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Abstract: In this paper a cooperative and supportive neural network proposed re-
cently is considered. Time delays both in transmission of information from subsystems
to main system as well as processing of information in subsystem itself are introduced
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the stability of the system independent of time delays. Examples are provided for
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1 Introduction

Neural networks has been a subject of research for decades with growing popularity ([2],
[6-11]), for its extensive application in several real world situations ([1], [3], [12-17], [21]).
In [20], a new class of networks designated as co-operative and supportive neural network
(CSNN, for short) was introduced. The model is suitable for explaining the dynamics of
systems exhibiting hierarchy in which the collective capabilities of components involved
are utilized for better performance of the system. Such systems find application in indus-
trial information management, financial and economic systems which involve distribution
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and monitoring of various tasks. They are also useful in solving complex network prob-
lems [2], classification and clustering problems, in data mining and financial engineering
[5]. They are also utilized for parameter estimation of auto regressive signals and to
decompose complex classification tasks into simpler subtasks and puzzle them out. In
particular, the network considered in the present study is utilized for estimation of key
parameters in infectious disease models [18]. The reliability aspects of this network are
studied in [14].

The model comprises two neuronal fields say F} and F}. Each neuron in F}, is denoted
by x;, i = 1,2,...,n and is connected to other neurons z;, j = 1,2,...,n in the same field
F,. Also each x; is connected to r; number of neurons in the neuronal field F,. These are
denoted by y;,, k =1,2,...,7;, 1 <r; < n. These y;, support z; in the sense that they
coordinate and cooperate with it so that any task assigned to them by x; will be attended
to. The dynamics of the model is described by the following system of equations

n Ti
Tp = —a;r; + sz‘jfj(xj) + Zciikgik(xi;yik) +1Lii=1,2,...,n,

j=1 k=1
Ti
/!
Yi, = —Cirl¥i, T Zdilhil (i) + Jip, k=1,2,.,m, 1<r;<n. (1)
1=1
In (1), x;, i=1,2,...,n denotes a typical neuron in F, and y; .,k = 1,2,...r; denotes a
subgroup of neurons in Fy attached to z;. ' = % denotes the derivative with respect to
time variable ¢. a; and ¢;, are positive constants known as decay rates and b;;, d;;, are the
synaptic connection weights for all 4,5 = 1,2,--- /n, k = 1,2,...,r; and are assumed to

be real or complex constants. c¢;;, is the rate of distribution of information between z;
and y;, . The functions f;, ¢;, and h;, are the neuronal output response functions and
are more commonly known as the signal functions. I;, J;, are exogenous inputs.

We may use the terms main component or task or group element for z; and sub-
component or task or group element for y;, synonymous with neuron, owing to the
application for which system (1) is utilized. For example, (1) may be viewed as a man-
agement information system in which z; are in layer (say managerial or lead group)
monitoring the activities of related subgroups of y;, . Thus, (1) represents both (i) hier-
archical systems in which x; can wait till y;, complete their task and return to x; (serial
processing) and (ii) coordinating systems where z; also work along with y;, to complete
their part (parallel processing).

Several modifications of (1) are suggested in [20] that take care of interactions among
the neurons as well as time delays. These models are left as open problems for further
research. Two types of delays are common in such systems. First one is the time
delay in transferring information/completed task from y;, to z;, called transmission or
propagation delay and the second is the one that occurs while carrying out the job by
¥i, themselves, namely, processing delay. Introduction of these two types of time delays
into the system modifies (1) as following

T = —a +Zbijfj($j) +Zciikgik(‘ri)yik(t_7-ik)) + I,
j=1 k=1
y;k = —CiYi t Z di, hi, (yil (t - Ty )) + Ji- (2)

=1
Herei=1,2,...n, k=1,2,...,r;and 1 < r; <n.
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In (2) 7;, > 0 denote delays in transmission of data/material from sub-system y;,
to the main system while 7;, > 0 denote processing delays with subcomponents. The
present paper studies the qualitative behaviour of the solutions of (2) under the influence
of time delays. The present study is important in the context of established influence
of time delays on neural network systems and any physical system. (2) is quite general
in the sense that it includes several modifications of (1) suggested in [20]. In fact (2)
combines the models IIT and IV of [20].

The paper is organized as follows. For the system (2) we establish the conditions
of existence and uniqueness of solutions, equilibria in Section 2. Different Lyapunov
functionals are utilized to establish stability of equilibria in Section 3. Examples are
provided for an illustration of the results. Finally the paper is concluded with a discussion
in Section 4.

