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Initial Trajectories of Propagation of Fatigue Cracks

Under Biaxial Cyclic Loading with Phase Difference
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Abstract: This paper presents a method for predicting initial trajectories of prop-
agation of two separate fatigue cracks, which are developed under two perpendicular
cyclic loads with phase difference between them. Calculation of trajectories of these
two initial cracks is the first step in prediction of trajectories and rate of propaga-
tion of long cracks. This problem is important for analysis of durability of structures
subjected to biaxial loading, where it is necessary to know trajectories of cracks’
propagation, stress intensity factors along the trajectories and dependence of cracks’
growth rates on stress intensity factors. Existing methods, based on finite element
analysis and automatic mesh generation [1,2], allow to perform such calculations only
for uniaxial loading and for multi-axial proportional loading, without phase differ-
ence between applied external forces. Experiments, presented in this paper, show
that under biaxial loading with phase difference between applied loads, two cracks
are developed. Comparison of calculated and experimentally observed initial direc-
tions of cracks propagation shows that the calculations correctly reflect existence of
two cracks and the fact that they are approximately symmetrical about the line that
makes 45◦ with directions of applied loads. This method can become a theoretical
basis for extending capabilities of existing methods, based on finite element analy-
sis and automatic mesh generation, of predicting trajectories of fatigue cracks under
complex loading conditions.
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1 Introduction

It has been a common practice to characterize the fatigue crack growth in metals under
uniaxial loading. But majority of aerospace structural components experience a combi-
nation of axial, bending, shear and torsion stresses, resulting in a complex stress state.
It is thus appropriate to extend the fatigue crack growth studies to non-uniaxial loading
conditions. For biaxial tension-tension loading without phase difference between applied
loads, such studies were performed, for example, by Misak, Perel, Sabelkin and Mall [3].
In the present paper, this study is extended to biaxial tension-tension loading with phase
difference between applied loads. Such loading results in growth of two fatigue cracks,
as will be shown in this paper. The test material is aluminum alloy 7075-T6, which is
widely used as a structural material in the military and civilian aircraft fleet.

Along the direction of crack propagation, the mode II stress intensity factor, KII ,
is usually much smaller than the mode I stress intensity factor, KI . So, in the biaxial
loading, the dependence of crack growth rate da

dN on the stress intensity factor KII is

small, and the dependence of da
dN on KI can be established experimentally, under uniaxial

loading with force normal to the crack. If tips of the crack (or cracks) have different stress
intensity factors at any given time instant during the loading cycle, then construction
of the cracks’ trajectories should be performed with account of relation between da

dN
and KI . This means that if the cracks’ trajectories are constructed by an incremental
procedure, then, at each step of the procedure, the increments of the cracks’ lengths
are calculated from the relation between da

dN and KI , where KI is a function of crack
length, a. But if the tips of the crack have equal stress intensity factors, or if we have one
crack originating from an edge, then in constructing the crack’s trajectory incrementally,
some small straight-line increments of the crack can be specified arbitrarily, without
considering da

dN . In this case, a number of cycles, N, corresponding to the chosen crack
length increment, can be calculated later, in the post-process stage of analysis, using the
relation between da

dN and KI .

Figure 1a: Experimental setup.
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Figure 1b: Pre-crack of length a0, originating from circular hole of radius r in a thin plate.

2 Direction of Crack Propagation

For construction of the cracks’ trajectories, a formula was used for direction of initial
crack propagation, based on a hypothesis that crack propagates in the direction θ = Θ
(Figure 2), in which σθθ (θ) takes the maximum value (Erdogan and Sih [4]). This
hypothesis leads to the formula

Θ = 2 arctan
1−

√

1 + 8
(

KII

KI

)2

4KII

KI

. (1)

A change of shape of a macroscopic crack in one cycle of loading (or in a small number
of cycles) is negligibly small, so at any time instant within one cycle, the angle θ = Θ in
eq. (1) is measured with respect to a direction of the initial crack (pre-crack), as shown
in Figures 1a, 1b and 2.

