY(Q). The operator —div(a(z,t,u, Du)) is a Leray-Lions operator which is coercive,
b(x,u) is unbounded function on u, H is a nonlinear lower order term and p = f — divF

with f € LY(Q), F € ]rv[ LY (Q,w}).
=1

Problem (@) is studied in [2] with z € L¥' (0, 7; W~1#(Q,w*)) and under the strong
hypothesis relatively to H, more precisely they supposed that b(x,u) = u and the non-
linearity H satisfying the sign condition

H(w,t,5,€)s > 0, (3)

and the growth condition of the form
N
[H(w,t5,6)] < b(s) (D wil@)|& ] + c(a,1)). (4)
i=1

In the case where the second member f € L'(Q) , @) is studied in [2].

It is our purpose to prove the existence of renormalized solution for (2)) in the setting
of the weighted Sobolev space without the sign condition (B]), and without the following
coercivity condition

N
H(z,t,5,6)| > 83 wi(@)lGlP for |s| > 1, (5)

i=1

our growth condition on H is simpler than (@) it is a growth with respect to Du and
no growth condition with respect to u (see assumption (H3) below), the second term p
belongs to L'(Q) + L? (0, T; W1 (Q, w*)). Note that our paper generalizes [2].

In the case of H(z,t,u, Du) = div(p(u)) is studied by H. Redwane in the classical
Sobolev spaces WP(Q) and Orlicz spaces see [18,20].

The notion of renormalized solution was introduced by DiPerna and Lions [I1] in their
study of the Boltzmann equation. This notion was then adapted to an elliptic version of
@) by Boccardo et al [7] when the right hand side is in W~1#'(Q2), by Rakotoson [I8]
when the right hand side is in L'(Q), and finally by Dal Maso, Murat, Orsina and
Prignet [I0] for the case of the right hand side being general measure data. Our paper
can be considered as a continuation of [3H5] in the case where F' = 0.
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2 Preliminaries

Let © be a bounded open set of RY, p be a real number such that 2 < p < oo and
w = {w;(z), 0 <i < N} be a vector of weight functions; i.e., every component w;(z) is
a measurable function which is strictly positive a.e. in €. Further we suppose in all our
considerations that, there exists

-0

ro > max(N,p) such that w,° " € Li (), (6)
w; € Llloc(Q)a (7)
=
wip71 € Llloc(Q)’ (8)
for any 0 < i < N. We denote by WP(Q,w) the space of real-valued functions u €
LP(Q, wp) such that the derivatives in the sense of distributions fulfill
ou
axi

Which is a Banach space under the norm

s = [ [ Juto)Pun(e dz+Z/z| D (e o] )

Condition (7)) implies that C"O( ) is a space of W1P(2,w) and consequently, we can
introduce the subspace V = Wy (Q,w) of WP(Q,w) as the closure of C§°(€) with
respect to the norm (@). Moreover, condition (§) implies that WP (Q,w) as well as
WP (2, w) are reflexive Banach spaces.

We recall that the dual space of We1ghted Sobolev spaces Wo P(Q,w) is equivalent to

€ LP(Qw;) fori=1,...,N.

W= (Q w*), where w* = {w = w, 4 ,4=0,...,N} and where p’ is the conjugate of

p;ie., p' = P, (see [13]).

3 Basic Assumptions

Assumption (H1)

For 2 < p < 0o, we assume that the expression

Il = (i_vj [ 1% ey as) (10)

is a norm defined on V which is equivalent to the norm (@), and there exists a weight
function o on Q such that, o € L*(Q) and o~ € L1(2). We assume also the Hardy

inequality
(/Q|u(z)|2’odz e Z/ |a“ )dz) v (11)

holds for every u € V with a constant ¢ > 0 independent of u, and moreover, the
imbedding

WP (Q,w) — LP(Q, o), (12)

expressed by the inequality (I]) is compact. Notice that (V, |||-|||v) is a uniformly convex
(and thus reflexive) Banach space.
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Remark 3.1 If we assume that wo(z) = 1 and in addition the integrability condition:

There exists v E]%, +00 [ﬂ[p—il, +oo] such that

N
w;” € LYQ) and w ' €L (Q) foralli=1,...,N. (13)

K2

Notice that the assumptions (7)) and (I3]) imply

Il = (i/{g

which is a norm defined on Wy (€, w) and its equivalent to (@) and that, the imbedding

Ju 1/p
Pay.
5o lPwi@)dr) (14)

WyP (2, w) = L) (15)
is compact for all 1 < g < pj if pv < N(v+1) and for all ¢ > 1 if pr > N(v + 1) where
p1 = ;&7 and pj is the Sobolev conjugate of pi; see [12 pp. 30-31].