2 Existence of Solutions and Equilibria

From the theory of delay differential equations, local Lipschitz condition on the response
functions (f;, gi, and h;, ) which are at least continuous in their domains of defini-
tions, guarantees the existence of solutions to (2) (see [4,19,20]). However it is useful for
researchers to note that conditions weaker than Lipschitz condition on these response
functions that guarantee the existence of unique solutions to such systems are also avail-
able in literature (e.g., [19]). Thus, we may choose f;, g;, and h;, from a very general
class of functions. With this background, we tacitly assume that the system (2) possesses
unique solutions that are continuable in their maximal intervals of existence. However,
we need the following Lipschitz conditions on these functions to establish the existence
of equilibria and their stability in subsequent sections:

| girn (@i, 9i,) — 90 (@i, T3) | < Mg |yi, — Gy, | + Mai, |2 — Tl (3)
|fi(xs) = fi(@)] < piley — T4, (4)

where My, , Ma;,, p; and g;, are positive constants.
Since time delays do not disturb the presence of equilibria, as in [20], we have

Theorem 2.1. Let a; and ¢;, (i =1 ton, k=1 to r;) be positive numbers such that
n T4
D o Nbilps + Y len Moy, < ani=1,2,..m,
j=1 k=1
Ti Ti
Z|dil|% +Z|Ciik|M1ik < Gy, k=1,2,..,r;, 1<r;<n. (6)
=1 k=1

Then the system (2) possesses a unique positive equilibrium for each 4, k. If we denote
this equilibrium solution of (2) by (7, y;, ), then we should have

n T4
G/i.’L';F = waf](x;)+Zcukg7,k($:ay;)+lz;l:1;237”
j=1 k=1

o
S
~
=
S
\

Zdilhiz(yZ)JrJik, k=1,2,...r;, 1<r;<n. (7)
=1
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We shall now proceed to the stability of this unique equilibrium whose existence is ensured
by Theorem 2.1.

3 Global Stability Results

In this section we shall establish criteria for the global asymptotic stability of the equi-
librium patterns of system (2). The conditions for global stability of (1) are presented
in [20]. We shall see how the presence of time delays influences the stability here in
the context that time delays have tendency of disturbing the stability by introducing
oscillations into the system. We begin with

Case 1. No processing delays within sub components:

We start with a special case of (2) in which we assume that 7;, = 0 for all 4;. This
means that we are considering a state when the sub components finish their part of job
without any delay as required by x;. However the system is characterized by the delays
(i.e., 75, > 0) in transmission of these outcomes to main system.

We need the following inequality for our first result.

For all real numbers u, v and n > 0 we have

1
uv < EUQ + . (8)
Theorem 3.1. Assume that conditions (3)-(5) hold. The equilibrium (x},y;, ) of (2)

is globally asymptotically stable for any length of time delays 7, > 0, fori=1,2,...,n and
k=1,2,...,1;, provided the parameters satisfy any of the following sets of inequalities:

n 1 n i
a). Y |bij|pj4_m + ) bjilpim + > leii | (Mai, + Myym2) < ai,
j=1

j=1 k=1

1 i 1 «
|Ciz'k|M1ik4—772 +773;|dik|qz'k|+%;|dik|%| < Ciy,

n n T
) :
b). Y |b¢j|p§4— + D bgilm + Y fein |(Mai, + Mugip) < as,
j=1 - k=1
1 T4 1 T4
|Ciz'k|M1ik4—772 +n3;|dik|qik|+%;|dik|qik| < Cigs
n 1 n T4
0y [bijl— + D lbsilpim + D lein (Mo, + M) < as,
i=1 - k=1
1 Ti 1 T
M — d: la; il dilai| < ci,
|Cllk| 1lig 4175 +773;| 1k|q1k| + 4173 kz:;| lk|%k| Ciy,

where 1, N2 and N3 are positive parameters chosen appropriately.
Proof. We construct a Lyapunov functional suitable for our purpose here. We first

consider o) — i { (2 (t); x})? } .

=1
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The derivative of V; along the solutions of (2), using (7), is given by

Vi = {0 - o )
= S {0 oD~ a0 a0+ bt — )
3 0 i (£ 7)) — 00,0792, )
k=1

IN
[
=
— =

\

&

)

=~

~—
\
H

+ |zi(t) — 27| Z |bij|psla; () — 7]
ai(t) - ] |Z it [ MaigJos = @3] + Mgyl (¢ = 7)) = v 1] b},

utilizing (4),(3) for the last two terms respectively.

