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Abstract: Certain classes of switched mechanical systems with nonlinear poten-
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1 Introduction

Stability of switched systems has attracted an increasing attention during last decades,
mainly due to the numerous applications of these systems in engineering, technological
processes, mechanics, population dynamics, chemistry and economics, see, e.g., [1, 7, 9,
10, 12, 16, 17, 20] and the references cited therein. A switched system is a particular
kind of hybrid dynamical system that consists of a family of subsystems and a switching
law determining at each time instant which subsystem is active.

There are two principal approaches to the stability analysis of switched systems. The
first one is based on the constructing of a common Lyapunov function for the family of
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subsystems corresponding to a switched system [6, 12, 13, 19]. The existence of a such
function guarantees the stability of the considered system for any admissible switching
law. In the situations where we cannot prove the existence of a common Lyapunov
function, the stability of a switched system can be provided by means of additional
restrictions on the switching law (dwell-time approach) [8, 9, 13, 19, 21]. It is known
that, under the suitable assumptions on the system investigated, the stability is ensured if
the intervals between consecutive switching times are sufficiently large [13, 19]. However,
it should be noted that these approaches are well-developed mostly for linear switched
systems.

The problem of stability analysis of hybrid systems is especially difficult for mechan-
ical systems with switched force fields. In numerous applications, mechanical systems
are described by nonlinear differential equations of the second order. This results in
the appearance of certain special properties of motions and essentially complicates the
investigation of systems dynamics [2, 3, 9, 16]. In particular, well-known approaches
developed for switched systems of general form might be inefficient or even inapplicable
for mechanical systems, see [3].

In the present paper, certain classes of switched mechanical systems with nonlinear
potential and dissipative forces are studied. By the use of the differential inequalities
method and multiple Lyapunov functions, conditions on switching law guaranteeing the
asymptotic stability of the trivial equilibrium position of the considered systems are
obtained.

2 Statement of the Problem

Let the family of systems

ẍ+Ds(x)ẋ+
∂Πs(x)

∂x
= 0, s = 1, . . . , N, (1)

be given. Here x ∈ R
n; Πs(x) are continuously differentiable for x ∈ R

n homogeneous of
the order µ+1 functions, µ ≥ 1; entries of the matrices Ds(x) are continuous for x ∈ R

n

homogeneous of the order ν functions, ν > 0. Systems from the family (1) are vector type
Lienard equations, see [18]. They can be used for the modelling of mechanical systems
with potential and essentially nonlinear velocity forces.

Switched system generated by the family (1) and a switching law σ is

ẍ+Dσ(x)ẋ +
∂Πσ(x)

∂x
= 0. (2)

Here σ = σ(t) : [0,+∞) → {1, . . . , N} is a piecewise constant function. Without loss of
generality, consider the only case where the interval (0,+∞) contains the infinite number
of switching instants. Let θi, i = 1, 2, . . ., be the switching times, 0 < θ1 < θ2 < . . ., and
θ0 = 0. Assume that the function σ(t) is right-continuous, and the sequence {θi}

∞

i=0 is a
minimal one (σ(θi) 6= σ(θi+1), i = 0, 1, . . .). Hereinafter, we consider non Zeno sequences
[12, 13], i.e., sequences that switch at most a finite number of times in any finite time
interval. This kind of switching law is called admissible one.

Systems (1) and system (2) admit the trivial equilibrium position x = ẋ = 0. Assume
that, for every system from the family (1), the equilibrium position is asymptotically
stable. Let us determine conditions under which the equilibrium position x = ẋ = 0 of
switched system (2) is also asymptotically stable.
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The problem of the construction of a common Lyapunov function for the family of
systems of the form (1) was studied in [5, 15]. As it was mentioned in the Introduction, the
existence of a such function guarantees the asymptotic stability of (2) for any admissible
switching law.

In this paper, it is assumed that we failed to prove the existence of a common Lya-
punov function for (1). We will look for conditions on switching law guaranteeing asymp-
totic stability of the equilibrium position.

It should be noted that such conditions were obtained in [4] for system (2) with
constant matrices D1, . . . ,DN . The goal of the present paper is extension of the results
of [4] to the case of essentially nonlinear velocity forces. We will assume that the forces
Fs(x, ẋ) = −Ds(x)ẋ, s = 1, . . . , N , are dissipative ones and consider two types of such
forces. It is worth mentioning that asymptotic stability conditions will depend not only
on the type of the dissipative forces but also on the information available on the switching
law.

3 The First Type of Dissipative Forces

3.1 Stability analysis via multiple Lyapunov functions

First, consider the case when the switching instants θi, i = 1, 2, . . ., are given, while the
order of switching between the systems from (1) might be unknown.

