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Abstract: In this work, we study the degenerated problem

∂b(x, u)

∂t
+ div(a(x, t, u,Du)) +H(x, t, u,Du) = µ in Q,

u = 0 on ∂Ω× (0, T ),

b(x, u)(t = 0) = b(x, u0) on Ω,

(1)

in the framework of weighted Sobolev space. The main contribution of our work
is to prove the existence of a renormalized solution without the sign condition and
the coercivity condition on H(x, t, u,Du). The critical growth condition on H is
with respect to Du and no growth with respect to u. The datum µ is assumed in
L1(Q) + Lp

′

(0, T ;W−1,p
′

(Ω, w∗)) and b(x, u0) ∈ L1(Ω).

Keywords: nonlinear parabolic equation; weighted Sobolev spaces; renormalized so-
lutions.
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1 Introduction

Let Ω be a bounded open set of RN , p be a real number such that 2 < p < ∞, Q =
Ω × [0, T ] and w = {wi(x) : 0 ≤ i ≤ N} be a vector of weight functions (i.e., every
component wi(x) is a measurable almost everywhere strictly positive function on Ω),
satisfying some integrability conditions (see Section 2). Let Au = − div(a(x, t, u,Du))
be a Leray-Lions operator defined from the weighted Sobolev space Lp(0, T ;W 1,p

0 (Ω, w))

into its dual Lp′

(0, T ;W−1,p′

(Ω, w∗)).
Now, we consider the degenerated parabolic problem associated with the differential

equation
∂b(x, u)

∂t
+Au+H(x, t, u,Du) = µ in Q,

u = 0 on ∂Ω×]0, T [,

b(x, u)(t = 0) = b(x, u0) on Ω.

(2)

In problem (2), the data µ and b(x, u0) are in L1(Q) + Lp′

(0, T ;W−1,p′

(Ω, w∗)) and
L1(Ω). The operator −div(a(x, t, u,Du)) is a Leray-Lions operator which is coercive,
b(x, u) is unbounded function on u, H is a nonlinear lower order term and µ = f − divF

with f ∈ L1(Q), F ∈
N
∏

i=1

Lp′

(Q,w∗
i ).

Problem (2) is studied in [2] with µ ∈ Lp′

(0, T ;W−1,p′

(Ω, w∗)) and under the strong
hypothesis relatively to H , more precisely they supposed that b(x, u) = u and the non-
linearity H satisfying the sign condition

H(x, t, s, ξ)s ≥ 0, (3)

and the growth condition of the form

|H(x, t, s, ξ)| ≤ b(s)
(

N
∑

i=1

wi(x)|ξi|
p + c(x, t)

)

. (4)

In the case where the second member f ∈ L1(Q) , (2) is studied in [2].
It is our purpose to prove the existence of renormalized solution for (2) in the setting

of the weighted Sobolev space without the sign condition (3), and without the following
coercivity condition

|H(x, t, s, ξ)| ≥ β

N
∑

i=1

wi(x)|ξi|
p for |s| ≥ γ, (5)

our growth condition on H is simpler than (4) it is a growth with respect to Du and
no growth condition with respect to u (see assumption (H3) below), the second term µ

belongs to L1(Q) + Lp′

(0, T ;W−1,p′

(Ω, w∗)). Note that our paper generalizes [2].
In the case of H(x, t, u,Du) = div(φ(u)) is studied by H. Redwane in the classical

Sobolev spaces W 1,p(Ω) and Orlicz spaces see [18, 20].
The notion of renormalized solution was introduced by DiPerna and Lions [11] in their

study of the Boltzmann equation. This notion was then adapted to an elliptic version of
(2) by Boccardo et al [7] when the right hand side is in W−1,p′

(Ω), by Rakotoson [18]
when the right hand side is in L1(Ω), and finally by Dal Maso, Murat, Orsina and
Prignet [10] for the case of the right hand side being general measure data. Our paper
can be considered as a continuation of [3–5] in the case where F = 0.
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2 Preliminaries

Let Ω be a bounded open set of RN , p be a real number such that 2 < p < ∞ and
w = {wi(x), 0 ≤ i ≤ N} be a vector of weight functions; i.e., every component wi(x) is
a measurable function which is strictly positive a.e. in Ω. Further, we suppose in all our
considerations that, there exists

r0 > max(N, p) such that w
−r0
r0−p

i ∈ L1
loc(Ω), (6)

wi ∈ L1
loc(Ω), (7)

w
−1
p−1

i ∈ L1
loc(Ω), (8)

for any 0 ≤ i ≤ N . We denote by W 1,p(Ω, w) the space of real-valued functions u ∈
Lp(Ω, w0) such that the derivatives in the sense of distributions fulfill

∂u

∂xi
∈ Lp(Ω, wi) for i = 1, . . . , N.

Which is a Banach space under the norm

‖u‖1,p,w =
[

∫

Ω

|u(x)|pw0(x) dx +
N
∑

i=1

∫

Ω

|
∂u(x)

∂xi
|pwi(x) dx

]1/p

. (9)

Condition (7) implies that C∞
0 (Ω) is a space of W 1,p(Ω, w) and consequently, we can

introduce the subspace V = W
1,p
0 (Ω, w) of W 1,p(Ω, w) as the closure of C∞

0 (Ω) with
respect to the norm (9). Moreover, condition (8) implies that W 1,p(Ω, w) as well as
W

1,p
0 (Ω, w) are reflexive Banach spaces.
We recall that the dual space of weighted Sobolev spaces W 1,p

0 (Ω, w) is equivalent to

W−1,p′

(Ω, w∗), where w∗ = {w∗
i = w

1−p′

i , i = 0, . . . , N} and where p′ is the conjugate of
p; i.e., p′ = p

p−1 , (see [13]).

3 Basic Assumptions

Assumption (H1)

For 2 ≤ p <∞, we assume that the expression

‖|u|‖V =
(

N
∑

i=1

∫

Ω

|
∂u(x)

∂xi
|pwi(x) dx

)1/p

(10)

is a norm defined on V which is equivalent to the norm (9), and there exists a weight
function σ on Ω such that, σ ∈ L1(Ω) and σ−1 ∈ L1(Ω). We assume also the Hardy
inequality

(

∫

Ω

|u(x)|pσ dx
)1/q

≤ c
(

N
∑

i=1

∫

Ω

|
∂u(x)

∂xi
|pwi(x) dx

)1/p

(11)

holds for every u ∈ V with a constant c > 0 independent of u, and moreover, the
imbedding

W 1,p(Ω, w) →֒ Lp(Ω, σ), (12)

expressed by the inequality (11) is compact. Notice that (V, ‖|·|‖V ) is a uniformly convex
(and thus reflexive) Banach space.
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Remark 3.1 If we assume that w0(x) ≡ 1 and in addition the integrability condition:
There exists ν ∈]Np ,+∞ [∩[ 1

p−1 ,+∞[ such that

w−ν
i ∈ L1(Ω) and w

N
N−1

i ∈ L1
loc(Ω) for all i = 1, . . . , N. (13)

Notice that the assumptions (7) and (13) imply

‖|u‖| =
(

N
∑

i=1

∫

Ω

|
∂u

∂xi
|pwi(x) dx

)1/p

, (14)

which is a norm defined on W 1,p
0 (Ω, w) and its equivalent to (9) and that, the imbedding

W
1,p
0 (Ω, w) →֒ Lq(Ω) (15)

is compact for all 1 ≤ q ≤ p∗1 if pν < N(ν + 1) and for all q ≥ 1 if pν ≥ N(ν + 1) where
p1 = pν

ν+1 and p∗1 is the Sobolev conjugate of p1; see [12, pp. 30-31].

Assumption (H2)

b : Ω× R → R is a Carathéodory function (16)

such that for every x ∈ Ω, b(x, .) is a strictly increasing C1-function with b(x, 0) = 0.
Next, for any k > 0, there exists λk > 0 and functions Ak ∈ L∞(Ω) and Bk ∈ Lp(Ω)
such that

λk ≤
∂b(x, s)

∂s
≤ Ak(x) and

∣

∣

∣Dx

(∂b(x, s)

∂s

)∣

∣

∣ ≤ Bk(x) (17)

for almost every x ∈ Ω, for every s such that |s| ≤ k, we denote by Dx

(∂b(x,s)
∂s

)

the

gradient of ∂b(x,s)
∂s defined in the sense of distributions. For i = 1, . . . , N ,

|ai(x, t, s, ξ)| ≤ βw
1/p
i (x)[k(x, t) + σ1/p′

|s|q/p
′

+
N
∑

j=1

w
1/p′

j (x)|ξj |
p−1], (18)

for a.e. (x, t) ∈ Q,all (s, ξ) ∈ R× R
N , some function k(x, t) ∈ Lp′

(Q) and β > 0, here σ
and q are as in (H1).

[a(x, t, s, ξ)− a(x, t, s, η)](ξ − η) > 0 for all ξ 6= η, (19)

a(x, t, s, ξ).ξ ≥ α

N
∑

i=1

wi|ξi|
p, (20)

where α is a strictly positive constant.

Assumption (H3)

Furthermore, let H(x, t, s, ξ) : Q × R × R
N → R be a Carathéodory function such that

for a.e (x, t) ∈ Q and for all s ∈ R, ξ ∈ R
N , the growth condition

|H(x, t, s, ξ)| ≤ γ(x, t) + g(s)

N
∑

i=1

wi(x)|ξi|
p, (21)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 15 (2) (2015) 107–126 111

is satisfied, where g : R → R
+ is a bounded continuous positive function that belongs to

L1(R), while γ(x, t) belongs to L1(Q).
We recall that, for k > 1 and s in R, the truncation is defined as

Tk(s) =

{

s, if |s| ≤ k,

k s
|s| , if |s| > k.

4 Some Technical Results

Characterization of the time mollification of a function u.

In order to deal with time derivative, we introduce a time mollification of a function
u belonging to a some weighted Lebesgue space. Thus we define for all µ ≥ 0 and all
(x, t) ∈ Q,

uµ = µ

∫ t

∞

ũ(x, s) exp(µ(s− t))ds where ũ(x, s) = u(x, s)χ(0,T )(s).

Proposition 4.1 [2]

1) if u ∈ Lp(Q,wi) then uµ is measurable in Q and
∂uµ

∂t = µ(u− uµ) and

‖uµ‖Lp(Q,wi)
≤ ‖u‖Lp(Q,wi)

.

2) If u ∈W
1,p
0 (Q,w), then uµ → u in W

1,p
0 (Q,w) as µ → ∞.

3) If un → u in W
1,p
0 (Q,w) , then (un)µ → uµ in W

1,p
0 (Q,w).

Some weighted embedding and compactness results.

In this section we establish some embedding and compactness results in weighted Sobolev
spaces, some trace results, Aubin’s and Simon’s results [21].

Let V =W
1, p
0 (Ω, w), H = L2(Ω, σ) and let V ∗ =W−1,p′

with (2 ≤ p <∞).

Let X = Lp(0, T ;W 1, p
0 (Ω, w)). The dual space of X is X∗ = Lp′

(0, T, V ∗) where
1
p + 1

p′
= 1 and denoting the space W 1

p (0, T, V,H) = {v ∈ X : v′ ∈ X∗} endowed with
the norm

‖u‖W 1
p
= ‖u‖X + ‖u′‖X∗ ,

which is a Banach space. Here u′ stands for the generalized derivative of u, i.e.,

∫ T

0

u′(t)ϕ(t)dt = −

∫ T

0

u(t)ϕ′(t)dt for all ϕ ∈ C∞
0 (0, T ).

Lemma 4.1 [19]
1)The evolution triple V ⊆ H ⊆ V ∗ is verified.
2) The imbedding W 1

p (0, T, V,H) ⊆ C(0, T,H) is continuous.
3)The imbedding W 1

p (0, T, V,H) ⊆ Lp(Q, σ) is compact.

Lemma 4.2 [2] Let g ∈ Lr(Q, γ) and let gn ∈ Lr(Q, γ), with ‖gn‖Lr(Q,γ) ≤ C,

1 < r <∞. If gn(x) → g(x) a.e in Q, then gn ⇀ g in Lr(Q, γ)
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Lemma 4.3 [2]. Assume that

∂vn

∂t
= αn + βn in D′(Q),

where αn and βn are bounded respectively in X∗ and in L1(Q). If vn is bounded in
Lp(0, T ;W 1, p

0 (Ω, w)), then vn → v in L
p
loc(Q, σ). Further vn → v strongly in L1(Q).

Definition 4.1 Let f ∈ L1(Q), F ∈
N
∏

i=1

Lp′

(Q,w∗
i ) and b(x, u0) ∈ L1(Ω). A real-

valued function u defined on Q is a renormalized solution of problem (2) if

Tk(u) ∈ Lp(0, T ;W 1, p
0 (Ω, w)) for all k ≥ 0 and b(x, u) ∈ L∞(0, T ;L1(Ω)), (22)

∫

{m≤|u|≤m+1}

a(x, t, u,Du)Dudxdt→ 0 as m→ +∞, (23)

∂BS(x, u)

∂t
− div (S′(u)a(x, t, u,Du)) + S′′(u)a(x, t, u,Du)Du

+H(x, t, u,Du)S′(u) = fS′(u)− div (S′(u)F ) + S′′(u)FDu in D′(Q), (24)

for all functions S ∈ W 2, ∞(R) which is piecewise C1 and such that S′ has a compact

support in R, where BS(x, z) =

∫ z

0

∂b(x, r)

∂r
S′(r)dr and

BS(x, u)(t = 0) = BS(x, u0) in Ω. (25)

Remark 4.1 Equation (24) is formally obtained through pointwise multiplication of
equation (2) by S′(u). However, while a(x, t, u,Du) and H(x, t, u,Du) do not in general
make sense in (2), all the terms in (2) have a meaning in D′(Q). Indeed, if M is such
that suppS′ ⊂ [−M,M ], the following identifications are made in (24):
• S(u) belongs to L∞(Q) since S is a bounded function.
• S′(u)a(x, t, u,Du) identifies with S′(u)a(x, t, TM (u), DTM (u)) a.e in Q.
Since |TM (u)| ≤M a.e in Q and S′(u) ∈ L∞(Q), we obtain from (18) and (22) that

S′(u)a(x, t, TM (u), DTM (u)) ∈

N
∏

i=1

Lp′

(Q,w∗
i ).

• S′′(u)a(x, t, u,Du)Du identifies with S′′(u)a(x, t, TM (u), DTM (u))DTM (u) and

S′′(u)a(x, t, TM (u), DTM (u))DTM (u) ∈ L1(Q).

• S′(u)H(x, t, u,Du) identifies with S′(u)H(x, t, TM (u), DTM (u)) a.e in Q. Since
|TM (u)| ≤M a.e in Q and S′(u) ∈ L∞(Q), we obtain from (18) and (21) that

S′(u)H(x, t, TM (u), DTM (u)) ∈ L1(Q).

• S′(u)f belongs to L1(Q) while S′(u)F belongs to
N
∏

i=1

Lp′

(Q,w∗
i ).

• S′′(u)FDu identifies with S′′(u)FDTk(u) which belongs to L1(Q).
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The above considerations show that equation (24) holds in D′(Q) and that

∂BS(x, u)

∂t
∈ Lp′

(0, T ;W−1, p′

(Ω, w∗)) + L1(Q).

Due to the properties of S and (24), ∂S(u)
∂t ∈ Lp′

(0, T ;W−1, p′

(Ω, w∗)) + L1(Q), which
implies that S(u) ∈ C0([0, T ];L1(Ω)) so that the initial condition (25) makes sense, since,
due to the properties of S (increasing) and (17), we have

|BS(x, r) −BS(x, r
′)| ≤ Ak(x) |S(r) − S(r′)| for all r, r′ ∈ R. (26)

5 Existence Results

In this section we establish the following existence theorem.

Theorem 5.1 Let f ∈ L1(Q), F ∈
N
∏

i=1

Lp′

(Q,w∗
i ) and u0 is a measurable function

such that b(x, u0) ∈ L1(Ω). Assume that (H1) and (H2) hold true. Then, there exists at
least a renormalized solution u of the problem (2) in the sense of Definition 4.1.

Proof. Step 1: Approximate problem and a priori estimates.
For n > 0, let us define the following approximation of b,H, f and u0;

bn(x, r) = b(x, Tn(r)) +
1

n
r for n > 0. (27)

In view of (27), bn is a Carathéodory function and satisfies (17), there exist λn > 0 and
functions An ∈ L1(Ω) and Bn ∈ Lp(Ω) such that

λn ≤
∂bn(x, s)

∂s
≤ An(x) and

∣

∣Dx

(∂bn(x, s)

∂s

)

∣

∣ ≤ Bn(x)

a.e. in Ω, s ∈ R.

Hn(x, t, s, ξ) =
H(x, t, s, ξ)

1 + 1
n |H(x, t, s, ξ)|

χΩn
.

Note that Ωn is a sequence of compacts covering the bounded open set Ω and χΩn
is its

characteristic function.

fn ∈ Lp′

(Q), and fn → f a.e. in Q and strongly in L1(Q) as n→ +∞, (28)

u0n ∈ D(Ω), ‖bn(x, u0n)‖L1 ≤ ‖b(x, u0)‖L1 , (29)

bn(x, u0n) → b(x, u0) a.e. in Ω and strongly in L1(Ω). (30)

Let us now consider the approximate problem:

∂bn(x, un)

∂t
− div(a(x, t, un, Dun)) +Hn(x, t, un, Dun) = fn − div(F ) in D′(Q),

un = 0 in (0, T )× ∂Ω,

bn(x, un(t = 0)) = bn(x, u0n).

(31)

Note that Hn(x, t, s, ξ) satisfies the following conditions

|Hn(x, t, s, ξ)| ≤ H(x, t, s, ξ) and |Hn(x, t, s, ξ)| ≤ n.
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For all u, v ∈ Lp(0, T ;W 1,p
0 (Ω, w)),

∣

∣

∫

Q

Hn(x, t, u,Du)v dx dt
∣

∣ ≤
(

∫

Q

|Hn(x, t, u,Du)|
q′σ− q′

q dx dt
)1/q′(

∫

Q

|v|qσ dx dt
)1/q

≤ n

∫ T

0

(

∫

Ωn

σ1−q′dx
)1/q′

dt ‖v‖Lq(Q,σ) ≤ Cn ‖v‖Lp(0,T ;W 1,p
0 (Ω,w)) .

Moreover, since fn ∈ Lp′

(0, T ;W−1,p′

(Ω, w∗)), proving existence of a weak solution un ∈
Lp(0, T ;W 1,p

0 (Ω, w)) of (31) is an easy task (see e.g. [15], [2]).
Let ϕ ∈ Lp(0, T ;W 1, p

0 (Ω, w)) ∩ L∞(Q) with ϕ > 0, choosing v = exp(G(un))ϕ as

test function in (31) where G(s) =
∫ s

0
g(r)
α dr (the function g appears in (21)), we have

∫

Q

∂bn(x, un)

∂t
exp(G(un))ϕdxdt +

∫

Q

a(x, t, un, Dun)D(exp(G(un))ϕ)dxdt

+

∫

Q

Hn(x, t, un, Dun) exp(G(un))ϕdxdt =

∫

Q

fn exp(G(un))ϕdxdt

+

∫

Q

FD(exp(G(un))ϕ)dxdt.

In view of (21) and (20) we obtain

∫

Q

∂bn(x, un)

∂t
exp(G(un))ϕdxdt +

∫

Q

a(x, t, un, Dun) exp(G(un))Dϕdxdt

≤

∫

Q

γ(x, t) exp(G(un))ϕdxdt +

∫

Q

fn exp(G(un))ϕdxdt

+

∫

Q

F exp(G(un))Dϕdxdt +

∫

Q

FD(exp(G(un)))ϕdxdt, (32)

for all ϕ ∈ Lp(0, T ;W 1, p
0 (Ω, w)) ∩ L∞(Q) with ϕ > 0.

On the other hand, taking v = exp(−G(un))ϕ as test function in (31) we deduce as
in (32) that,

∫

Q

∂bn(x, un)

∂t
exp(−G(un))ϕdxdt +

∫

Q

a(x, t, un, Dun) exp(−G(un))Dϕdxdt

+

∫

Q

γ(x, t) exp(−G(un))ϕdxdt ≥

∫

Q

fn exp(−G(un))ϕdxdt

+

∫

Q

F exp(−G(un))Dϕdxdt +

∫

Q

FD(exp(−G(un)))ϕdxdt, (33)

for all ϕ ∈ Lp(0, T ;W 1, p
0 (Ω, w)) ∩ L∞(Q) with ϕ > 0.

For every τ ∈]0, T [, let ϕ = Tk(un)
+χ(0,τ) in (32) we have

∫

Ω

Bn
k,G(x, un(τ))dx +

∫

Qτ

a(x, t, un, Dun) exp(G(un))DTk(un)
+dxdt
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≤

∫

Qτ

γ(x, t) exp(G(un))Tk(un)
+dxdt+

∫

Qτ

fn exp(G(un))Tk(un)
+dxdt

+

∫

Q

FD(Tk(un)
+) exp(G(un))dxdt +

∫

Q

FTk(un)
+ exp(G(un))Dun

g(un)

α
dxdt (34)

+

∫

Ω

Bn
k,G(x, u0n)dx,

where Bn
k,G(x, r) =

∫ r

0

∂bn(x, s)

∂s
Tk(s)

+ exp(G(s))ds. Due to the definition of Bn
k,G and

|G(un)| ≤ exp
(

‖g‖L1(R)

α

)

we have

0 ≤

∫

Ω

Bn
k,G(x, u0n)dx ≤ k exp

(

‖g‖L1(R)

α

)

‖b(x, u0)‖L1(Ω) . (35)

Using (35), Bn
k,G(x, un) ≥ 0 , Young’s inequality and (20) we obtain

α
(p− 1

p

)

∫

Qτ

N
∑

i=1

∣

∣

∣

∣

∂Tk(un)
+

∂xi

∣

∣

∣

∣

p

wi exp(G(un))dxdt (36)

≤ k exp

(

‖g‖L1(R)

α

)

(

‖fn‖L1(Q) + ‖γ‖L1(Q) + c ‖F‖
p′

N∏

i=1

Lp′(Q,w∗

i )

+ ‖bn(x, u0n)‖L1(Ω)

)

+
1

α

∫

Qτ

Fg(un) exp(G(un))Dunχ{un>0}dxdt.

Let us observe that, if we take ϕ = ρ(un) =

∫ un

0

g(s)χ{s>0}ds in (32) and using (20) we

obtain

[∫

Ω

Bn
g (x, un)dx

]T

0

+ α

∫

Q

N
∑

i=1

∣

∣

∣

∣

∂un

∂xi

∣

∣

∣

∣

p

wig(un)χ{un>0} exp(G(un))dxdt

≤

(∫ ∞

0

g(s)ds

)

exp

(

‖g‖L1(R)

α

)

(

‖γ‖L1(Q) + ‖fn‖L1(Q)

)

+

∫

Q

FDung(un)χ{un>0} exp(G(un))dxdt

+

(∫ ∞

0

g(s)ds

)∫

Q

∣

∣

∣
FDun

∣

∣

∣

g(un)

α
exp(G(un))χ{un>0}dxdt,

where Bn
g (x, r) =

∫ r

0

∂bn(x, s)

∂s
ρ(s) exp(G(s))ds, which implies, since Bn

g (x, r) ≥ 0 and

Young’s inequality,

α

∫

{un>0}

N
∑

i=1

∣

∣

∣

∣

∂un

∂xi

∣

∣

∣

∣

p

wig(un) exp(G(un))dxdt

≤ exp

(

‖g‖L1(R)

α

)

(

‖γ‖L1(Q) + ‖f‖L1(Q) + ‖b(x, u0)‖L1(Ω)

)
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+C1 ‖g‖∞ exp

(

‖g‖L1(R)

α

)

∫

Q

N
∑

i=1

|Fi|
p′

w∗
i dx dt

+
α

2p

∫

Q

N
∑

i=1

∣

∣

∣

∣

∂un

∂xi

∣

∣

∣

∣

p

wi
g(un)

α
exp(G(un))χ{un>0}dxdt

+C2

∫ ∞

0

g(s) ds ‖g‖∞ exp

(

‖g‖L1(R)

α

)

∫

Q

|F |p
′

w∗ dx dt

+
α

2p

∫

Q

N
∑

i=1

∣

∣

∣

∣

∂un

∂xi

∣

∣

∣

∣

p

wi
g(un)

α
exp(G(un))χ{un>0}dxdt

we obtain
∫

{un>0}

g(un)
N
∑

i=1

∣

∣

∣

∣

∂un

∂xi

∣

∣

∣

∣

p

wi exp(G(un))dxdt ≤ C3.

Similarly, let ϕ =

∫ 0

un

g(s)χ{s<0}ds as a test function in (33), we conclude that

∫

{un<0}

g(un)

N
∑

i=1

∣

∣

∣

∣

∂un

∂xi

∣

∣

∣

∣

p

wi exp(G(un))dxdt ≤ C4.

Consequently,
∫

Q

g(un)

N
∑

i=1

∣

∣

∣

∣

∂un

∂xi

∣

∣

∣

∣

p

wi exp(G(un))dxdt ≤ C5. (37)

where C1, · · · , C5 are constants independent of n. We deduce that

∫

Q

N
∑

i=1

∣

∣

∣

∣

∂Tk(un)
+

∂xi

∣

∣

∣

∣

p

widxdt ≤ C6 k. (38)

Similarly to (38) we take ϕ = Tk(un)
−χ(0,τ) in (33) we deduce that

∫

Q

N
∑

i=1

∣

∣

∣

∣

∂Tk(un)
−

∂xi

∣

∣

∣

∣

p

widxdt ≤ C7 k. (39)

Combining (38) and (39) we conclude that

‖Tk(un)‖
p

Lp(0,T ;W 1, p
0 (Ω,w))

≤ C8 k, (40)

where C6, C7, C8 are constants independent of n.
Then, Tk(un) is bounded in Lp(0, T ;W 1,p

0 (Ω, w)), and Tk(un) converges to vk weakly
in Lp(0, T ;W 1,p

0 (Ω, w)), and by the compact imbedding (15) gives

Tk(un) → vk strongly in Lp(Q, σ) and a.e. in Q.

