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Abstract: In analytical or numerical synchronizations studies of coupled chaotic
systems, the phase synchronizations are less considered in the leading literatures.
This paper is an attempt to find a sufficient analytical condition for the stability of
phase synchronization in coupled chaotic systems. The method of nonlinear feedback
function and the scheme of matrix measure have been used to justify this analytical
stability, and tested numerically for the existence of the phase synchronization in
some coupled chaotic systems.
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1 Introduction

Sensitivity to initial conditions is a generic feature of chaotic dynamical systems. Two
chaotic systems starting from slightly different initial points in the state space separate
away from each other with time. Therefore, how to control two chaotic systems to be
synchronized has aroused a great deal of interest.

Recently, synchronization phenomena in coupled chaotic systems have received much
attention [1–17]. Pecora and Carroll have shown [1–4] that in coupled chaotic systems a
complete synchronization occurs if the difference between the various states of synchro-
nized systems converges to zero. They have also shown that synchronization stability
depends upon the signs of the conditional Lyapunov exponents: i.e., if all of the Lya-
punov exponents of the response system under the action of the driver are negative, then
there is a complete and stable synchronization between the drive and response systems.

∗ Corresponding author: mailto:erjaee@shirazu.ac.ir

c© 2015 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua141

mailto: erjaee@shirazu.ac.ir
http://e-ndst.kiev.ua


142 M. BOUTEFNOUCHET, H. TAGHVAFARD AND G.H. ERJAEE

Synchronization stability can also be verified using the Jacobian matrix in the linearized
state difference between the drive and response chaotic systems [6]. Accordingly, despite
the stability analysis in dynamical systems, if this Jacobian matrix is of full rank and
all of its real parts of eigenvalues are negative, then the system will converge to zero,
yielding complete synchronization.

The phenomenon of phase synchronization observed in systems of various nature [18,
19], including chemical, biological, and physiological systems, is today attracting much
interest of researchers [19–21]. In this case, the Jacobian matrix has some zero eigenvalues
and the difference between various states of synchronized systems may be not necessary
converging to the zero, but will stay less than or equal to a constant. The main goal of
this paper is to discuss the stability analysis of phase synchronization in coupled chaotic
systems coupled by the nonlinear feedback function method [19]. Therefore, a brief
discussion of the nonlinear coupling feedback function method is presented in Section 2,
followed by the presentation of a criterion for the stability of synchronization in Section
3. In Section 4, we present some examples to corroborate our analytical assertion.

2 Description of the Method

There are different criteria for coupling two chaotic systems to be synchronized. In this
paper, we apply the nonlinear coupling feedback function method introduced by Ali
and Fang [19] to couple chaotic systems. Suppose ẋ(t) = F(t,x(t)) is a chaotic system
with x(t) ∈ R

n. Then decomposing vector-valued function F(t,x(t)) to a linear part,
L(t,x(t)), and a nonlinear part, N(t,x(t)), yields

F(t,x(t)) = L(t,x(t)) +N(t,x(t)). (1)

Now consider two chaotic systems, where their associated vector functions are decom-
posed as in (2) and coupled by using the nonlinear parts of their vector functions as
follows:

ẋ1(t) = L(t,x1(t))−N(t,x1(t)) + α [N(t,x1(t))−N(t,x2(t))] , (2)

ẋ2(t) = L(t,x2(t))−N(t,x2(t)) + α [N(t,x2(t))−N(t,x1(t))] . (3)

Here, systems (2) and (3) serve as drive and response systems, respectively, and α is
the strength of their coupling. The synchronization stability of these two systems can
be studied by using the evolutional equation of the difference between them, which is
determined by the following linear approximation:

ė(t) =

[

L(t) + (2α− 1)
∂N(t,x(t))

∂x

]

e(t), (4)

where e(t) = x1(t) − x2(t). Obviously, the stability type of the zero equilibrium in
equation (4) shows the stability type of the synchronization between two chaotic systems.
If L has full rank and α = 0.5, we have

ė(t) = L(t)e(t), (5)

and then according to the stability analysis of the linear approximation in dynamical
systems theory, synchronization between coupled chaotic systems (2) and (3) occurs if
all eigenvalues of matrix L have negative real parts. Conversely, if matrix L does not
have full rank: i.e., L has at least one zero eigenvalue, then we may yet have phase
synchronization behavior.
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3 Main Results