Figure 2: Global rectangular coordinate system xy, local rectangular coordinate system x′y′

and polar coordinate system ρθ.
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3 Stress Intensity Factors

In this work, we considered a thin plate of Aluminum 7075-T6, with a pre-crack of length
a0, originating from a circular hole of radius r at angle ϕ = 45◦ to directions of remote
principal stresses Sx and Sy (Figures 1a and 1b). This pre-crack was created by applying
sinusoidal loads Sx (t) = Sy (t), without the phase difference between them. After the
creation of the pre-crack, the phase difference γ between the loads Sx (t) and Sy (t) was
introduced, and the loads became

Sx (t) =
(Sx)max + (Sx)min

2
+

(Sx)max − (Sx)min

2
sin (2πνt) , (2)

Sy (t) =
(Sy)max + (Sy)min

2
+

(Sy)max − (Sy)min

2
sin (2πνt+ γ) . (3)

In our experiments and calculations we set

(Sx)min

(Sy)min

=
(Sx)max

(Sy)max

= 1,
(Sx)min

(Sx)max

=
(Sy)min

(Sy)max

≡ R = 0.5. (4)

For a crack, originating from elliptical hole, at an arbitrary angle to directions of
remote principal stresses, a solution for stress intensity factors is given in the paper of
Kaminski and Sailov [5]. For the particular case of circular hole and the pre-crack at
45◦ with the principal stresses, as was the case in our experiments and calculations, this
solution takes the form

KI =

√
πr

2
√
2

√

l0 (l0 + 2)
3

(l0 + 1)
3 (Sx + Sy) , (5)

KII =

√
πr

2
√
2

√

l0 (l0 + 2)3

(l0 + 1)
3 (Sx − Sy) , (6)

where

l0 =
1

2

(

−1 +
a0

r
+

√

2
a0

r
+

a20
r2

+ 1

)

. (7)

So, for the case of circular hole and the pre-crack at 45◦ with the principal stresses,
we have

KII

KI
=

Sx − Sy

Sx + Sy
. (8)

4 Rate of Crack Propagation

4.1 Rate of crack growth due to cyclic variation of load

In considering a small number of loading cycles (several hundred cycles), the change of
stress intensity factors is only due to the change of external load with time, since the effect
of the change of the crack’s shape and length on the stress intensity factors is negligibly
small. According to the Dugdale hypothesis, in thin ideally elastic-plastic plates, with
a through-thickness crack, plastic strains are concentrated along a narrow layer on the
continuation of the crack, so that the plastic zone can be treated as a line of discontinuity
of elastic displacement. Therefore, according to the Dugdale hypothesis, a solution for
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displacements can be sought as a discontinuous solution based on the elasticity theory.
On the basis of this approach, the following formula was obtained by Cherepanov [6] for
displacement of one side of the plastic yield strip:

v (x′) = −2σY

πE

(

2
√

D (D − x′) + x′ ln

√
D −

√
D − x′

√
D +

√
D − x′

)

, (9)

where

D =
πK2

I

8σ2
Y

(10)

is size of plastic zone in the Dugdale model, σY is yield stress, and E is Young’s modulus.
During the crack propagation, the strain energy dissipation per unit area of a newly
formed surface of the crack (specific energy dissipation) is the path integral along the
line of the plastic zone (Cherepanov [6]):

γ∗ =

∫

(plastic zone)

σy′y′ dv =

D
∫

0

σy′y′

(

∂v

∂x′
dx′ +

∂v

∂KI

dKI

da
dx′

)

= σY

d
∫

0

∂v

∂x′
dx′ + σ

Y

dKI

da

D
∫

0

∂v

∂KI
dx′,

(11)

where the term dKI

da is due to increase of length of plastic zone because of change of stress
intensity factor (i.e. because of change of load) in a cycle. This term is not related to
the growth of the crack.

Substitution of eqs. (9) and (10) into eq. (11) and performing integration gives the
result

γ∗ =
K2

I

2E
− π

12Eσ2
Y

K3
I

dKI

da
. (12)

Introducing notation
K∗ =

√

2Eγ∗, (13)

we receive from eq. (12)

|da| = π

6σ2
Y

∣

∣

∣

∣

K3
I

K2
∗
−K2

I

dKI

∣

∣

∣

∣

(14)

or
∣

∣

∣

∣

da

dt

∣

∣

∣

∣

=
π

6σ2
Y

∣

∣

∣

∣

K3
I

K2
∗
−K2

I

dKI

dt

∣

∣

∣

∣

. (15)

It should be noted that here, like in the original work of Cherepanov [6], the formula
(15) should be considered as being a semi-empirical one, with K∗ treated as a material
constant, i.e. the derivations, leading to the formula (15), are not strict, but only such
that help to guess this semi-empirical formula. The crack grows