We deduce from the above inequalities (34), (35) and (40) that
∫

Ω

Bn
k,G(x, un(τ))dx ≤ C k. (41)
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Let k > 0 be large enough and BR be a ball of Ω, we have

kmeas({|un| > k} ∩BR × [0, T ])

=

∫ T

0

∫

{|un|>k}∩BR

|Tk(un)| dx dt

≤

∫ T

0

∫

BR

|Tk(un)| dx dt

≤
(

∫

Q

|Tk(un)|
pσ dx dt

)1/p(
∫ T

0

∫

BR

σ1−p′

dx dt
)1/p′

≤ TcR

(

∫

Q

N
∑

i=1

wi(x)
∣

∣

∂Tk(un)

∂xi

∣

∣

∣

p

dx dt
)1/p

≤ ck1/p,

which implies

meas({|un| > k} ∩BR × [0, T ]) ≤
c1

k1−
1
p

, ∀k ≥ 1.

So, we have
lim

k→+∞
(meas({|un| > k} ∩BR × [0, T ])) = 0.

Now we turn to prove the almost everywhere convergence of un and bn(x, un).
Consider now a function non decreasing gk ∈ C2(R) such that gk(s) = s for |s| ≤ k

2 and
gk(s) = k for |s| ≥ k. Multiplying the approximate equation by g′k(un), we get

∂Bn
k (x, un)

∂t
− div(a(x, t, un, Dun)g

′
k(un)) + a(x, t, un, Dun)g

′′
k (un)Dun

+Hn(x, t, un, Dun)g
′
k(un) = fng

′
k(un)− div(Fg′k(un)) + Fg′′k (un)Dun, (42)

where Bn
k (x, z) =

∫ z

0

∂bn(x, s)

∂s
g′k(s)ds.

As a consequence of (40), we deduce that gk(un) is bounded in Lp(0, T ;W 1, p
0 (Ω, w))

and
∂Bn

k (x,un)
∂t is bounded in L1(Q) + Lp′

(0, T ;W−1,p′

(Ω, w∗)). Due to the properties of

gk and (17), we conclude that ∂gk(un)
∂t is bounded in L1(Q) + Lp′

(0, T ;W−1,p′

(Ω, w∗)),
which implies that gk(un) is compact in L1(Q).

Hence Lemma 4.3 allows us to conclude that gk(un) is compact in Lp
loc(Q, σ). Thus,

for a subsequence, it also converges in measure and almost everywhere in Q (since we
have, for every λ > 0, )

meas({|un − um| > λ} ∩BR × [0, T ]) ≤ meas({|un| > k} ∩BR × [0, T ])

+meas({|um| > k} ∩BR × [0, T ]) +meas({|gk(un)− gk(um)| > λ}).

Let ε > 0, then, there exist k(ε) > 0 such that,

meas({|un − um| > λ} ∩BR × [0, T ]) ≤ ε for all n,m ≥ n0(k(ε), λ, R).

This proves that (un) is a Cauchy sequence in measure in BR × [0, T ]), thus converges
almost everywhere to some measurable function u. Then for a subsequence denoted again
un, we have
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un → u a.e in Q, (43)

and from (40) we deduce

bn(x, un) → b(x, u) a.e in Q, (44)

Tk(un)⇀ Tk(u) weakly in Lp(0, T ;W 1, p
0 (Ω, w)) (45)

and then, the compact imbedding (12) gives,

Tk(un) → Tk(u) strongly in Lq(Q, σ) and a.e in Q.

Which implies, by using (18), for all k > 0 that there exists a function Λk ∈
N
∏

i=1

Lp′

(Q,w∗
i ), such that

a(x, t, Tk(un), DTk(un))⇀ Λk weakly in

N
∏

i=1

Lp′

(Q,w∗
i ). (46)

We now establish that b(x, u) belongs to L∞(0, T ;L1(Ω)). Using (43) and passing to

the limit-inf in (41) as n tends to +∞, we obtain that
1

k

∫

Ω

Bk,G(x, u(τ))dx ≤ C, for

almost any τ in (0, T ). Due to the definition of Bk,G(x, s) and the fact that 1
kBk,G(x, u)

converges pointwise to

∫ u

0

sgn(s)
∂b(x, s)

∂s
exp(G(s))ds ≥ |b(x, u)| , as k tends to +∞,

shows that b(x, u) belongs to L∞(0, T ;L1(Ω)).

Lemma 5.1 Let un be a solution of the approximate problem (31). Then

lim
m→∞

lim sup
n→∞

∫

{m≤|un|≤m+1}

a(x, t, un, Dun)Dundxdt = 0. (47)

Proof. Considering the following function ϕ = T1(un − Tm(un))
+ = αm(un) in (32)

this function is admissible since ϕ ∈ Lp(0, T ;W 1, p
0 (Ω, w)) and ϕ ≥ 0. Then by Young’s

inequality, we have
∫

Ω

Bm
n,G(x, un)(T )dx+

∫

{m≤un≤m+1}

a(x, t, un, Dun)Dun exp(G(un))dxdt

≤ exp

(

‖g‖L1(R)

α

)[

∫

{|un|>m}

|fn| dxdt+

∫

{|un|>m}

|γ| dxdt+

∫

{|un0|>m}

|bn(x, u0n)| dx

]

+C1

∫

{un≥m}

N
∑

i=1

|Fi|
p′

w∗
i dxdt +

α

p

∫

{m≤un≤m+1}

N
∑

i=1

∣

∣

∣

∣

∂un

∂xi

∣

∣

∣

∣

p

wi exp(G(un))dxdt

+C2

∫

{un≥m}

N
∑

i=1

|Fi|
p′

w∗
i dxdt+ C3

∫

{un≥m}

N
∑

i=1

∣

∣

∣

∣

∂un

∂xi

∣

∣

∣

∣

p

wig(un) exp(G(un))dxdt,

where Bm
n,G(x, r) =

∫ r

0

∂bn(x, s)

∂s
exp(G(s))αm(s)ds.
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Using (20) and since Bm
n,G(x, un)(T ) > 0, we obtain

(

p− 1

p

)∫

{m≤un≤m+1}

a(x, t, un, Dun)Dun exp(G(un))dxdt

≤ exp

(

‖g‖L1(R)

α

)[

∫

{|un|>m}

(|fn|+ |γ|)dxdt+

∫

{|un0|>m}

|bn(x, u0n)| dx

]

+C4

∫

{un≥m}

N
∑

i=1

|Fi|
p′

w∗
i dxdt+C5

∫

{un>m}

g(un) exp(G(un))
N
∑

i=1

∣

∣

∣

∣

∂un

∂xi

∣

∣

∣

∣

p

widxdt. (48)

Take ϕ = ρm(un) =

∫ un

0

g(s)χ{s>m}ds as test function in (32), we obtain

[∫

Ω

Bn
m(x, un)dx

]T

0

+

∫

Q

a(x, t, un, Dun)Dung(un)χ{un>m} exp(G(un))dxdt

≤

(∫ ∞

m

g(s)χ{s>m}ds

)

exp

(

‖g‖L1(R)

α

)

(

‖γ‖L1(Q) + ‖fn‖L1(Q)

)

+

∫

Q

FDung(un)χ{un>m} exp(G(un))dxdt

+

(∫ ∞

m

g(s)ds

)∫

Q

FDun
g(un)

α
exp(G(un))χ{un>m}dxdt,

where Bn
m(x, r) =

∫ r

0

∂bn(x, s)

∂s
ρm(s) exp(G(s))ds, which implies, since Bn

m(x, r) ≥ 0,

(20) and Young’s inequality,

α(p− 1)

p

∫

{un>m}

N
∑

i=1

∣

∣

∣

∣

∂un

∂xi

∣

∣

∣

∣

p

wig(un) exp(G(un))dxdt (49)

≤

(∫ ∞

m

g(s)ds

)

exp

(

‖g‖L1(R)

α

)

·



‖γ‖L1(Q) + ‖fn‖L1(Q) + ‖bn(x, u0n)‖L1(Ω) + C ‖F‖
p′

N∏

i=1

Lp′(Q,w∗

i )



 .

Using (49) and the strong convergence of fn in L1(Ω) and bn(x, u0n) in L
1(Ω) , γ ∈ L1(Ω),

g ∈ L1(R) and F ∈
N
∏

i=1

Lp′

(Q,w∗
i ), by Lebesgue’s theorem, passing to the limit in (48),

we conclude that

lim
m→∞

lim sup
n→∞

∫

{m≤un≤m+1}

a(x, t, un, Dun)Dundxdt = 0. (50)

On the other hand, let ϕ = T1(un − Tm(un))
− as test function in (33) and reasoning as

in the proof of (50) we deduce that

lim
m→∞

lim sup
n→∞

∫

{−(m+1)≤un≤−m}

a(x, t, un, Dun)Dundxdt = 0. (51)
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Thus (47) follows from (50) and (51).

Step 2: Almost everywhere convergence of the gradients.
This step is devoted to introduce for k ≥ 0 a fixed time regularization of the function

Tk(u) in order to perform the monotonicity method. Let ψi ∈ D(Ω) be a sequence which
converges strongly to u0 in L1(Ω). Set wi

µ = (Tk(u))µ+e
−µtTk(ψi) where (Tk(u))µ is the

mollification with respect to time of Tk(u). Note that wi
µ is a smooth function having

the following properties:

∂wi
µ

∂t
= µ(Tk(u)− wi

µ), wi
µ(0) = Tk(ψi),

∣

∣wi
µ

∣

∣ ≤ k, (52)

wi
µ → Tk(u) in Lp(0, T ;W 1, p

0 (Ω, w)), as µ→ ∞. (53)

We will introduce the following function of one real variable s, which is defined as:

hm(s) =











1, if |s| ≤ m,

0, if |s| ≥ m+ 1,

m+ 1 + |s|, if m ≤ |s| ≤ m+ 1.

For m > k, let ϕ = (Tk(un)− wi
µ)

+hm(un) ∈ Lp(0, T ;W 1, p
0 (Ω, w)) ∩ L∞(Q) and ϕ ≥ 0,

then taking this function in (32), we obtain
∫

{Tk(un)−wi
µ≥0}

∂bn(x, un)

∂t
exp(G(un))(Tk(un)− wi

µ)hm(un)dxdt

+

∫

{Tk(un)−wi
µ≥0}

a(x, t, un, Dun)D(Tk(un)− wi
µ)hm(un)dxdt

−

∫

{m≤|un|≤m+1}

exp(G(un))a(x, t, un, Dun)Dun(Tk(un)− wi
µ)

+dxdt

≤

∫

Q

(γ(x, t) + fn) exp(G(un))(Tk(un)− wi
µ)

+hm(un)dxdt

+

∫

Q

FDun
g(un)

α
exp(G(un))(Tk(un)− wi

µ)
+hm(un)dxdt

+

∫

{Tk(un)−wi
µ≥0}

exp(G(un))FD(Tk(un)− wi
µ)hm(un)dxdt

−

∫

{m≤|un|≤m+1}

exp(G(un))FDun(Tk(un)− wi
µ)

+dxdt. (54)

Observe that
∣

∣

∣

∣

∣

∫

{m≤|un|≤m+1}

exp(G(un))a(x, t, un, Dun)Dun(Tk(un)− wi
µ)

+dxdt

∣

∣

∣

∣

∣

≤ 2k exp

(

‖g‖L1(R)

α

)

∫

{m≤un≤m+1}

a(x, t, un, Dun)Dundxdt,

and
∣

∣

∣

∣

∣

∫

{m≤|un|≤m+1}

exp(G(un))FDun(Tk(un)− wi
µ)

+dxdt

∣

∣

∣

∣

∣
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≤ 2k exp

(

‖g‖L1(R)

α

)

‖F‖ N∏

i=1

Lp′(Q,w∗

i )

α
1
p

(

∫

{m≤|un|≤m+1}

a(x, t, un, Dun)Dundxdt

)
1
p

.

Thanks to (47) the third integral and fourth integral of the right hand side tend to zero as

n and m tend to infinity, and by Lebesgue’s theorem and F ∈
N
∏

i=1

Lp′

(Q,w∗
i ), we deduce

that the right hand side converges to zero as n, m and µ tend to infinity. Since

(Tk(un)− wi
µ)

+hm(un)⇀ (Tk(u)− wi
µ)

+hm(u) weakly ∗ in L∞(Q), as n→ ∞

and strongly in Lp(0, T ;W 1, p
0 (Ω, w)) and (Tk(u) − wi

µ)
+hm(u) ⇀ 0 weakly* in L∞(Q)

and strongly in Lp(0, T ;W 1, p
0 (Ω, w)) as µ→ ∞. Let εl(n,m, µ, i) : l = 1, ..., are various

functions tending to zero as n, m, i and µ tend to infinity.
The very definition of the sequence wi

µ makes it possible to establish the following
lemma.

Lemma 5.2 For k ≥ 0 we have

∫

{Tk(un)−wi
µ≥0}

∂bn(x, un)

∂t
exp(G(un))(Tk(un)− wi

µ)hm(un)dxdt ≥ ε(n,m, µ, i). (55)

Proof. (see [19]).
Similarly to [3, 4] for the second term of the left hand side of (54) we conclude

lim
n→∞

∫

Q

[a(x, t, Tk(un), DTk(un))− a(x, t, Tk(un), DTk(u))]

× [DTk(un)−DTk(u)] dxdt = 0. (56)

Which implies that

Tk(un) → Tk(u) strongly in Lp(0, T ;W 1, p
0 (Ω, w)) ∀k. (57)

Now, observe that we have, for every σ > 0

meas
{

(x, t) ∈ Ω× [0, T ] : |Dun −Du| > σ
}

≤ meas
{

(x, t) ∈ Ω× [0, T ] : |Dun| > k
}

+meas
{

(x, t) ∈ Ω× [0, T ] : |u| > k
}

+meas
{

(x, t) ∈ Ω× [0, T ] : |DTk(un)−DTk(u)| > σ
}

then as a consequence of (57) we also have, that Dun converges to Du in measure and
therefore, always reasoning for subsequence,

Dun → Du a.e in Q. (58)

Which implies that

a(x, t, Tk(un), DTk(un))⇀ a(x, t, Tk(u), DTk(u)) in

N
∏

i=1

Lp′

(Q,w∗
i ). (59)
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Step 3: Equi-integrability of the nonlinearity sequence.
We shall now prove that Hn(x, t, un, Dun) → H(x, t, u,Du) strongly in L1(Q) by using
Vitali’s theorem. Since Hn(x, t, un, Dun) → H(x, t, u,Du) a.e in Q, consider now

ϕ = ρh(un) =

∫ un

0

g(s)χ{s>h}ds as test function in (32), we obtain

[∫

Ω

Bn
h (x, un)dx

]T

0

+

∫

Q

a(x, t, un, Dun)Dung(un)χ{un>h} exp(G(un))dxdt

≤

(∫ ∞

h

g(s)χ{s>h}ds

)

exp

(

‖g‖L1(R)

α

)

(

‖γ‖L1(Q) + ‖fn‖L1(Q)

)

+

∫

Q

FDung(un)χ{un>h} exp(G(un))dxdt

+

(∫ ∞

h

g(s)χ{s>h}ds

)∫

Q

|FDun|
g(un)

α
exp(G(un))χ{un>h}dxdt,

where Bn
h (x, r) =

∫ r

0

∂bn(x, s)

∂s
ρh(s) exp(G(s))ds, which implies, since Bn

h (x, r) ≥ 0, (20)

and Young’s inequality,

α(p− 1)

p

∫

{un>h}

N
∑

i=1

∣

∣

∣

∣

∂un

∂xi

∣

∣

∣

∣

p

wig(un) exp(G(un))dxdt

≤

(∫ ∞

h

g(s)ds

)

exp

(

‖g‖L1(R)

α

)



‖γ‖L1(Q) + ‖fn‖L1(Q) + ‖bn(x, u0n)‖L1(Ω) + C ‖F‖p
′

N∏

i=1

Lp′(Q,w∗

i )



 ,

we conclude that

lim
h→∞

sup
n∈N

∫

{un>h}

N
∑

i=1

∣

∣

∣

∣

∂un

∂xi

∣

∣

∣

∣

p

wig(un)dxdt = 0.

Consequently,

lim
h→+∞

sup
n∈N

∫

{|un|>h}

g(un)

N
∑

i=1

∣

∣

∣

∣

∂un

∂xi

∣

∣

∣

∣

p

widxdt = 0,

which implies, for h large enough and for a subset E of Q,

lim
meas(E)→0

∫

E

g(un)

N
∑

i=1

∣

∣

∣

∣

∂un

∂xi

∣

∣

∣

∣

p

widxdt ≤ ‖g‖∞ lim
meas(E)→0

∫

E

N
∑

i=1

∣

∣

∣

∣

∂Th(un)
+

∂xi

∣

∣

∣

∣

p

widxdt

+

∫

{|un|>h}

g(un)

N
∑

i=1

∣

∣

∣

∣

∂un

∂xi

∣

∣

∣

∣

p

widxdt

then we deduce that g(un)
N
∑

i=1

∣

∣

∣

∂un

∂xi

∣

∣

∣

p

wi is equi-integrale. Thus we have obtained that

g(un)
N
∑

i=1

∣

∣

∣

∂un

∂xi

∣

∣

∣

p

wi converge to g(u)
N
∑

i=1

∣

∣

∣

∂u
∂xi

∣

∣

∣

p

wi strongly in L1(Q). Consequently, by
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using (21), we conclude that

Hn(x, t, un, Dun) → H(x, t, u,Du) strongly in L1(Q). (60)

Step 4: In this step we prove that u satisfies (23).
Observe that for any fixed m ≥ 0 one has

∫

{m≤|un|≤m+1}

a(x, t, un, Dun)Dun =

∫

Q

a(x, t, un, Dun)(DTm+1(un)−DTm(un))

=

∫

Q

a(x, t, Tm+1(un), DTm+1(un))DTm+1(un)−

∫

Q

a(x, t, Tm(un), DTm(un))DTm(un).

According to (59) and (57), one is at liberty to pass to the limit as n → +∞ for fixed
m ≥ 0 and to obtain

lim
n→+∞

∫

{m≤|un|≤m+1}

a(x, t, un, Dun)Dundxdt

=

∫

Q

a(x, t, Tm+1(u), DTm+1(u))DTm+1(u)dxdt −

∫

Q

a(x, t, Tm(u), DTm(u))DTm(u)dxdt

=

∫

{m≤|u|≤m+1}

a(x, t, u,Du)Dudxdt.

(61)
Taking the limit as m→ +∞ in (61) and using the estimate (47) show that u satisfies

(24).

Step 5: In this step we show that u satisfies (24) and (25). Let S be a function in
W 2,∞(R) such that S′ has a compact support. Let M be a positive real number such
that supp(S′) ⊂ [−M,M ]. Pointwise multiplication of the approximate equation (31) by
S′(un) leads to

∂Bn
S(x, un)

∂t
− div[S′(un)a(x, t, un, Dun)] + S′′(un)a(x, t, un, Dun)Dun

+ S′(un)Hn(x, t, un, Dun = fS′(un)− div(FS′(u)) + S′′(u)FDu in D′(Q).

(62)

In what follows we pass to the limit as in (62) n tends to +∞.

• Limit of
∂Bn

S (x,un)
∂t .

Since S is bounded and continuous, un → u a.e in Q implies that Bn
S(x, un) converges

to BS(x, u) a.e in Q and L∞ weak − ∗. Then
∂Bn

S(x,un)
∂t converges to ∂BS(x,u)

∂t in D′(Q)
as n tends to +∞.
• Limit of −div[S′(un)an(x, t, un, Dun)].
Since supp(S′) ⊂ [−M,M ], we have for n ≥M

S′(un)an(x, t, un, Dun) = S′(un)a(x, t, TM (un), DTM (un)) a.e in Q.

The pointwise convergence of un to u and (59) as n tends to +∞ and the bounded
character of S′ permit us to conclude that

S′(un)an(x, t, un, Dun)⇀ S′(u)a(x, t, TM (u), DTM (u)) in

N
∏

i=1

Lp′

(Q,w∗
i ), (63)
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as n tends to +∞. S′(u)a(x, t, TM (u), DTM (u)) has been denoted by S′(u)a(x, t, u,Du)
in equation (24).

• Limit of S′′(un)a(x, t, un, Dun)Dun.
As far as the ’energy’ term

S′′(un)a(x, t, un, Dun)Dun = S′′(un)a(x, t, TM (un), DTM (un))DTM (un) a.e in Q.

The pointwise convergence of S′(un) to S′(u) and (59) as n tends to +∞ and the
bounded character of S′′ permit us to conclude that

S′′(un)an(x, t, un, Dun)Dun ⇀ S′′(u)a(x, t, TM (u), DTM (u))DTM (u) weakly in L1(Q).
(64)

Recall that S′′(u)a(x, t, TM (u), DTM (u))DTM (u) = S′′(u)a(x, t, u,Du)Du a.e in Q.

• Limit of S′(un)Hn(x, t, un, Dun).
Since supp(S′) ⊂ [−M,M ] and (60), we have

S′(un)Hn(x, t, un, Dun) → S′(u)H(x, t, u,Du) strongly in L1(Q), (65)

as n tends to +∞.

• Limit of S′(un)fn.
Since un → u a.e in Q, we have S′(un)fn → S′(u)f strongly in L1(Q) as n→ +∞.

• Limit of div(S′(un)F ).
The fact that S′(un) is bounded and converges to S′(u) a.e in Q as n tends to
+∞ makes it possible to obtain that div(S′(un)F ) → div(S′(u)F ) strongly in
Lp′

(0, T ;W−1,p′

(Ω, w∗)) as n→ +∞.

• Limit of S′′(un)FDun.
This term is equal to FDS′(un). Since DS′(un) converges to DS′(un) weakly in
N
∏

i=1

Lp′

(Q,w∗
i ) as n tends to +∞, we obtain S′′(un)FDun = FDS′(un) ⇀ FDS′(u)

weakly in L1(Q) as n→ +∞. The term FDS′(u) identifies with S′′(u)FDu.

As a consequence of the above convergence result, we are in a position to pass to
the limit as n tends to +∞ in equation (62) and to conclude that u satisfies (24). It
remains to show that BS(x, u) satisfies the initial condition (25). To this end, firstly
remark that, S being bounded, Bn

S(x, un) is bounded in L∞(Q). Secondly, (62) and the

above considerations on the behavior of the terms of this equation show that
∂Bn

S (x,un)
∂t

is bounded in L1(Q) + Lp′

(0, T ;W−1,p′

(Ω, w∗)). As a consequence, an Aubin’s type
lemma (see, e.g, [21]) implies that Bn

S(x, un) lies in a compact set of C0([0, T ], L1(Ω)). It
follows that on the one hand, Bn

S(x, un)(t = 0) = Bn
S(x, u

n
0 ) converges to BS(x, u)(t = 0)

strongly in L1(Ω). On the other hand, the smoothness of S implies that BS(x, u)(t =
0) = BS(x, u0) in Ω. As a conclusion of step 1 to step 5, the proof of Theorem 5.1 is
complete.
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6 Example

Let us consider the following special case: b(x, s) = Z(x)C(s) where Z ∈ W 1, p(Ω, w),
Z(x) ≥ α > 0 and C ∈ C1(R) such that ∀ k > 0 : 0 < λk ≡ inf

|s|≤k
C′(s) and C(0) = 0.

0 < λk ≤
∂b(x, s)

∂s
≤ Ak(x) and

∣

∣

∣

∣

∇x

(

∂b(x, s)

∂s

)∣

∣

∣

∣

≤ Bk(x) ∀ |s| ≤ k, (66)

H(x, t, s, ξ) =
−2s

1 + s4

N
∑

i=1

wi(x) |ξi|
p and ai(x, t, s, d) = wi(x) |di|

p−2
di, i = 1, ..., N,

(67)
with wi(x) a weight function strictly positive. Then, we can consider the Hardy inequality
in the form

(∫

Ω

|u(x)|
p
σ(x)dx

)
1
p

≤ c

(∫

Ω

|Du(x)|
p
w(x)dx

)
1
p

.

It is easy to show that the ai(t, x, s, d) are Caratheodory functions satisfying the growth
condition (18), the coercivity (20) and the monotonicity condition.