Let us impose additional restrictions on the functions Π1(x), . . . ,ΠN (x) and the ma-
trices D1(x), . . . ,DN (x).

Assumption 3.1 Functions Π1(x), . . . ,ΠN (x) are positive definite.

Assumption 3.2 For any fixed x 6= 0, the matrices Ds(x) +DT
s (x), s = 1, . . . , N ,

are positive definite.

Remark 3.1 Taking into account homogeneity of D1(x), . . . ,DN (x), we obtain, see
[22], that Assumption 3.2 implies that the estimates

zT Ds(x) z ≥ cs ‖x‖
ν‖z‖2, s = 1, . . . , N,

hold for all x, z ∈ R
n. Here c1, . . . , cN are positive constants, and ‖ · ‖ denotes the

Euclidean norm of a vector.

Remark 3.2 It is known, see [18, 22], that if Assumptions 3.1 and 3.2 are fulfilled,
then, for any system from the family (1), the equilibrium position x = ẋ = 0 is asymp-
totically stable.

For every s in {1, . . . , N}, choose a Lyapunov function for the s-th system from (1)
in the form

Vs(x, ẋ) = Πs(x) +
1

2
ẋT ẋ− γ1s‖ẋ‖

β−1xT ẋ+ γ2s‖x‖
k−1xT ẋ, (3)

where γ1s > 0, γ2s > 0, β ≥ 1, k ≥ 1. Differentiating function (3) with respect to the
s-th system, we obtain

V̇s
∣

∣

(s)
= −γ2s(µ+ 1)‖x‖k−1Πs(x)− γ1s‖ẋ‖

β+1 − ẋTDs(x)ẋ
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−γ1sx
T
∂
(

‖ẋ‖β−1ẋ
)

∂ẋ

(

−
∂Πs(x)

∂x
−Ds(x)ẋ

)

+γ2sẋ
T
∂
(

‖x‖k−1x
)

∂x
ẋ− γ2s‖x‖

k−1xTDs(x)ẋ.

Hence, the estimates

a1s
(

‖ẋ‖2 + ‖x‖µ+1
)

−
(

γ1s‖x‖‖ẋ‖
β + γ2s‖x‖

k‖ẋ‖
)

≤ Vs(x, ẋ)

≤ a2s
(

‖ẋ‖2 + ‖x‖µ+1
)

+
(

γ1s‖x‖‖ẋ‖
β + γ2s‖x‖

k‖ẋ‖
)

,

V̇s
∣

∣

(s)
≤ −a3s

(

γ2s‖x‖
k+µ + γ1s‖ẋ‖

β+1 + ‖x‖ν‖ẋ‖2
)

+a4s
(

γ1s‖x‖
µ+1‖ẋ‖β−1 + γ1s‖x‖

ν+1‖ẋ‖β + γ2s‖x‖
k−1‖ẋ‖2 + γ2s‖x‖

k+ν‖ẋ‖
)

hold for x, ẋ ∈ R
n. Here a1s, . . . , a4s are positive constants.

By the use of generalized homogeneous functions properties [22], it is easy to verify
that, if

k = max{µ− ν; ν + 1}, β = 1 +max

{

2ν

µ+ 1
;

2(k − 1)

k + µ− ν

}

, (4)

then there exist positive numbers γ11, . . . , γ1N , γ21, . . . , γ2N , b1, b2, α and H such that
the inequalities

b1r(x, ẋ) ≤ Vs(x, ẋ) ≤ b2r(x, ẋ), s = 1, . . . , N, (5)

V̇s
∣

∣

(s)
≤ −αV 1+ξ

s (x, ẋ), s = 1, . . . , N, (6)

are valid for r(x, ẋ) < H . Here r(x, ẋ) = ‖ẋ‖2 + ‖x‖µ+1, and ξ = (k − 1)/(µ+ 1).
Find ω ≥ 1, such that

Vs(x, ẋ) ≤ ωVl(x, ẋ), s, l = 1, . . . , N, (7)

for r(x, ẋ) < H .
Denote h = ω−ξ; τi = θi − θi−1, i = 1, 2, . . .; ψ(m, 1) = 0, and ψ(m, p) =

∑p−1
i=1 τm+ih

p−i for p = 2, 3, . . ., m = 1, 2, . . ..

Theorem 3.1 Let Assumptions 3.1 and 3.2 be fulfilled, and for family (1) the Lya-

punov functions V1(x, ẋ), . . . , VN (x, ẋ) be constructed satisfying the estimates (5), (6)
and (7). If

ψ(m, p) → +∞ as p→ ∞ (8)

for any positive integer m, then the equilibrium position x = ẋ = 0 of system (2) is

asymptotically stable. In the case when the tendency (8) is uniform with respect to m =
1, 2, . . ., the equilibrium position is uniformly asymptotically stable.