We utilize the inequality (8) for = 71 and n = 75 in the second and fourth terms of
the above inequality to get

* * 1 * *
pilea(®) = aflles — w3l S | g le) = @)l - 5],
* * 1 k *
it =) vl =l < [l = ) 9l + =] (9)
Then we have
e < 3 [-aw +Z|bw|pj[ (wi(t) = 27)? + m(w; - a})?%]
=1

+Z iy, | Maiy (25 — x})?
+Z e M [0 (8 = 72) = 3,0 + s — ]
= - Z {ai - Z |bij |pj4—n1 - Z |bjilpim — Z |Ciiy [ Mai,,

72 |c”k |M11k772:| - 1' + ZZ |c”k |M1'Lk 4 (yik( Tik) - yz*k)Q(lo)

1=1k=1

Now define
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Then along the solutions of (2) we have

Vi) = (i () — i) (Wl (1) — w7

NE
NE

s
Il

-

B
3l

—

K3

(00— 5[ = en a0 — 07 + D dulhi ) — b ()]

=1

Il
-
i M:
Il
x>
i
[

<
Sy

M-
(]

[ = i (B (6) = 5 + Iy (8 ylk|2|dzl|qzl|yzl uil|
1

|: Z|d’bk|QZk n3z|dlk|QZk:| y’bk yzk) ? (11)

1=1 k=1

1

s.
Il

S
Il

IN

again utilizing the inequality (8) for n = 13 > 0. Now consider

norg 1 t .
Z |Cuk|Mlzk %/ (ylk (Z) - yik)2d'z'

i=1 k=1 =iy,

Then we have

n T

1 *
ZZ |c”k|M1'Lk4 (y'bk( ) 7yik.) - Z |c”k|M11k4 (y'bk (tﬁTik) 7yik.>2'
i=1 k=1 i=1 k=1
(12)
We now define our Lyapunov functional by V(¢) = Vi (t) + Va(t) + V3(t). Then along
the solutions of (2) utilizing (10),(11) and (12), we get

VI(t) = V() +V5(t) + V(1)

- Z [ai - Z |bij|17j4%71 - Z |bjilpim — Z |ciir, | Mo,

*Z|szk|M11kn2:| 756 +ZZ|C”’¥|M1“€4 (yzk( Tik)fy;kk)2

IN

k=1 1=1 k=1
- Z Z [Cik - Z |dik |qik - 4_ Z |dik |qiki| (yik (t) - y;)2
i=1 k=1 B =
+ZZ |Cuk|M11k A, (ka( ) — yz*k)z
1=1 k=1
- Z Z |Cuk |M11k 4 (yzk( Tik) - y:k)Q
1=1 k=1

i=1 k=1

> [l me4 Zwmpml -3 e (M, + My (- 7
Jj=1

T

" 1 & 1 .
-2 [Cw 7732 |, |qi,, — I ; \di,. g\, — |Ciz'k|Muk4—nJ (yir (1) — y7:)?

1=1k=1
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If we choose

a; > Z|bw |p] +Z|b]z|pz771 + Z'C”k| M2zk +M11k772)
k=1

1
Cip, > |cii|Mui, % + 73 Z \di |ai, + % Z |diy, iy,
k=1 k=1

as in assumption (a), then we have
V'(t) < 0.

Clearly V has all the properties of a Lyapunov functional to serve our purpose here. Rest
of argument may be followed as in [4] or [19]. Hence (z;(t), ¥, (t)) converges to (z}, ;)
as t — oo.

The other two cases (b) and (c¢) may be proved on similar lines using the inequalities

* * p * *
pilei(®) = illes — il < | gl ) - el 4 ma) - 23],

* * 1 * *
ple) ~aille; ol < [T~ im0 - )],
respectively in place of (9). The proof is complete.

The two-delay system:

We shall now consider the general case of (2) in which we assume delays both in
transmission of information from and processing of information within subcomponents.
The following result establishes sufficient conditions for the global asymptotic stability
of equilibrium solution for this case.