Assumption (H2)

b: QxR — R isa Carathéodory function (16)

such that for every x € Q, b(z,.) is a strictly increasing C'-function with b(x,0) = 0.
Next, for any k > 0, there exists A\ > 0 and functions Ay € L>®°(Q2) and By € LP(Q)
such that

ob ab
A < g”’s) < Ay(z) and ’D(ﬂ)\ < By() (17)
S S
for almost every = € Q, for every s such that |s| < k, we denote by Dz(%) the
gradient of % defined in the sense of distributions. For ¢ =1,... N,
N /
i, t,5,€)| < Bu}/? (@) [k, 1) + /75|97 + 3wy (z)]g; P71, (18)
j=1

for a.e. (z,t) € Q,all (s,€) € R x RN, some function k(z,t) € LP (Q) and 8 > 0, here o
and ¢ are as in (H1).

la(@,t,5,€) —alz,t,s,m)](§ —n) >0 forall £ £, (19)
N

a(z,t,5,£).6 > Y _wil&l?, (20)
=1

where « is a strictly positive constant.

Assumption (H3)

Furthermore, let H(z,t,5,€) : @ x R x RN — R be a Carathéodory function such that
for a.e (z,t) € Q and for all s € R, ¢ € RV the growth condition

N

[H (,t,5,€)| < v(x,1) + 9(5)>_wi() &7, (21)

i=1



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 15 (2) (2015) 111

is satisfied, where g : R — R™ is a bounded continuous positive function that belongs to
LY(R), while y(x,t) belongs to L'(Q).
We recall that, for £ > 1 and s in R, the truncation is defined as

S, if |s| <k,
Tk(s){ 5|

ki, if [s| > k.

4 Some Technical Results

Characterization of the time mollification of a function wu.

In order to deal with time derivative, we introduce a time mollification of a function
u belonging to a some weighted Lebesgue space. Thus we define for all g > 0 and all

(z,t) € Q,

Uy = u/ a(z,s)exp(u(s —t))ds where u(x,s) = u(x,s)xo,r)(s)-

oo

Proposition 4.1 [2]
1) if u € LP(Q, w;) then u, is measurable in Q) and é%“ = p(u —uy,) and

HuﬂHLP(Q7wi) < ||UHLP(Q,W)-

2) Ifuc Wol’p(Q,w), then u, — u in Wol’p(Q,w) as p — oo.
3) Ifup —u in Wy P(Q,w) , then (un), — u, in Wy P(Q,w).

Some weighted embedding and compactness results.

In this section we establish some embedding and compactness results in weighted Sobolev
spaces, some trace results, Aubin’s and Simon’s results [21].
Let V =Wy P(Qw), H=L*%Q,0)andlet V* =W~ with (2 < p < o0).
Let X = LP(0,T; Wol’ P(Q,w)). The dual space of X is X* = LPI(O,T, V*) where
% + 1% = 1 and denoting the space W (0,T,V,H) = {ve X : v € X*} endowed with
the norm
ullyy = lully + ol

which is a Banach space. Here u’ stands for the generalized derivative of u, i.e.,

T T
/ o' (t)p(t)dt = —/ uw(t)p' (t)dt for all ¢ € CF°(0,T).
0 0

Lemma 4.1 [19]
1)The evolution triple V.C H CV* is verified.
2) The imbedding W1(0,T,V,H) C C(0,T,H) is continuous.
3) The imbedding Wplp((),T, V,H) C LP(Q,0) is compact.

Lemma 4.2 [2] Let g € L"(Q,~) and let g, € L™(Q, ), with ||gn||Lr(Q,7) <C,
1<r<oo. Ifgn(z) = g(x) a.cin @, then g, — g in L"(Q,7)
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Lemma 4.3 [2]. Assume that

avn

81& 704n+ﬂn m D(Q)

where a,, and B, are bounded respectively in X* and in LY(Q). If v, is bounded in
L?(0,T; Wol’ P(Q,w)), thenv, — v in LY (Q,0c). Further v, — v strongly in L'(Q).

loc

Definition 4.1 Let f € LY(Q), F € H LP(Q,w?) and b(z,up) € L'(R). A real-

valued function u defined on @ is a renormahzed solution of problem (@) if

Ti(u) € LP(0,T; Wy P(Q,w)) for all k >0 and b(x,u) € L=(0,T; L*(Q)),  (22)

/ a(x,t,u, Du)Dudzdt = 0 as m — +oo, (23)
{m<|u|<m+1}

% — div (8" (w)a(z, t,u, Du)) + S"(u)a(z,t,u, Du)Du
+ H(z,t,u, Du)S (u) = fS"(u) — div (S (u)F) + S”(u)FDu in D'(Q), (24)

for all functions S € W2 *°(R) which is piecewise C! and such that S’ has a compact

support in R, where Bg(z,2) = / Ob(z, ) ——=5"(r)dr and
0 T
Bg(x,u)(t =0) = Bg(x,ug) in . (25)

Remark 4.1 Equation (24)) is formally obtained through pointwise multiplication of
equation () by S’(u). However, while a(z, ¢, v, Du) and H(z,t,u, Du) do not in general
make sense in (2), all the terms in (2 have a meaning in D’(Q). Indeed, if M is such
that suppS’ C [—-M, M], the following identifications are made in ([24)):

e S(u) belongs to L>°(Q) since S is a bounded function.
o S'(u)a(z,t,u, Du) identifies with S"(u)a(z,t, Trr(u), DTa(u)) a.e in Q.
Since |Ta(u)] < M a.e in @ and S’'(u) € L>(Q), we obtain from (I¥]) and ([22) that