(

da
dt > 0

)

during the

crack opening, i.e. when KI > 0 and dKI

dt > 0. Besides, usually, K2
∗
−K2

I > 0, as will
be shown later (Figure 3). Therefore, eq. (15) can be written in a physically meaningful
form as

da

dt
=

π

6σ2
Y

K3
I

K2
∗
−K2

I

dKI

dt
. (16)
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Figure 3: Uniaxial loading, force perpendicular to crack. Comparison of experimental and
theoretical curves under the following choice of material constants:

K∗ = 4.52459 × 107 Pa
√
m, λ = 4.8353 × 10−7 1

Pa
√
m
, ν0 = 1.5 × 10−10

m

s .

4.2 Rate of crack growth due to chemical reactions

If the crack grows due to a chemical reaction, for example due to corrosion, then the
crack’s growth rate da

dt is proportional to the rate of chemical reaction, and, therefore,

proportional to exp
(

− U
RT

)

, where U is activation energy of the reaction, T is tem-

perature, and R = 8.314 J
K×mole is universal gas constant, according to the Arrhenius

equation (Arrhenius [7]; Levine [8]). The activation energy U is proportional to stress at
the crack tip, and, therefore, to KI (Cherepanov [6]). Therefore, the crack growth rate
due a chemical reaction can be written as

da

dt
= v0 exp (λKI) , (17)

where v0 and λ are material characteristics that depend on temperature and chemical
composition of environment.

4.3 Rate of crack growth due to combined effects of cyclic variation of load

and chemical reactions

If the crack grows due to both cyclic variation of KI and chemical reactions, then the
right sides of eqs. (16) and (17) have to be summed up:

da

dt
=

π

6σY

K3
I

K2
∗
−K2

I

dKI

dt
+ v0 exp (λKI) (18)

or

a(t) = − π

12σ2
Y

(

K2
I (t)−K2

∗

)

− πK2
∗

12σ2
Y

ln
(

K2
I (t)−K2

∗

)

+ v0

∫

exp(λKI(t)) dt+ const.

(19)
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5 Experimental Determination of Material Constants

Eqs. (18) and (19) contain four material characteristics, σY , K∗, v0 and λ, which need
to be determined experimentally. Experimental data on fatigue crack growth rates are
usually represented in the form of da

dN versus ∆KI = (KI)max − (KI)min, where (KI)max

and (KI)min are maximum and minimum values of KI in a cycle of loading. So, the
theoretical equation (18) or (19) needs to be rewritten in the same form, and then the
material characteristics K∗, v0 and λ in these theoretical equations can be chosen such
that the theoretical plot of da

dN versus ∆KI is close to the experimental one.
As it was mentioned previously, the material characteristics can be established with

the use of experimental data obtained in uniaxial loading with remote stress

S (t) =
Smax + Smin

2
+

Smax − Smin

2
sin (2πνt) (20)

perpendicular to the crack and the mode I stress intensity factor

KI(t) =
(KI)max + (KI)min

2
+

(KI)max − (KI)min

2
sin (2πνt) . (21)

Introducing notations

R ≡ Smin

Smax
=

(KI)min

(KI)max

, H ≡ 1 +R

1−R
, (22)

we can write eq. (21) as

KI (t) =
1

2
(∆KI)

(

H + sin (2πνt)

)

. (23)

Crack growth in one cycle of loading occurs during the crack opening, i.e. from the time
instant t = 3

4ν , when KI = (KI)min = R
1−R∆KI , to the time instant t = 5

4ν , when

KI = (KI)max = 1
1−R∆KI . Therefore, the increment of the crack length in one cycle of

loading, da
dN , is

da

dN
= a

∣

∣

∣

KI=∆KI/(1−R)
− a

∣

∣

∣

KI=∆KIR/(1−R)
= a

∣

∣

∣

t=5/(4ν)
− a

∣

∣

∣

t=3/(4ν)
. (24)

Substituting eqs. (19) and (23) into eq. (24), we obtain

da

dN
= − πK2

∗

12σ2
Y

(

H
(∆KI)

2

K2
∗

+ ln
(1−R)

2
K2

∗
− (∆KI)

2

(1−R)
2
K2

∗
−R2 (∆KI)

2

)

+ v0 exp (0.5λH ∆KI)

5

4ν
∫

3

4ν

exp (0.5λ ∆KI sin 2πνt) dt.