Proof. By the use of the partial Lyapunov functions V1(x, ẋ), . . . , VN (x, ẋ), construct
the multiple Lyapunov function Vσ(t)(x, ẋ) corresponding to the switching law σ(t).

Choose ε ∈ (0, H) and t0 ≥ 0. Consider a solution x(t) of (2) with initial conditions
satisfying the inequalities 0 < r(x(t0), ẋ(t0)) < ε. Find the positive integer m such that
t0 ∈ [θm−1, θm).
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Assume that r(x(t), ẋ(t)) < ε for t ∈ [t0, t̃]. If t0 < t̃ ≤ θm then, integrating the
corresponding differential inequality from (6), we obtain that the estimate

V −ξ

σ(θm−1)
(x(t̃), ẋ(t̃)) ≥ αξ(t̃− t0) + V −ξ

σ(θm−1)
(x(t0), ẋ(t0)) (9)

is valid.
In the case when t̃ ≥ θm, there exists a positive integer p such that θm+p−1 ≤

t̃ < θm+p. It should be noted that p → ∞ as t̃ → +∞. Integrating successively
the corresponding differential inequalities from family (6) on the intervals [θm+p−1, t̃],
[θm+p−2, θm+p−1], . . ., [t0, θm] and taking into account inequalities (7), we obtain

V −ξ

σ(θm+p−1)
(x(t̃), ẋ(t̃)) ≥ αξ

(

t̃− θm+p−1

)

+ V −ξ

σ(θm+p−1)
(x(θm+p−1), ẋ(θm+p−1))

≥ hV −ξ

σ(θm+p−2)
(x(θm+p−1), ẋ(θm+p−1)) + αξ

(

t̃− θm+p−1

)

≥ . . .

≥ hpV −ξ

σ(θm−1)
(x(t0), ẋ(t0)) + αξ

((

t̃− θm+p−1

)

+ ψ(m, p) + hp (θm − t0)
)

.

(10)

From (5), (9) and (10) it follows that

r(x(t̃), ẋ(t̃)) ≤ b−1
1

(

b−ξ
2 r−ξ(x(t0), ẋ(t0)) + αξ

(

t̃− t0
)

)

−
1
ξ

for t̃ ∈ [t0, θm), and

r(x(t̃), ẋ(t̃)) ≤ b−1
1

(

hpb−ξ
2 r−ξ(x(t0), ẋ(t0))

+αξ
( (

t̃− θm+p−1

)

+ ψ(m, p) + hp (θm − t0)
)

)

−
1
ξ

for t̃ ∈ [θm+p−1, θm+p), p ≥ 1.

With the usage of these estimates the subsequent proof is similar to that of Theorem
1 in [4]. ✷

Corollary 3.1 Let Assumptions 3.1 and 3.2 be fulfilled. If τi → +∞ as i→ ∞, then

the equilibrium position x = ẋ = 0 of system (2) is uniformly asymptotically stable.

Remark 3.3 It is a fairly well-known fact, see [13, 19], that for any family consisting
of a finite number of linear time invariant asymptotically stable systems there exists
a number L > 0 (dwell time), such that the corresponding switched system is also
asymptotically stable providing that the intervals between consecutive switching times
are not less than L. Theorem 3.1 does not permit to obtain a similar result for the family
of nonlinear systems (1). If τi = L = const > 0, i = 1, 2, . . ., then condition (8) is not
fulfilled for any choice of L. However, for nonlinear switched system (2), a positive lower
bound for the values of τ1, τ2, . . . can be found guaranteeing the practical stability [11]
of the equilibrium position.

Corollary 3.2 Let Assumptions 3.1 and 3.2 be fulfilled. Then there exists a positive

number ∆, such that for any ε > 0 one can choose L1 > 0 and L2 > 0 satisfying the

following condition: if τi ≥ L1, i = 1, 2, . . ., and for a solution x(t) of (2) the inequalities

t0 ≥ 0, r(x(t0), ẋ(t0)) < ∆ are valid, then r(x(t), ẋ(t)) < ε for all t ≥ t0 + L2.
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3.2 Asymptotic stability conditions in the case of complete information on

the switching law

Assume now that we know not only the switching instants θi, i = 1, 2, . . ., but also the
order of switching between the systems. Then another approach for the stability analysis
can be used [4, 14]. Choose a system from family (1) and determine relationship between
this system activity intervals and those of the remained systems under which it is possible
to guarantee the asymptotic stability of the equilibrium position x = ẋ = 0 of switched
system (2).