S"(w)a(x, t, Tar(u), DTh (u eHLp Q,w

o S"(uw)a(zx,t,u, Du)Du identifies with S”(uw)a(z,t, Tas(w), DT (uw)) DTy (u) and
S"(w)a(x, t, Tnr (w), DTar(uw)) DTar(u) € L'(Q).

o S'(u)H(z,t,u, Du) identifies with S'(u)H (x,t,Tar(u), DTa(u)) a.e in Q. Since
|Tar(u)] < M aein @ and S'(u) € L*°(Q), we obtain from (I8) and 21]) that

S'(u)H (x,t, Tas (u), DTy (u) € LH(Q).

e S'(u)f belongs to L'(Q) while S’(u)F belongs to H LP(Q,w}).
e S"(u)FDu identifies with S” (u)F DTy (u) which belongs to LY(Q).
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The above considerations show that equation (24) holds in D’(Q) and that

0Bs(z,u)

S € LY (0, T; W= 2(Q, w*)) + LY(Q).

Due to the properties of S and @4), 25 ¢ LP'(0,T; W1 ' (Q,w*)) + L*(Q), which
implies that S(u) € C°([0,T]; L*(Q2)) so that the initial condition (25) makes sense, since,
due to the properties of S (increasing) and (1), we have

|Bs(z,7) — Bs(z,7")| < Ax(z) |S(r) — S(r")| for all 7,7’ € R. (26)

5 Existence Results

In this section we establish the following existence theorem.

N
Theorem 5.1 Let f € L(Q), F € [[ L? (Q,w}) and ug is a measurable function

=1
such that b(x,ug) € L*(Q). Assume that (H1) and (H2) hold true. Then, there exists at
least a renormalized solution u of the problem (2) in the sense of Definition [{-1}

Proof. Step 1: Approximate problem and a priori estimates.
For n > 0, let us define the following approximation of b, H, f and uo;

bp(z,7) = b(z, Ty (1)) + %r for n > 0. (27)

In view of 7)), b, is a Carathéodory function and satisfies (), there exist A, > 0 and
functions A, € L*(2) and B,, € LP(Q) such that

Oby, (z, 3) Oby(z, s)
a.e. in 2, s € R.
Ho(a,,5,6) = — i lt:8)

1+ | H(, t, 5,6)]

Note that €2, is a sequence of compacts covering the bounded open set 2 and xq,, is its
characteristic function.

fn € ¥ (Q), and f,— f a.e. in Q and strongly in L'(Q) as n — 400, (28)
uon € D(Q), [[bn(; uon) |1 < [|b(2; uo)l L1, (29)
bn(m,u0n) — b(w,up) a.e. in Q and strongly in L'(Q). (30)

Let us now consider the approximate problem:

Oby, (z, up)

5 —div(a(z,t, un, Duy)) + Hy (2, t, up, Duy) = fr — div(F) in D'(Q),

up, =0 in (0,7T) x 09,
b (2, un(t = 0)) = by (x, ugn).
Note that H,(z,t, s, &) satisfies the following conditions

|Hn(z,t,5,8)] < H(x,t,5,§) and  [Hp(z,t,5,8)] < n.
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For all u,v € L?(0,T} Wol’p(Q, w)),
ro_d 1/‘1/ 1/4q
}/ Hy(z,t,u, Du)vdx dt| < (/ |Hy (z,t,u, Du)|T o™ dxdt) (/ |v|qodscdt)
Q Q Q

T o 1/‘],
gn/o (/( o' dr) " dt o] 00y < Co 0l oo it ey -

Moreover, since f, € Lp,((), T, W’lvp,(Q, w*)), proving existence of a weak solution u,, €
LP(0,T; Wy P (2, w)) of BI) is an easy task (see e.g. [15], [2]).

Let ¢ € LP(0,T; W, P(Q,w)) N L(Q) with ¢ > 0, choosing v = exp(G(un))y as
test function in (BI) where G(s) = [~ %dr (the function g appears in (21J)), we have

Obp (x, )
/QTexp(G(un))cpdzdt+/Qa(z,t,un,Dun)D(eXp(G(un))ga)d:cdt

Jr/ H,(z,t,upn, Duy) exp(G(uy))pdzdt = / frn exp(G(uy))pdxdt
Q Q
+/ FD(exp(G(un))p)dadt.
Q
In view of (2I) and (20) we obtain

/Wexp((l(un))gpdzdth/ a(x,t, up, Duy) exp(G(uy))Dpdzdt
Q Q

S/Q'y(z,t)exp(G(un))cpdzdt+/anexp(G(un))<pdzdt

+ / F exp(G(uy))Dodxdt + / FD(exp(G(un)))pdxdt, (32)
Q Q
for all p € LP(0,T; Wy P(Q,w)) N L=(Q) with ¢ > 0.
On the other hand, taking v = exp(—G(uy,))¢ as test function in (FI) we deduce as

in (32) that,

/ L)"(gt’u")exp(—G(un))god:Edt—i— / a(@,t, un, Duy) exp(—G(un)) Dpdrdt
Q Q

—|—/Qv($,t)exp(—G(un))g0dxdtZ/anexp(—G(un))tpdxdt

+/ Fexp(—G(un))Dcpdzdt+/ FD(exp(—G(up)))pdxdt, (33)
Q Q

for all € LP(0,T; Wy P(Q,w)) N L=(Q) with ¢ > 0.
For every 7 €]0, T, let ¢ = T (un) " X(0,7) in B2) we have