(25)

In our experiments,

ν = 10Hz, R = 0.5, H =
1 +R

1−R
= 3. (26a)
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Besides, if our material, Aluminum 7075-T6, is modeled as ideally elastic-plastic, then
the yield stress can be taken as

σY = 4.08249× 109Pa. (26b)

We need to choose such numerical values of the material constants K∗, v0 and λ that the
graph of da

dN versus ∆KI , obtained from the semi-empirical formula (25) with numerical
values (26), is close to the experimental one. We will try to use the following values

v0 = 1.5× 10−10 m

s
, λ = 4.8353× 10−7 1

Pa
√
m
, K∗ = 4.52459× 107Pa

√
m. (27)

Substituting numerical values from eqs. (26) and (27) into eq. (25), we receive

da

dN
= −

(

4.71237× 10−20
)

(∆KI)
2

−
(

3.21571× 10−5
)

ln
5.11798× 1014 − (∆KI)

2

5.11798× 1014 − 0.25 (∆KI)
2

+
(

1.5× 10−10
)

exp
(

7.25295× 10−7∆KI

)

×
0.125
∫

0.075

exp
(

2.41765× 10−7∆KI sin 62.8319t
)

dt.

(28)

Formula (28) gives the correspondence between numerical values of da
dN and ∆KI as

shown in Table 1.

∆KI (Pa
√
m) da

dN

(

m
cycle

)

3× 106 4.79467× 10−9

3.25× 106 6.60663× 10−9

3.5× 106 8.89594× 10−9

3.75× 106 1.17424× 10−8

4× 106 1.52328× 10−8

4.25× 106 1.94615× 10−8

4.5× 106 2.45306× 10−8

4.75× 106 3.05502× 10−8

5× 106 3.76391× 10−8

Table 1:

The plot of data in Table 1, together with experimental plot of da
dN versus ∆KI for

uniaxial loading, is shown in Figure 3. These plots are close to each other. Therefore,
numerical values of the material constants v0, λ and K∗ in eq. (27) are chosen correctly.

6 Trajectories of Cracks

Parametric equations of trajectories of cracks, in the local coordinate system x′y′

(Figure 2), with axis x′ aligned with the pre-crack,

x′ = x′(t), y′ = y′(t) (29)
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can be written as follows

dx′

dt
=

da

dt
cosΘ,

dy′

dt
=

da

dt
sinΘ. (30)

Experiments show that under biaxial tensile and compressive loading with phase
difference between applied loads (Figures 1a and 1b), two cracks originate from the pre-
crack, and their trajectories are approximately symmetrical about the line along the
pre-crack (Figures 4b, 5b, 6b). Therefore, it is assumed that in the first half-cycle of
loading, one of the cracks grows starting from the edge of the pre-crack; and in the
second half-cycle of loading, the second crack grows starting from the same location, i.e.
from the edge of the pre-crack. So, initial conditions for the first half-period of loading
are

x′(0) = 0, y′(0) = 0, (31)

and initial conditions for the second half-period are

x′

(

T

2

)

= 0, y′
(

T

2

)

= 0, (32)

where T is the time duration of one cycle of loading. A solution of differential equations
(30) for the first half-period of loading (for crack branch 1), i.e. a solution with initial
conditions (31), is

x′ (t) =

t
∫

0

da

dt
cosΘ, y′ (t) =

t
∫

0

da

dt
sinΘ dt. (33)

A solution of differential equations (30) for the second half-period of loading (for crack
branch 2), i.e. a solution with initial conditions (32), is

x′ (t) =

t
∫

T/2

da

dt
cosΘ dt, y′ (t) =

t
∫

T/2

da

dt
sinΘ dt. (34)

If a small number of cycles is considered, during which the effect of change of cracks’
shapes and lengths on values of the stress intensity factors is negligibly small (several
hundred cycles), then a complete system of equations, leading to calculation of the cracks’
trajectories, is

Sx(t) =
(Sx)max + (Sx)min

2
+

(Sx)max − (Sx)min

2
sin(2πνt), eq. (2)

Sy(t) =
(Sy)max + (Sy)min

2
+

(Sy)max − (Sy)min

2
sin(2πνt+ γ), eq. (3)

KII

KI
=

Sx − Sy

Sx + Sy
, eq. (8)

Θ = 2 arctan
1−

√

1 + 8
(

KII

KI

)2

4KII

KI

, eq. (1)
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Figure 4a: Calculated trajectories of propagation of cracks in the first cycle of loading, when

phase difference between applied loads was 180◦.