In this section, we present a stability criterion for synchronization. First, we introduce
the concept of matrix measure. The matrix measure of a real square matrixA = (aij)n×n

is defined by

µ∗(A) = lim
ǫ→0

‖I+ ǫA‖∗ − 1

ǫ
,

where I is an n× n identity matrix and ‖ · ‖∗ is a matrix norm defined as follows:

‖A‖1 = max
j

n
∑

i=1

|aij |, ‖A‖2 = [λmax(ATA)]1/2,

‖A‖∞ = max
i

n
∑

j=1

|aij |, ‖A‖ω = max
j

n
∑

i=1

ωi

ωj
|aij |,

where ωi > 0, we have the matrix measures

µ1(A) = max
j

{

ajj +

n
∑

i=1, i6=j

|aij |
}

, µ2(A) =
1

2
λmax(A

T +A),

µ∞(A) = max
i

{

aii +

n
∑

j=1, j 6=i

|aij |
}

, µω(A) = max
j

{

ajj +

n
∑

i=1, i6=j

ωi

ωj
|aij |

}

,

respectively.
Now suppose in error system (5), matrix L doesn’t have a full rank and α = 0.5.

Then, as a consequence of the following theorem, we will show that under some conditions
system (5) is globally asymptotically stable around a constant vector , on which e(t) =
x1(t)− x2(t).

Theorem 3.1 System (5) is globally asymptotically stable if there exists a non-
singular time-varying matrix B(t) such that

lim
t→∞

exp

(
∫ t

t0

µ∗(ḂB−1 +BLB−1)(s)ds

)

= 0,

for any t0 ≥ 0. Consequently, phase synchronization between systems (2) and (3) occurs
which is globally asymptotically stable around a constant vector c.

Proof. Let e(t) be a solution of error system (5) and Y(t) = B(t)(e(t) − c). Then
for all t ≥ t0, we have

D+‖Y(t)‖∗ = lim
ǫ→0+

1

ǫ

[

‖Y(t) + ǫẎ(t)‖∗ − ‖Y(t)‖∗

]

= lim
ǫ→0+

1

ǫ

[
∥

∥

∥
B(t)(e(t)− c) + ǫ

(

Ḃ(t)(e(t)− c) +BL(t)(e(t)− c)
)
∥

∥

∥

∗

− ‖B(t)(e(t)− c)‖∗]

= lim
ǫ→0+

1

ǫ

[∥

∥

∥
B(t)(e(t)− c) + ǫ(ḂB−1 +BLB−1)B(t)(e(t)− c)

∥

∥

∥

∗

− ‖B(t)(e(t)− c)‖∗]

≤ ‖B(t)(e(t)− c)‖∗ lim
ǫ→0+

1

ǫ

[

‖I+ ǫ
(

ḂB−1 +BLB−1
)

‖∗ − 1
]

= ‖Y(t)‖∗µ∗

(

ḂB−1 +BLB−1
)

.
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By integrating both sides of D+‖Y(t)‖∗ ≤ ‖Y(t)‖∗µ∗

(

ḂB−1 +BLB−1
)

from t0 to t,

we obtain

‖B(t)(e(t)− c)‖∗ ≤ ‖B(0)(e(0)− c)‖∗ exp

(
∫ t

t0

µ∗(ḂB−1 +BLB−1)(s)ds

)

.

Therefore,

‖e(t)− c‖∗ = ‖B−1(t)B(t)(e(t)− c)‖∗ ≤ ‖B−1(t)‖∗‖B(t)(e(t)− c)‖∗

≤ ‖B−1(t)‖∗‖B(0)(e(0)− c)‖∗ exp

(
∫ t

t0

µ∗(ḂB−1 +BLB−1)(s)ds

)

.

Therefore, limt→∞ ‖e(t)−c‖∗ = 0 since limt→∞ exp
(

∫ t

t0
µ∗(ḂB−1 +BLB−1)(s)ds

)

= 0

and ‖B−1‖ > 0. Therefore, system (5) is globally asymptotically stable around a constant
vector c and note that the constant vector c depends upon the initial conditions. This
completes the proof.