/B,’;G(m,un(T))da)—i—/ a(z,t, un, Duy,) exp(G(uy,)) DTy (u,) T dadt
Q

-
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S/ 7(‘@’t)eXp(G(un))Tk(un)+dxdt+ 0 fnexp(G(un))Tk(un)—i_dmdt

—|—/ FD(Tk(un)"’)exp(G(un))dxdt+/ FTk(un)Jrexp(G(un))Dung(un)da)dt (34)
Q Q @

+ / By ¢(x, uon)dz,

Q

" Oby (x, ..
where B} o(z,7) = / %Tk (s)* exp(G(s))ds. Due to the definition of B} , and
’ 0 S ’

|G (un)| < exp (”g”f%) we have

lgll 1
0< / B} ¢, ugn)dz < kexp (T” I, o) | 1 e - (35)
Q

Using B3), B (=, us) >0, Young’s inequality and (20) we obtain

(el

9l
< kexp (T“ (Il gy + Il 2y +e ||F||P

aTk un)

o w; exp(G(uy,))dxdt (36)

T =1

1o o)l e )
Lr' (Q,wy)

1
b | Folun) exsp(Glun)) Dunxu, o) dad.

-

Let us observe that, if we take ¢ = p(u,) = / 9(8)X{s>0yds in (B32)) and using (20) we
0

[/ﬂBQ(z,un x} +oe/z
< ([ atos) e (”“’ﬂ%) (M@ + M allren)

+/ FDupng(n)X{u, >0} exp(G(u,))dxdt
Q

—I—(/Ooog(s)ds)/Q‘FDun

where By (z,7) = / Wp(s) exp(G(s))ds, which implies, since By (z,7) > 0 and
0 S

Young’s inequality,
/{un>0} i—1

9l e
< exp (T“ (M2 @) + 1@y + bt w0110

obtain

8un
Wi G (Un)X {u, >0} exp(G(un))dxdt

g(un)

exp(G (Un)) X {u, >0} drdt,

Ouy, |?
8:131-

wzQ(“n) eXP(G(un))dzdt




116 Y. AKDIM, J. BENNOUNA, M. MEKKOUR AND H. REDWANE
HgHLl(R) al .
+Ci gl exp | ——=| [ DI w; dzdt
@ Q=1
/Z w;? )eXP(G(Un))X{un>o}d$dt
llgll
+02/ 9(s)ds||gll, ex < L) / |F|p w* dx dt
0

Un
0,2 e (G o, 5oyt

Ouy, |*
ox;

we obtain

w; exp(G(uy,))dadt < Cs.

/{un>0} olun) i

0
Similarly, let ¢ = / 9(8)X{s<0}ds as a test function in (B3), we conclude that
U

n

N

/{ o) g(un) >

i=1

Ouy, |?
8:1:1-

w; exp(G(uy))dadt < Cy.

Consequently,
Ouy, |?
81‘1'

w; exp(G(uy))dadt < Cs. (37)

/Qg(un)lj_vz1

where C1,- -, Cs are constants independent of n. We deduce that

8Tk un
ox;

' widzdt < Cg k. (38)

Similarly to (B8) we take ¢ = Tk(uan(o,T) in [B3) we deduce that

0Ty (un,
’“8;‘ ’ widwdt < Cy k. (39)
Combining (B8) and ([BY) we conclude that
||Tk(un)||Lp(0 T; Wl P(Q S 08 k’ (40)

where Cg, C7, Cg are constants independent of n.
Then, Tk(uy) is bounded in LP(0, T; Wy (2, w)), and Tk(u,) converges to vy, weakly
in LP(0,T; W, " (2, w)), and by the compact imbedding (IH) gives

Tk (un) = v strongly in LP(Q, o) and a.e. in Q.
We deduce from the above inequalities (34), (35) and (@0Q) that

/ngﬁG(x,un(T))dx <Ck. (41)
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Let & > 0 be large enough and Br be a ball of 2, we have

kmeas({|un| > k} N Bg x [0,T])

/ / | Tk (wr,)| da dt
{lun|>k}NBr
S/ / | T3 (wy)| dx dt
o JBg
1/ T / 1/p'
<(/ |Tk(un)|padxdt) p(/ / ol dmdt) 3
0 JBg

Ti( 1/
< Tep / Z I (’;z“") dmdt) :

< ck'/?,

which implies

meas({|un| > k} N Br x [0,T]) <

So, we have
lim (meas({|u,| >k} N Bgr x [0,7])) =0.
k——+oo
Now we turn to prove the almost everywhere convergence of u,, and b, (z, uy).
Consider now a function non decreasing g € C?(R) such that gi(s) = s for | | < % and
gr(s) = k for |s| > k. Multiplying the approximate equation by g;(u,), we get