Figure 4b: Trajectories of propagation of cracks, observed in experiment, when phase

difference between applied loads was 180◦.

Figure 5a: Calculated trajectories of propagation of cracks in the first cycle of loading, when

phase difference between applied loads was 90◦.
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Figure 5b: Trajectories of propagation of cracks, observed in experiment, when phase

difference between applied loads was 90◦.

Figure 6a: Calculated trajectories of propagation of cracks in the first cycle of loading, when

phase difference between applied loads was 45◦.

l0 =
1

2

(

−1 +
a0

r
+

√

2
a0

r
+

a20
r2

+ 1

)

, eq. (7)

KI =

√
πr

2
√
2

√

l0(l0 + 2)3

(l0 + 1)3
(Sx + Sy), eq. (5)

da

dt
=

π

6σ2
Y

K3
I

K2
Ic −K2

I

dKI

dt
+ v0 exp (λKI) , eq. (18)

x′(t) =

t
∫

0

da

dt
cosΘ dt, y′(t) =

t
∫

0

da

dt
sinΘ dt for branch 1, eq. (33)

x′(t) =

t
∫

T/2

da

dt
cosΘ dt, y′(t) =

t
∫

T/2

da

dt
sinΘ dt for branch 2. eq. (34)
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Figure 6b: Trajectories of propagation of cracks, observed in experiment, when phase

difference between applied loads was 45◦.

Coordinates of points of the cracks’ trajectories in the global coordinate system xy can
be calculated by formulas

x = x′ cosϕ− y′ sinϕ,

y = x′ sinϕ+ y′ cosϕ,
(35)

where ϕ is angle between axes x′ and x, i.e. angle between the pre-crack and the axis x
(Figure 2).

Alternatively, the cracks’ trajectories can be calculated by incremental procedure,
which can be written briefly as follows:

t0 = 0, tm =
m

M

T

2
, (36a)

m = 1, 2, . . . ,M for first half-cycle, (36b)

m = M + 1, . . . , 2M for second half-cycle, (36c)

where 2M is a number of equal sub-intervals into which time interval of one cycle of
loading, [0, T ], is divided;

x′

m = x′(tm), y′m = y′(tm), Θm = Θ(tm), am = a(tm), ∆am = am − am−1, (37)

x′

0 = 0, y′0 = 0, Θ0 = 0, (38)

x′

m = x′

m−1 + (∆am) cosΘm, (39)

y′m = y′m−1 + (∆am) sinΘm. (40)

The calculated trajectories of cracks’ propagation in the first cycle of loading, with phase
differences 180◦, 90◦ and 45◦, are shown in Figures 4a, 5a and 6a accordingly. The
corresponding experimentally observed initial directions of cracks’ propagation are shown
in Figures 4b, 5b and 6b accordingly. Comparison of the calculated and experimentally
observed initial directions shows that the calculations correctly reflect existence of two
initial cracks and the fact that they are approximately symmetrical about the line along
the pre-crack.
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7 Conclusion

It should be noted again that calculations of cracks’ trajectories, presented in this paper,
can be valid only for a small number of cycles (several hundred cycles), during which
the stress intensity factors are not significantly affected by change of cracks’ shapes
and lengths. Therefore, calculations in this paper can be used for prediction of cracks’
trajectories only during a small initial number of cycles. But if the cracks’ trajectories
need to be calculated for a larger number of cycles, then values of stress intensity factors
should be recalculated after every several thousand cycles with the use of the finite
element method, to take account of effect of change of the cracks’ shapes and lengths
on the stress intensity factors. Besides, in calculations of the cracks’ trajectories over
intervals of large number of cycles, the angle Θ, given by eq. (1), should be treated as
an angle between the current direction of the crack propagation and the direction before
the latest block of several thousand cycles was applied. In other words, for long cracks,
Θ should be treated not as an angle between a direction of the tangent to the crack at
its tip and the direction of the straight-line pre-crack (as it was done in this paper), but
as an increment of this angle in the current sub-interval of loading. Such calculations of
trajectories of long cracks under biaxial loading with phase difference can be a subject
of future work.
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