While the Carathéodory function H(x, t, s, ξ) satisfies the condition (21), indeed

|H(x, t, s, ξ)| ≤ 2|s|
1+s4

N
∑

i=1

wi(x) |ξi|
p
= g(s)

N
∑

i=1

wi(x) |ξi|
p
where g(s) = 2|s|

1+s4 is a function

bounded positive continuous which belongs to L1(R). Note that H(x, t, s, ξ) does not
satisfy the sign condition (3) and the coercivity condition. In particular, let us use special
weight function, w, expressed in terms of the distance to the bounded ∂Ω. Denote
d(x) = dist(x, ∂Ω) and set w(x) = dλ(x), σ(x) = dµ(x). Finally, the hypotheses of
Theorem 5.1 are satisfied. Therefore, the following problem:















































































































b(x, u) ∈ L∞([0, T ];L1(Ω)) and Tk(u) ∈ Lp(0, T ;W 1, p
0 (Ω, w)),

lim
m→+∞

∫

{m≤|u|≤m+1}

a(x, t, u,Du)Dudxdt = 0,

∂BS(x, u)

∂t
− div [S′(u)a(x, t, u,Du)] + S′′(u)

N
∑

i=1

wi

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

p

,

−
2u

1 + u4

N
∑

i=1

wi

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

p

S′(u) = fS′(u)− div(S′(u)F ) + FS′′(u)Du,

BS(x, u)(t = 0) = BS(x, u0) in Ω,

∀ S ∈W 2,∞(R) with S′ has a compact support in R,

and BS(x, r) =

∫ r

0

∂b(x, σ)

∂σ
S′(σ)dσ,

(68)

has at least one renormalised solution.
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Abstract: Certain classes of switched mechanical systems with nonlinear poten-
tial and dissipative forces are studied. By the use of the differential inequalities
method and multiple Lyapunov functions, conditions on switching law guaranteeing
the asymptotic stability of the trivial equilibrium position of the considered systems
are obtained. An example and the results of a computer simulation are presented to
demonstrate the effectiveness of the proposed approaches.
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1 Introduction

Stability of switched systems has attracted an increasing attention during last decades,
mainly due to the numerous applications of these systems in engineering, technological
processes, mechanics, population dynamics, chemistry and economics, see, e.g., [1, 7, 9,
10, 12, 16, 17, 20] and the references cited therein. A switched system is a particular
kind of hybrid dynamical system that consists of a family of subsystems and a switching
law determining at each time instant which subsystem is active.

There are two principal approaches to the stability analysis of switched systems. The
first one is based on the constructing of a common Lyapunov function for the family of
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subsystems corresponding to a switched system [6, 12, 13, 19]. The existence of a such
function guarantees the stability of the considered system for any admissible switching
law. In the situations where we cannot prove the existence of a common Lyapunov
function, the stability of a switched system can be provided by means of additional
restrictions on the switching law (dwell-time approach) [8, 9, 13, 19, 21]. It is known
that, under the suitable assumptions on the system investigated, the stability is ensured if
the intervals between consecutive switching times are sufficiently large [13, 19]. However,
it should be noted that these approaches are well-developed mostly for linear switched
systems.

The problem of stability analysis of hybrid systems is especially difficult for mechan-
ical systems with switched force fields. In numerous applications, mechanical systems
are described by nonlinear differential equations of the second order. This results in
the appearance of certain special properties of motions and essentially complicates the
investigation of systems dynamics [2, 3, 9, 16]. In particular, well-known approaches
developed for switched systems of general form might be inefficient or even inapplicable
for mechanical systems, see [3].

In the present paper, certain classes of switched mechanical systems with nonlinear
potential and dissipative forces are studied. By the use of the differential inequalities
method and multiple Lyapunov functions, conditions on switching law guaranteeing the
asymptotic stability of the trivial equilibrium position of the considered systems are
obtained.

2 Statement of the Problem

Let the family of systems

ẍ+Ds(x)ẋ+
∂Πs(x)

∂x
= 0, s = 1, . . . , N, (1)

be given. Here x ∈ R
n; Πs(x) are continuously differentiable for x ∈ R

n homogeneous of
the order µ+1 functions, µ ≥ 1; entries of the matrices Ds(x) are continuous for x ∈ R

n

homogeneous of the order ν functions, ν > 0. Systems from the family (1) are vector type
Lienard equations, see [18]. They can be used for the modelling of mechanical systems
with potential and essentially nonlinear velocity forces.

Switched system generated by the family (1) and a switching law σ is

ẍ+Dσ(x)ẋ +
∂Πσ(x)

∂x
= 0. (2)

Here σ = σ(t) : [0,+∞) → {1, . . . , N} is a piecewise constant function. Without loss of
generality, consider the only case where the interval (0,+∞) contains the infinite number
of switching instants. Let θi, i = 1, 2, . . ., be the switching times, 0 < θ1 < θ2 < . . ., and
θ0 = 0. Assume that the function σ(t) is right-continuous, and the sequence {θi}

∞
i=0 is a

minimal one (σ(θi) 6= σ(θi+1), i = 0, 1, . . .). Hereinafter, we consider non Zeno sequences
[12, 13], i.e., sequences that switch at most a finite number of times in any finite time
interval. This kind of switching law is called admissible one.

Systems (1) and system (2) admit the trivial equilibrium position x = ẋ = 0. Assume
that, for every system from the family (1), the equilibrium position is asymptotically
stable. Let us determine conditions under which the equilibrium position x = ẋ = 0 of
switched system (2) is also asymptotically stable.
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The problem of the construction of a common Lyapunov function for the family of
systems of the form (1) was studied in [5, 15]. As it was mentioned in the Introduction, the
existence of a such function guarantees the asymptotic stability of (2) for any admissible
switching law.

In this paper, it is assumed that we failed to prove the existence of a common Lya-
punov function for (1). We will look for conditions on switching law guaranteeing asymp-
totic stability of the equilibrium position.

It should be noted that such conditions were obtained in [4] for system (2) with
constant matrices D1, . . . ,DN . The goal of the present paper is extension of the results
of [4] to the case of essentially nonlinear velocity forces. We will assume that the forces
Fs(x, ẋ) = −Ds(x)ẋ, s = 1, . . . , N , are dissipative ones and consider two types of such
forces. It is worth mentioning that asymptotic stability conditions will depend not only
on the type of the dissipative forces but also on the information available on the switching
law.

3 The First Type of Dissipative Forces

3.1 Stability analysis via multiple Lyapunov functions

First, consider the case when the switching instants θi, i = 1, 2, . . ., are given, while the
order of switching between the systems from (1) might be unknown.

Let us impose additional restrictions on the functions Π1(x), . . . ,ΠN (x) and the ma-
trices D1(x), . . . ,DN (x).

Assumption 3.1 Functions Π1(x), . . . ,ΠN (x) are positive definite.

Assumption 3.2 For any fixed x 6= 0, the matrices Ds(x) +DT
s (x), s = 1, . . . , N ,

are positive definite.

Remark 3.1 Taking into account homogeneity of D1(x), . . . ,DN (x), we obtain, see
[22], that Assumption 3.2 implies that the estimates

zT Ds(x) z ≥ cs ‖x‖
ν‖z‖2, s = 1, . . . , N,

hold for all x, z ∈ R
n. Here c1, . . . , cN are positive constants, and ‖ · ‖ denotes the

Euclidean norm of a vector.

Remark 3.2 It is known, see [18, 22], that if Assumptions 3.1 and 3.2 are fulfilled,
then, for any system from the family (1), the equilibrium position x = ẋ = 0 is asymp-
totically stable.

For every s in {1, . . . , N}, choose a Lyapunov function for the s-th system from (1)
in the form

Vs(x, ẋ) = Πs(x) +
1

2
ẋT ẋ− γ1s‖ẋ‖

β−1xT ẋ+ γ2s‖x‖
k−1xT ẋ, (3)

where γ1s > 0, γ2s > 0, β ≥ 1, k ≥ 1. Differentiating function (3) with respect to the
s-th system, we obtain

V̇s
∣

∣

(s)
= −γ2s(µ+ 1)‖x‖k−1Πs(x)− γ1s‖ẋ‖

β+1 − ẋTDs(x)ẋ
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−γ1sx
T ∂

(

‖ẋ‖β−1ẋ
)

∂ẋ

(

−
∂Πs(x)

∂x
−Ds(x)ẋ

)

+γ2sẋ
T ∂

(

‖x‖k−1x
)

∂x
ẋ− γ2s‖x‖

k−1xTDs(x)ẋ.

Hence, the estimates

a1s
(

‖ẋ‖2 + ‖x‖µ+1
)

−
(

γ1s‖x‖‖ẋ‖
β + γ2s‖x‖

k‖ẋ‖
)

≤ Vs(x, ẋ)

≤ a2s
(

‖ẋ‖2 + ‖x‖µ+1
)

+
(

γ1s‖x‖‖ẋ‖
β + γ2s‖x‖

k‖ẋ‖
)

,

V̇s
∣

∣

(s)
≤ −a3s

(

γ2s‖x‖
k+µ + γ1s‖ẋ‖

β+1 + ‖x‖ν‖ẋ‖2
)

+a4s
(

γ1s‖x‖
µ+1‖ẋ‖β−1 + γ1s‖x‖

ν+1‖ẋ‖β + γ2s‖x‖
k−1‖ẋ‖2 + γ2s‖x‖

k+ν‖ẋ‖
)

hold for x, ẋ ∈ R
n. Here a1s, . . . , a4s are positive constants.

By the use of generalized homogeneous functions properties [22], it is easy to verify
that, if

k = max{µ− ν; ν + 1}, β = 1 +max

{

2ν

µ+ 1
;

2(k − 1)

k + µ− ν

}

, (4)

then there exist positive numbers γ11, . . . , γ1N , γ21, . . . , γ2N , b1, b2, α and H such that
the inequalities

b1r(x, ẋ) ≤ Vs(x, ẋ) ≤ b2r(x, ẋ), s = 1, . . . , N, (5)

V̇s
∣

∣

(s)
≤ −αV 1+ξ

s (x, ẋ), s = 1, . . . , N, (6)

are valid for r(x, ẋ) < H . Here r(x, ẋ) = ‖ẋ‖2 + ‖x‖µ+1, and ξ = (k − 1)/(µ+ 1).
Find ω ≥ 1, such that

Vs(x, ẋ) ≤ ωVl(x, ẋ), s, l = 1, . . . , N, (7)

for r(x, ẋ) < H .
Denote h = ω−ξ; τi = θi − θi−1, i = 1, 2, . . .; ψ(m, 1) = 0, and ψ(m, p) =

∑p−1
i=1 τm+ih

p−i for p = 2, 3, . . ., m = 1, 2, . . ..

Theorem 3.1 Let Assumptions 3.1 and 3.2 be fulfilled, and for family (1) the Lya-

punov functions V1(x, ẋ), . . . , VN (x, ẋ) be constructed satisfying the estimates (5), (6)
and (7). If

ψ(m, p) → +∞ as p→ ∞ (8)

for any positive integer m, then the equilibrium position x = ẋ = 0 of system (2) is

asymptotically stable. In the case when the tendency (8) is uniform with respect to m =
1, 2, . . ., the equilibrium position is uniformly asymptotically stable.

Proof. By the use of the partial Lyapunov functions V1(x, ẋ), . . . , VN (x, ẋ), construct
the multiple Lyapunov function Vσ(t)(x, ẋ) corresponding to the switching law σ(t).

Choose ε ∈ (0, H) and t0 ≥ 0. Consider a solution x(t) of (2) with initial conditions
satisfying the inequalities 0 < r(x(t0), ẋ(t0)) < ε. Find the positive integer m such that
t0 ∈ [θm−1, θm).
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Assume that r(x(t), ẋ(t)) < ε for t ∈ [t0, t̃]. If t0 < t̃ ≤ θm then, integrating the
corresponding differential inequality from (6), we obtain that the estimate

V
−ξ
σ(θm−1)

(x(t̃), ẋ(t̃)) ≥ αξ(t̃− t0) + V
−ξ
σ(θm−1)

(x(t0), ẋ(t0)) (9)

is valid.
In the case when t̃ ≥ θm, there exists a positive integer p such that θm+p−1 ≤

t̃ < θm+p. It should be noted that p → ∞ as t̃ → +∞. Integrating successively
the corresponding differential inequalities from family (6) on the intervals [θm+p−1, t̃],
[θm+p−2, θm+p−1], . . ., [t0, θm] and taking into account inequalities (7), we obtain

V
−ξ
σ(θm+p−1)

(x(t̃), ẋ(t̃)) ≥ αξ
(

t̃− θm+p−1

)

+ V
−ξ
σ(θm+p−1)

(x(θm+p−1), ẋ(θm+p−1))

≥ hV
−ξ
σ(θm+p−2)

(x(θm+p−1), ẋ(θm+p−1)) + αξ
(

t̃− θm+p−1

)

≥ . . .

≥ hpV
−ξ
σ(θm−1)

(x(t0), ẋ(t0)) + αξ
((

t̃− θm+p−1

)

+ ψ(m, p) + hp (θm − t0)
)

.

(10)

From (5), (9) and (10) it follows that

r(x(t̃), ẋ(t̃)) ≤ b−1
1

(

b
−ξ
2 r−ξ(x(t0), ẋ(t0)) + αξ

(

t̃− t0
)

)− 1
ξ

for t̃ ∈ [t0, θm), and

r(x(t̃), ẋ(t̃)) ≤ b−1
1

(

hpb
−ξ
2 r−ξ(x(t0), ẋ(t0))

+αξ
( (

t̃− θm+p−1

)

+ ψ(m, p) + hp (θm − t0)
)

)− 1
ξ

for t̃ ∈ [θm+p−1, θm+p), p ≥ 1.

With the usage of these estimates the subsequent proof is similar to that of Theorem
1 in [4]. ✷

Corollary 3.1 Let Assumptions 3.1 and 3.2 be fulfilled. If τi → +∞ as i→ ∞, then

the equilibrium position x = ẋ = 0 of system (2) is uniformly asymptotically stable.

Remark 3.3 It is a fairly well-known fact, see [13, 19], that for any family consisting
of a finite number of linear time invariant asymptotically stable systems there exists
a number L > 0 (dwell time), such that the corresponding switched system is also
asymptotically stable providing that the intervals between consecutive switching times
are not less than L. Theorem 3.1 does not permit to obtain a similar result for the family
of nonlinear systems (1). If τi = L = const > 0, i = 1, 2, . . ., then condition (8) is not
fulfilled for any choice of L. However, for nonlinear switched system (2), a positive lower
bound for the values of τ1, τ2, . . . can be found guaranteeing the practical stability [11]
of the equilibrium position.

Corollary 3.2 Let Assumptions 3.1 and 3.2 be fulfilled. Then there exists a positive

number ∆, such that for any ε > 0 one can choose L1 > 0 and L2 > 0 satisfying the

following condition: if τi ≥ L1, i = 1, 2, . . ., and for a solution x(t) of (2) the inequalities

t0 ≥ 0, r(x(t0), ẋ(t0)) < ∆ are valid, then r(x(t), ẋ(t)) < ε for all t ≥ t0 + L2.
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3.2 Asymptotic stability conditions in the case of complete information on

the switching law

Assume now that we know not only the switching instants θi, i = 1, 2, . . ., but also the
order of switching between the systems. Then another approach for the stability analysis
can be used [4, 14]. Choose a system from family (1) and determine relationship between
this system activity intervals and those of the remained systems under which it is possible
to guarantee the asymptotic stability of the equilibrium position x = ẋ = 0 of switched
system (2).

Let (for definiteness) the first system from (1) be chosen. In the present subsection,
instead of Assumption 3.1, we will use a weaker assumption.

Assumption 3.3 Function Π1(x) is positive definite.

Consider the Lyapunov function

V1(x, ẋ) = Π1(x) +
1

2
ẋT ẋ− γ11‖ẋ‖

β−1xT ẋ+ γ21‖x‖
k−1xT ẋ,

where γ11 > 0, γ21 > 0, and the values of the parameters β and k are defined by the
formulae (4).

Denote by V̇1
∣

∣

(s)
the derivative of V1(x, ẋ) with respect to the s-th system from (1),

s = 1, . . . , N . We obtain

V̇1
∣

∣

(s)
= −γ21(µ+ 1)‖x‖k−1Πs(x)− γ11‖ẋ‖

β+1 − ẋTDs(x)ẋ

−γ11x
T ∂

(

‖ẋ‖β−1ẋ
)

∂ẋ

(

−
∂Πs(x)

∂x
−Ds(x)ẋ

)

+γ21ẋ
T ∂

(

‖x‖k−1x
)

∂x
ẋ− γ21‖x‖

k−1xTDs(x)ẋ +

(

∂Π1(x)

∂x

)T

ẋ−

(

∂Πs(x)

∂x

)T

ẋ.

Let again r(x, ẋ) = ‖ẋ‖2 + ‖x‖µ+1, ξ = (k − 1)/(µ + 1). It is easy to verify that if
µ ≥ 2ν+1, Assumptions 3.2 and 3.3 are fulfilled, and values of γ11 and γ21 are sufficiently
small, then there exists a number H > 0 such that the estimates

b1r(x, ẋ) ≤ V1(x, ẋ) ≤ b2r(x, ẋ), V̇1
∣

∣

(s)
≤ αsV

1+ξ
1 (x, ẋ), s = 1, . . . , N, (11)

hold for r(x, ẋ) < H . Here b1, b2, α1, . . . , αN are constants with b1 > 0, b2 > 0, α1 < 0.
For given switching law σ(t), define the auxiliary piecewise constant function η(t) by

the formula η(t) = −ασ(t) for t ≥ 0.

Theorem 3.2 Let µ ≥ 2ν + 1, Assumptions 3.2 and 3.3 be fulfilled, and for family

(1) the Lyapunov function V1(x, ẋ) be constructed satisfying the estimates (11). If

∫ t

0

η(τ) dτ → +∞ as t→ +∞, (12)

then the equilibrium position x = ẋ = 0 of system (2) is asymptotically stable. In the

case when
∫ t0+t

t0

η(τ) dτ → +∞ as t→ +∞ (13)

uniformly with respect to t0 ≥ 0, the equilibrium position x = ẋ = 0 of system (2) is

uniformly asymptotically stable.
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Proof. For given switching law σ(t), construct the function η(t). Let the numbers
ε > 0 and t0 ≥ 0 be chosen. Without loss of generality, assume that ε < H .

If (12) holds, then there exists a constant ρ0, such that
∫ t

t0
η(τ) dτ ≥ ρ0 for all t ≥ t0.

Choose δ > 0 satisfying the condition

(b2δ)
−ξ

+ ξρ0 > (b1ε)
−ξ
.

Consider a solution x(t) of system (2), such that 0 < r(x(t0), ẋ(t0)) < δ. If
r(x(t), ẋ(t)) < ε for t ∈ [t0, t̃), then the differential inequality

V̇1(x(t), ẋ(t)) ≤ −η(t)V 1+ξ
1 (x(t), ẋ(t)) (14)

is valid for t ∈ [t0, t̃].

With the aid of estimate (14), it is easy to show that

(

b1r(x(t̃), ẋ(t̃))
)−ξ

≥ V
−ξ
1 (x(t̃), ẋ(t̃)) ≥ V

−ξ
1 (x(t0), ẋ(t0)) + ξ

∫ t̃

t0

η(τ) dτ

≥ (b2r(x(t0), ẋ(t0)))
−ξ + ξ

∫ t̃

t0

η(τ) dτ ≥ (b2δ)
−ξ + ξρ0 > (b1ε)

−ξ
.

Hence, r(x(t), ẋ(t)) < ε for all t ≥ t0, and r(x(t), ẋ(t)) → 0 as t→ +∞.

If the tendency (13) is uniform with respect to t0 ≥ 0, then the number δ can be
chosen independent of t0, and r(x(t), ẋ(t)) → 0 as t− t0 → +∞ uniformly with respect
to t0 ≥ 0. ✷

Remark 3.4 In the proof of Theorem 3.2, we did not use the positive definiteness
property of functions Π2(x), . . . ,ΠN (x). Hence, this theorem remains valid also in the
case when the equilibrium position x = ẋ = 0 is not asymptotically stable either for a
part of systems numbered 2, . . . , N , or for all of these systems.

4 The Second Type of Dissipative Forces

Next, we will assume that in system (2) potential forces are switched, whereas dissipative
forces are nonswitched, i.e., Ds(x) = D(x), s = 1, . . . , N , where entries of the matrix
D(x) are continuous for x ∈ R

n homogeneous of the order ν functions, ν > 0.

Moreover, we will impose an additional restriction on the structure of the matrix
D(x).

Assumption 4.1 The matrix D(x) is represented in the form D(x) = ∂G(x)/∂x,
where components of the vector G(x) are continuously differentiable for x ∈ R

n homo-
geneous of the order ν + 1 functions, ν > 0.

Then family (1) can be rewritten as follows

ẋ = y −G(x), ẏ = −
∂Πs(x)

∂x
, s = 1, . . . , N. (15)
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4.1 Stability analysis via multiple Lyapunov functions

As in the previous section, consider first the case when the switching instants θi, i =
1, 2, . . ., are given, while the order of switching between the systems from (15) might be
unknown.

Assumption 4.2 The functions (∂Πs(x)/∂x)
T
G(x), s = 1, . . . , N , are positive def-

inite.

Remark 4.1 The class of matrices D(x) defined by Assumption 3.2 differs from that
defined by Assumptions 4.1 and 4.2.

Example 4.1 Let Πs(x) = a
(s)
1 x

µ+1
1 + . . . + a

(s)
n xµ+1

n , s = 1, . . . , N . Here x =

(x1, . . . , xn)
T , µ ≥ 1 is a rational with the odd numerator and denominator, and a

(s)
i are

positive coefficients, i = 1, . . . , n; s = 1, . . . , N . The functions Π1(x), . . . ,ΠN (x) satisfy
Assumption 3.1.

On the one hand, if D(x) = ‖x‖νA, where ν > 0, and A is a constant matrix such
that the matrix A + AT is positive definite, then Assumption 3.2 is fulfilled, whereas
Assumption 4.1 is not fulfilled.

On the other hand, choose the matrixD(x) in the formD(x) = diag {b1x
ν
1 , . . . , bnx

ν
n},

where ν is a positive rational with the even numerator and the odd denominator, and
bi are positive constants, i = 1, . . . , n. In this case Assumptions 4.1 and 4.2 are fulfilled

(here G(x) =
(

b1x
ν+1
1 , . . . , bnx

ν+1
n

)T
/(ν + 1)), whereas Assumption 3.2 is not fulfilled.

Remark 4.2 It is known, see [18, 22], that under Assumptions 3.1 and 4.2 any
system from the family (15) admits the asymptotically stable zero solution.

For every s ∈ {1, . . . , N}, construct a Lyapunov function for the s-th system from
(15) by the formula

V̂s(x,y) = Πs(x) +
1

2
yTy − γ̂s‖y‖

λ−1xTy,

where γ̂s > 0, λ ≥ 1. We obtain

˙̂
Vs

∣

∣

∣

(s)
= −

(

∂Πs(x)

∂x

)T

G(x) − γ̂s‖y‖
λ+1

+γ̂s‖y‖
λ−1yTG(x) + γ̂sx

T ∂(‖y‖
λ−1y)

∂y

∂Πs(x)

∂x
.

Hence, under Assumptions 3.1 and 4.2 the estimates

â1s
(

‖x‖µ+1 + ‖y‖2
)

− γ̂s‖x‖‖y‖
λ ≤ V̂s(x,y) ≤ â2s

(

‖x‖µ+1 + ‖y‖2
)

+ γ̂s‖x‖‖y‖
λ,

˙̂
Vs

∣

∣

(s)
≤ −

(

â3s‖x‖
µ+ν+1 + γ̂s‖y‖

λ+1
)

+ â4sγ̂s
(

‖x‖ν+1‖y‖λ + ‖x‖µ+1‖y‖λ−1
)

hold for x,y ∈ R
n. Here â1s, . . . , â4s are positive constants.

It is easy to verify, see [22], that if

λ = max

{

1 +
2ν

µ+ 1
;

µ

ν + 1

}

, (16)
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then there exist positive numbers γ̂1, . . . , γ̂N , b̂1, b̂2, α̂ and Ĥ such that the inequalities

b̂1r(x,y) ≤ V̂s(x,y) ≤ b̂2r(x,y),
˙̂
Vs

∣

∣

(s)
≤ −α̂V̂ 1+ξ̂

s (x,y), s = 1, . . . , N, (17)

are valid for r(x,y) < Ĥ . Here ξ̂ = (λ− 1)/2, and r(x,y) = ‖x‖µ+1 + ‖y‖2.
Find ω̂ ≥ 1, such that

V̂s(x,y) ≤ ω̂V̂l(x,y), s, l = 1, . . . , N, (18)

for r(x,y) < Ĥ .

Denote ĥ = ω̂−ξ̂; ψ̂(m, 1) = 0, and ψ̂(m, p) =
∑p−1

i=1 τm+iĥ
p−i for p = 2, 3, . . . ,

m = 1, 2, . . . .

Theorem 4.1 Let Assumptions 3.1, 4.1 and 4.2 be fulfilled, and for family (15) the
Lyapunov functions V̂1(x,y), . . . , V̂N (x,y) be constructed satisfying the estimates (17)
and (18). If

ψ̂(m, p) → +∞ as p→ ∞ (19)

for any positive integer m, then the equilibrium position x = ẋ = 0 of system (2) is

asymptotically stable. In the case when the tendency (19) is uniform with respect to

m = 1, 2, . . ., the equilibrium position is uniformly asymptotically stable.

The proof of the theorem is similar to that of Theorem 3.1.

Remark 4.3 For Theorem 4.1, corollaries similar to Corollaries 3.1 and 3.2 can be
formulated.

4.2 Asymptotic stability conditions in the case of complete information on

the switching law

Assume now that we know not only the switching instants θi, i = 1, 2, . . ., but also the
order of switching between the systems. Then for finding asymptotic stability conditions
we can apply the approach considered in Subsection 3.2.

Choose the first system from the family (15). Instead of Assumption 4.2, we will use
a weaker assumption.

Assumption 4.3 The function (∂Π1(x)/∂x)
T
G(x) is positive definite.

Let

V̂1(x,y) = Π1(x) +
1

2
yTy − γ̂1‖y‖

λ−1xTy.