Let (for definiteness) the first system from (1) be chosen. In the present subsection,
instead of Assumption 3.1, we will use a weaker assumption.

Assumption 3.3 Function Π1(x) is positive definite.

Consider the Lyapunov function

V1(x, ẋ) = Π1(x) +
1

2
ẋT ẋ− γ11‖ẋ‖

β−1xT ẋ+ γ21‖x‖
k−1xT ẋ,

where γ11 > 0, γ21 > 0, and the values of the parameters β and k are defined by the
formulae (4).

Denote by V̇1
∣

∣

(s)
the derivative of V1(x, ẋ) with respect to the s-th system from (1),

s = 1, . . . , N . We obtain

V̇1
∣

∣

(s)
= −γ21(µ+ 1)‖x‖k−1Πs(x)− γ11‖ẋ‖

β+1 − ẋTDs(x)ẋ

−γ11x
T
∂
(

‖ẋ‖β−1ẋ
)

∂ẋ

(

−
∂Πs(x)

∂x
−Ds(x)ẋ

)

+γ21ẋ
T
∂
(

‖x‖k−1x
)

∂x
ẋ− γ21‖x‖

k−1xTDs(x)ẋ +

(

∂Π1(x)

∂x

)T

ẋ−

(

∂Πs(x)

∂x

)T

ẋ.

Let again r(x, ẋ) = ‖ẋ‖2 + ‖x‖µ+1, ξ = (k − 1)/(µ + 1). It is easy to verify that if
µ ≥ 2ν+1, Assumptions 3.2 and 3.3 are fulfilled, and values of γ11 and γ21 are sufficiently
small, then there exists a number H > 0 such that the estimates

b1r(x, ẋ) ≤ V1(x, ẋ) ≤ b2r(x, ẋ), V̇1
∣

∣

(s)
≤ αsV

1+ξ
1 (x, ẋ), s = 1, . . . , N, (11)

hold for r(x, ẋ) < H . Here b1, b2, α1, . . . , αN are constants with b1 > 0, b2 > 0, α1 < 0.
For given switching law σ(t), define the auxiliary piecewise constant function η(t) by

the formula η(t) = −ασ(t) for t ≥ 0.

Theorem 3.2 Let µ ≥ 2ν + 1, Assumptions 3.2 and 3.3 be fulfilled, and for family

(1) the Lyapunov function V1(x, ẋ) be constructed satisfying the estimates (11). If

∫ t

0

η(τ) dτ → +∞ as t→ +∞, (12)

then the equilibrium position x = ẋ = 0 of system (2) is asymptotically stable. In the

case when
∫ t0+t

t0

η(τ) dτ → +∞ as t→ +∞ (13)

uniformly with respect to t0 ≥ 0, the equilibrium position x = ẋ = 0 of system (2) is

uniformly asymptotically stable.
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Proof. For given switching law σ(t), construct the function η(t). Let the numbers
ε > 0 and t0 ≥ 0 be chosen. Without loss of generality, assume that ε < H .

If (12) holds, then there exists a constant ρ0, such that
∫ t

t0
η(τ) dτ ≥ ρ0 for all t ≥ t0.

Choose δ > 0 satisfying the condition

(b2δ)
−ξ

+ ξρ0 > (b1ε)
−ξ
.

Consider a solution x(t) of system (2), such that 0 < r(x(t0), ẋ(t0)) < δ. If
r(x(t), ẋ(t)) < ε for t ∈ [t0, t̃), then the differential inequality

V̇1(x(t), ẋ(t)) ≤ −η(t)V 1+ξ
1 (x(t), ẋ(t)) (14)

is valid for t ∈ [t0, t̃].

With the aid of estimate (14), it is easy to show that

(

b1r(x(t̃), ẋ(t̃))
)

−ξ
≥ V −ξ

1 (x(t̃), ẋ(t̃)) ≥ V −ξ
1 (x(t0), ẋ(t0)) + ξ

∫ t̃

t0

η(τ) dτ

≥ (b2r(x(t0), ẋ(t0)))
−ξ + ξ

∫ t̃

t0

η(τ) dτ ≥ (b2δ)
−ξ + ξρ0 > (b1ε)

−ξ .

Hence, r(x(t), ẋ(t)) < ε for all t ≥ t0, and r(x(t), ẋ(t)) → 0 as t→ +∞.