0Bj, n
% — div(a(z,t,un, Duy) gy (un)) + a(z,t, un, Duy)gp (un) Duy,
+ Hp (2, t, un, Dun)g;c(un) = fngl/c(un) - diU(Fg;C(un)) + Fgl/c/(“n)D“na (42)

where B} (z, 2) :/ Mg;(s)ds
0 0s

As a consequence of ([@0]), we deduce that gx(u,) is bounded in L?(0, T} Wol’ P(Q,w))
and % is bounded in L'(Q) + LY 0,T; W_l’p/(Q, w*)). Due to the properties of
gr and ([IT), we conclude that % is bounded in LY(Q) + L¥ (0, T; W~ (Q, w*)),
which implies that gi(uy,) is compact in L*(Q).

Hence Lemma E3] allows us to conclude that g (uy) is compact in LY (Q, o). Thus,
for a subsequence, it also converges in measure and almost everywhere in @Q (since we
have, for every A > 0, )

meas({|un — um| > A} N Br x [0,T]) < meas({|un| >k} N Bgr x [0,T])
+meas({|um| > k} N Br x [0,T]) + meas({|gr(un) — gr(um)| > A}).
Let € > 0, then, there exist k(g) > 0 such that,
meas({|un, — um| > A} N Br x [0,T]) <e for all n,m > ng(k(e), A, R).

This proves that (u,) is a Cauchy sequence in measure in Bgr x [0,T]), thus converges
almost everywhere to some measurable function u. Then for a subsequence denoted again
Un, We have
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Up = U a.e in Q, (43)

and from {Q) we deduce
bp (2, un) = b(x,u) a.e in Q, (44)
Tio(un) = Ti(u) weakly in LP(0,T; Wy *(Q,w)) (45)

and then, the compact imbedding ([I2)) gives,
Tk (un) — Tk (u) strongly in LY(Q,0) and a.e in Q.

Which implies, by using (&), for all & > 0 that there exists a function Ay €
N /

[1 LP (Q, w}), such that

i=1

N
a(x,t, Ti(un), DTy (un)) = Ay, weakly in [] L7(Q,w)). (46)

i=1

We now establish that b(x, u) belongs to L>(0,7T; L*(Q)). Using ([@3)) and passing to

the limit-inf in (@) as n tends to 400, we obtain that %/S)Bkﬁg(z,u(ﬂ)dz < C, for

almost any 7 in (0,7'). Due to the definition of By ¢(z,s) and the fact that By, (z, u)

converges pointwise to /u sgn(s)% exp(G(s))ds > |b(x,u)|, as k tends to 4oo,
shows that b(z,u) belongg to L>=(0,T; L' (Q)).

Lemma 5.1 Let u, be a solution of the approzimate problem (31)). Then

lim lim sup/ a(x,t, uy, Duy)Duydadt = 0. (47)
{m<|un|<m+1}

m—00 n—oco

Proof. Considering the following function ¢ = Ty (uy, — Trn(un))T = am(uy) in (B32)
this function is admissible since ¢ € LP(0,T; W,y (2, w)) and ¢ > 0. Then by Young’s
inequality, we have

/B?G(x,un)(T)dx—i—/ a(x,t, un, Duy)Duy, exp(G(uy,))dzdt
Q ’ {m<u,<m+1}

glira
< exp (MJ) l/ | fr| dzdt +/ || dadt +/ |bn, (2, won, )| da
@ {lun|>m} {lun|>m} {luno|>m}

N

+Ol/ SR w;fd:cdt+9/
{un p {

>m} 1

N N
+02/ SOIRP w;‘dxdt+c3/ >
{ {un>m} ;4

upzm} g

N P

Oun w; exp(G(uy,))dxdt

8:@-

m<up<m+1} ;4

p

Oin | (1t ex0(G () v,

O;

where B¢ (z,7) :/ W exp(G(s))am(s)ds.
0
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Using (20) and since B (z,u,)(T) > 0, we obtain

<u> / a(x,t, upn, Duy)Duy, exp(G(uy))dzdt
{m<u,<m+1}

p
Hg”Ll(]R)
<exp| —— (Ifnl + |7])dzdt + |bn, (2, won, )| dx
@ {lun|>m} {luno[>m}
N ’ N 8U p
+Cy / S IR widadt+Cs / 9(un) exp(Glun)) Y |5=| widwdt. (43)
{un>m} ;4 {un>m} i=1 axl

Un
Take ¢ = pm(uy,) = / 9(8)X{s>m}ds as test function in ([32), we obtain
0

T
[ [ B unm} [t D) Dt ) 0y 0(G )
Q 0 Q

& 90121 e
< ( / g(s)x{m}ds) exp (T” (IMlr@) + £l o))

+ / F Dt g(ttn) X, 5y €xD(Cun) )t
Q

+(/Oog(s)ds)/QFDun9(Zn) exp(G (tin))X {u, >y dacdlt,

m

where B] (x,r) = / me(s)exp((l(s))ds, which implies, since Bl (z,7) > 0,
O S

20) and Young’s inequality,

N
a(p—1) / 3
p {un>m} ;4

< (/: g(S)dS) exp (W%)