Here γ̂1 > 0, and the value of the parameter λ is defined by the formula (16). Then

˙̂
V1

∣

∣

∣

(s)
= −

(

∂Π1(x)

∂x

)T

G(x)− γ̂1‖y‖
λ+1 + γ̂1‖y‖

λ−1yTG(x)

+γ̂1x
T ∂(‖y‖

λ−1y)

∂y

∂Πs(x)

∂x
+

(

∂Π1(x)

∂x

)T

y −

(

∂Πs(x)

∂x

)T

y.

If µ ≥ 2ν +1, Assumptions 3.3 and 4.3 are fulfilled, and the value of γ̂1 is sufficiently
small, then there exists a number Ĥ > 0 such that the estimates

b̂1r(x,y) ≤ V̂1(x,y) ≤ b̂2r(x,y),
˙̂
V1

∣

∣

(s)
≤ α̂sV̂

1+ξ̂
1 (x,y), s = 1, . . . , N, (20)
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hold for r(x,y) < Ĥ . Here b̂1, b̂2, α̂1, . . . , α̂N are constants with b̂1 > 0, b̂2 > 0, α̂1 < 0,

and ξ̂ = (λ − 1)/2.
For given switching law σ(t), define the auxiliary piecewise constant function η̂(t) by

the formula η̂(t) = −α̂σ(t) for t ≥ 0.

Theorem 4.2 Let µ ≥ 2ν + 1, Assumptions 3.3, 4.1 and 4.3 be fulfilled, and for

family (15) the Lyapunov function V̂1(x,y) be constructed satisfying the estimates (20).
If

∫ t

0

η(τ) dτ → +∞ as t→ +∞,

then the equilibrium position x = ẋ = 0 of system (2) is asymptotically stable. In the

case when
∫ t0+t

t0

η(τ) dτ → +∞ as t→ +∞

uniformly with respect to t0 ≥ 0, the equilibrium position x = ẋ = 0 of system (2) is

uniformly asymptotically stable.

The proof of the theorem is similar to that of Theorem 3.2.

Remark 4.4 As well as Theorem 3.2, Theorem 4.2 remains valid in the case when
the zero solution is not asymptotically stable either for a part of systems from the family
(15) numbered 2, . . . , N , or for all of these systems.

5 A Numerical Example

Let family (1) consist of two systems







ẍ1 +
√

x21 + x22 (ẋ1 + asẋ2) + csx
3
1 = 0,

ẍ2 +
√

x21 + x22 (−ẋ1 + bsẋ2) + dsx
3
2 = 0, s = 1, 2,

(21)

where as, bs, cs, ds are constant coefficients. Thus, we have n = 2, x = (x1, x2)
T , N = 2,

ν = 1, µ = 3, Πs(x) = (csx
4
1 + dsx

4
2)/4, and

Ds(x) =
√

x21 + x22

(

1 as
−1 bs

)

, s = 1, 2.

The results of a numerical simulation are presented in Figs. 1–4, where for solutions
of switched systems generated by the family (21) and four types of switching law the
dependence of the coordinate x1 on time is shown. The initial conditions of solutions are
determined by the formulae

t0 = 0, x1(0) = −0.03, x2(0) = 0.05, ẋ1(0) = 0.02, ẋ2(0) = 0.04.

First, the following values of coefficients were chosen: a1 = 0.9, b1 = 0.3, c1 = 1,
d1 = 10, a2 = 0.8, b2 = 0.1, c2 = 10, d2 = 1. In this case Assumptions 3.1 and
3.2 are fulfilled, and both systems admit the asymptotically stable equilibrium position
x = ẋ = 0.

Fig. 1 corresponds to a switching law satisfying the conditions of Theorem 3.1. Here
τ2i−1 = 5, τ2i = 5i, and the first system from the family (21) is active on the intervals
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Figure 1: Switching between two asymptotically stable systems (asymptotically stable equilib-
rium position).
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Figure 2: Switching between two asymptotically stable systems (unstable equilibrium position).

[θ2i−1, θ2i), whereas the second one is active on the intervals [θ2i−2, θ2i−1), i = 1, 2, . . . .
For such switching law the equilibrium position is asymptotically stable.

Fig. 2 demonstrates that there exist switching laws for which the equilibrium position
is unstable. Here switching from the first system to the second one occurs when ẋ2 = 0
and ẋ1 6= 0, whereas switching from the second system to the first one occurs when
ẋ1 = 0. Moreover, in order to avoid Zeno type switching signal, the following additional
restriction is imposed: τi ≥ 4, i = 1, 2, . . . .
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Figure 3: Switching between asymptotically stable and unstable systems (unstable equilibrium
position).
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Figure 4: Switching between asymptotically stable and unstable systems (asymptotically stable
equilibrium position).

Next, consider the case when a1 = 0.9, b1 = 0.3, c1 = 1, d1 = 10, a2 = 0.8, b2 = 0.1,
c2 = −10, d2 = −1. Then the equilibrium position of the first system from the family (21)
is asymptotically stable, and the equilibrium position of the second system is unstable.
For such values of coefficients Assumptions 3.2 and 3.3 are fulfilled.

Let τ2i−1 = 2χ, τ2i = 2, where χ is a positive parameter, the first system from the
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family (21) be active on the intervals [θ2i−2, θ2i−1), and the second one be active on the
intervals [θ2i−1, θ2i), i = 1, 2, . . .. The results of numerical simulation show that if χ = 4,
then the equilibrium position of the corresponding switched system is unstable (see Fig.
3), whereas if χ = 7, then the equilibrium position is asymptotically stable (see Fig. 4).

6 Conclusion

In the present paper, certain classes of switched mechanical systems with nonlinear dis-
sipative and potential forces are studied. By the application of the multiple Lyapunov
functions approach and the dwell time approach, we found the restrictions on the switch-
ing law guaranteeing the asymptotic stability of the trivial equilibrium position.

The obtained results can be used for the design of switched controllers providing
the asymptotic stability and the practical stability of equilibrium positions for nonlinear
mechanical systems.

The interesting direction for further research is the extension of the obtained results
to the case when switched nonlinear dissipative forces depend on velocities and are inde-
pendent of coordinates. Moreover, the impact of gyroscopis and nonconservative forces
on the considered systems may be studied.
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Abstract: In analytical or numerical synchronizations studies of coupled chaotic
systems, the phase synchronizations are less considered in the leading literatures.
This paper is an attempt to find a sufficient analytical condition for the stability of
phase synchronization in coupled chaotic systems. The method of nonlinear feedback
function and the scheme of matrix measure have been used to justify this analytical
stability, and tested numerically for the existence of the phase synchronization in
some coupled chaotic systems.
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1 Introduction

Sensitivity to initial conditions is a generic feature of chaotic dynamical systems. Two
chaotic systems starting from slightly different initial points in the state space separate
away from each other with time. Therefore, how to control two chaotic systems to be
synchronized has aroused a great deal of interest.

Recently, synchronization phenomena in coupled chaotic systems have received much
attention [1–17]. Pecora and Carroll have shown [1–4] that in coupled chaotic systems a
complete synchronization occurs if the difference between the various states of synchro-
nized systems converges to zero. They have also shown that synchronization stability
depends upon the signs of the conditional Lyapunov exponents: i.e., if all of the Lya-
punov exponents of the response system under the action of the driver are negative, then
there is a complete and stable synchronization between the drive and response systems.
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Synchronization stability can also be verified using the Jacobian matrix in the linearized
state difference between the drive and response chaotic systems [6]. Accordingly, despite
the stability analysis in dynamical systems, if this Jacobian matrix is of full rank and
all of its real parts of eigenvalues are negative, then the system will converge to zero,
yielding complete synchronization.

The phenomenon of phase synchronization observed in systems of various nature [18,
19], including chemical, biological, and physiological systems, is today attracting much
interest of researchers [19–21]. In this case, the Jacobian matrix has some zero eigenvalues
and the difference between various states of synchronized systems may be not necessary
converging to the zero, but will stay less than or equal to a constant. The main goal of
this paper is to discuss the stability analysis of phase synchronization in coupled chaotic
systems coupled by the nonlinear feedback function method [19]. Therefore, a brief
discussion of the nonlinear coupling feedback function method is presented in Section 2,
followed by the presentation of a criterion for the stability of synchronization in Section
3. In Section 4, we present some examples to corroborate our analytical assertion.

2 Description of the Method

There are different criteria for coupling two chaotic systems to be synchronized. In this
paper, we apply the nonlinear coupling feedback function method introduced by Ali
and Fang [19] to couple chaotic systems. Suppose ẋ(t) = F(t,x(t)) is a chaotic system
with x(t) ∈ R

n. Then decomposing vector-valued function F(t,x(t)) to a linear part,
L(t,x(t)), and a nonlinear part, N(t,x(t)), yields

F(t,x(t)) = L(t,x(t)) +N(t,x(t)). (1)

Now consider two chaotic systems, where their associated vector functions are decom-
posed as in (2) and coupled by using the nonlinear parts of their vector functions as
follows:

ẋ1(t) = L(t,x1(t))−N(t,x1(t)) + α [N(t,x1(t))−N(t,x2(t))] , (2)

ẋ2(t) = L(t,x2(t))−N(t,x2(t)) + α [N(t,x2(t))−N(t,x1(t))] . (3)

Here, systems (2) and (3) serve as drive and response systems, respectively, and α is
the strength of their coupling. The synchronization stability of these two systems can
be studied by using the evolutional equation of the difference between them, which is
determined by the following linear approximation:

ė(t) =

[

L(t) + (2α− 1)
∂N(t,x(t))

∂x

]

e(t), (4)

where e(t) = x1(t) − x2(t). Obviously, the stability type of the zero equilibrium in
equation (4) shows the stability type of the synchronization between two chaotic systems.
If L has full rank and α = 0.5, we have

ė(t) = L(t)e(t), (5)

and then according to the stability analysis of the linear approximation in dynamical
systems theory, synchronization between coupled chaotic systems (2) and (3) occurs if
all eigenvalues of matrix L have negative real parts. Conversely, if matrix L does not
have full rank: i.e., L has at least one zero eigenvalue, then we may yet have phase
synchronization behavior.
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3 Main Results

In this section, we present a stability criterion for synchronization. First, we introduce
the concept of matrix measure. The matrix measure of a real square matrixA = (aij)n×n

is defined by

µ∗(A) = lim
ǫ→0

‖I+ ǫA‖∗ − 1

ǫ
,

where I is an n× n identity matrix and ‖ · ‖∗ is a matrix norm defined as follows:

‖A‖1 = max
j

n
∑

i=1

|aij |, ‖A‖2 = [λmax(ATA)]1/2,

‖A‖∞ = max
i

n
∑

j=1

|aij |, ‖A‖ω = max
j

n
∑

i=1

ωi

ωj
|aij |,

where ωi > 0, we have the matrix measures

µ1(A) = max
j

{

ajj +

n
∑

i=1, i6=j

|aij |
}

, µ2(A) =
1

2
λmax(A

T +A),

µ∞(A) = max
i

{

aii +

n
∑

j=1, j 6=i

|aij |
}

, µω(A) = max
j

{

ajj +

n
∑

i=1, i6=j

ωi

ωj
|aij |

}

,

respectively.
Now suppose in error system (5), matrix L doesn’t have a full rank and α = 0.5.

Then, as a consequence of the following theorem, we will show that under some conditions
system (5) is globally asymptotically stable around a constant vector , on which e(t) =
x1(t)− x2(t).

Theorem 3.1 System (5) is globally asymptotically stable if there exists a non-
singular time-varying matrix B(t) such that

lim
t→∞

exp

(∫ t

t0

µ∗(ḂB−1 +BLB−1)(s)ds

)

= 0,

for any t0 ≥ 0. Consequently, phase synchronization between systems (2) and (3) occurs
which is globally asymptotically stable around a constant vector c.

Proof. Let e(t) be a solution of error system (5) and Y(t) = B(t)(e(t) − c). Then
for all t ≥ t0, we have

D+‖Y(t)‖∗ = lim
ǫ→0+

1

ǫ

[

‖Y(t) + ǫẎ(t)‖∗ − ‖Y(t)‖∗

]

= lim
ǫ→0+

1

ǫ

[∥

∥

∥B(t)(e(t)− c) + ǫ
(

Ḃ(t)(e(t)− c) +BL(t)(e(t)− c)
)∥

∥

∥

∗

− ‖B(t)(e(t)− c)‖∗]

= lim
ǫ→0+

1

ǫ

[∥

∥

∥B(t)(e(t)− c) + ǫ(ḂB−1 +BLB−1)B(t)(e(t)− c)
∥

∥

∥

∗

− ‖B(t)(e(t)− c)‖∗]

≤ ‖B(t)(e(t)− c)‖∗ lim
ǫ→0+

1

ǫ

[

‖I+ ǫ
(

ḂB−1 +BLB−1
)

‖∗ − 1
]

= ‖Y(t)‖∗µ∗

(

ḂB−1 +BLB−1
)

.
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By integrating both sides of D+‖Y(t)‖∗ ≤ ‖Y(t)‖∗µ∗

(

ḂB−1 +BLB−1
)

from t0 to t,

we obtain

‖B(t)(e(t)− c)‖∗ ≤ ‖B(0)(e(0)− c)‖∗ exp

(
∫ t

t0

µ∗(ḂB−1 +BLB−1)(s)ds

)

.

Therefore,

‖e(t)− c‖∗ = ‖B−1(t)B(t)(e(t)− c)‖∗ ≤ ‖B−1(t)‖∗‖B(t)(e(t)− c)‖∗

≤ ‖B−1(t)‖∗‖B(0)(e(0)− c)‖∗ exp

(∫ t

t0

µ∗(ḂB−1 +BLB−1)(s)ds

)

.

Therefore, limt→∞ ‖e(t)−c‖∗ = 0 since limt→∞ exp
(

∫ t

t0
µ∗(ḂB−1 +BLB−1)(s)ds

)

= 0

and ‖B−1‖ > 0. Therefore, system (5) is globally asymptotically stable around a constant
vector c and note that the constant vector c depends upon the initial conditions. This
completes the proof.

In the case when B(t) is a constant matrix, by Theorem 3.1, we have the following
result.

Corollary 3.1 System (5) is globally asymptotically stable if there exists a non-
singular matrix B such that

∫ ∞

t0

µ∗(BL(s)B−1)ds = −∞,

for any t0 ≥ 0. Consequently, phase synchronization between systems (2) and (3) occurs
which is globally asymptotically stable around a constant vector c.

In Corollary 1, when B is an identity matrix, then the main result in [13, 23] is
obtained.

Corollary 3.2 System (5) is globally asymptotically stable if
∫ ∞

t0

µ∗(L(s))ds = −∞,

for any t0 ≥ 0.

4 Numerical Results

In this section, we give some examples to show the efficiency of the above theory.
Example 1. Consider the following forced Duffing system

{

ẋ = y,

ẏ = ax− by − x3 + c cos(2πdt).

This system is chaotic for parameter values a = c = 0.3, b = 0.35 and d = 0.2. Using a
nonlinear coupling function to couple two identical copies of this system yields

{

ẋ1 = −x1 + y1 + x1 + α|x2 − x1|,

ẏ1 = ax1 − by1 − x3
1 + c cos(2πdt) + α|x3

1 − x3
2|,

(6)
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and
{

ẋ2 = −x2 + y2 + x2 + α|x1 − x2|,

ẏ2 = ax2 − by2 − x3
2 + c cos(2πdt) + α|x3

2 − x3
1|,

(7)

where the linear and nonlinear matrices are defined by

L =

[

−1 1
0.3 −0.35

]

, N =

[

−x

x3 − 0.3 cos(0.4πt)

]

.

By taking B =

[

1 2
1 1

]

, we have B−1 =

[

−1 2
1 −1

]

and BLB−1 =
[

−0.11 −1.1
1.35 −2.05

]

. Now, by using matrix measure µ2(·), we have

1

2
λmax

(

(BLB−1)T +BLB−1
)

=
1

2
λmax

[

−0.2 0.25
0.25 −4.1

]

= −0.09202.

Therefore, according to Corollary 3.1, synchronization of systems (7) and (8) is globally
asymptotically stable. See Figure 1.

Figure 1: Global asymptotic stability of synchronization between two chaotic systems (7) and
(8) in Example 1.

Remark. The above results in Corollary 3.1 and 3.2 are useful to proof the global
asymptotic stability of phase synchronization in coupled chaotic systems. As discussed,
this synchronization occurs whenever the maximum real part of the eigenvalues of L

is zero. In this case, even the linear stability analysis is not useful for (local) stability
analysis of phase synchronization. Nevertheless, using the results of these two corollaries,
if in the hypothesis we replace

∫∞

t0
µ∗(BL(s)B−1)ds = −∞ or

∫∞

t0
µ∗(L(s))ds = −∞ by

∫∞

t0
µ∗(BL(s)B−1)ds = 0 or

∫∞

t0
µ∗(L(s))ds = 0, respectively, then the error vector in

the coupled chaotic systems remains constant. That is, if there is phase synchronization
between two coupled chaotic systems, then this synchronization is globally asymptotically
stable.

Example 2. Consider the same Duffing system in Example 1 with parameter values
a = b = 0.35, c = 0.3 and d = 0.2. Then this system is again chaotic. Now, with the
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same nonlinear coupling method as above, we have

L =

[

−1 1
0.35 −0.35

]

, N =

[

−x

x3 − 0.3 cos(0.4πt)

]

.

By taking identity matrix for B and choosing ω1 = 7 and ω2 = 20, we get µω(BLB−1) =
µω(L) = 0. Therefore, phase synchronization occurring between systems (7) and (8) is
globally asymptotically stable. See Figure 2.

Figure 2: Global asymptotical stability of phase synchronization between two chaotic systems
(7) and (8) in Example 2.

5 Conclusion

We have discussed a sufficient analytical condition for the stability of synchronization in
coupled chaotic systems. As we have seen using a method of nonlinear feedback function
and the scheme of matrix measure together with numerical results have justified this
analytical stability. In particular, we have shown that our stability analysis is useful to
proof the global asymptotic stability of phase synchronization in coupled chaotic systems.
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Abstract: This paper studied the implementation of fractional order PIαDβ con-
troller for the control of an induction motor (IM). The perfection of the system
performance in terms of response time and robustness is illustrated by adjusting the
fractional order integral action and derivative action. A comparative study with a
conventional PID controller is carried out. The observer is simple and robust, and
suitable for online implementation for induction motor. Simulation tests under load
disturbances and parameter uncertainties are provided to evaluate the consistency
and performance of the proposed control technique.

Keywords: conventional controller; fractional order controller; induction motor IM;
electromagnetic torque and flux control.
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1 Introduction

The conventional PID controller is widely used in automatic and especially in indus-
try because of its simplicity but due to the complexity of the controlled systems and
parametric variations, the PID controller can not reach the desired performance control
where the use of fractional order controller with integral action and derivative action,
non-integer order.

The fractional order PIαDβ controller is an improved version of the conventional
PID controller. It allows two degrees of freedom to better adjust the dynamic properties
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of the system and can control non-integer order systems [1–4]. The fractional PIαDβ

controller is less sensitive to parameter variations of the system, it is a robust controller.
The fractional control was developed by mathematicians in the eighties [5, 6]. In the

last decade, the calculation of fractional order is applied to each field of engineering. It
made a profound impact in the theories of control [7–12].

There are several methods of approximation of the derivative and integral fractional
controller [13–15]. The methods of approximations are distinguished by the entire model
obtained being continuous or discrete. Researches are ongoing to improve and adjust the
controller parameters to expand the scope of application of the fractional control.

In this paper, we will determine the theory of fractional PIαDβ controller for control-
ling an induction machine. A parametric variation of the controller is used to determine
the influence of fractional controller of control system with and without the presence of
disturbance on the system [16–18].

The paper is organized as follows: In Section 2 the Induction Machine modeling
is presented. In Section 3, synthesis of the IM controllers is studied. In Section 4,
implementation of fractional order controller is considered. In Section 5 the simulation
results are presented and discussed, and finally in Section 6 conclusions are drawn.

2 IM Modelling

Prior to the IM equating, some assumptions are considered [19, 20]:

• The gap is constant.

• The Hysteresis, the saturation and the eddy currents are neglected.

• The magneto-motive forces generated by the stator and rotor phases have a sinu-
soidal distribution.

(a) Mathematical model for the IM.

- Electrical equations:

VdS = RSIdS + dφdS

dt − ωSφqS , VqS = RSIqS +
dφqS

dt + ωSφdS ,

0 = RrIdr +
dφdr

dt + ωSlφqr , 0 = RrIqr +
dφqr

dt + ωSlφqr ,
(1)

where
φdS = LSIdS + LmIdr, φqS = LSIqS + LmIqr,

φdr = LmIdS + LrIdr, φqr = LmIqS + LrIqr ,
(2)

ωS = 2πf =
dθS

dt
, (3)

ωSl = ωS − ωr, (4)

with:
LS : Stator proper cyclical inductance,
Lr: Rotor proper cyclical inductance,
Lm: Cyclical mutual inductance between stator and rotor,
ωS : Synchronization speed,
ωSl: Sliding angular velocity.
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- Mechanical equation:

The mechanical equation is defined by:

Cem =
3

2
p
MSr

Lr
(φdrIqS − φqrIdS) . (5)

- Torque equation:

The orientation of the (dq) frame with the d axis associated with the rotor flux allows
writing: φdr = φr and φqr = 0. Thanks to this flux orientation, which allows a high
starting torque, the torque expression can be simplified as follows:

Cem =
3

2
p
MSr

Lr
φdrIqS . (6)

3 Synthesis of the IM Controllers

The IM state equations are as follows:

dISd

dt
= −

1

σLS

(

RS +
M2

SrRr

L2
r

)

ISd+

ωSISq +
1

σLS

MSrRr

L2
r

φrd +
1

σLS

MSr

Lr
pΩmφrq +

1

σLS
VSd, (7)

dISq

dt
=

1

σLS

(

RS +
M2

SrRr

L2
r

)

ISq+

ωSISd +
1

σLS

MSrRr

L2
r

φrq −
1

σLS

MSr

Lr
pΩmφrd +

1

σLS
VSq, (8)

dφrd

dt
=

MSrRr

Lr
ISd −

Rr

Lr
φrd + (ωS − pΩm)φrq, (9)

dφrq

dt
=

MSrRr

Lr
ISq −

Rr

Lr
φrq − (ωS − pΩm)φrd, (10)

Ωm

dt
=

3

2

MSrP

LrJ
(φrdISq − φrqISd)−

F

J
Ωm −

1

J
Cr, (11)

while: σ = 1−
M2

SrRr

LSLr
.

(a) Control loop of the rotor flux.
The decoupling allowed by the oriented flux and the relation (3) can give

dφrd

dt
=

MSrRr

Lr
ISd −

Rr

Lr
φrd. (12)

Wherein the direct stator current expression is:

ISd =
1

MSr

(

φrd +
Lr

Rr

dφrd

dt

)

. (13)
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Let Tr = Lr

Rr
be the rotor time constant and TS = LS

RS
be the stator time one. The

relations (7) and (13) can lead to:

VSd =
RS

MSr

(

φrd + (TS + Tr)
dφrd

dt

)

+ σTSTr
d2φrd

dt2
− ωSσLSISq = VSdf + VSdc. (14)

To ensure the decoupling between the two axes, the term VSdc must be compensated:

VSdf = RS

MSr

(

φrd + (TS + Tr)
dφrd

dt

)

+ σTSTr
d2φrd

dt2 , VSdc = −ωSσLSISq. (15)

The system transfer function is:

Gflux(p) =
φrd(p)

VSdf (p)
=

MSr

RS

1

1 + (TS + Tr)p+ σTSTrp2
. (16)

Let p1 and p2 be the denominator roots such that p2 ≻≻ p1, where p1 =
σTSTSq

TS+TSq+∆ ,

p2 =
σTSTSq

TS+TSq−∆ .

The flux error is ǫ = e2 PI = φrd rf − φrd. The following figure shows the block
diagram of the flux control loop.

Figure 1: Flux control loop.

(b) Control loop of the electromagnetic torque.
Considering that the flux response is faster than the torque one, the flux reaches its

final value φrd = φrd0, and the expression of the torque could be given by the following:

Cem =
3

2

MSrP

Lr
φrd0ISd. (17)

The voltage equation VSq becomes:

VSd = RSISq + σLS
dISq

dt
+ φrdωS

MSr

Lr
+ σLSωSISd. (18)

Let
VSq = VSqt + VSqc. (19)

The VSqc component represents a decoupling term that we have to compensate,

VSqc = φrdωS
MSr

Lr
+ σLSωSISd, (20)

VSqt = RSISq + σLS
dISq

dt
. (21)

The system transfer function becomes:

Gcem(p) =
Cem(p)

VSqt(p)
=

3MSrPφrd0

2LrRS (1 + σTSp)
. (22)

The flux error is ǫ = e1 PI = Cem rf − Cem. The following figure shows the block
diagram of the torque control loop.
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Figure 2: Torque control loop.

4 Implementation of Corrective Fractional Order

The simulation part is usually performed by integer order of finite dimension. So it is
necessary to replace the transfer functions of non-integer order by the transfer functions
of integer order. The methods of approximations are distinguished by the entire model
obtained, being continuous or discrete.

(a) Continuous Approximation Methods: singularity function.
There are several approximation methods analog continuous (or frequency) for the

fractional operators existing in the literature [21, 22]. These methods are based on the
continuous model, such as the approximation of fractional order model by a continuous
rational model.

The method consists in replacing the derivative operator Sn by a transmittance,
where poles and zeros are related by a recurrence relation. To replace Sn by an entire
model, it is necessary to apply the following approximations:

• Approximation in a frequency band [ωB;ωH ] of non-integer operator by a non-
integral model Sn

[ωB ;ωH ].