Theorem 3.2. Assume that the parameters of the system (2) satisfy the following
conditions:

n Ti Ti Ti
a; > Y |bjilpi + Y lein [ Mai, ey > D |diglas, + ) i | Muy,
j=1 k=1 k=1 k=1

forallk = 1,2,...,r;, 1 <7 <n, i=12,.,n Then the equilibrium (z},y; ) is
globally asymptotically stable independent of delays in the sense that all solutions of (2)
satisfy the convergence requirement

lim vy;, — vy lim z; — ;.
t—>ooylk yzk, t—oo " v

Proof. Utilizing (7) in (2), we rewrite (2) as

n

(2 — a7 —ai(zi — )+ > bi[fi(x;) — fi(x)]
j=1
+ Z Cigy, [gik (:L'ia Yiy, (t - le)) — iy, (‘T:’ yz*k )]’
k=1
Wi —3,) —cie (Wi —Yi) + Y dig[ha (i, (¢ = 73,)) — hay (47,

=1
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We employ the functional

n T t
V() = Z [|5Ei — o7 |+ |yi, — yfk| + Z |cii | M, / |yi, (s) — y§k|d3
i=1 k=1 t=Tiy,
Ti t
FD Ml | i) = )1 (13)
=1 —Ti
DV < Y| = alw a4+ 3 i) — fi()]
i=1 j=1

r;
+ 3 i g (@i, vin (E = 73)) = ginc (20, 5,) + 90 (@0, 45,) — gin (@7, 95,
k=1

= il = wi D0 i i (i (¢ = 7)) = i (93]
=1

T4 T
3 leii | Muiy lyie — vi | =Y leii, [MuiJyi, (E = 73,) — 7|
k=1 k=1

+ Z |de |hu (yiz (t)) - hiz (yz*L)| - Z |du |hlz (yil (t - Tiz)) - hiz (y;”] >
=1 =1

n n
DYV(t) < Y {_ ailw; — 7|+ Y [bilpjla; — |
i=1 j=1
Tq
+ Z |Cii |Gir, (T, Yir (F — Ti,)) — Gin (%05 95, )|
k=1
.

7

+> i gi (i yi,) = gi (27, 97l
k

Il
N

r;
—cilyin — Ui |+ > i lai i, — 7|

=1

T T

+ 3 less M i — v = Y len M lya, (6 = 7i) — i ||
k=1 k=1

n n

DYV(t) < Y {_ ailaw; — @)+ Y [bilpjla; — |

i=1 Jj=1
T4 Ti

+ |Ciik |M1ik |ylk (t - Tik) - yjk)| + Z |cii" |M2i" |$i -
k=1 k=1

r;
—cilyin = ui |+ > dilai i, — 7|
=1

T T
+ > i [Mui Jyi, — v | = leii [Mui lyi, (t = 70,) — w5, 1|
k=1 k=1
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n n

Ti
=3 (o = D baalp = D lewin | M s — |
1 k=1

i=1 j=

DYV (t)

IN

T4

r;
e, — > Ndiylai, = Y lein, Mg Jlyi, — v, |}
k=1 k=1
n

< A [l -l b — 0]
=1
< 0,

where A = min {Z, E} > 0, in which

n i

A= 1I§nii£n {ai — Z |bﬂ|pl — Z |Ciik |M21k} > 0,
=1 k=1
T

T4
B= minlgign{cik — Z |dik |Qik - Z |Ciik |Mlzk} > 0.
k=1 k=1

It is clear that V is the required Lyapunov functional and rest of the proof may be
completed employing standard arguments (see e.g., [4,20]).

Remark 3.3. Stability of system (2) may be studied in two ways. Firstly, the
subsystem {y;, } may converge first and x; converge then. In this case, the z; wait for
information for any length of time from their subsystems and finish the task only after
¥i, come up with their contribution. In the second case, x; work along with subsystem
¥i, simultaneously to finish the job. That means, x; and y;, converge together. The
first approach was taken in [20] well. The present study is along second approach and
Theorems 3.1 and 3.2 are in this direction.

For a delay free system (1) conditions for stability of equilibrium when ; wait for y;,
to converge first are given by (Theorem 4.1, [20])

n T4
ai > > [bjilpi+ Y leiy | Moy ,i = 1,2, ...m; (14)
j=1 k=1
T
Ci, > Z |dik|Qik; 1<r; <n. (15)
k=1

A straightforward comparison of parametric conditions of Theorems 3.1 and 3.2 of this pa-
per with those of (14) and (15), shows that parameters are more strained here. However,
this is tolerable when the system can not wait a long time for convergence of subsystems
and have to compete the task all at a time, working in parallel with subsystem. This
distinguishes the study here from earlier work ([20]). Further, since Theorems 3.1 and
3.2 are valid for 7;, =0 = 7, also, these two results provide independent sets of sufficient
conditions for global asymptotic stability of equilibrium solution of (1) also.