If the tendency (13) is uniform with respect to t0 ≥ 0, then the number δ can be
chosen independent of t0, and r(x(t), ẋ(t)) → 0 as t− t0 → +∞ uniformly with respect
to t0 ≥ 0. ✷

Remark 3.4 In the proof of Theorem 3.2, we did not use the positive definiteness
property of functions Π2(x), . . . ,ΠN (x). Hence, this theorem remains valid also in the
case when the equilibrium position x = ẋ = 0 is not asymptotically stable either for a
part of systems numbered 2, . . . , N , or for all of these systems.

4 The Second Type of Dissipative Forces

Next, we will assume that in system (2) potential forces are switched, whereas dissipative
forces are nonswitched, i.e., Ds(x) = D(x), s = 1, . . . , N , where entries of the matrix
D(x) are continuous for x ∈ R

n homogeneous of the order ν functions, ν > 0.

Moreover, we will impose an additional restriction on the structure of the matrix
D(x).

Assumption 4.1 The matrix D(x) is represented in the form D(x) = ∂G(x)/∂x,
where components of the vector G(x) are continuously differentiable for x ∈ R

n homo-
geneous of the order ν + 1 functions, ν > 0.

Then family (1) can be rewritten as follows

ẋ = y −G(x), ẏ = −
∂Πs(x)

∂x
, s = 1, . . . , N. (15)
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4.1 Stability analysis via multiple Lyapunov functions

As in the previous section, consider first the case when the switching instants θi, i =
1, 2, . . ., are given, while the order of switching between the systems from (15) might be
unknown.

Assumption 4.2 The functions (∂Πs(x)/∂x)
T
G(x), s = 1, . . . , N , are positive def-

inite.

Remark 4.1 The class of matrices D(x) defined by Assumption 3.2 differs from that
defined by Assumptions 4.1 and 4.2.

Example 4.1 Let Πs(x) = a
(s)
1 xµ+1

1 + . . . + a
(s)
n xµ+1

n , s = 1, . . . , N . Here x =

(x1, . . . , xn)
T , µ ≥ 1 is a rational with the odd numerator and denominator, and a

(s)
i are

positive coefficients, i = 1, . . . , n; s = 1, . . . , N . The functions Π1(x), . . . ,ΠN (x) satisfy
Assumption 3.1.

On the one hand, if D(x) = ‖x‖νA, where ν > 0, and A is a constant matrix such
that the matrix A + AT is positive definite, then Assumption 3.2 is fulfilled, whereas
Assumption 4.1 is not fulfilled.

On the other hand, choose the matrixD(x) in the formD(x) = diag {b1x
ν
1 , . . . , bnx

ν
n},

where ν is a positive rational with the even numerator and the odd denominator, and
bi are positive constants, i = 1, . . . , n. In this case Assumptions 4.1 and 4.2 are fulfilled

(here G(x) =
(

b1x
ν+1
1 , . . . , bnx

ν+1
n

)T
/(ν + 1)), whereas Assumption 3.2 is not fulfilled.

Remark 4.2 It is known, see [18, 22], that under Assumptions 3.1 and 4.2 any
system from the family (15) admits the asymptotically stable zero solution.

For every s ∈ {1, . . . , N}, construct a Lyapunov function for the s-th system from
(15) by the formula

V̂s(x,y) = Πs(x) +
1

2
yTy − γ̂s‖y‖

λ−1xTy,

where γ̂s > 0, λ ≥ 1. We obtain

˙̂
Vs

∣

∣

∣

(s)
= −

(

∂Πs(x)

∂x

)T

G(x) − γ̂s‖y‖
λ+1

+γ̂s‖y‖
λ−1yTG(x) + γ̂sx

T ∂(‖y‖
λ−1y)

∂y

∂Πs(x)

∂x
.

Hence, under Assumptions 3.1 and 4.2 the estimates

â1s
(

‖x‖µ+1 + ‖y‖2
)

− γ̂s‖x‖‖y‖
λ ≤ V̂s(x,y) ≤ â2s

(

‖x‖µ+1 + ‖y‖2
)

+ γ̂s‖x‖‖y‖
λ,

˙̂
Vs

∣

∣

(s)
≤ −

(

â3s‖x‖
µ+ν+1 + γ̂s‖y‖

λ+1
)

+ â4sγ̂s
(

‖x‖ν+1‖y‖λ + ‖x‖µ+1‖y‖λ−1
)

hold for x,y ∈ R
n. Here â1s, . . . , â4s are positive constants.