• Approximation of the non-integer model obtained by an entire model.

The approximation methods are: SFEC approximation Method (Fractional Expansion
Continues), Oustaloup approximation method [23], Charef approximation method [24],
other methods (Carlson, Matsuda, Roy Wang, ...). In the following we will define the
Charef method as an example.

- Approximation of fractional order integration.

The transfer function of the fractional order integrator is given by the following irrational
function [4, 25]:

H1(p) =
1

Pα
, (23)

where α is a positive number 0 ≺ α ≺ 1 and p = jω is the complex frequency. This
operator may be approximated in a given frequency band [ωB;ωH ] by:

H1(p) =
k1

(

1 + P
ωC

)α = k1

∏N−1
i=0 (1 + P

τi
)

∏N
i=0(1 +

P
Pi
)
. (24)

For systems with integrator: The transfer function of the fractional order integrator
is given by the following irrational function [26]:

H1(p) =
1

Pα
=

1

P
P 1−α. (25)
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Thus

H1(p) =
kD

P

∏N
i=0(1 +

P
Ti
)

∏N
i=0(1 +

P
Zi
)
, (26)

- Approximation of fractional order differentiation

The transfer function of fractional order differentiator is given by the following irrational
function:

HD(p) = P β , (27)

where β is a positive number 0 ≺ β ≺ 1 and p = jω is the complex frequency. This
operator may be approximated in a given frequency band [ωB;ωH ] by:

HD(p) =
kD

(

1 + P
ωC

)β
= kD

∏N
i=0(1 +

P
Ti
)

∏N
i=0(1 +

P
Zi
)
. (28)

(b) Adjusting the parameters of the controller PIα.

- Adjustment of parameters kp and ki

For flow control, we will apply the compensation method for compensating the slow term
and make the system faster, hence the use of a corrector PI. This type of corrector is
generally used for the first order systems such as the torque control. The adjustment
of parameters kp and of fractional order PIα control is done with α = 1, which means
adjusting the parameters of a simple classical PI controller. To compensate for the
dominant pole, we will use a fractional order PIα controller. The shape of the fractional
order PIα controller, including a fractional integrator of order α, such as 0 ≺ α ≺ 1,
see [27]. The transfer function of fractional order control is given by:

C(p) = kp

(

1 + ki
1

Pα

)

. (29)

- Flow Control:

The transfer function of open loop flow control is:

H0(p) = Gf (p)C(p) =
φrd(p)

ǫ(p)
=

MSr

RS
.ki.

1

(1 + p1p)(1 + p2p)
.
1 +

kp

ki
p

p
. (30)

Using the compensation method of dominant pole (offset slow time constant) is to make
the system faster. The transfer function in simplified open loop is given by:

H0(p) =
MSr

RS
.ki.

1

p(1 + p1p)
. (31)

The transfer function of the closed loop is:

HF (p) =
1

1 + RS

MSrki
p+ RS

MSrki
p1p2

=
1

1 + 2z
ωn

p+ 1
ω2

n
p2

(32)

with kp = kip2, ki =
RS

MSr
.ωn

2z and ωn = 1
2zp1

.
Choice of parameters z and ωn.
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• A good starting point is to clean the pulse ωn equal to the open-loop process.

• The excess is determined by the value z = 0.7 providing a good response time.

• To have a positive adjustment we need ki ≻ 0.

- Electromagnetic torque control:

The transfer function in open lopp is:

H0(p) = Gcem(p)C(p) =
φrd(p)

ǫ(p)
=

3MSrPφrd0

2LrRS
.ki.

1

(1 + σTSp)
.
1 +

kp

ki
p

p
. (33)

The transfer function in simplified open loop is given by:

H0(p) =
3MSrPφrd0

2LrRS
.ki.

1

p
. (34)

The transfer function of the closed loop is:

HF (p) =
1

1 + 1
k.ki

p
. (35)

Choice of parameters: ki and τ.

• A good starting point is to take the constant τ equal to the process time.

• To have a positive adjustment we need ki ≻ 0.

- Adjustment parameter α

To adjust the parameters α or (β) by minimizing a performance criterion is the
integral square error (ISE). The integral square error (ISE) is given by:

J =

∫ ∞

0

[e(t)]
2
dt =

1

2πj

∫ +j∞

−j∞

E(p)E(−p)dp. (36)

The error signal E(p) is obtained as:

E(p) =
R(p)

1 + C(p)G(p)
, (37)

where R(p) is a unit step input

R(p) =
1

p
. (38)

- Hall-Sartorius method

To calculate ISE we use the Hall-Sartorius method. It is to minimize the integral squared
error of a loop with an entry level system

J =
1

2πj

∫ +j∞

−j∞

NE(p)NE(−p)

DE(p)DE(−p)
dp, (39)
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NE(p) = b0 + b1p+ b2p
2 + . . .+ bn−1p

n−1, (40)

DE(p) = a0 + a1p+ a2p
2 + . . .+ an−1p

n−1 + anp
n, (41)

NE(p) = c0 + c1p
2 + c2p

4 + . . .+ cn−1p
2(n−1), (42)

or the general formula

J =
(−1)n−1

2
.
det(∆N

n )

det(∆D
n )

(43)

with ∆D
n ∈ ℜ(n+1)(n+1),

DeltaDn =
(−1)n−1

2
.
det(∆N

n )

det(∆D
n )

, (44)

∆D
n =

















a0 0 0 0 0 0 0 0
a2 a1 a1 0 0 0 0 0
. . . . . 0 0 0
. . . . . . . .

0 0 0 0 0 an an−1 an−2

0 0 0 0 0 0 0 an

















(45)

and ∆N
n ∈ ℜ(n)(n). The matrix ∆N

n is obtained by removing the last column and last row
of the matrix ∆N

n and replacing the last column of this matrix by the following vector:

∆D
n =

[

c0 c1 a2 . . . a1
]

. (46)

The smallest index J of the criterion ISE, J = 0.5094 is calculated with α = 0.92
for the flow control, and J = 0.0054 is obtained with α = 0.65 for the electromagnetic
torque control. The integrator and the differentiator to the fractional order controller
C(p) are approximated in the frequency band [ωB;ωH ] = [0.1ωB; 10.ωH ] with a frequency
ωmax = 100ωh and an approximation error y = 1dB.

Hence, the controller fractional order PI0.65 is given by:

C(p) = 286.308

(

1 +
1.4054

p
.

∏3
i=0(1 +

p
0.2215.(433.873)i )

∏3
i=0(1 +

p
1.8556.(352.1189)i )

)

. (47)

The controller fractional order PI0.65 is given by:

C(p) = 0.0351

(

1 +
64.9076

p
.

∏6
i=0(1 +

p
2.2624.10−4.(28.84)i )

∏6
i=0(1 +

p
2.9058.10−4(22.84)i )

)

. (48)

Table 1 summarizes some performance characteristics of the conventional control
system and fractional order in terms of the cutoff frequency ωu(rad/s), response time
tr(s), Gain Margin GM(dB, Phase Margin PM(deg), and overshoot D%.

5 Simulation Results

The following figures are determined using the Matlab / Simulink software to demonstrate
the performance of the fractional order control. The performance of the control technique
is defined by:
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cont ωu tr GM PM D%5
Flux control PI 120 0.1805 - 65.5 4.54

PI0.65 120 0.1805 - 65.5 4.54
Torque control PI 1 3.29 - 90 -

PI0.92 0.984 2.8 - 96.4 -

Table 1: Characteristics of performance for (PI ; PIα).

• Stability in steady state.

• Response quickness.

• A relatively small static error.

The simulation is performed with unloading start, at t=60s rotation is reversed, then a
load torque Cr = 20Nm is introduced at t=100s.

Figure 3 represents the evolution of the electromagnetic torque considered, real and
reference of the asynchronous motor in the presence of radial force Cr = 20Nm t=100s.
It is noted that the electromagnetic torque does not admit oscillations and reaches steady
operation with a response time trPI = 3.92s et trPI0.92 = 2.8s. The machine answers
successfully to the inversion of its direction of rotation.
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Figure 3: Evolution of the electromagnetic torque(- - PI ; - PI0.92).

Figure 4 shows the influence of controls applied on the response of flow along the two
axes (d, q):

- Along the axis (d): the fractional order control is less sensitive to the reversal of
direction of rotation or the introduction of load than the PI controller.

- Along the axis (q): the flow is zero regardless of the order.
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Figure 4: Rotor flux response.

Changes in the motor flux demonstrate the robustness of the control slide, it follows
exactly the desired set point, with overshoot negligible, see Table 1, and without static
error even for the impact load torque or reversal of direction of rotation. The evolution
of direct rotor flux is not a static error with short response time.

Figure 5 is a representation of the evolution of the speed of asynchronous techniques
for both commands. The response speed of the MAS shown in Figure 5 is similar to
that of a first order system without overshoot, steady and stable with a response time
of the order of 5.36s for the speed defined by the PI0.65 controller and 5.63s for the
speed determined by the classical PI controller. The evolution of the velocity shows at
t = 100s the robustness of the fractional order control to the introduction of charging.
SPI0.65 = (4.8%)SPI .

To demonstrate the performance of control system by fractional order control, we will
vary the time constant and process gain for the torque control in closed loop. And, we
will vary the damping factor for the flux control in closed loop.

Figures 6 and 7 represent the influence of the variation of time constant. It is assumed
that the gain is fixed at its nominal value Knom. To study the influence of the variation
of the time constant τ the parameter τ is varied around its nominal value. The results
show that:

- the response time Defines by the fractional order PI0.92 controller is still less than
the response time defines by the conventional controller for different values of the
time constant τ .

- the overshoot is insensitive to the variation of the time constant τ .

- the servo by the PI0.92 controller, ensure the desired specifications with the pres-
ence of a very important property of robustness.

Figures 8 and 9 represent the influence of the variation of process gain. It is assumed
that the time constant is fixed at its nominal value τnom. To study the influence of the
variation of the process gain K the parameter K is varied around its nominal value. The
results show that:
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Figure 6: Evolution of the electromagnetic torque for different values of time constant τ , (-
τ = τnom; -.- τ = 150%τnom; - - τ = 50%τnom) (conventional PI).

- the response time defined by the fractional order PI0.92 controller is still less than
the response time defined by the conventional controller for different values of the
process gain K.

- the overshoot is insensitive to the variation of the process gain K.

- the servo by the PI0.92 controller, ensures the desired specifications with the pres-
ence of a very important property of robustness.

Figures 10 and 11 show the impact of the variation of the damping factor (m) on the
flux response along the axe (d). It was found that, the rise in response to the desired
value, the higher the damping factor (m).
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Figure 7: Evolution of the electromagnetic torque for different values of time constant τ , (-
τ = τnom; -.- τ = 150%τnom; - - τ = 50%τnom) (PI0.92).
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Figure 8: Evolution of the electromagnetic torque for different values of process gain K, (-
K = Knom; -.- K = 150%Knom; - - K = 50%Knom) (conventional PI).

- the response time defined by the fractional order controller is still less than the
response time defined by the conventional controller for different values of the
damping factor m. trPI(m = 0.5) = 0.071s; trPI (m = 0.7) = 0.18s and

trPI(m = 1.2) = 1.797s. trPI0.65

(m = 0.5) = 0.069s; trPI0.65

(m = 0.7) = 0.156s

and trPI0.65

(m = 1.2) = 1.687s

- the overshoot of flux defined by the fractional order PI0.65 controller is less sensitive
than the overshoot defined by the conventional controller for different values of the
damping factor m. For example, m=0.5: DPI(m = 0.5) = 13.32% andDPI0.65

(m =
0.5) = 11.53%
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Figure 9: Evolution of the electromagnetic torque for different values of process gain K, (-
K = Knom; -.- K = 150%Knom; - - K = 50%Knom) (PI0.92).

Figure 10: Response flux for different values of the damping factor m (conventional PI).

6 Conclusion

The nonlinear control system with a fractional order controller was presented in this
paper, with a comparative study of the conventional controller. We define the correction
order and fractional approximation of Charef to determine the rational expression of
the integration and the derivation of the correction. The adjustment of the order of
fractional order (α, β) is done by minimizing the control error defined by ISE using
the Hall-Sartoruis method. The results obtained by simulation and comparative study
demonstrate the performance of the control technique with fractional order correction in
the presence of load variation and control parameters, as well as the profitability of ISE
using the method of Hall-Sartoruis.
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Figure 11: Response flux for different values of the damping factor m (PI0.65).
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Abstract: In this paper, a new general chaos synchronization scheme is proposed
for coupled arbitrary 3-D quadratic chaotic dynamical systems in discrete-time. The
proposed synchronization method, based on nonlinear controllers and Lyapunov sta-
bility theory, is theoretically rigorous. The derived synchronization criterion can be
also applicable to a large class of discrete-time chaotic systems. Our control scheme
is used to illustrate complete synchronization between the three-dimensional hyper-
chaotic discrete-time Rössler and Wang systems. Moreover numerical simulations are
used to show the effectiveness and the feasibility of the proposed synchronization
scheme.
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1 Introduction

Over the last two decade, many scholars have proposed various control schemes in chaos
synchronization [1–6], but the most of works have concentrated on continuous-time rather
than discrete-time chaotic systems. In practice, discrete-time chaotic systems play a
more important role than their continuous counterparts [7]. In fact, many mathematical
models of physical processes [8], biological phenomena [10], chemical reactions [9] and
economic systems [11] were defined using discrete-time chaotic systems. Many 3D chaotic
and hyperchaotic dynamical systems in discrete-time are founded such as Baier-Klain
map [12], Hitzl-Zele map [13], Stefanski map [14], Wang system [15], discrete-time Rössler
system [16] and Grassi-Miller map [18], etc.
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Recently, synchronization in discrete-time chaotic systems attracts more and more
attention in many areas of science and technology, and has been extensively studied, due
to its potential applications in secure communication [19,20,22,23]. Until now, a variety
of approaches have been proposed for the synchronization of chaotic systems in discrete-
time [24–27] and different types of chaos synchronization have been presented [28–32].

In this paper, using new controller law and Lyapunov stability theory, a general
method is proposed to guarantee global synchronization for a special class of chaotic
maps. The aim of this paper is to develop a simple criterion for the synchronization
between two arbitrary 3D quadratic chaotic systems in discrete-time. In order to verify
the effectiveness of the new approach, the proposed scheme is applied between two 3D
hyperchaotic maps: the discrete-time Rössler system and the 3D Wang system.

The rest of this paper is organized as follows. In Section 2, a description of the chaotic
systems addressed in this paper is provided. In Section 3, a new chaos synchronization
approach in discrete-time is introduced and new synchronization criterion is derived. In
Section 4, the proposed synchronization scheme is applied to some typical 3D discrete-
time hyperchaotic systems and numerical simulations are used to verify the effectiveness
of the new approach. In Section 5, conclusion follows.

2 Description of Drive-response Systems

Consider the drive chaotic system in the form of

xi (k + 1) =
3

∑

j=1

aijxj (k) +
3

∑

q=1

3
∑

p=1

α(i)
pq xp (k)xq (k) + ci, 1 ≤ i ≤ 3, (1)

where X (k) = (xi (k))1≤i≤3 ∈ R
3 is the state vector of the drive system, (aij) ∈ R

3×3,
(

α
(i)
pq

)

∈ R
3×3 (i = 1, 2, 3), and (ci)

1≤i≤3
are real numbers.

As the response chaotic system, we consider the following system

yi (k + 1) =

3
∑

j=1

bijyj (k) +

3
∑

q=1

3
∑

p=1

β(i)
pq yp (k) yq (k) + di + ui, 1 ≤ i ≤ 3, (2)

where Y (k) = (yi (k))1≤i≤3 ∈ R
3 is the state vector of the response system, (bij) ∈ R

3×3,
(

β
(i)
pq

)

∈ R
3×3 (i = 1, 2, 3), (di)

1≤i≤3
are real numbers and U = (ui)1≤i≤3 ∈ R

3 is a vector

controller to be determined.

Remark 2.1 3D Quadratic chaotic maps can be written under the form of (1) such
as 3D Hénon-like map, Baier-Klein map, 3D generalized Hénon map, Stefanski map,
discrete-time Rössler system and Wang system, etc.

Our aim is to realize synchronization between the drive system (1) and the response

system (2) for arbitrary constants aij , bij , α
(i)
pq , β

(i)
pq , ci and di (i, p, q = 1, 2, 3), and to

determine the controllers ui (1 ≤ i ≤ 3), which stabilize the synchronization errors

ei (k) = yi (k)− xi (k) , 1 ≤ i ≤ 3, (3)

then the aim of synchronization is to make limk→∞ ei (k) = 0, (i = 1, 2, 3) .
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3 New Chaos Synchronization Scheme in Discrete-time

The synchronization errors between the drive system (1) and the response system (2),
can be derived as follows

ei (k + 1) =

3
∑

j=1

bijej (k) +Ri + ui, 1 ≤ i ≤ 3, (4)

where

Ri =

3
∑

j=1

(bij − aij)xj (k) +

3
∑

q=1

3
∑

p=1

β(i)
pq yp (k) yq (k) (5)

−
3

∑

q=1

3
∑

p=1

α(i)
pq xp (k)xq (k) + di − ci, 1 ≤ i ≤ 3.

To achieve synchronization between systems (1) and (2), we choose the vector controller
U = (ui)1≤i≤3 as follows

u1 = l1e1 (k) + (b22 − b12 + l2) e2 (k)− (b13 + b33 + l3) e3 (k)−R1, (6)

u2 = − (b21 + b11 + l1) e1 (k) + l2e2 (k) + (b33 − b23 + l3) e3 (k)−R2,

u3 = (b11 − b31 + l1) e1 (k)− b32e2 (k) + (b33 + 2l3) e3 (k)−R3,

where (li)1≤i≤3 are control constants to be determined later. By substituting Eq. (6)
into Eq. (4), the synchronization errors can be written as

e1 (k + 1) = (b11 + l1) e1 (k) + (b22 + l2) e2 (k)− (b33 + l3) e3 (k) , (7)

e2 (k + 1) = − (b11 + l1) e1 (k) + (b22 + l2) e2 (k) + (b33 + l3) e3 (k) ,

e3 (k + 1) = (b11 + l1) e1 (k) + 2 (b33 + l3) e3 (k) .

Now, we have the following result.

Theorem 3.1 If the control constants (li)1≤i≤3 are chosen such that











−b11 −
1√
3
< l1 < −b11 +

1√
3
,

−b22 −
1√
2
< l2 < −b22 +

1√
2
,

−b33 −
1√
6
< l3 < 1√

6
,

(8)

then the drive system (1) and the response system (2) are globally synchronized under

the controller law (6).

Proof. Let us consider the following quadratic Lyapunov function

V (e (k)) =

3
∑

i=1

e2i (k) , (9)
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then we obtain

∆V (e(k)) = V (e(k + 1))− V (e(k))

=

3
∑

i=1

e2i (k + 1)−

3
∑

i=1

e2i (k)

=
(

3 (b11 + l1)
2
− 1

)

e21 (k) +
(

2 (b22 + l2)
2
− 1

)

e22 (k)

+
(

6 (b33 + l3)
2 − 1

)

e23 (k)

+ [(b11 + l1) (b22 + l2)− (b11 + l1) (b22 + l2)] e1 (k) e2 (k)

+ [− (b11 + l1) (b33 + l3)− (b11 + l1) (b33 + l3)

+2 (b11 + l1) (b33 + l3)] e1 (k) e3 (k)

+ [− (b22 + l2) (b33 + l3) + (b22 + l2) (b33 + l3)] e2 (k) e3 (k)

=
(

3 (b11 + l1)
2
− 1

)

e21 (k) +
(

2 (b22 + l2)
2
− 1

)

e22 (k)

+
(

6 (b33 + l3)
2 − 1

)

e23 (k) ,

and by using (8), we get: ∆V (e(k)) < 0.

Thus, from the Lyapunov stability theory, it is immediate that limk→∞ ei(k) = 0,
(i = 1, 2, 3). Therefore, the systems (1) and (2) are globally synchronized.

4 Illustrative Example

In this example, we consider the discrete-time Rössler system as the drive system and the
controlled Wang system as the response system. The discrete-time Rössler system [16],
is described by

x1 (k + 1) = αx1 (k) (1− x1 (k))− β (x3 (k) + γ) (1− 2x2 (k)) , (10)

x2 (k + 1) = δx2 (k) (1− x2 (k)) + ςx3 (k) ,

x3 (k + 1) = η ((x3 (k) + γ) (1− 2x2 (k))− 1) (1− θx1 (k)) ,

where α = 3.8, β = 0.05, γ = 0.35, δ = 3.78, ς = 0.2, η = 0.1, θ = 1.9. The hyperchaotic
attractor of the 3D discrete-time Rössler system is shown in Fig. 1.

The controlled Wang system can be described as

y1 (k + 1) = a3y2 (k) + (a4 + 1) y1 (k) + u1, (11)

y2 (k + 1) = a1y1 (k) + y2 (k) + a2y3 (k) + u2,

y3 (k + 1) = (a7 + 1) y3 (k) + a6y2 (k) y3 (k) + a5 + u3,

where U = (u1, u2, u3)
T

is the vector controller. The 3D hyperchaotic Wang system
(i.e., the system (11) with u1 = 0, u2 = 0, u3 = 0) is chaotic when the parameter
values are taken as (a1, a2, a3, a4, a5, a6, a7) = (−1.9, 0.2, 0.5,−2.3, 2,−0.6,−1.9) [15].
The hyperchaotic attractor of the 3D Wang system is shown in Fig. 2. To achieve
global synchronization between the discrete-time Rössler system and the controlled Wang
system, according to our approach presented in Section 2, the vector controller can be
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Figure 1: The hyperchaotic attractor of the discrete-time Rossler system.

Figure 2: Hyperchaotic attractor of Wang system when (a1, a2, a3, a4, a5, a6, a7, δ) =
(−1.9, 0.2, 0.5,−2.3, 2,−0.6,−1.9, 1).

constructed as follows

u1 = l1e1 (k) + (1− a3 + l2) e2 (k)− (a7 + 1 + l3) e3 (k)−R1, (12)

u2 = − (a1 + a4 + 1 + l1) e1 (k) + l2e2 (k) + (a7 + 1− a2 + l3) e3 (k)−R2,

u3 = (a4 + 1 + l1) e1 (k) + (a7 + 1 + 2l3) e3 (k)−R3,

where the control constants (li)1≤i≤3 are chosen as follows











−a4 − 1− 1√
3
< l1 < −a4 − 1 + 1√

3
,

−1− 1√
2
< l2 < −1 + 1√

2
,

−a7 − 1− 1√
6
< l3 < −a7 − 1− 1√

6

(13)

and
Ri = Li +Ni, i = 1, 2, 3, (14)
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Figure 3: Time evolution of synchronization errors between the drive system (10) and the
response system (11).

where

L1 = (a4 + 1− α) x1 (k) + (a3 − βγ2)x2 (k) + βx3 (k) + βγ, (15)

L2 = a1x1 (k) + (1− βγ2)x2 (k) + (a2 − ς)x3 (k) ,

L3 = −θ (1− ηγ)x1 (k) + 2ηγx2 (k) + (a7 + 1− η)x3 (k) + a5 − ηγ + 1

and

N1 = αx2
1 (k)− 2βx3 (k)x2 (k) , (16)

N2 = δx2
2 (k) ,

N3 = a6y2 (k) y3 (k)− 2ηγθx1 (k)x2 (k) + ηθx1 (k)x3 (k)

+2ηx2 (k)x3 (k)− 2ηθx1 (k)x2 (k)x3 (k) .

It is easy to show that all conditions of Theorem 3.1 are satisfied. Therefore, the
drive system (10) and the response system (11) are globally synchronized.

Using controllers (12), the error functions can be described as:

e1 (k + 1) = (a4 + 1 + l1) e1 (k) + (1 + l2) e2 (k)− (a7 + 1 + l3) e3 (k) , (17)

e2 (k + 1) = − (a4 + 1 + l1) e1 (k) + (1 + l2) e2 (k) + (a7 + 1 + l3) e3 (k) ,

e3 (k + 1) = (a4 + 1 + l1) e1 (k) + 2 (a7 + 1 + l3) e3 (k) .

Corollary 4.1 For two coupled systems: the hyperchaotic discrete-time Rössler sys-

tem and the hyperchaotic Wang system, if we choose the control constants (li)1≤i≤3 such

that: l1 = 1, l2 = − 1
2 and l3 = 0.8. Then, they are globally synchronized, see Fig. 3.
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5 Conclusion

In this paper, a new control scheme has been designed to achieve synchronization be-
tween 3-D quadratic drive-response chaotic systems in discrete-time. Based on nonlinear
controllers and Lyapunov stability theory, a synchronization criterion has been obtained
and new conditions have been derived. It was shown that the proposed controllers guar-
antee the asymptotic convergence to zero of the errors between the drive and the response
systems. Finally, numerical example and computer simulations were used to verify the
effectiveness of the proposed approach.
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Abstract: This paper presents a method for predicting initial trajectories of prop-
agation of two separate fatigue cracks, which are developed under two perpendicular
cyclic loads with phase difference between them. Calculation of trajectories of these
two initial cracks is the first step in prediction of trajectories and rate of propaga-
tion of long cracks. This problem is important for analysis of durability of structures
subjected to biaxial loading, where it is necessary to know trajectories of cracks’
propagation, stress intensity factors along the trajectories and dependence of cracks’
growth rates on stress intensity factors. Existing methods, based on finite element
analysis and automatic mesh generation [1,2], allow to perform such calculations only
for uniaxial loading and for multi-axial proportional loading, without phase differ-
ence between applied external forces. Experiments, presented in this paper, show
that under biaxial loading with phase difference between applied loads, two cracks
are developed. Comparison of calculated and experimentally observed initial direc-
tions of cracks propagation shows that the calculations correctly reflect existence of
two cracks and the fact that they are approximately symmetrical about the line that
makes 45◦ with directions of applied loads. This method can become a theoretical
basis for extending capabilities of existing methods, based on finite element analy-
sis and automatic mesh generation, of predicting trajectories of fatigue cracks under
complex loading conditions.
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1 Introduction

It has been a common practice to characterize the fatigue crack growth in metals under
uniaxial loading. But majority of aerospace structural components experience a combi-
nation of axial, bending, shear and torsion stresses, resulting in a complex stress state.
It is thus appropriate to extend the fatigue crack growth studies to non-uniaxial loading
conditions. For biaxial tension-tension loading without phase difference between applied
loads, such studies were performed, for example, by Misak, Perel, Sabelkin and Mall [3].
In the present paper, this study is extended to biaxial tension-tension loading with phase
difference between applied loads. Such loading results in growth of two fatigue cracks,
as will be shown in this paper. The test material is aluminum alloy 7075-T6, which is
widely used as a structural material in the military and civilian aircraft fleet.