IVl (@) + [1fnll L1 () + 1on(2; won) 1) + € IIFllpﬁ

1=1

p

Oun w;g(un) exp(G(uy,))dxdt (49)

Ox;

L' (Q.w})
Using (@) and the strong convergence of f,, in L' (Q) and b, (x, ug, ) in L*(2) , v € LY(Q),

N
g € LY(R) and F € [] LP (Q,w}), by Lebesgue’s theorem, passing to the limit in (&S],
i=1

we conclude that

lim limsup/ a(x,t, up, Dup)Duydrdt = 0. (50)

m=00 n—oo J{m<u,<m+1}

On the other hand, let ¢ = T4 (uy, — T (uy,))~ as test function in (B3) and reasoning as
in the proof of (B0) we deduce that

lim lim sup a(x,t, up, Duy)Duydrdt = 0. (51)

MO oo /{<m+1><un<m}
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Thus 1) follows from (B0) and (&I)).

Step 2: Almost everywhere convergence of the gradients.

This step is devoted to introduce for £ > 0 a fixed time regularization of the function
Ti(u) in order to perform the monotonicity method. Let ¢; € D(2) be a sequence which
converges strongly to ug in L'(). Set w}, = (Ti(u)), + e * Ty (1h;) where (Tj(u)), is the
mollification with respect to time of Ty (u). Note that wz is a smooth function having
the following properties:

I = p(T(w) = wh), wh(0) = Ta(va), [wh| <, (52)

w;, = Ti(u) in LP(0,T; Wy P(Q,w)), as p — oo. (53)

We will introduce the following function of one real variable s, which is defined as:

if |s] < m,
hm(s) =<0, if [s| >m+1,
m4+1+]s], ifm<|s|<m+1.

For m > k, let ¢ = (Ti(un) — w)  hm(un) € LP(0, T; Wy P(Q,w)) N L=(Q) and ¢ > 0,
then taking this function in ([32]), we obtain

/ O, tn) () (T t) — 01, Yo 1l

+f Aty Ditn) DT (1) — ! (1)t
(T (un)—w, >0}
—/ exp(G(un))a(x, t, tn, Diy) Duy (T (un) — wL)erxdt
{m§|un,|§m+1}
< [ 00+ ) exP(Gua)) (Titn) — ) o ()
Q
g(un) A
+ [ FDu,—— exp(G(un))(Tk(un) w#) P (up,)dxdt
Q o
+ / exp(G (un))F D (T (tn) — w},) Aoy (1 ) dadlt
{Tk(un)—wﬁZO}

- / exp(G (un))F Duy Ty (ur) — wL)erxdt. (54)
{m<|un|<m+1}

Observe that

/ exp(G(up))a(z, t, up, Duy) Duy (T (un) — wZ)erzdt
{m<|un|<m+1}

< 2kexp HgHLﬂ / a(x, t, un, Duy,) Duy,dxdt,
« {m<u,<m+1}

/ exp(G (un)) F Duy (Tg (up) — wZ)*dmdt
{m<|un|<m+1}

and
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ol @ :

gllira 1] W; P

< 2kexp LI®) = / a(x, t,un, Duy)Dupdxdt | .
a av {(m< un|<m+1}

Thanks to [@7) the third integral and fourth integral of the right hand side tend to zero as

n and m tend to infinity, and by Lebesgue’s theorem and F' € H L (Q,w}), we deduce

that the right hand side converges to zero as n, m and p tend to infinity. Since
(T (upn) — wi)"'hm(un) = (T (u) — wi)"'hm(u) weakly * in L*(Q), as n — oo

and strongly in LP(0,T; W, ?(Q,w)) and (Tj(u) — w!, ) hy(u) = 0 weakly* in L>°(Q)
and strongly in L?(0, T} Wol’ P(Q,w)) as u — oo. Let g(n,m, u,i) : 1 =1,..., are various
functions tending to zero as n, m, i and p tend to infinity.

The very definition of the sequence w,ﬁ makes it possible to establish the following

lemma.

Lemma 5.2 For k > 0 we have

/ Obn (2, un) exp(G (un)) (T (un) — wi)hm(un)dxdt > e(n,m, u,4). (55)
(Ty(un)—wi>0y Ot

Proof. (see [19]).
Similarly to [3L4] for the second term of the left hand side of (54) we conclude

lim [a(z, t, Tk (un), DT (un)) — a(x, t, T (un), DTk (w))]

% [DTyu(un) — DTy ()] dedt = 0. (56)
Which implies that
Ti(un) = T(u) strongly in LP(0,T; Wy P(Q,w)) Vk. (57)

Now, observe that we have, for every o > 0
meas{(z,t) € Q2 x[0,T]: |Duy — Dul| > J} < meas{(z,t) €N x[0,T):|Duy| > k}
—i—meas{(x,t) e Qx1[0,T]:|ul > k:}