A close look at the parametric conditions of Theorems 3.1 and 3.2 for the choice
of m =mn =n3 = % reveals that a part of strain on parameters c;, represented by
7o 22:1 |cis, | M14, is taken by a;. Thus, we remark that the z; are actually sharing the
burden of monitoring y;, and simultaneously converge with them. O
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A more general case:

One may notice that primary units x; are supported by y;,. But there is no informa-
tion (input) nor instructions from x; directly to y;, . Nor there is any check or supervision
by x; as far as dynamics in second equation of (2) are considered. What ever information
provided by subsystem is taken up by x;. That is, flow of information is uni-directional.
This raises a doubt on the relevance of information/contrbution from y;,. To overcome
this lapse in model, it was proposed in [20] that the inputs to y;, are from z; but not
mere constants, J;, . This may be more realistic in the sense that, y;, are chosen to
aid x; and hence, are motivated by z; rather than some other inputs. Moreover z; are
also variables and thus, this choice reflects the presence of variable input which always
influences the dynamics of y;, . To realize this, it was assumed that J;, = J;, (x;) for each
ix. In the present paper, to further enhance the quality of performance of y;, , we assume
that the present task of y;, depends on some previous information/instructions from z;.
To be more specific, we admit time delays in these inputs also. That is, we consider,
Ji, = Jip, (xi(t — 7;)). This allows us to modify (2) as

oy = —aiwi+ Y biifi(a) + Y i gi (@i v, (E— 7)) + Lii= 1,2,
j=1 k=1
Vi = —CiVie+ Y dihi (i (t— 7))+ Y Ty (wi(t—7), 1<ri<n.  (16)
=1 k=1

An equilibrium solution, say (x, yfk), for this system should satisfy the equations

ai(E:f = Zbl_]f](‘r:)+Zcukgzk(-r:ay:k)+Ilal:1325ana
j=1 k=1
Ciky;k = Z dizhiz (yjl) + Z Jlk (:C;k) (17)
=1 k=1

We assume that the function J;, satisfies |J;, (z:(t)) — Ji (2F)] < |z — 2],
QG > 0.

Assuming that the algebraic system (17) yields a unique solution (i.e., system (16)
has a unique equilibrium pattern), we directly proceed to the global asymptotic stability
of the equilibrium pattern of system (16). Using (17) in (16), we get

where

n

(wi—x}) = —ai(wi—a})+ Y bylfi;) — f)]

j=1

Ti
+ Z Ciin [9in (@i, Yir (8 — 7)) — i (7, y;(k ),
k=1

T4

(yik - y:k) = Gy (yik - yz*k) + Z diz [hiz (yiz (t — Ty )) - hiz (yz*L )]

T4

+ ) i (@it = 7)) = J(@7)]. (18)
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We employ the following Lyapunov functional for our purpose here

n T t
S [l = ol o = v+ 3 e M [ s () il
k=1 t

=1 “Tig

<.

+ Z di,| i (i, (5)) = hay (37, ds

t—Ty,

T4

+> / i i) = i, () ds . (19)

k=1

The upper right derivative of V' along the solutions of (16) employing (18) may be given
by

n

DYV(t) < Z|:*ai|1'i*1':'<|+Z|bij||fj(xj)7fj(x;)|
j=1

=1

T
+ 3 Jeiillgi (@i, yi, (6= 73,)) = g (2, 35,
k=1

r;
—cilyin = Ui |+ D1 hi (i (6= 73,)) = iy (43,
=1

+Z|Jzk zi(t — 7)) = Ji (7))

+Z |Ciik|M1ik|yik - yzk Z |C”k|M11k|y1k( = Tiy, ) — y;l
k=1

+Z |diz ||hiz (yiz (t)) - lz yzl Z |d11 ||h11 yzz Tiz)) - hiz (yz*L)l

T

+Z|Jzk 2i(t) = T @) =3 Wi (st =72)) = Ji (&)1

k=1
This, on further simplification, as done in earlier results, gives

n n T

DYV() < =) {[ai = bl = >l [ Mo, =Y | — a;
k=1

i=1 j=1 k=1

+ Z[Cik - Z |di, |qi,, — Z (i | My i — v, |}
< [Z{m f:cz|+2 i — v, 1} ]