Along the direction of crack propagation, the mode II stress intensity factor, KII ,
is usually much smaller than the mode I stress intensity factor, KI . So, in the biaxial
loading, the dependence of crack growth rate da

dN on the stress intensity factor KII is

small, and the dependence of da
dN on KI can be established experimentally, under uniaxial

loading with force normal to the crack. If tips of the crack (or cracks) have different stress
intensity factors at any given time instant during the loading cycle, then construction
of the cracks’ trajectories should be performed with account of relation between da

dN
and KI . This means that if the cracks’ trajectories are constructed by an incremental
procedure, then, at each step of the procedure, the increments of the cracks’ lengths
are calculated from the relation between da

dN and KI , where KI is a function of crack
length, a. But if the tips of the crack have equal stress intensity factors, or if we have one
crack originating from an edge, then in constructing the crack’s trajectory incrementally,
some small straight-line increments of the crack can be specified arbitrarily, without
considering da

dN . In this case, a number of cycles, N, corresponding to the chosen crack
length increment, can be calculated later, in the post-process stage of analysis, using the
relation between da

dN and KI .

Figure 1a: Experimental setup.
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Figure 1b: Pre-crack of length a0, originating from circular hole of radius r in a thin plate.

2 Direction of Crack Propagation

For construction of the cracks’ trajectories, a formula was used for direction of initial
crack propagation, based on a hypothesis that crack propagates in the direction θ = Θ
(Figure 2), in which σθθ (θ) takes the maximum value (Erdogan and Sih [4]). This
hypothesis leads to the formula

Θ = 2 arctan
1−

√

1 + 8
(

KII

KI

)2

4KII

KI

. (1)

A change of shape of a macroscopic crack in one cycle of loading (or in a small number
of cycles) is negligibly small, so at any time instant within one cycle, the angle θ = Θ in
eq. (1) is measured with respect to a direction of the initial crack (pre-crack), as shown
in Figures 1a, 1b and 2.

Figure 2: Global rectangular coordinate system xy, local rectangular coordinate system x′y′

and polar coordinate system ρθ.
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3 Stress Intensity Factors

In this work, we considered a thin plate of Aluminum 7075-T6, with a pre-crack of length
a0, originating from a circular hole of radius r at angle ϕ = 45◦ to directions of remote
principal stresses Sx and Sy (Figures 1a and 1b). This pre-crack was created by applying
sinusoidal loads Sx (t) = Sy (t), without the phase difference between them. After the
creation of the pre-crack, the phase difference γ between the loads Sx (t) and Sy (t) was
introduced, and the loads became

Sx (t) =
(Sx)max + (Sx)min

2
+

(Sx)max − (Sx)min

2
sin (2πνt) , (2)

Sy (t) =
(Sy)max + (Sy)min

2
+

(Sy)max − (Sy)min

2
sin (2πνt+ γ) . (3)

In our experiments and calculations we set

(Sx)min

(Sy)min

=
(Sx)max

(Sy)max

= 1,
(Sx)min

(Sx)max

=
(Sy)min

(Sy)max

≡ R = 0.5. (4)

For a crack, originating from elliptical hole, at an arbitrary angle to directions of
remote principal stresses, a solution for stress intensity factors is given in the paper of
Kaminski and Sailov [5]. For the particular case of circular hole and the pre-crack at
45◦ with the principal stresses, as was the case in our experiments and calculations, this
solution takes the form

KI =

√
πr

2
√
2

√

l0 (l0 + 2)
3

(l0 + 1)
3 (Sx + Sy) , (5)

KII =

√
πr

2
√
2

√

l0 (l0 + 2)3

(l0 + 1)
3 (Sx − Sy) , (6)

where

l0 =
1

2

(

−1 +
a0

r
+

√

2
a0

r
+

a20
r2

+ 1

)

. (7)

So, for the case of circular hole and the pre-crack at 45◦ with the principal stresses,
we have

KII

KI
=

Sx − Sy

Sx + Sy
. (8)

4 Rate of Crack Propagation

4.1 Rate of crack growth due to cyclic variation of load

In considering a small number of loading cycles (several hundred cycles), the change of
stress intensity factors is only due to the change of external load with time, since the effect
of the change of the crack’s shape and length on the stress intensity factors is negligibly
small. According to the Dugdale hypothesis, in thin ideally elastic-plastic plates, with
a through-thickness crack, plastic strains are concentrated along a narrow layer on the
continuation of the crack, so that the plastic zone can be treated as a line of discontinuity
of elastic displacement. Therefore, according to the Dugdale hypothesis, a solution for



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 15 (2) (2015) 171–183 175

displacements can be sought as a discontinuous solution based on the elasticity theory.
On the basis of this approach, the following formula was obtained by Cherepanov [6] for
displacement of one side of the plastic yield strip:

v (x′) = −
2σY

πE

(

2
√

D (D − x′) + x′ ln

√
D −

√
D − x′

√
D +

√
D − x′

)

, (9)

where

D =
πK2

I

8σ2
Y

(10)

is size of plastic zone in the Dugdale model, σY is yield stress, and E is Young’s modulus.
During the crack propagation, the strain energy dissipation per unit area of a newly
formed surface of the crack (specific energy dissipation) is the path integral along the
line of the plastic zone (Cherepanov [6]):

γ∗ =

∫

(plastic zone)

σy′y′ dv =

D
∫

0

σy′y′

(

∂v

∂x′
dx′ +

∂v

∂KI

dKI

da
dx′

)

= σY

d
∫

0

∂v

∂x′
dx′ + σ

Y

dKI

da

D
∫

0

∂v

∂KI
dx′,

(11)

where the term dKI

da is due to increase of length of plastic zone because of change of stress
intensity factor (i.e. because of change of load) in a cycle. This term is not related to
the growth of the crack.

Substitution of eqs. (9) and (10) into eq. (11) and performing integration gives the
result

γ∗ =
K2

I

2E
−

π

12Eσ2
Y

K3
I

dKI

da
. (12)

Introducing notation
K∗ =

√

2Eγ∗, (13)

we receive from eq. (12)

|da| =
π

6σ2
Y

∣

∣

∣

∣

K3
I

K2
∗ −K2

I

dKI

∣

∣

∣

∣

(14)

or
∣

∣

∣

∣

da

dt

∣

∣

∣

∣

=
π

6σ2
Y

∣

∣

∣

∣

K3
I

K2
∗ −K2

I

dKI

dt

∣

∣

∣

∣

. (15)

It should be noted that here, like in the original work of Cherepanov [6], the formula
(15) should be considered as being a semi-empirical one, with K∗ treated as a material
constant, i.e. the derivations, leading to the formula (15), are not strict, but only such
that help to guess this semi-empirical formula. The crack grows

(

da
dt > 0

)

during the

crack opening, i.e. when KI > 0 and dKI

dt > 0. Besides, usually, K2
∗ −K2

I > 0, as will
be shown later (Figure 3). Therefore, eq. (15) can be written in a physically meaningful
form as

da

dt
=

π

6σ2
Y

K3
I

K2
∗ −K2

I

dKI

dt
. (16)
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Figure 3: Uniaxial loading, force perpendicular to crack. Comparison of experimental and
theoretical curves under the following choice of material constants:

K∗ = 4.52459 × 107 Pa
√
m, λ = 4.8353 × 10−7 1

Pa
√

m
, ν0 = 1.5 × 10−10

m
s .

4.2 Rate of crack growth due to chemical reactions

If the crack grows due to a chemical reaction, for example due to corrosion, then the
crack’s growth rate da

dt is proportional to the rate of chemical reaction, and, therefore,

proportional to exp
(

− U
RT

)

, where U is activation energy of the reaction, T is tem-

perature, and R = 8.314 J
K×mole is universal gas constant, according to the Arrhenius

equation (Arrhenius [7]; Levine [8]). The activation energy U is proportional to stress at
the crack tip, and, therefore, to KI (Cherepanov [6]). Therefore, the crack growth rate
due a chemical reaction can be written as

da

dt
= v0 exp (λKI) , (17)

where v0 and λ are material characteristics that depend on temperature and chemical
composition of environment.

4.3 Rate of crack growth due to combined effects of cyclic variation of load

and chemical reactions

If the crack grows due to both cyclic variation of KI and chemical reactions, then the
right sides of eqs. (16) and (17) have to be summed up:

da

dt
=

π

6σY

K3
I

K2
∗ −K2

I

dKI

dt
+ v0 exp (λKI) (18)

or

a(t) = −
π

12σ2
Y

(

K2
I (t)−K2

∗

)

−
πK2

∗

12σ2
Y

ln
(

K2
I (t)−K2

∗

)

+ v0

∫

exp(λKI(t)) dt+ const.

(19)
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5 Experimental Determination of Material Constants

Eqs. (18) and (19) contain four material characteristics, σY , K∗, v0 and λ, which need
to be determined experimentally. Experimental data on fatigue crack growth rates are
usually represented in the form of da

dN versus ∆KI = (KI)max − (KI)min, where (KI)max

and (KI)min are maximum and minimum values of KI in a cycle of loading. So, the
theoretical equation (18) or (19) needs to be rewritten in the same form, and then the
material characteristics K∗, v0 and λ in these theoretical equations can be chosen such
that the theoretical plot of da

dN versus ∆KI is close to the experimental one.
As it was mentioned previously, the material characteristics can be established with

the use of experimental data obtained in uniaxial loading with remote stress

S (t) =
Smax + Smin

2
+

Smax − Smin

2
sin (2πνt) (20)

perpendicular to the crack and the mode I stress intensity factor

KI(t) =
(KI)max + (KI)min

2
+

(KI)max − (KI)min

2
sin (2πνt) . (21)

Introducing notations

R ≡
Smin

Smax
=

(KI)min

(KI)max

, H ≡
1 +R

1−R
, (22)

we can write eq. (21) as

KI (t) =
1

2
(∆KI)

(

H + sin (2πνt)

)

. (23)

Crack growth in one cycle of loading occurs during the crack opening, i.e. from the time
instant t = 3

4ν , when KI = (KI)min = R
1−R∆KI , to the time instant t = 5

4ν , when

KI = (KI)max = 1
1−R∆KI . Therefore, the increment of the crack length in one cycle of

loading, da
dN , is

da

dN
= a

∣

∣

∣

KI=∆KI/(1−R)
− a

∣

∣

∣

KI=∆KIR/(1−R)
= a

∣

∣

∣

t=5/(4ν)
− a

∣

∣

∣

t=3/(4ν)
. (24)

Substituting eqs. (19) and (23) into eq. (24), we obtain

da

dN
= −

πK2
∗

12σ2
Y

(

H
(∆KI)

2

K2
∗

+ ln
(1−R)

2
K2

∗ − (∆KI)
2

(1−R)
2
K2

∗ −R2 (∆KI)
2

)

+ v0 exp (0.5λH ∆KI)

5
4ν
∫

3
4ν

exp (0.5λ ∆KI sin 2πνt) dt.

(25)

In our experiments,

ν = 10Hz, R = 0.5, H =
1 +R

1−R
= 3. (26a)
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Besides, if our material, Aluminum 7075-T6, is modeled as ideally elastic-plastic, then
the yield stress can be taken as

σY = 4.08249× 109Pa. (26b)

We need to choose such numerical values of the material constants K∗, v0 and λ that the
graph of da

dN versus ∆KI , obtained from the semi-empirical formula (25) with numerical
values (26), is close to the experimental one. We will try to use the following values

v0 = 1.5× 10−10 m

s
, λ = 4.8353× 10−7 1

Pa
√
m
, K∗ = 4.52459× 107Pa

√
m. (27)

Substituting numerical values from eqs. (26) and (27) into eq. (25), we receive

da

dN
= −

(

4.71237× 10−20
)

(∆KI)
2

−
(

3.21571× 10−5
)

ln
5.11798× 1014 − (∆KI)

2

5.11798× 1014 − 0.25 (∆KI)
2

+
(

1.5× 10−10
)

exp
(

7.25295× 10−7∆KI

)

×

0.125
∫

0.075

exp
(

2.41765× 10−7∆KI sin 62.8319t
)

dt.

(28)

Formula (28) gives the correspondence between numerical values of da
dN and ∆KI as

shown in Table 1.

∆KI (Pa
√
m) da

dN

(

m
cycle

)

3× 106 4.79467× 10−9

3.25× 106 6.60663× 10−9

3.5× 106 8.89594× 10−9

3.75× 106 1.17424× 10−8

4× 106 1.52328× 10−8

4.25× 106 1.94615× 10−8

4.5× 106 2.45306× 10−8

4.75× 106 3.05502× 10−8

5× 106 3.76391× 10−8

Table 1:

The plot of data in Table 1, together with experimental plot of da
dN versus ∆KI for

uniaxial loading, is shown in Figure 3. These plots are close to each other. Therefore,
numerical values of the material constants v0, λ and K∗ in eq. (27) are chosen correctly.

6 Trajectories of Cracks

Parametric equations of trajectories of cracks, in the local coordinate system x′y′

(Figure 2), with axis x′ aligned with the pre-crack,

x′ = x′(t), y′ = y′(t) (29)
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can be written as follows

dx′

dt
=

da

dt
cosΘ,

dy′

dt
=

da

dt
sinΘ. (30)

Experiments show that under biaxial tensile and compressive loading with phase
difference between applied loads (Figures 1a and 1b), two cracks originate from the pre-
crack, and their trajectories are approximately symmetrical about the line along the
pre-crack (Figures 4b, 5b, 6b). Therefore, it is assumed that in the first half-cycle of
loading, one of the cracks grows starting from the edge of the pre-crack; and in the
second half-cycle of loading, the second crack grows starting from the same location, i.e.
from the edge of the pre-crack. So, initial conditions for the first half-period of loading
are

x′(0) = 0, y′(0) = 0, (31)

and initial conditions for the second half-period are

x′

(

T

2

)

= 0, y′
(

T

2

)

= 0, (32)

where T is the time duration of one cycle of loading. A solution of differential equations
(30) for the first half-period of loading (for crack branch 1), i.e. a solution with initial
conditions (31), is

x′ (t) =

t
∫

0

da

dt
cosΘ, y′ (t) =

t
∫

0

da

dt
sinΘ dt. (33)

A solution of differential equations (30) for the second half-period of loading (for crack
branch 2), i.e. a solution with initial conditions (32), is

x′ (t) =

t
∫

T/2

da

dt
cosΘ dt, y′ (t) =

t
∫

T/2

da

dt
sinΘ dt. (34)

If a small number of cycles is considered, during which the effect of change of cracks’
shapes and lengths on values of the stress intensity factors is negligibly small (several
hundred cycles), then a complete system of equations, leading to calculation of the cracks’
trajectories, is

Sx(t) =
(Sx)max + (Sx)min

2
+

(Sx)max − (Sx)min

2
sin(2πνt), eq. (2)

Sy(t) =
(Sy)max + (Sy)min

2
+

(Sy)max − (Sy)min

2
sin(2πνt+ γ), eq. (3)

KII

KI
=

Sx − Sy

Sx + Sy
, eq. (8)

Θ = 2 arctan
1−

√

1 + 8
(

KII

KI

)2

4KII

KI

, eq. (1)
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Figure 4a: Calculated trajectories of propagation of cracks in the first cycle of loading, when

phase difference between applied loads was 180◦.

Figure 4b: Trajectories of propagation of cracks, observed in experiment, when phase

difference between applied loads was 180◦.

Figure 5a: Calculated trajectories of propagation of cracks in the first cycle of loading, when

phase difference between applied loads was 90◦.
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Figure 5b: Trajectories of propagation of cracks, observed in experiment, when phase

difference between applied loads was 90◦.

Figure 6a: Calculated trajectories of propagation of cracks in the first cycle of loading, when

phase difference between applied loads was 45◦.

l0 =
1

2

(

−1 +
a0

r
+

√

2
a0

r
+

a20
r2

+ 1

)

, eq. (7)

KI =

√
πr

2
√
2

√

l0(l0 + 2)3

(l0 + 1)3
(Sx + Sy), eq. (5)

da

dt
=

π

6σ2
Y

K3
I

K2
Ic −K2

I

dKI

dt
+ v0 exp (λKI) , eq. (18)

x′(t) =

t
∫

0

da

dt
cosΘ dt, y′(t) =

t
∫

0

da

dt
sinΘ dt for branch 1, eq. (33)

x′(t) =

t
∫

T/2

da

dt
cosΘ dt, y′(t) =

t
∫

T/2

da

dt
sinΘ dt for branch 2. eq. (34)
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Figure 6b: Trajectories of propagation of cracks, observed in experiment, when phase

difference between applied loads was 45◦.

Coordinates of points of the cracks’ trajectories in the global coordinate system xy can
be calculated by formulas

x = x′ cosϕ− y′ sinϕ,

y = x′ sinϕ+ y′ cosϕ,
(35)

where ϕ is angle between axes x′ and x, i.e. angle between the pre-crack and the axis x
(Figure 2).

Alternatively, the cracks’ trajectories can be calculated by incremental procedure,
which can be written briefly as follows:

t0 = 0, tm =
m

M

T

2
, (36a)

m = 1, 2, . . . ,M for first half-cycle, (36b)

m = M + 1, . . . , 2M for second half-cycle, (36c)

where 2M is a number of equal sub-intervals into which time interval of one cycle of
loading, [0, T ], is divided;

x′
m = x′(tm), y′m = y′(tm), Θm = Θ(tm), am = a(tm), ∆am = am − am−1, (37)

x′
0 = 0, y′0 = 0, Θ0 = 0, (38)

x′
m = x′

m−1 + (∆am) cosΘm, (39)

y′m = y′m−1 + (∆am) sinΘm. (40)

The calculated trajectories of cracks’ propagation in the first cycle of loading, with phase
differences 180◦, 90◦ and 45◦, are shown in Figures 4a, 5a and 6a accordingly. The
corresponding experimentally observed initial directions of cracks’ propagation are shown
in Figures 4b, 5b and 6b accordingly. Comparison of the calculated and experimentally
observed initial directions shows that the calculations correctly reflect existence of two
initial cracks and the fact that they are approximately symmetrical about the line along
the pre-crack.
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7 Conclusion

It should be noted again that calculations of cracks’ trajectories, presented in this paper,
can be valid only for a small number of cycles (several hundred cycles), during which
the stress intensity factors are not significantly affected by change of cracks’ shapes
and lengths. Therefore, calculations in this paper can be used for prediction of cracks’
trajectories only during a small initial number of cycles. But if the cracks’ trajectories
need to be calculated for a larger number of cycles, then values of stress intensity factors
should be recalculated after every several thousand cycles with the use of the finite
element method, to take account of effect of change of the cracks’ shapes and lengths
on the stress intensity factors. Besides, in calculations of the cracks’ trajectories over
intervals of large number of cycles, the angle Θ, given by eq. (1), should be treated as
an angle between the current direction of the crack propagation and the direction before
the latest block of several thousand cycles was applied. In other words, for long cracks,
Θ should be treated not as an angle between a direction of the tangent to the crack at
its tip and the direction of the straight-line pre-crack (as it was done in this paper), but
as an increment of this angle in the current sub-interval of loading. Such calculations of
trajectories of long cracks under biaxial loading with phase difference can be a subject
of future work.
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Abstract: In this paper a cooperative and supportive neural network proposed re-
cently is considered. Time delays both in transmission of information from subsystems
to main system as well as processing of information in subsystem itself are introduced
into the network. Criteria on parameters of the system are obtained that establish
the stability of the system independent of time delays. Examples are provided for
illustration of results.
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1 Introduction

Neural networks has been a subject of research for decades with growing popularity ([2],
[6-11]), for its extensive application in several real world situations ([1], [3], [12-17], [21]).
In [20], a new class of networks designated as co-operative and supportive neural network
(CSNN, for short) was introduced. The model is suitable for explaining the dynamics of
systems exhibiting hierarchy in which the collective capabilities of components involved
are utilized for better performance of the system. Such systems find application in indus-
trial information management, financial and economic systems which involve distribution
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and monitoring of various tasks. They are also useful in solving complex network prob-
lems [2], classification and clustering problems, in data mining and financial engineering
[5]. They are also utilized for parameter estimation of auto regressive signals and to
decompose complex classification tasks into simpler subtasks and puzzle them out. In
particular, the network considered in the present study is utilized for estimation of key
parameters in infectious disease models [18]. The reliability aspects of this network are
studied in [14].

The model comprises two neuronal fields say Fx and Fy . Each neuron in Fx is denoted
by xi, i = 1, 2, ..., n and is connected to other neurons xj , j = 1, 2, ..., n in the same field
Fx. Also each xi is connected to ri number of neurons in the neuronal field Fy. These are
denoted by yik , k = 1, 2, ..., ri, 1 ≤ ri ≤ n. These yik support xi in the sense that they
coordinate and cooperate with it so that any task assigned to them by xi will be attended
to. The dynamics of the model is described by the following system of equations

x′
i = −aixi +

n
∑

j=1

bijfj(xj) +

ri
∑

k=1

ciikgik(xi, yik) + Ii, i = 1, 2, ..., n,

y′ik = −cikyik +

ri
∑

l=1

dilhil(yil) + Jik , k = 1, 2, ..., ri, 1 ≤ ri ≤ n. (1)

In (1), xi, i=1,2,...,n denotes a typical neuron in Fx and yik , k = 1, 2, ...ri denotes a
subgroup of neurons in Fy attached to xi.

′ = d
dt denotes the derivative with respect to

time variable t. ai and cik are positive constants known as decay rates and bij , dil are the
synaptic connection weights for all i, j = 1, 2, · · · , n, k = 1, 2, ..., ri and are assumed to
be real or complex constants. ciik is the rate of distribution of information between xi

and yik . The functions fi, gik and hik are the neuronal output response functions and
are more commonly known as the signal functions. Ii, Jik are exogenous inputs.

We may use the terms main component or task or group element for xi and sub-
component or task or group element for yik synonymous with neuron, owing to the
application for which system (1) is utilized. For example, (1) may be viewed as a man-
agement information system in which xi are in layer (say managerial or lead group)
monitoring the activities of related subgroups of yik . Thus, (1) represents both (i) hier-
archical systems in which xi can wait till yik complete their task and return to xi (serial
processing) and (ii) coordinating systems where xi also work along with yik to complete
their part (parallel processing).

Several modifications of (1) are suggested in [20] that take care of interactions among
the neurons as well as time delays. These models are left as open problems for further
research. Two types of delays are common in such systems. First one is the time
delay in transferring information/completed task from yik to xi, called transmission or
propagation delay and the second is the one that occurs while carrying out the job by
yik themselves, namely, processing delay. Introduction of these two types of time delays
into the system modifies (1) as following

x′
i = −aixi +

n
∑

j=1

bijfj(xj) +

ri
∑

k=1

ciikgik(xi, yik(t− τik)) + Ii,

y′ik = −cikyik +

ri
∑

l=1

dilhil(yil(t− τil)) + Jik . (2)

Here i = 1, 2, ..., n, k = 1, 2, ..., ri and 1 ≤ ri ≤ n.
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In (2) τik ≥ 0 denote delays in transmission of data/material from sub-system yik
to the main system while τil ≥ 0 denote processing delays with subcomponents. The
present paper studies the qualitative behaviour of the solutions of (2) under the influence
of time delays. The present study is important in the context of established influence
of time delays on neural network systems and any physical system. (2) is quite general
in the sense that it includes several modifications of (1) suggested in [20]. In fact (2)
combines the models III and IV of [20].

The paper is organized as follows. For the system (2) we establish the conditions
of existence and uniqueness of solutions, equilibria in Section 2. Different Lyapunov
functionals are utilized to establish stability of equilibria in Section 3. Examples are
provided for an illustration of the results. Finally the paper is concluded with a discussion
in Section 4.