It is easy to verify, see [22], that if

λ = max

{

1 +
2ν

µ+ 1
;

µ

ν + 1

}

, (16)
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then there exist positive numbers γ̂1, . . . , γ̂N , b̂1, b̂2, α̂ and Ĥ such that the inequalities

b̂1r(x,y) ≤ V̂s(x,y) ≤ b̂2r(x,y),
˙̂
Vs

∣

∣

(s)
≤ −α̂V̂ 1+ξ̂

s (x,y), s = 1, . . . , N, (17)

are valid for r(x,y) < Ĥ . Here ξ̂ = (λ− 1)/2, and r(x,y) = ‖x‖µ+1 + ‖y‖2.
Find ω̂ ≥ 1, such that

V̂s(x,y) ≤ ω̂V̂l(x,y), s, l = 1, . . . , N, (18)

for r(x,y) < Ĥ .

Denote ĥ = ω̂−ξ̂; ψ̂(m, 1) = 0, and ψ̂(m, p) =
∑p−1

i=1 τm+iĥ
p−i for p = 2, 3, . . . ,

m = 1, 2, . . . .

Theorem 4.1 Let Assumptions 3.1, 4.1 and 4.2 be fulfilled, and for family (15) the
Lyapunov functions V̂1(x,y), . . . , V̂N (x,y) be constructed satisfying the estimates (17)
and (18). If

ψ̂(m, p) → +∞ as p→ ∞ (19)

for any positive integer m, then the equilibrium position x = ẋ = 0 of system (2) is

asymptotically stable. In the case when the tendency (19) is uniform with respect to

m = 1, 2, . . ., the equilibrium position is uniformly asymptotically stable.

The proof of the theorem is similar to that of Theorem 3.1.

Remark 4.3 For Theorem 4.1, corollaries similar to Corollaries 3.1 and 3.2 can be
formulated.

4.2 Asymptotic stability conditions in the case of complete information on

the switching law

Assume now that we know not only the switching instants θi, i = 1, 2, . . ., but also the
order of switching between the systems. Then for finding asymptotic stability conditions
we can apply the approach considered in Subsection 3.2.

Choose the first system from the family (15). Instead of Assumption 4.2, we will use
a weaker assumption.

Assumption 4.3 The function (∂Π1(x)/∂x)
T
G(x) is positive definite.

Let

V̂1(x,y) = Π1(x) +
1

2
yTy − γ̂1‖y‖

λ−1xTy.

Here γ̂1 > 0, and the value of the parameter λ is defined by the formula (16). Then

˙̂
V1

∣

∣

∣

(s)
= −

(

∂Π1(x)

∂x

)T

G(x)− γ̂1‖y‖
λ+1 + γ̂1‖y‖

λ−1yTG(x)

+γ̂1x
T ∂(‖y‖

λ−1y)

∂y

∂Πs(x)

∂x
+

(

∂Π1(x)

∂x

)T

y −

(

∂Πs(x)

∂x

)T

y.

If µ ≥ 2ν +1, Assumptions 3.3 and 4.3 are fulfilled, and the value of γ̂1 is sufficiently
small, then there exists a number Ĥ > 0 such that the estimates

b̂1r(x,y) ≤ V̂1(x,y) ≤ b̂2r(x,y),
˙̂
V1

∣

∣

(s)
≤ α̂sV̂

1+ξ̂
1 (x,y), s = 1, . . . , N, (20)
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hold for r(x,y) < Ĥ . Here b̂1, b̂2, α̂1, . . . , α̂N are constants with b̂1 > 0, b̂2 > 0, α̂1 < 0,

and ξ̂ = (λ − 1)/2.
For given switching law σ(t), define the auxiliary piecewise constant function η̂(t) by

the formula η̂(t) = −α̂σ(t) for t ≥ 0.

Theorem 4.2 Let µ ≥ 2ν + 1, Assumptions 3.3, 4.1 and 4.3 be fulfilled, and for

family (15) the Lyapunov function V̂1(x,y) be constructed satisfying the estimates (20).
If

∫ t

0

η(τ) dτ → +∞ as t→ +∞,

then the equilibrium position x = ẋ = 0 of system (2) is asymptotically stable. In the

case when
∫ t0+t

t0

η(τ) dτ → +∞ as t→ +∞

uniformly with respect to t0 ≥ 0, the equilibrium position x = ẋ = 0 of system (2) is

uniformly asymptotically stable.

The proof of the theorem is similar to that of Theorem 3.2.

Remark 4.4 As well as Theorem 3.2, Theorem 4.2 remains valid in the case when
the zero solution is not asymptotically stable either for a part of systems from the family
(15) numbered 2, . . . , N , or for all of these systems.