—i—meas{(x,t) € Qx1[0,T]:|DTk(un) — DTy(uw)| > 0}

then as a consequence of (B7]) we also have, that Du,, converges to Du in measure and
therefore, always reasoning for subsequence,

Du, — Du a.e in Q. (58)

Which implies that

a(x, t, Tr(un), DTy (un)) — a(x, t, Ty (u), DTk(u)) in HLP (Q,w)). (59)
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Step 3: Equi-integrability of the nonlinearity sequence.
We shall now prove that H,,(x,t, uy,, Du,) — H(x,t,u, Du) strongly in L'(Q) by using
Vitali’s theorem. Since H,(x,t,un, Du,) — H(z,t,u,Du) a.e in Q, consider now

Un
0 = ppluy) = / 9(8)X{s>nyds as test function in ([BZ), we obtain
0

T
[ / B;’Z(z,un)dz] 4 / a2, 1, s D) Dt (1), o1y exp (Gt drdt
Q 0 Q

S ol e
< ([ shxreods) exp (T“ (Mg + Wallzicey)

—|—/ FDung(tn)X{u,>h} exp(G(un))dzdt
Q

o U,
([ otxomis) [ 17D XD explGun))x s,y
n " Ob,(x, ) D .
where B} (z,1) = Tph(s) exp(G(s))ds, which implies, since B} (z,r) > 0, (20)

0
and Young’s inequality,
Ouy, |*

N
alp—1) / Z
p {un>h} =7 | O

([ o) ()

1721 @) + fnll gy + 1bn (@, uon)ll 11 sz)"’C”FHp ;
LY (Qw})

7,,

w;g(un) exp(G(uy,))dxdt

we conclude that

%

w; g(up)dxdt = 0.

lim sup/
h—o00 neN {un>h}

Consequently,

w;dxdt = 0,

N Ou, P
lim sup/ g(un) -
{lun|>h} 2 d;

h—+00 neN Pt

which implies, for h large enough and for a subset F of @,
oun, |*

N
li n
measl(HEl)—>O/Eg(u ); ox;
N
g/
{|un|>h} Z1

Ouy

widzdt < ||glloc  lim

Th(un)* [P
h(tn) ‘ w;dxdt
meas(E)—=0 J g —

Oun,
Y w;dxdt

N p
then we deduce that g(uy,) w; is equi-integrale. Thus we have obtained that

i=1

Bup

Sl w; strongly in L'(Q). Consequently, by

N
w; converge to g(u) >,
i=1

Ouy

ox;

o) 5

i=1
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using (2I]), we conclude that
Hy(z,t,un, Duy) — H(z,t,u, Du) strongly in L'(Q). (60)

Step 4: In this step we prove that u satisfies (23)).
Observe that for any fixed m > 0 one has

/ a(x,t, un, Duyp)Duy, = / a(x,t, un, Dup ) (DT i1 (ty) — DT (uy))
{m<|un[<m+1} Q

:/ a(:c,t,Tm+1(un),DTm+1(un))DTm+1(un)—/ a(x, t, T (un), DT (un)) DT ().
Q Q

According to (B9) and (&), one is at liberty to pass to the limit as n — +o0o for fixed
m > 0 and to obtain

lim a(x,t, up, Duy,) Duydadt
=0 Jim< fup [<m+1}

- / a(2,t, Tyrs1 (1), DTsr (w)) DT i1 (u)drdt — / a2, b, Ty (1), DT (1)) DTy ()t
Q Q

:/ a(x, t,u, Du) Dudzdt.
{m<|ul<m+1}
(61)

Taking the limit as m — +oo in (1)) and using the estimate ([@T) show that u satisfies
).
Step 5: In this step we show that u satisfies (24) and (25). Let S be a function in
W2°°(R) such that S’ has a compact support. Let M be a positive real number such
that supp(S’) C [-M, M]. Pointwise multiplication of the approximate equation (BII) by
S’ (uy,) leads to

Bn
w — div[S (upn)a(z, t, up, Duy)] + S” (un)a(z, t, un, Duy)Duy,

+ S (un)Hp(x, t, Upy, Duy, = £S5 (uy,) — div(FS'(u)) + S”(uw)FDu in D'(Q).

(62)

In what follows we pass to the limit as in (62)) n tends to +oo.
P OBZ (x,un)
e Limit of —55—.
Since S is bounded and continuous, u, — v a.e in @ implies that Bg(z, u,) converges
to Bs(z,u) a.e in @ and L™ weak — *. Then w converges to MST(:’W in D'(Q)
as n tends to +o00.
e Limit of —div[S'(un)an(z,t, tn, Duy)].
Since supp(S’) C [-M, M], we have for n > M

S (up)an(x, t, Up, Duyp) = S (up)a(z, t, Tay (un), DT (uy)) a.e in Q.

The pointwise convergence of w,, to w and (Bd) as n tends to +oco and the bounded
character of S’ permit us to conclude that

N
S (n)an (2, t, Up, Duy) — S'(w)a(z, t, Tar(u), DTpr(w)) in HLPI(Q,w;‘), (63)
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as n tends to +o00. S'(u)a(x,t, Th(u), DTh(u)) has been denoted by S’(u)a(x, t, u, Du)
in equation (24)).

e Limit of S”(up)a(z,t, tn, Dup)Duy,.
As far as the ’energy’ term

S" (up)a(x, t, upn, Dup)Duy, = S" (up)a(x, t, Tas(un), DTy (un)) DTy (uy) a.e in Q.