2 Existence of Solutions and Equilibria

From the theory of delay differential equations, local Lipschitz condition on the response
functions (fi, gik and hik) which are at least continuous in their domains of defini-
tions, guarantees the existence of solutions to (2) (see [4,19,20]). However it is useful for
researchers to note that conditions weaker than Lipschitz condition on these response
functions that guarantee the existence of unique solutions to such systems are also avail-
able in literature (e.g., [19]). Thus, we may choose fi, gik and hik from a very general
class of functions. With this background, we tacitly assume that the system (2) possesses
unique solutions that are continuable in their maximal intervals of existence. However,
we need the following Lipschitz conditions on these functions to establish the existence
of equilibria and their stability in subsequent sections:

‖ gik(xi, yik)− gik(xi, yik) ‖ ≤ M1ik |yik − yik |+M2ik |xi − xi|, (3)

|fj(xj)− fj(xj)| ≤ pj |xj − xj |, (4)

|hik(yik)− hik(yik)| ≤ qik |yik − yik |, (5)

where M1ik , M2ik , pj and qik are positive constants.
Since time delays do not disturb the presence of equilibria, as in [20], we have

Theorem 2.1. Let ai and cik (i = 1 to n, k = 1 to ri) be positive numbers such that

n
∑

j=1

|bij |pj +

ri
∑

k=1

|ciik |M2ik < ai, i = 1, 2, ..., n,

ri
∑

l=1

|dil |qil +

ri
∑

k=1

|ciik |M1ik < cik , k = 1, 2, ..., ri, 1 ≤ ri ≤ n. (6)

Then the system (2) possesses a unique positive equilibrium for each i, k. If we denote
this equilibrium solution of (2) by (x∗

i , y
∗
ik
), then we should have

aix
∗
i =

n
∑

j=1

bijfj(x
∗
j ) +

ri
∑

k=1

ciikgik(x
∗
i , y

∗
ik
) + Ii, i = 1, 2, ..., n.

ciky
∗
ik

=

ri
∑

l=1

dilhil(y
∗
il
) + Jik , k = 1, 2, ..., ri, 1 ≤ ri ≤ n. (7)
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We shall now proceed to the stability of this unique equilibrium whose existence is ensured
by Theorem 2.1.

3 Global Stability Results

In this section we shall establish criteria for the global asymptotic stability of the equi-
librium patterns of system (2). The conditions for global stability of (1) are presented
in [20]. We shall see how the presence of time delays influences the stability here in
the context that time delays have tendency of disturbing the stability by introducing
oscillations into the system. We begin with

Case 1. No processing delays within sub components:

We start with a special case of (2) in which we assume that τil = 0 for all il. This
means that we are considering a state when the sub components finish their part of job
without any delay as required by xi. However the system is characterized by the delays
(i.e., τik ≥ 0) in transmission of these outcomes to main system.

We need the following inequality for our first result.
For all real numbers u, v and η > 0 we have

uv ≤
1

4η
u2 + ηv2. (8)

Theorem 3.1. Assume that conditions (3)-(5) hold. The equilibrium (x∗
i , y

∗
ik
) of (2)

is globally asymptotically stable for any length of time delays τik ≥ 0, for i = 1, 2, ..., n and
k = 1, 2, ..., ri, provided the parameters satisfy any of the following sets of inequalities:

a).

n
∑

j=1

|bij |pj
1

4η1
+

n
∑

j=1

|bji|piη1 +

ri
∑

k=1

|ciik |(M2ik +M1ikη2) < ai,

|ciik |M1ik

1

4η2
+ η3

ri
∑

k=1

|dik |qik |+
1

4η3

ri
∑

k=1

|dik |qik | < cik ,

b).

n
∑

j=1

|bij |p
2
j

1

4η1
+

n
∑

j=1

|bji|η1 +

ri
∑

k=1

|ciik |(M2ik +M1ikη2) < ai,

|ciik |M1ik

1

4η2
+ η3

ri
∑

k=1

|dik |qik |+
1

4η3

ri
∑

k=1

|dik |qik | < cik ,

c).
n
∑

j=1

|bij |
1

4η1
+

n
∑

j=1

|bji|p
2
i η1 +

ri
∑

k=1

|ciik |(M2ik +M1ikη2) < ai,

|ciik |M1ik

1

4η2
+ η3

ri
∑

k=1

|dik |qik |+
1

4η3

ri
∑

k=1

|dik |qik | < cik ,

where η1, η2 and η3 are positive parameters chosen appropriately.
Proof. We construct a Lyapunov functional suitable for our purpose here. We first

consider

V1(t) =

n
∑

i=1

{

(xi(t)− x∗
i )

2

2

}

.
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The derivative of V1 along the solutions of (2), using (7), is given by

V ′
1(t) =

n
∑

i=1

{

(xi(t)− x∗
i )(x

′
i(t)− x∗′

i )
}

=

n
∑

i=1

{

(xi(t)− x∗
i )
{

− ai(xi(t)− x∗
i ) +

n
∑

j=1

bij(fj(xj)− fj(x
∗
j ))

+

ri
∑

k=1

ciik(gik(xi, yik(t− τik))− gik(x
∗
i , y

∗
ik
))
}}

≤
n
∑

i=1

{{

− ai(xi(t)− x∗
i )

2 + |xi(t)− x∗
i |

n
∑

j=1

|bij |pj |xj(t)− x∗
j |

+|xi(t)− x∗
i |

ri
∑

k=1

|ciik |
[

M2ik |xi − x∗
i |+M1ik |yik(t− τik))− y

∗
ik
|
]}}

,

utilizing (4),(3) for the last two terms respectively.

We utilize the inequality (8) for η = η1 and η = η2 in the second and fourth terms of
the above inequality to get

pj |xi(t)− x∗
i ||xj − x∗

j | ≤ pj

[ 1

4η1
(xi(t)− x∗

i )
2 + η1(xj − x∗

j )
2
]

,

|yik(t− τik))− y∗ik ||xi − x∗
i | ≤

[ 1

4η2
(yik(t− τik )− y∗ik)

2 + η2(xi − x∗
i )

2
]

. (9)

Then we have

V ′
1(t) ≤

n
∑

i=1

[

− ai(xi(t)− x∗
i )

2 +

n
∑

j=1

|bij |pj

[ 1

4η1
(xi(t)− x∗

i )
2 + η1(xj − x∗

j )
2
]

+

ri
∑

k=1

|ciik |M2ik(xi − x∗
i )

2

+

ri
∑

k=1

|ciik |M1ik

[ 1

4η2
(yik(t− τik)− y∗ik)

2 + η2(xi − x∗
i )

2
]]

= −
n
∑

i=1

[

ai −
n
∑

j=1

|bij |pj
1

4η1
−

n
∑

j=1

|bji|piη1 −

ri
∑

k=1

|ciik |M2ik

−

ri
∑

k=1

|ciik |M1ikη2

]

(xi − x∗
i )

2 +

n
∑

i=1

ri
∑

k=1

|ciik |M1ik

1

4η2
(yik(t− τik)− y∗ik)

2.(10)

Now define

V2(t) =

n
∑

i=1

ri
∑

k=1

(yik(t)− y∗ik)
2

2
.
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Then along the solutions of (2) we have

V ′
2 (t) =

n
∑

i=1

ri
∑

k=1

(yik(t)− y∗ik)(y
′
ik(t)− y∗

′

ik)

=

n
∑

i=1

ri
∑

k=1

(yik(t)− y∗ik)
[

− cik(yik(t)− y∗ik) +

ri
∑

l=1

dil [hil(yil)− hil(y
∗
il
)]
]

≤

n
∑

i=1

ri
∑

k=1

[

− cik(yik(t)− y∗ik)
2 + |yik(t)− y∗ik |

ri
∑

l=1

|dil |qil |yil − y∗il |
]

≤ −

n
∑

i=1

ri
∑

k=1

[

cik −
1

4η3

ri
∑

k=1

|dik |qik − η3

ri
∑

k=1

|dik |qik

]

(yik − y∗ik)
2, (11)

again utilizing the inequality (8) for η = η3 > 0. Now consider

V3(t) =

n
∑

i=1

ri
∑

k=1

|ciik |M1ik

1

4η2

∫ t

t−τi
k

(yik(z)− y∗ik)
2dz.

Then we have

V ′
3 (t) =

n
∑

i=1

ri
∑

k=1

|ciik |M1ik

1

4η2
(yik(t)− y∗ik)

2 −

n
∑

i=1

ri
∑

k=1

|ciik |M1ik

1

4η2
(yik(t− τik)− y∗ik)

2.

(12)

We now define our Lyapunov functional by V (t) = V1(t) + V2(t) + V3(t). Then along
the solutions of (2) utilizing (10),(11) and (12), we get

V ′(t) = V ′
1(t) + V ′

2(t) + V ′
3(t)

≤ −

n
∑

i=1

[

ai −

n
∑

j=1

|bij |pj
1

4η1
−

n
∑

j=1

|bji|piη1 −

ri
∑

k=1

|ciik |M2ik

−

ri
∑

k=1

|ciik |M1ikη2

]

(xi − x∗
i )

2 +

n
∑

i=1

ri
∑

k=1

|ciik |M1ik

1

4η2
(yik(t− τik)− y∗ik)

2

−

n
∑

i=1

ri
∑

k=1

[

cik − η3

ri
∑

k=1

|dik |qik −
1

4η3

ri
∑

k=1

|dik |qik

]

(yik(t)− y∗ik)
2

+

n
∑

i=1

ri
∑

k=1

|ciik |M1ik

1

4η2
(yik(t)− y∗ik)

2

−

n
∑

i=1

ri
∑

k=1

|ciik |M1ik

1

4η2
(yik(t− τik)− y∗ik)

2

= −
n
∑

i=1

[

[ai −
n
∑

j=1

|bij |pj
1

4η1
−

n
∑

i=1

|bji|piη1 −

ri
∑

k=1

|ciik |(M2ik +M1ikη2)
]

(xi − x∗
i )

2

−

n
∑

i=1

ri
∑

k=1

[

cik − η3

ri
∑

k=1

|dik |qik −
1

4η3

ri
∑

k=1

|dik |qik − |ciik |M1ik

1

4η2

]

(yik(t)− y∗ik)
2
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If we choose

ai >

n
∑

j=1

|bij |pj
1

4η1
+

n
∑

j=1

|bji|piη1 +

ri
∑

k=1

|ciik |(M2ik +M1ikη2),

cik > |ciik |M1ik

1

4η2
+ η3

ri
∑

k=1

|dik |qik +
1

4η3

ri
∑

k=1

|dik |qik ,

as in assumption (a), then we have

V ′(t) < 0.

Clearly V has all the properties of a Lyapunov functional to serve our purpose here. Rest
of argument may be followed as in [4] or [19]. Hence (xi(t), yik(t)) converges to (x∗

i , y
∗
ik
)

as t → ∞.

The other two cases (b) and (c) may be proved on similar lines using the inequalities

pj |xi(t)− x∗
i ||xj − x∗

j | ≤
[ p2j

4η1
(xi(t)− x∗

i )
2 + η1(xj(t)− x∗

j )
2
]

,

pj |xi(t)− x∗
i ||xj − x∗

j | ≤
[ 1

4η1
(xi(t)− x∗

i )
2 + η1p

2
j(xj(t)− x∗

j )
2
]

,

respectively in place of (9). The proof is complete.

The two-delay system:

We shall now consider the general case of (2) in which we assume delays both in
transmission of information from and processing of information within subcomponents.
The following result establishes sufficient conditions for the global asymptotic stability
of equilibrium solution for this case.

Theorem 3.2. Assume that the parameters of the system (2) satisfy the following
conditions:

ai >

n
∑

j=1

|bji|pi +

ri
∑

k=1

|ciik |M2ik , cik >

ri
∑

k=1

|dik |qik +

ri
∑

k=1

|ciik |M1ik ,

for all k = 1, 2, ..., ri, 1 ≤ ri ≤ n, i = 1, 2, ..., n. Then the equilibrium (x∗
i , y

∗
ik
) is

globally asymptotically stable independent of delays in the sense that all solutions of (2)
satisfy the convergence requirement

lim
t→∞

yik → y∗ik , lim
t→∞

xi → x∗
i .

Proof. Utilizing (7) in (2), we rewrite (2) as

(xi − x∗
i )

′

= −ai(xi − x∗
i ) +

n
∑

j=1

bij [fj(xj)− fj(x
∗
j )]

+

ri
∑

k=1

ciik [gik(xi, yik(t− τik))− gik(x
∗
i , y

∗
ik)],

(yik − y∗ik)
′

= −cik(yik − y∗ik) +

ri
∑

l=1

dil [hil(yil(t− τil))− hil(y
∗
il
)].
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We employ the functional

V (t) =
n
∑

i=1

[

|xi − x∗
i |+ |yik − y∗ik |+

ri
∑

k=1

|ciik |M1ik

∫ t

t−τi
k

|yik(s)− y∗ik |ds

+

ri
∑

l=1

|dil |

∫ t

t−τi
l

|hil(yil(s)− hil(y
∗
il)|ds

]

, (13)

D+V (t) ≤
n
∑

i=1

[

− ai|xi − x∗
i |+

n
∑

j=1

|bij ||fj(xj)− fj(x
∗
j )|

+

ri
∑

k=1

|ciik ||gik(xi, yik(t− τik))− gik(xi, y
∗
ik
) + gik(xi, y

∗
ik
)− gik(x

∗
i , y

∗
ik
)|

+
[

− cik |yik − y∗ik |+

ri
∑

l=1

|dil |hil(yil(t− τil))− hil(y
∗
il)|

]

+

ri
∑

k=1

|ciik |M1ik |yik − y∗ik | −

ri
∑

k=1

|ciik |M1ik |yik(t− τik)− y∗ik |

+

ri
∑

l=1

|dil |hil(yil(t))− hil(y
∗
il
)| −

ri
∑

l=1

|dil |hil(yil(t− τil))− hil(y
∗
il
)|
]

,

D+V (t) ≤

n
∑

i=1

[

− ai|xi − x∗
i |+

n
∑

j=1

|bij |pj|xj − x∗
j |

+

ri
∑

k=1

|ciik ||gik(xi, yik(t− τik))− gik(xi, y
∗
ik)|

+

ri
∑

k=1

|ciik ||gik(xi, y
∗
ik
)− gik(x

∗
i , y

∗
ik
)|

−cik |yik − y∗ik |+

ri
∑

l=1

|dil |qil |yil − y∗il |

+

ri
∑

k=1

|ciik |M1ik |yik − y∗ik | −

ri
∑

k=1

|ciik |M1ik |yik(t− τik )− y∗ik |
]

,

D+V (t) ≤

n
∑

i=1

[

− ai|xi − x∗
i |+

n
∑

j=1

|bij |pj|xj − x∗
j |

+

ri
∑

k=1

|ciik |M1ik |yik(t− τik )− y∗ik)|+

ri
∑

k=1

|ciik |M2ik |xi − x∗
i |

−cik |yik − y∗ik |+

ri
∑

l=1

|dil |qil |yil − y∗il |

+

ri
∑

k=1

|ciik |M1ik |yik − y∗ik | −

ri
∑

k=1

|ciik |M1ik |yik(t− τik )− y∗ik |
]

,
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D+V (t) ≤ −
n
∑

i=1

[

[ai −
n
∑

j=1

|bji|pi −

ri
∑

k=1

|ciik |M2ik ]|xi − x∗
i |

+[cik −

ri
∑

k=1

|dik |qik −

ri
∑

k=1

|ciik |M1ik ]|yik − y∗ik |
]

≤ − ˜A

n
∑

i=1

[

|xi − x∗
i |+ |yik − y∗ik |

]

< 0,

where ˜A = min
{

A, B
}

> 0, in which

A = min
1≤i≤n

{

ai −

n
∑

j=1

|bji|pi −

ri
∑

k=1

|ciik |M2ik

}

> 0,

B = min1≤i≤n

{

cik −

ri
∑

k=1

|dik |qik −

ri
∑

k=1

|ciik |M1ik

}

> 0.

It is clear that V is the required Lyapunov functional and rest of the proof may be
completed employing standard arguments (see e.g., [4,20]).

Remark 3.3. Stability of system (2) may be studied in two ways. Firstly, the
subsystem {yik} may converge first and xi converge then. In this case, the xi wait for
information for any length of time from their subsystems and finish the task only after
yik come up with their contribution. In the second case, xi work along with subsystem
yik simultaneously to finish the job. That means, xi and yik converge together. The
first approach was taken in [20] well. The present study is along second approach and
Theorems 3.1 and 3.2 are in this direction.

For a delay free system (1) conditions for stability of equilibrium when xi wait for yik
to converge first are given by (Theorem 4.1, [20])

ai >

n
∑

j=1

|bji|pi +

ri
∑

k=1

|ciik |M2ik , i = 1, 2, ..., n; (14)

cik >

ri
∑

k=1

|dik |qik , 1 ≤ ri ≤ n. (15)

A straightforward comparison of parametric conditions of Theorems 3.1 and 3.2 of this pa-
per with those of (14) and (15), shows that parameters are more strained here. However,
this is tolerable when the system can not wait a long time for convergence of subsystems
and have to compete the task all at a time, working in parallel with subsystem. This
distinguishes the study here from earlier work ([20]). Further, since Theorems 3.1 and
3.2 are valid for τik = 0 = τil also, these two results provide independent sets of sufficient
conditions for global asymptotic stability of equilibrium solution of (1) also.

A close look at the parametric conditions of Theorems 3.1 and 3.2 for the choice
of η1 = η2 = η3 = 1

2 reveals that a part of strain on parameters cik represented by
η2

∑ri
k=1 |ciik |M1ik is taken by ai. Thus, we remark that the xi are actually sharing the

burden of monitoring yik and simultaneously converge with them. ✷
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A more general case:

One may notice that primary units xi are supported by yik . But there is no informa-
tion (input) nor instructions from xi directly to yik . Nor there is any check or supervision
by xi as far as dynamics in second equation of (2) are considered. What ever information
provided by subsystem is taken up by xi. That is, flow of information is uni-directional.
This raises a doubt on the relevance of information/contrbution from yik . To overcome
this lapse in model, it was proposed in [20] that the inputs to yik are from xi but not
mere constants, Jik . This may be more realistic in the sense that, yik are chosen to
aid xi and hence, are motivated by xi rather than some other inputs. Moreover xi are
also variables and thus, this choice reflects the presence of variable input which always
influences the dynamics of yik . To realize this, it was assumed that Jik = Jik(xi) for each
ik. In the present paper, to further enhance the quality of performance of yik , we assume
that the present task of yik depends on some previous information/instructions from xi.
To be more specific, we admit time delays in these inputs also. That is, we consider,
Jik = Jik(xi(t− τi)). This allows us to modify (2) as

x′
i = −aixi +

n
∑

j=1

bijfj(xj) +

ri
∑

k=1

ciikgik(xi, yik(t− τik )) + Ii, i = 1, 2, ..., n;

y′ik = −cikyik +

ri
∑

l=1

dilhil(yil(t− τil)) +

ri
∑

k=1

Jik(xi(t− τi)), 1 ≤ ri ≤ n. (16)

An equilibrium solution, say (x∗
i , y

∗
ik
), for this system should satisfy the equations

aix
∗
i =

n
∑

j=1

bijfj(x
∗
i ) +

ri
∑

k=1

ciikgik(x
∗
i , y

∗
ik) + Ii, i = 1, 2, ..., n;

ciky
∗
ik

=

ri
∑

l=1

dilhil(y
∗
il
) +

ri
∑

k=1

Jik(x
∗
i ). (17)

We assume that the function Jik satisfies |Jik(xi(t)) − Jik(x
∗
i )| ≤ αik |xi − x∗

i |, where
αik > 0 .

Assuming that the algebraic system (17) yields a unique solution (i.e., system (16)
has a unique equilibrium pattern), we directly proceed to the global asymptotic stability
of the equilibrium pattern of system (16). Using (17) in (16), we get

(xi − x∗
i )

′

= −ai(xi − x∗
i ) +

n
∑

j=1

bij [fj(xj)− fj(x
∗
j )]

+

ri
∑

k=1

ciik [gik(xi, yik(t− τik))− gik(x
∗
i , y

∗
ik
)],

(yik − y∗
′

ik)
′

= −cik(yik − y∗ik) +

ri
∑

l=1

dil [hil(yil(t− τil))− hil(y
∗
il)]

+

ri
∑

k=1

[Jik(xi(t− τi))− J(x∗
i )]. (18)
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We employ the following Lyapunov functional for our purpose here

V (t) =
n
∑

i=1

[

|xi − x∗
i |+ |yik − y∗ik |+

ri
∑

k=1

|ciik |M1ik

∫ t

t−τi
k

|yik(s)− y∗ik |ds

+

ri
∑

l=1

|dil |

∫ t

t−τi
l

|hil(yil(s)) − hil(y
∗
il)|ds

+

ri
∑

k=1

∫ t

t−τi

|Jik(xi(s)− Jik(x
∗
i )|ds

]

. (19)

The upper right derivative of V along the solutions of (16) employing (18) may be given
by

D+V (t) ≤

n
∑

i=1

[

− ai|xi − x∗
i |+

n
∑

j=1

|bij ||fj(xj)− fj(x
∗
j )|

+

ri
∑

k=1

|ciik ||gik(xi, yik(t− τik))− gik(x
∗
i , y

∗
ik)|

−cik |yik − y∗ik |+

ri
∑

l=1

|dil ||hil(yil(t− τil))− hil(y
∗
il
)|

+

ri
∑

k=1

|Jik(xi(t− τi))− Jik(x
∗
i )|

+

ri
∑

k=1

|ciik |M1ik |yik − y∗ik | −

ri
∑

k=1

|ciik |M1ik |yik(t− τik ))− y∗ik |

+

ri
∑

l=1

|dil ||hil(yil(t)) − hil(y
∗
il)| −

ri
∑

l=1

|dil ||hil(yil(t− τil))− hil(y
∗
il)|

+

ri
∑

k=1

|Jik(xi(t)− Jik(x
∗
i )| −

ri
∑

k=1

|Jik(xi(t−τi)) −Jik(x
∗
i )|

]

.

This, on further simplification, as done in earlier results, gives

D+V (t) ≤ −

n
∑

i=1

[

[ai −

n
∑

j=1

|bji|pi −

ri
∑

k=1

|ciik |M2ik −

ri
∑

k=1

αik ]|xi − x∗
i |

+

ri
∑

k=1

[cik −

ri
∑

k=1

|dik |qik −

ri
∑

k=1

|ciik |M1ik ]|yik − y∗ik |
]

≤ − ˜A
[

n
∑

i=1

{

|xi − x∗
i |+

ri
∑

k=1

|yik − y∗ik |
}]

< 0, (20)

provided

˜A ≡ min
1≤i≤n

{

ai−

n
∑

j=1

|bij |pj−

ri
∑

k=1

|ciik |M2ik−

ri
∑

k=1

αik , cik−

ri
∑

k=1

|dik |qik−

ri
∑

k=1

|ciik |M1ik

}

> 0,
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k = 1, 2, ..., ri, holds. We are now in a position to state

Theorem 3.4.The equilibrium solution of (12) is globally asymptotically stable pro-
vided the parameters satisfy

ai −

n
∑

j=1

|bij |pj −

ri
∑

k=1

|ciik |M2ik −

ri
∑

k=1

αik > 0,

cik −

ri
∑

k=1

|dik |qik −

ri
∑

k=1

|ciik |M1ik > 0,

for all i = 1, 2, ..., n and αik > 0 is such that |Jik(xi(t))− Jik(x
∗
i )| ≤ αik |xi − x∗

i |.
Proof. The proof is obvious from standard arguments noticing that V (t) defined by

(19) and (20) is the required Lyapunov functional.
We shall illustrate the above results by means of numerical examples.

Example 3.5. Consider the following system having two neurons in X supported by
two neurons in Y involving time delays as given by

(

x′
1

x′
2

)

= −

(

6x1

8x2

)

+

(

1 2
1 −1

)(

f1(x1)
f2(x2)

)

+

(

−1 1
1 3

)(

g11(x1, y11(t− τ11) g21(x2, y21(t− τ12))
g12(x1, y12(t− τ21)) g22(x2, y22(t− τ22))

)

+

(

I1
I2

)

,

(

y′11
y′12

)

= −

(

4.5y11
8y12

)

+

( √
2 1
1 −1

)(

h11(y11(t− τ11))
h12(y12(t− τ12))

)

+

(

J11
J12

)

,

(

y′21
y′22

)

= −

(

6.5y21
7.5y22

)

+

(

2 −2
0 3

)(

h21(y21(t− τ21))
h22(y22(t− τ22))

)

+

(

J21
J22

)

.

Choose fi(xi) = tanh(xi), hik = tanh(yik) and gik(xi, yik) = xi + yik . Then pj = qik =
M1ik = M2ik = 1, i = 1, 2, k = 1, 2.. Let us choose η1 = 1

2 , η3 = 1
2 . It is easy to see

that for the above parametric values of the system, all the conditions of Theorem 3.1
are satisfied for the range of values of 3

8 < η2 < 3
7 . Hence the equilibrium of the above

system is globally asymptotically stable by virtue of Theorem 3.1 for τil = 0.

Example 3.6. Consider the system

(

x′
1

x′
2

)

= −

(

6.1x1

6.9x2

)

+

(

0.8 1
−1 0.75

)(

f1(x1)
f2(x2)

)

+

(

1.1 0.5
−1.1 1

)(

g11(x1, y11(t− τ11) g21(x2, y21(t− τ12))
g12(x1, y12(t− τ21)) g22(x2, y22(t− τ22))

)

+

(

I1
I2

)

,

(

y′11
y′12

)

= −

(

3.7y11
5.2y12

)

+

(

1 0.5
−1 2

)(

h11(y11(t− τ11))
h12(y12(t− τ12))

)

+

(

J11(t− τ11)
J12(t− τ12)

)

,

(

y′21
y′22

)

= −

(

6.2y11
6.4y12

)

+

(

0.25 0.5
1 −0.5

)(

h21(y21(t− τ21))
h22(y22(t− τ22))

)

+

(

J21(t− τ21)
J22(t− τ22)

)
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with all response functions as in above example. Then pj = qik = M1ik = M2ik = 1, i =
1, 2, k = 1, 2.

(i) Now choosing η1 = 1
4 , η2 = 1

4 , one may notice that all the conditions of Theorem
3.1 are satisfied for the range of values of 0.217 < η3 < 1.189 (approximately). Hence, the
equilibrium of the above system is globally asymptotically stable by virtue of Theorem
3.1 for all τil = 0 and τi = 0.