5 A Numerical Example

Let family (1) consist of two systems







ẍ1 +
√

x21 + x22 (ẋ1 + asẋ2) + csx
3
1 = 0,

ẍ2 +
√

x21 + x22 (−ẋ1 + bsẋ2) + dsx
3
2 = 0, s = 1, 2,

(21)

where as, bs, cs, ds are constant coefficients. Thus, we have n = 2, x = (x1, x2)
T , N = 2,

ν = 1, µ = 3, Πs(x) = (csx
4
1 + dsx

4
2)/4, and

Ds(x) =
√

x21 + x22

(

1 as
−1 bs

)

, s = 1, 2.

The results of a numerical simulation are presented in Figs. 1–4, where for solutions
of switched systems generated by the family (21) and four types of switching law the
dependence of the coordinate x1 on time is shown. The initial conditions of solutions are
determined by the formulae

t0 = 0, x1(0) = −0.03, x2(0) = 0.05, ẋ1(0) = 0.02, ẋ2(0) = 0.04.

First, the following values of coefficients were chosen: a1 = 0.9, b1 = 0.3, c1 = 1,
d1 = 10, a2 = 0.8, b2 = 0.1, c2 = 10, d2 = 1. In this case Assumptions 3.1 and
3.2 are fulfilled, and both systems admit the asymptotically stable equilibrium position
x = ẋ = 0.

Fig. 1 corresponds to a switching law satisfying the conditions of Theorem 3.1. Here
τ2i−1 = 5, τ2i = 5i, and the first system from the family (21) is active on the intervals



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 15 (2) (2015) 127–140 137

0 200 400 600 800 1000 1200
0.2

0.15

0.1

0.05

0

0.05

0.1

0.15

t

x
1

Figure 1: Switching between two asymptotically stable systems (asymptotically stable equilib-
rium position).
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Figure 2: Switching between two asymptotically stable systems (unstable equilibrium position).

[θ2i−1, θ2i), whereas the second one is active on the intervals [θ2i−2, θ2i−1), i = 1, 2, . . . .
For such switching law the equilibrium position is asymptotically stable.

Fig. 2 demonstrates that there exist switching laws for which the equilibrium position
is unstable. Here switching from the first system to the second one occurs when ẋ2 = 0
and ẋ1 6= 0, whereas switching from the second system to the first one occurs when
ẋ1 = 0. Moreover, in order to avoid Zeno type switching signal, the following additional
restriction is imposed: τi ≥ 4, i = 1, 2, . . . .
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Figure 3: Switching between asymptotically stable and unstable systems (unstable equilibrium
position).
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Figure 4: Switching between asymptotically stable and unstable systems (asymptotically stable
equilibrium position).

Next, consider the case when a1 = 0.9, b1 = 0.3, c1 = 1, d1 = 10, a2 = 0.8, b2 = 0.1,
c2 = −10, d2 = −1. Then the equilibrium position of the first system from the family (21)
is asymptotically stable, and the equilibrium position of the second system is unstable.
For such values of coefficients Assumptions 3.2 and 3.3 are fulfilled.

Let τ2i−1 = 2χ, τ2i = 2, where χ is a positive parameter, the first system from the
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family (21) be active on the intervals [θ2i−2, θ2i−1), and the second one be active on the
intervals [θ2i−1, θ2i), i = 1, 2, . . .. The results of numerical simulation show that if χ = 4,
then the equilibrium position of the corresponding switched system is unstable (see Fig.
3), whereas if χ = 7, then the equilibrium position is asymptotically stable (see Fig. 4).

6 Conclusion

In the present paper, certain classes of switched mechanical systems with nonlinear dis-
sipative and potential forces are studied. By the application of the multiple Lyapunov
functions approach and the dwell time approach, we found the restrictions on the switch-
ing law guaranteeing the asymptotic stability of the trivial equilibrium position.

The obtained results can be used for the design of switched controllers providing
the asymptotic stability and the practical stability of equilibrium positions for nonlinear
mechanical systems.

The interesting direction for further research is the extension of the obtained results
to the case when switched nonlinear dissipative forces depend on velocities and are inde-
pendent of coordinates. Moreover, the impact of gyroscopis and nonconservative forces
on the considered systems may be studied.

Acknowledgment

The reported study was supported by the Saint Petersburg State University, project
no. 9.38.674.2013, the Russian Foundation for Basic Research, grant nos. 13-08-00948-a
and 15-58-53017, and the National Science Foundation of China, project no. 61273006.

References

[1] Aleksandrov, A.Yu., Aleksandrova, E.B. and Platonov, A.V. Ultimate boundedness condi-
tions for a hybrid model of population dynamics. In: Proc. 21st Mediterranean Conf. on

Control and Automation, MED 2013. Platanias–Chania, Crite, Greece, 2013, 622–627.

[2] Aleksandrov, A.Yu., Aleksandrova, E.B. and Zhabko, A.P. Asymptotic stability conditions
for certain classes of mechanical systems with time delay. WSEAS Transactions on Systems

and Control 9 (2014) 398–407.