The pointwise convergence of S'(u,) to S'(u) and (BI) as n tends to +oo and the
bounded character of S’ permit us to conclude that

S (tp ) an (2, t, U, D) Dy — S” (u)a(x, t, Tar (), DTas(w)) DTy (u) weakly in LYQ).
(64)
Recall that S” (u)a(x,t, Tar(u), DTa(u)) DT (u) = S”(uw)a(z, t,u, Du)Du a.e in Q.

o Limit of S"(uy,)Hy (2, ¢, tn, Duy,).
Since supp(S’) C [-M, M] and (60), we have

S (un)Hy (2, t, Up, Duy) — S (u)H (z,t,u, Du) strongly in Ll(Q), (65)

as n tends to +oo.

e Limit of S (uy,) fn.
Since u, — u a.e in Q, we have S’ (uy,) fn, — S’ (u)f strongly in L}(Q) as n — +oc.

o Limit of div(S’(un)F).
The fact that S’(uy,) is bounded and converges to S’(u) a.e in Q as n tends to
+o0o makes it possible to obtain that div(S'(u,)F) — div(S’(u)F) strongly in
LY (0, T; W12 (Q, w*)) as n — +oo.

e Limit of S (uy)F Duy,.
This term is equal to FDS’(u,). Since DS'(u,) converges to DS'(u,) weakly in

N /

[T L7 (Q,w}) as n tends to +oo, we obtain S”(u,)FDu, = FDS'(u,) = FDS'(u)
i=1

weakly in L'(Q) as n — +o00. The term FDS’(u) identifies with S”(u)F Du.

As a consequence of the above convergence result, we are in a position to pass to
the limit as n tends to +oo in equation (G2) and to conclude that w satisfies (24). It
remains to show that Bg(z,u) satisfies the initial condition (28). To this end, firstly
remark that, S being bounded, B%(x,u,) is bounded in L>°(Q). Secondly, (62)) and the

above considerations on the behavior of the terms of this equation show that %

is bounded in L*(Q) + LP (0, T; W17 (Q,w*)). As a consequence, an Aubin’s type
lemma (see, e.g, [21]) implies that BZ(z,u,) lies in a compact set of C°([0, 7], L'(£2)). Tt
follows that on the one hand, Bg(z, u,)(t = 0) = B%(x, uj) converges to Bg(z,u)(t = 0)
strongly in L'(Q). On the other hand, the smoothness of S implies that Bg(z,u)(t =
0) = Bs(z,up) in Q. As a conclusion of step 1 to step 5, the proof of Theorem [E.1] is
complete.
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6 Example

Let us consider the following special case: b(x,s) = Z(x)C(s) where Z € Wb P(Q,w),
Z(x)>a>0and C € C*(R) such that V k>0 : 0< )\ = |i|n<ka'(s) and C(0) =0

0< < 2E9 o gy and v (2@ <@y wis| <k (66)
ds ds
72 .
H(z,t,5,8) = 1+ — E z) &P and ai(w,t,s,d) = wi(z)|di|P""di, i=1,...,N,

(67)
with w;(x) a weight function strictly positive. Then, we can consider the Hardy inequality
in the form

( A |u(m)|pa($)d$) T < c( A |Du(:c)|pw(:n)d:v)

It is easy to show that the a;(t, z, s, d) are Caratheodory functions satisfying the growth
condition (I8)), the coercivity ([20]) and the monotonicity condition.
While the Carathéodory function H(x,t,s,&) satisfies the condition (21]), indeed

N N
|H(z,t,5,8)] < 1+S4 > wi(@) [&l” = g(s) 30 wi(w) |&|” where g(s) = 12J|rss‘4 is a function

i=1 =1
bounded positive continuous which belongs to L'(R). Note that H(x,t,s,&) does not
satisfy the sign condition (B]) and the coercivity condition. In particular, let us use special
weight function, w, expressed in terms of the distance to the bounded 0. Denote
d(x) = dist(x,09) and set w(zr) = d*(z), o(xr) = d"(z). Finally, the hypotheses of
Theorem [5.] are satisfied. Therefore, the following problem:

b(z,u) € L=([0,T}; L'(Q)) and Ty(u) € LP(0,T; Wy (2, w)),

lim a(x, t,u, Du)Dudzdt = 0,
M=o Jim < ul<m+1}
OBgs(x,u) a ou
# — div [S"(u)a(z, t,u, Du)] + S (u) ; wilg|

(68)

1Jru4Z

Bg(x,u)(t =0) = Bg(z,up) in £,

(u) = fS'(u) — div(S’ (u)F) + FS" (u)Du,

vV S e W2®(R) with S’ has a compact support in R,
b(z,0)

d B = !

and Bg(x,T) /0 5o ————=5(0)do

has at least one renormalised solution.
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