In the case when B(t) is a constant matrix, by Theorem 3.1, we have the following
result.

Corollary 3.1 System (5) is globally asymptotically stable if there exists a non-
singular matrix B such that

∫ ∞

t0

µ∗(BL(s)B−1)ds = −∞,

for any t0 ≥ 0. Consequently, phase synchronization between systems (2) and (3) occurs
which is globally asymptotically stable around a constant vector c.

In Corollary 1, when B is an identity matrix, then the main result in [13, 23] is
obtained.

Corollary 3.2 System (5) is globally asymptotically stable if
∫ ∞

t0

µ∗(L(s))ds = −∞,

for any t0 ≥ 0.

4 Numerical Results

In this section, we give some examples to show the efficiency of the above theory.
Example 1. Consider the following forced Duffing system

{

ẋ = y,

ẏ = ax− by − x3 + c cos(2πdt).

This system is chaotic for parameter values a = c = 0.3, b = 0.35 and d = 0.2. Using a
nonlinear coupling function to couple two identical copies of this system yields

{

ẋ1 = −x1 + y1 + x1 + α|x2 − x1|,

ẏ1 = ax1 − by1 − x3
1 + c cos(2πdt) + α|x3

1 − x3
2|,

(6)
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and
{

ẋ2 = −x2 + y2 + x2 + α|x1 − x2|,

ẏ2 = ax2 − by2 − x3
2 + c cos(2πdt) + α|x3

2 − x3
1|,

(7)

where the linear and nonlinear matrices are defined by

L =

[

−1 1
0.3 −0.35

]

, N =

[

−x

x3 − 0.3 cos(0.4πt)

]

.

By taking B =

[

1 2
1 1

]

, we have B−1 =

[

−1 2
1 −1

]

and BLB−1 =
[

−0.11 −1.1
1.35 −2.05

]

. Now, by using matrix measure µ2(·), we have

1

2
λmax

(

(BLB−1)T +BLB−1
)

=
1

2
λmax

[

−0.2 0.25
0.25 −4.1

]

= −0.09202.

Therefore, according to Corollary 3.1, synchronization of systems (7) and (8) is globally
asymptotically stable. See Figure 1.

Figure 1: Global asymptotic stability of synchronization between two chaotic systems (7) and
(8) in Example 1.

Remark. The above results in Corollary 3.1 and 3.2 are useful to proof the global
asymptotic stability of phase synchronization in coupled chaotic systems. As discussed,
this synchronization occurs whenever the maximum real part of the eigenvalues of L

is zero. In this case, even the linear stability analysis is not useful for (local) stability
analysis of phase synchronization. Nevertheless, using the results of these two corollaries,
if in the hypothesis we replace

∫∞

t0
µ∗(BL(s)B−1)ds = −∞ or

∫∞

t0
µ∗(L(s))ds = −∞ by

∫∞

t0
µ∗(BL(s)B−1)ds = 0 or

∫∞

t0
µ∗(L(s))ds = 0, respectively, then the error vector in

the coupled chaotic systems remains constant. That is, if there is phase synchronization
between two coupled chaotic systems, then this synchronization is globally asymptotically
stable.

Example 2. Consider the same Duffing system in Example 1 with parameter values
a = b = 0.35, c = 0.3 and d = 0.2. Then this system is again chaotic. Now, with the
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same nonlinear coupling method as above, we have

L =

[

−1 1
0.35 −0.35

]

, N =

[

−x

x3 − 0.3 cos(0.4πt)

]

.

By taking identity matrix for B and choosing ω1 = 7 and ω2 = 20, we get µω(BLB−1) =
µω(L) = 0. Therefore, phase synchronization occurring between systems (7) and (8) is
globally asymptotically stable. See Figure 2.

Figure 2: Global asymptotical stability of phase synchronization between two chaotic systems
(7) and (8) in Example 2.

5 Conclusion

We have discussed a sufficient analytical condition for the stability of synchronization in
coupled chaotic systems. As we have seen using a method of nonlinear feedback function
and the scheme of matrix measure together with numerical results have justified this
analytical stability. In particular, we have shown that our stability analysis is useful to
proof the global asymptotic stability of phase synchronization in coupled chaotic systems.
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