[3] Aleksandrov, A.Yu., Chen, Y., Kosov, A.A. and Zhang, L. Stability of hybrid mechanical
systems with switching linear force fields. Nonlinear Dynamics and Systems Theory 11 (1)
(2011) 53–64.

[4] Aleksandrov, A.Yu., Lakrisenko, P.A. and Platonov, A.V. Stability analysis of nonlinear
mechanical systems with switched force fields. In: Proc. 21st Mediterranean Conf. on Con-

trol and Automation, MED 2013. Platanias–Chania, Crite, Greece, 2013, 628–633.

[5] Aleksandrov, A.Yu. and Murzinov, I.E. On the existence of a common Lyapunov func-
tion for a family of nonlinear mechanical systems with one degree of freedom. Nonlinear

Dynamics and Systems Theory 12 (2) (2012) 137–143.

[6] Aleksandrov, A.Yu. and Platonov, A.V. On absolute stability of one class of nonlinear
switched systems. Automation and Remote Control 69 (7) (2008) 1101–1116.

[7] Babenko, S.V. and Martynyuk, A.A. Stability of dynamic graph on time scales. Nonlinear

Dynamics and Systems Theory 14 (1) (2014) 30–43.

[8] Branicky, M.S. Multiple Lyapunov functions and other analysis tools for switched and
hybrid systems. IEEE Trans. Automat. Control 43 (4) (1998) 475–482.



140 A.Yu. ALEKSANDROV, E.B. ALEKSANDROVA, P.A. LAKRISENKO, et al

[9] DeCarlo, R., Branicky, M., Pettersson, S. and Lennartson, B. Perspectives and results on
the stability and stabilisability of hybrid systems. Proc. IEEE 88 (2000) 1069–1082.

[10] Khan, A. and Pal, R. Adaptive hybrid function projective synchronization of chaotic space-
tether system. Nonlinear Dynamics and Systems Theory 14 (1) (2014) 44–57.

[11] La Salle, J. and Lefschetz, S. Stability by Liapunov’s Direct Method. Academic Press, New
York, London, 1961.

[12] Liberzon, D. Switching in Systems and Control. Birkhauser, Boston, MA, 2003.

[13] Liberzon, D. and Morse, A.S. Basic problems in stability and design of switched systems.
IEEE Control Syst. Magazin 19 (15) (1999) 59–70.

[14] Michel, A.N. and Hou, L. Stability results involving time-averaged Lyapunov function
derivatives. Nonlinear Analysis. Hybrid Systems 3 (2009) 51–64.

[15] Murzinov, I.E. Constructing of a common Lyapunov function for a family of mechanical sys-
tems with one degree of freedom. Vestnik St. Petersburg University. Applied Mathematics,

Informatics and Control Processes (4) (2013) 49–57. [Russian]

[16] Pilipchuk, V. Acceleration control in nonlinear vibrating systems based on damped least
squares. Nonlinear Dynamics and Systems Theory 13 (2) (2013) 181–192.

[17] Podval’ny, S.L. and Ledeneva, T.M. Intelligent modeling systems: design principles. Au-
tomation and Remote Control 74 (7) (2013) 1201–1210.

[18] Rouche, M. and Mawhin, J. Ordinary Differential Equations: Stability and Periodic Solu-

tions. Pitman, Boston etc., 1980.

[19] Shorten, R., Wirth, F., Mason, O., Wulf, K. and King, C. Stability criteria for switched
and hybrid systems. SIAM Rev. 49 (4) (2007) 545–592.

[20] Volkova, A.S., Gnilitskaya, Yu.A. and Provotorov, V.V. On the solvability of boundary-
value problems for parabolic and hyperbolic equations on geometrical graphs. Automation

and Remote Control 75 (2) (2014) 405–412.

[21] Zhai, G., Hu, B., Yasuda, K. and Michel, A.N. Disturbance attenuation properties of time-
controlled switched systems. J. of the Franklin Institute 338 (7) (2001) 765–779.

[22] Zubov, V.I. Mathematical Methods for the Study of Automatical Control Systems. Pergamon
Press, Oxford, Jerusalem Acad. Press, Jerusalem, 1962.


	Introduction
	Statement of the Problem
	The First Type of Dissipative Forces
	Stability analysis via multiple Lyapunov functions
	Asymptotic stability conditions in the case of complete information on the switching law

	The Second Type of Dissipative Forces
	Stability analysis via multiple Lyapunov functions
	Asymptotic stability conditions in the case of complete information on the switching law

	 A Numerical Example
	Conclusion