<0, (20)

provided

Ti Ti
A= I<n£ { Z |b1J |pJ Z |C“k |M21k Z Qg s Ciy, _Z |dik |qik _Z |Ciik |M1ik} >0,
<i< k=1 k=1
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k=1,2,...,r;, holds. We are now in a position to state

Theorem 3.4.The equilibrium solution of (12) is globally asymptotically stable pro-
vided the parameters satisfy

n T4 T
a; — Z |bijlpj — Z |cii, | Mai,, — Zaz‘k >0,
j=1 k=1 k=1
T

Ciw = Y \diglgi, — > |eii [ M, > 0,
k=1 k=1
foralli=1,2,..,n and oy, > 0 is such that | J;, (z;(t)) — Ji, (xf)| < o, v — xF].
Proof. The proof is obvious from standard arguments noticing that V' (¢) defined by
(19) and (20) is the required Lyapunov functional.
We shall illustrate the above results by means of numerical examples.

Example 3.5. Consider the following system having two neurons in X supported by
two neurons in Y involving time delays as given by

(5) = (&) 2)(he)

(3 5) (=g ezl ) (1)),
(W) = =) (07 L) (i) ().

yél - _ 6.5:(]21 + 2 =2 h21 (y21 (t — T2 )) + J21

yéz 7-5922 0 3 h22 (y22 (t - 7-22)) J22 .
Choose f;(z;) = tanh(z;), hi, = tanh(y;,) and g;, (zi,vi,) = x; + yi,.- Then p; = q;, =
My, = My, = 1,4 =1,2,k =1,2.. Let us choose 71 = %, N3 = % It is easy to see
that for the above parametric values of the system, all the conditions of Theorem 3.1

are satisfied for the range of values of % <M < % Hence the equilibrium of the above
system is globally asymptotically stable by virtue of Theorem 3.1 for 7;, = 0.

_|_

Example 3.6. Consider the system

(1) = (o) = (% oh ) (5)
( 1.1 05 > < g1, (T, Y1, (E—71,)  go, (T2, 2, (t — 71,)) )+ ( I

-1.1 1 912($1ay12(t_7-21)) 922(352,?/22(75—722))

)
(o) = om0 S ) Otz )+ (o= )

(%) = (G2 ) (0 05 ) (hmlmlimm) ) (o))

+
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with all response functions as in above example. Then p; = ¢q;, = My;, = My, = 1,1 =
1,2,k =1,2.

(i) Now choosing m; = %, N2 = %, one may notice that all the conditions of Theorem
3.1 are satisfied for the range of values of 0.217 < 13 < 1.189 (approximately). Hence, the
equilibrium of the above system is globally asymptotically stable by virtue of Theorem
3.1forall 7;, =0 and 7; = 0.

(ii) Again all the parametric conditions of Theorem 3.2 are satisfied for all delays
Ti, > 07, > 0and i, = 0,7 = 1,2, and hence, the equilibrium solution is globally
asymptotically stable by virtue of Theorem 3.2.

(iii) Choosing J;, (x;) = z; for all i, k = 1,2, we get a;, k = 1,2. Then the parameters
of the system satisfy all the conditions of Theorem 3.4 and hence, system tolerates all
three types of delays involved.

4 Conclusion

In the present paper we have considered a cooperative and supportive neural network
which is under influence of time delays both in processing of information with in the
subgroup network and transmission of information from subgroup network to main net-
work. Conditions on parameters are obtained so that the equilibrium is stable for any
length of delays. Under these conditions the system behaves like delay independent
system. However, it is also observed that the parameters are strained much for such sta-
bility. Hence conditions straining parameters less are welcome for more applicability of
the network. Parametric conditions involving suitably restricted time delay parameters
may be a better choice in this case. Our results in this direction will be reported soon.
Another distinguishing feature of this paper is that the main components (x;) of the
system monitor the performance of the subcomponents (y;, ) ( work together attitude or
parallel processing) unlike its earlier counter part. It is interesting to see how the system
withstands if some of its subcomponents do not respond properly to the requirements of
its main components. In other words, can the (z;) converge even if some of the (y;,) do
not converge or non cooperate? This will be a question of our future contention.
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