(ii) Again all the parametric conditions of Theorem 3.2 are satisfied for all delays
τik ≥ 0 τil ≥ 0 and τi = 0, i = 1, 2, and hence, the equilibrium solution is globally
asymptotically stable by virtue of Theorem 3.2.

(iii) Choosing Jik(xi) = xi for all i, k = 1, 2, we get αik k = 1, 2. Then the parameters
of the system satisfy all the conditions of Theorem 3.4 and hence, system tolerates all
three types of delays involved.

4 Conclusion

In the present paper we have considered a cooperative and supportive neural network
which is under influence of time delays both in processing of information with in the
subgroup network and transmission of information from subgroup network to main net-
work. Conditions on parameters are obtained so that the equilibrium is stable for any
length of delays. Under these conditions the system behaves like delay independent
system. However, it is also observed that the parameters are strained much for such sta-
bility. Hence conditions straining parameters less are welcome for more applicability of
the network. Parametric conditions involving suitably restricted time delay parameters
may be a better choice in this case. Our results in this direction will be reported soon.
Another distinguishing feature of this paper is that the main components (xi) of the
system monitor the performance of the subcomponents (yik) ( work together attitude or
parallel processing) unlike its earlier counter part. It is interesting to see how the system
withstands if some of its subcomponents do not respond properly to the requirements of
its main components. In other words, can the (xi) converge even if some of the (yik) do
not converge or non cooperate? This will be a question of our future contention.
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Abstract: Existence of coupled lower and upper solutions for nonlinear differential
equations guarantees the existence as well as interval of existence of the solution. In
this work, a methodology has been developed to compute coupled lower and upper
solutions using natural lower and upper solutions by iterative methods. Further, using
the computed lower and upper solutions, sequences are developed which converge
uniformly and monotonically to the unique solution. In addition, it has been shown
that the convergence of these sequences is superlinear. Further the convergence of the
sequences is accelerated by Gauss-Seidel method. Finally, some numerical examples
are presented.
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1 Introduction

It is well-known that qualitative and quantitative properties of fractional differential
equations are very useful in applications. In addition, fractional differential equations
in several situations have proved to be better and more economical models than their
counterpart with integer derivatives. For details see [5, 9, 11] and the references therein.
In the past thirty years there has been a rapid development in the qualitative study
of fractional differential equation such as existence, uniqueness and stability results due
to its applications. In particular, it has been very useful in biological sciences such
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as population models. However, most of the existence and uniqueness results for frac-
tional differential equations are obtained by some type of fixed point theorem approach.
See [1,2,17]. Unfortunately, these methods do not provide the interval of existence of the
solution as well as a methodology to compute solutions. The method of lower and upper
solutions and the method of coupled lower and upper solutions which guarantees the
interval of existence, and is well-known for ordinary differential equations have now been
extended to Riemann-Liouville and Caputo fractional differential equations in [4, 13].
Monotone method combined with lower and upper solutions provides both theoretical
and constructive method of existence of the minimal and maximal solution or the unique
solution if the uniqueness conditions are satisfied. See [6] for details. Monotone method
works only when the nonlinear function is either increasing or could be made increasing
by adding a linear term. Monotone method yields alternating sequences when the non-
linear function is decreasing with an additional assumption. In [18] and the references
therein they have developed generalized monotone method for scalar first order ordinary
differential equations. Generalized monotone method uses coupled lower and upper so-
lutions and the method is very convenient to use when the nonlinear function is the sum
of an increasing and decreasing functions. Furthermore, we do not need an additional
assumption which we need when the nonlinear function is decreasing when we use an
appropriate type of coupled lower and upper solutions, namely of type I. Generalized
monotone method has been extended to scalar and system of Caputo fractional differen-
tial equations in [10, 16]. Generalized monotone method with coupled lower and upper
solutions has an added advantage for fractional differential equations, since it avoids the
computation of Mittag-Leffler function. The disadvantage of the generalized monotone
method is the computation of coupled lower and upper solutions of type I on the inter-
val of existence. The computation of coupled lower and upper solution is not a trivial
matter. Using the generalized monotone method as a tool, both the theoretical and
the numerical results for computing coupled lower and upper solutions for scalar and
system of ordinary differential equations can be found in [15]. Computation of coupled
lower and upper solution to any desired interval using generalized monotone method as a
tool and the corresponding numerical results for scalar and system of Caputo fractional
differential equations are developed in [11] and [14] respectively. However, the rate of
convergence of the sequences is linear. In [13] generalized quasilinearization method was
developed using coupled lower and upper solutions when the nonlinear function is the
sum of a convex and a concave function. The method of generalized quasilinearization
yields sequences which converge uniformly to the unique solution and the rate of con-
vergence is quadratic. The complexity of this method is that the sequences are solutions
of two systems of coupled linear equations. The solutions of these two systems are dif-
ficult even with constant coefficients for fractional differential equations. To overcome
this difficulty, in this work we have taken the nonlinear function as the sum of a convex
function and a non-increasing function. We have combined the method of generalized
quasilinearization for the convex function and generalized monotone method for the non-
increasing function. We compute the sequences as two systems of Caputo fractional
differential equations which are decoupled. The method yields superlinear convergence.
See [13] for details. In this work, we provide a methodology to compute coupled lower
and upper solutions of type I, to any desired interval by using the mixed generalized
quasilinearization method and generalized monotone method. The convergence is su-
perlinear. Further we can accelerate the convergence by using Gauss-Seidel accelerated
convergence. We have applied our theoretical results to the logistic equation. The first
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set of iterates is in terms of the Mittag-Leffler function. Computation of further iterates
has led to interesting open problems, since it requires the exponential formula related
to Mittag-Leffler function. The exponential properties of the Mittag-Leffler function are
yet to be established. This has been addressed in our conclusion.

2 Preliminary and Auxiliary Results

In this section, we recall known results, some definitions which are needed for our main
results.

Definition 2.1 Caputo fractional derivative of order q is given by:

cDqu(t) =
1

Γ(1 − q)

∫ t

0

(t− s)−qu′(s)ds,

where 0 < q < 1 and Γ(q) is the Gamma function.

Although in this work, we study Caputo fractional differential equations, our compar-
ison results follow from the relation between Riemann-Liouville derivative and Caputo
fractional derivative. Hence the next definition is for the Riemann-Liouville derivative.

Definition 2.2 Riemann-Liouville fractional derivative of order q with respect to t

is defined by:

Dqu(t) =
1

Γ(m− q)

dm

dtm

∫ t

0

(t− s)m−q−1f(s)ds,

where m− 1 < q < m.

In particular, if 0 < q < 1, then

Dqu(t) =
1

Γ(1− q)

d

dt

∫ t

0

(t− s)−qf(s)ds.

Here, and throughout this work, we will consider fractional differential equations of order
q, where, 0 < q < 1.

Consider the nonlinear Caputo fractional differential equation with initial condition
of the form:

cDqu(t) = f(t, u(t)), u(0) = u0, (1)

where f ∈ C[J × R,R] and J = [0, T ]. The integral representation of (1) is given by:

u(t) = u0 +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, u(s))ds. (2)

The sequences we develop are always solutions of linear Caputo fractional differential
equation. In order to compute the solution of the linear fractional differential equation
with constant coefficients we need Mittag-Leffler function.

Definition 2.3 Mittag-Leffler function of two parameters q, r is given by

Eq,r(λ(t − t0)
q) =

∞
∑

k=0

(λ(t − t0)
q)k

Γ(qk + r)
,
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where q, r > 0. Also, for t0 = 0 and r = 1, we get

Eq,1(λt
q) =

∞
∑

k=0

(λtq)k

Γ(qk + 1)
,

where q > 0.

Also, consider linear Caputo fractional differential equation

cDqu(t) = λu(t) + f(t), u(0) = u0, on J, (3)

where J = [0, T ], λ is a constant and f(t) ∈ C[J,R]. The solution of (3) exists and is
unique. The explicit solution of (3) is given by:

u(t) = u0Eq,1(λt
q) +

∫ t

0

(t− s)q−1Eq,q(λ(t − s)q)f(s)ds. (4)

See [7] for details. In particular, if λ = 0, the solution u(t) is given by:

u(t) = u0 +
1

Γ(q)

∫ t

0

(t− s)q−1f(s)ds. (5)

Also we recall known results related to scalar Caputo nonlinear fractional differential
equations of the following form

cDqu(t) = f(t, u) + g(t, u), u(0) = u0 on J = [0, T ], (6)

where 0 < q < 1. Results when q = 1 is proved in [18]. Here f, g ∈ C(J ×R,R), f(t, u)
is non-decreasing in u on J and g(t, u) is non-increasing in u on J .

In order to prove the comparison result relative to coupled lower and upper solutions
of (6) we recall a basic lemma relative to the Riemann-Liouville fractional derivative.

Lemma 2.1 Let m(t) ∈ Cp[J,R] (where J = [0, T ]) be such that for some t1 ∈ (0, T ],
m(t1) = 0 and m(t) ≤ 0, on (0, T ]. Then Dqm(t1) ≥ 0.

Proof. See [4,7] for details. Note that the above result has been proved in [4] without
using the Hölder continuity assumption of m(t). ✷

The above lemma is true for Caputo derivative also, using the relation cDqx(t) =
Dq(x(t) − x(0)) between the Caputo derivative and the Riemann-Liouville derivative.
This is the version we will be using to prove our comparison results.

We recall the following known definitions which are needed for our main results.

Definition 2.4 The functions α0, β0 ∈ C1(J,R) are called natural lower and upper
solutions of (6) if :

{

cDqα0(t) ≤ f(t, α0) + g(t, α0), α0(0) ≤ u0,
cDqβ0(t) ≥ f(t, β0) + g(t, β0), β0(0) ≥ u0.

Definition 2.5 The functions α0, β0 ∈ C1(J,R) are called coupled lower and upper
solutions of (6) of type I if :

{

cDqα0(t) ≤ f(t, α0) + g(t, β0), α0(0) ≤ u0,
cDqβ0(t) ≥ f(t, β0) + g(t, α0), β0(0) ≥ u0.
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See [10] for other types of coupled lower and upper solutions relative to (6).
Denoting F (t, u) = f(t, u) + g(t, u), we state the next comparison result.

Theorem 2.1 Let α, β be natural lower and upper solutions of (6), respectively. Sup-
pose that F (t, β)− F (t, α) ≤ L(β − α) whenever β ≥ α, where L is a constant such that
L > 0, then α(0) ≤ β(0) implies that α(t) ≤ β(t) , t ∈ J .

Proof. See [7] for details. ✷

Also, see [10, 16] for comparison result for coupled lower and upper solution of type
I. Next, we recall a corollary of Theorem 2.1, which is useful in our main result.

Corollary 2.1 Let p ∈ C1[J,R]. cDqp(t) ≤ Lp(t), where L ≥ 0 and p(0) ≤ 0. Then
p(t) ≤ 0 on J .

We define the following sector Ω for convenience. That is,
Ω = [(t, u) : α(t) ≤ u(t) ≤ β(t), t ∈ J ].

Theorem 2.2 Suppose α, β ∈ C1[J,R] are coupled lower and upper solutions of type
I of (6) such that α(t) ≤ β(t) on J and F ∈ C(Ω,R). Further, if g(t, u) is decreasing
in u, on J, then there exists a solution u(t) of (6) such that α(t) ≤ u(t) ≤ β(t) on J ,
provided α(0) ≤ u0 ≤ β(0).

Proof. The proof follows from the scalar version of the result of [13]. ✷

Note that from the hypotheses of the above theorem, it follows that coupled lower
and upper solution of type I are also natural lower and upper solutions.

The next results give the uniqueness theorem.

Theorem 2.3 Let α, β ∈ C1[J,R], where α, β are coupled lower and upper solutions
of (6) of type I, with α(t) ≤ β(t) on J. If f(t, u) is convex in u and g(t, u) is decreasing
in u, the hypotheses of Theorem 2.1 are satisfied. Then,(6) has a unique solution.

The next result is useful in proving the equicontinuity of the sequences we develop in
the next two theorems.

Theorem 2.4 Let αn(t) be a family of continuous functions on [0, T ], for each n > 0,
where cDqαn(t) = f(t, αn(t)), αn(0) = u0 and |f(t, αn(t))| ≤ M for 0 ≤ t ≤ T . Then,
the family {αn(t)} is equicontinuous on [0, T ].

Proof. See [7, 13] for details. ✷

Next, we provide two results relative to (6) where in the first result we assume f is
convex in u and g is concave in u, and in the second result we assume f is convex in
u and g is non-increasing in u. The first result we provide is related to the generalized
quasilinearization method of (6) using coupled lower and upper solutions of type I.

Theorem 2.5 Assume that
(i) α0, β0 ∈ C1[J,R] are coupled lower solutions of type I, for (6) with α0 ≤ β0 on J ,
(ii) f, g ∈ C[Ω,R], fu, gu, fuu, and guu exist, are continuous and satisfy fuu(t, u) ≥

0, guu(t, u) ≤ 0 for (t, u) ∈ Ω,
(iii) gu(t, u) ≤ 0 on Ω.
Then there exit monotone sequences {αn(t}, {βn(t)} which converge uniformly and

monotonically to the unique solution of (6) and the convergence is quadratic.
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Proof. See [13] for details. ✷

The next theorem is proved under the weaker assumption on g(t, u). Also, this result
mixes generalized quasilinearization method relative to the convex function f(t, u) and
generalized monotone method relative to the nonincreasing function g(t, u) for t ∈ J.

Theorem 2.6 Assume that
(i) α0, β0 ∈ C1[J,R] are coupled lower and upper solutions of type I, for (6) with

α0 ≤ β0 on J ,
(ii) f, g ∈ C[Ω,R], fu, gu, and fuu exist, are continuous and satisfy fuu(t, u) ≥ 0 for

(t, u) ∈ Ω,
(iii) gu(t, u) ≤ 0 on Ω.
Then there exit monotone sequences {αn(t)}, {βn(t)} which converge uniformly to the

unique solution of (6) and the convergence is superlinear.

Proof. See [13] for details. ✷

3 Main Results

In this section we will provide a method to compute coupled lower and upper solutions
on any desired interval when we have the natural lower and upper solutions. Natural
lower and upper solutions are relatively easy to compute. For example, equilibrium
solutions are natural solutions. In the next result we use the superlinear convergence
scheme as in Theorem 2.6, using natural lower and upper solutions. However, when we
use natural lower and upper solutions, the results of Theorem 2.6 are true only when
α0 ≤ α1 and β0 ≥ β1. This, in general, will not be true on the interval J, namely, the
interval of existence of the solution. In the next result, monotone sequences constructed
will converge to coupled minimal and maximal solutions as well as they are coupled lower
and upper solutions on the interval of existence J.

Theorem 3.1 Assume that
(i) α0, β0 ∈ C1[J,R], α0 and β0 are natural lower and upper solutions of (6) on J

with α0 ≤ β0 on J ,
(ii) f, g ∈ C[Ω,R], fu, gu,andfuu exist, are continuous and satisfy fuu(t, u) ≥ 0 for

(t, u) ∈ Ω,
(iii) gu(t, u) ≤ 0 on Ω.
Then there exit monotone sequences {αn(t)}, {βn(t)} which converge uniformly to the

coupled lower and upper solution of (6). Here the sequences {αn(t)} and {βn(t)} are
computed using the following iterative scheme

cDqαn+1 = f(t, αn) + fu(t, αn)(αn+1 − αn) + g(t, βn), αn+1(0) = u0, (7)

cDqβn+1 = f(t, βn) + fu(t, αn)(βn+1 − βn) + g(t, αn), βn+1(0) = u0. (8)

Proof. From the first iteration we will have α0(t) ≤ α1(t) on [0, t1] and β1(t) ≤ β0(t)
on [0, t1 ]. If t1 ≥ T, and t1 ≥ T there is nothing to prove, since one can use Theorem
2.6 to compute coupled minimal and maximal solutions. If not, certainly t1 < T and
t1 < T . Also α1(t1) = α0(t1). and β1(t1) = β0(t1). We will now redefine α1(t), and β1(t)
on [0, T ] as follows:

cDqα1(t) = f(t, α0) + fu(t, α0)(α1 − α0) + g(t, β0), α1(0) = u0 on [0, t1],
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cDqβ1(t) = f(t, β0) + fu(t, α0)(β1 − β0) + g(t, α0), β1(0) = u0 on [0, t1 ],

and
α1(t) = α0(t) on [t1, T ],

β1(t) = β0(t) on [ t1, T ].

Proceeding in this manner, we will have αn(tn) = α0(tn), and βn(tn) = β0(tn). Now
we can redefine αn, βn as follows.

cDqαn(t) = f(t, αn−1) + fu(t, αn−1)(αn − αn−1) + g(t, βn−1), vn(0) = u0 on [0, tn],

αn(t) = α0(t) on [tn, T ].

Similarly,

cDqβn(t) = f(t, βn−1) + fu(t, αn−1)(βn − βn−1) + g(t, αn−1), βn(0) = u0 on [0, tn],

βn(t) = β0(t) on [ tn, T ],

where αn, βn intersect α0 and β0 at tn, tn respectively. If tn ≥ T, and tn ≥ T we can
stop the process. Certainly αn ≤ βn and αn and βn are coupled minimum and maximum
solutions of (6) respectively.

Now we can show that the sequences {αn(t)} and {βn(t)} constructed above are
equicontinuous and uniformly bounded on J . Hence by Arzelá-Ascoli theorem, a subse-
quence converges uniformly and monotonically. Since the sequences are monotone, the
entire sequence converges uniformly and monotonically to α and β respectively.

It is easy to observe that

cDqαn(t) = f(t, αn−1) + fu(t, αn−1)(αn − αn−1) + g(t, βn−1), αn(0) = u0 on [0, tn],

αn(t) = α0(t) on [tn−1, T ], such that αn(tn−1) = α0(tn),

and

cDqβn(t) = f(t, βn−1) + fu(t, αn−1)(βn − βn−1) + g(t, αn−1), βn(0) = u0 on [0, tn],

βn(t) = β0(t) on [ tn−1, T ], such that βn( tn) = β0( tn−1),

for all n ≥ 1.
As n → ∞, tn, tn → T, αn(t) → α(t), and βn(t) → β(t), uniformly and monotonically.
Further,

cDqα(t) = f(t, α) + g(t, β), α(0) = u0 on J,

and
cDqβ(t) = f(t, β) + g(t, α), β(0) = u0 on J.

Hence α, β are coupled lower and upper solutions of (6) such that α ≤ β on J . This
concludes the proof. ✷

Theorem 3.2 Assume that
(i) α0, β0 ∈ C1[J,R], α0 and β0 are natural lower and upper solutions of (6) on J

with α0 ≤ β0 on J ,
(ii) f, g ∈ C[Ω,R], fu, gu, fuu exist, are continuous and satisfy fuu(t, u) ≥ 0 for

(t, u) ∈ Ω,
(iii) gu(t, u) ≤ 0 on Ω.
Then there exit monotone sequences {αn(t)}, {βn(t)} which converge uniformly to the

unique solution of (6) and the convergence is superlinear.
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Proof. Theorem 3.1 proves that, there exit monotone sequences {αn(t)}, {βn(t)}
such that {αn(t)} −→ α(t) and {βn(t)} −→ β(t) uniformly and monotonically and (α, β)
are coupled lower and upper solutions of type I for (6) respectively on J. However, it
is easy to observe that each pair of αn(t), βn(t) computed are also coupled lower and
upper solutions of (6) on the common interval of [0, tn] and [0, tn]. Suppose that for some
n = k both tk and tk are ≥ T, then the computation of αk+1(t), βk+1(t) will no longer
need α0(t), β0(t). Then it is easy to observe that αk+1(t), βk+1(t) will be coupled lower
and upper solutions of type I for (6) respectively on J. Also this sequence will converge
uniformly and monotonically to α, β using Theorem 3.1. This implies that α ≤ β on
J . By hypotheses and using Theorem 2.3, it can be shown that α ≡ β ≡ u, where
u is the unique solution of (6) on J . In order to prove superlinear convergence we let
pn(t) = u(t)−αn(t) and qn(t) = βn(t)−u(t). It is easy to see that pn(0) = 0, qn(0) = 0.
Using Gronwall type of Lemma and the estimate on fuu and gu on J , we can prove
that max

J
|pn + qn| ≤ max

J
(|(pn−1 + qn−1)|

2 + |(pn−1 + qn−1)|) which proves superlinear

convergence. See [13]for details. ✷

Note that if g(t, u) is non-increasing in u on J, then α, β constructed above are also
natural lower and upper solutions. By the existence theorem, there exists a solution of
(6) on J such that α ≤ u ≤ β provided, α(0) ≤ u0 ≤ β(0).

Remark 3.1 Note that Theorem 3.1 provides coupled lower and upper solutions of
(6) on J . Now we can develop sequences {αn} and {βn} using Theorem 2.6. These
sequences converge uniformly and monotonically to coupled minimal and maximal solu-
tions. Further if uniqueness condition is satisfied, the sequences converge to the unique
solution of (6). Further we can apply Gauss-Seidel method such that the sequences
converge faster. This is what we have proved in the next result.

Theorem 3.3 Let all the hypotheses of Theorem 2.6 hold with the iterative scheme
given by

cDqα∗
n+1 = f(t, α∗

n) + fu(t, α
∗
n)(α

∗
n+1 − α∗

n) + g(t, β∗
n), α

∗
n+1(0) = u0, (9)

cDqβ∗
n+1 = f(t, β∗

n) + fu(t, α
∗
n+1)(β

∗
n+1 − β∗

n) + g(t, α∗
n), β

∗
n+1(0) = u0. (10)

starting with α∗
0 = α1 on J . Then there exist monotone sequences {αn} and {βn},

which converge uniformly to the unique solution of (6) and the convergence is faster than
superlinear.

Proof. We provide a brief proof. Initially compute α1 using cDqα1 = f(t, α0) +
fu(t, α0)(α1 −α0)+ g(t, β0), α1(0) = u0. Relabel α1 = α∗

0. Now compute β1 using β0and
α∗
0. That is cDqβ1 = f(t, β0) + fu(t, α

∗
0)(β1 − β0) + g(t, α∗

0), β1(0) = u0. One can easily
see that α0(t) ≤ α1(t) on J. Now it is enough if we prove that β∗

0 ≤ β1.

Let p(t) = β∗
0 − β1, p(0) = 0.

cDqp(t) = cDqβ0
∗ − cDqβ1

= f(t, β0) + fu(t, α1)(β1 − β0) + g(t, α1)− (f(t, β0) + fu(t, α0)(β1 − β0) + g(t, α0))
= (fu(t, α1)− fu(t, α0))(β1 − β0) + g(t, α1)− g(t, α0)

≤ 0, since α1(t) ≥ α0(t) on J .

This implies p(t) ≤ 0 on J , using Corollary 2.1. That is β∗
0 ≤ β1 on J. Continuing

the process, we can show that that the sequences {α∗
n} and {β∗

n} converge faster than
the sequences {αn} and {βn} which are computed using Theorem 3.1.
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4 Numerical Results

In this section, we provide a numerical example as an application of our main results.
We take a simple logistic equation and apply Theorem 3.1. In order to apply Theorem
3.1, we assume that α1 and β1 should satisfy α0 ≤ α1, β1 ≤ β0 on [0, T ]. If q = 1, the
solution of the logistic equation can be computed explicitly. However, if 0 < q < 1, we
cannot compute the solution explicitly. Method of lower and upper solution guarantees
the interval of existence. The equilibrium solutions play the role of lower and upper
solutions.

Consider the example

cDqu(t) = u− u2, u(0) =
1

2
, t ∈ [0, T ], T ≥ 1. (11)

It is easy to observe that α0(t) = 0 and β0(t) = 1 are natural lower and upper solutions
respectively of (11) such that α0 ≤ β0 on [0, T ]. Here f(t, u) = u and g(t, u) = −u2.

Using the iterative schemes as in Theorem 3.1 we obtain

cDqα1(t) = α1 − β2
1 and cDqβ1(t) = β1 − α2

1.

Solving for α1 and β1, we arrive at

α1 = 1− 1
2Eq,1(t

q) and β1 = 1
2Eq,1(t

q)

Similarly, the next iteration gives rise to

cDqα2(t) = α2 − β2
1 and cDqβ2(t) = β2 − α2

1
cDqα2(t) = α2 − (12Eq,1(t

q))2 and cDqβ2(t) = β2 − (1− 1
2Eq,1(t

q))2.

In order to compute α2 and β2, we use (3) with λ = 1, and f(t) as −(12Eq,1(t
q))2 and

−(1− 1
2Eq,1(t

q))2 respectively. Here, we have computed (12Eq,1(t
q))2 and (1− 1

2Eq,1(t
q))2

using the product formula. The product formula is given by

Eq,1(λ(t− t0)
q) ∗ Eq,1(µ(t− t0)

q) =

∞
∑

k=0

(t− t0)
qk

Γ(qk + 1)
(λ+ µ)kq,1,

where

(λ+ µ)kq,1 =

k
∑

l=0

λlµk−lΓ(qk + 1)

Γ(ql + 1)Γ(q(k − l) + 1)
,

which is the generalized binomial formula. Further we need to multiply this by Eq,q((t−
s)q) as in formula (4) to compute α2 and β2. Computing α2 and β2, we arrive at

α2 = 1
2Eq,1(t

q)− 1
4s1 and β2 = 1− 1

2Eq,1(t
q)− 1

4s1 + s2,

where

s1 =
∞
∑

j=0

∞
∑

k=0

k
∑

l=0

tq+jq+kqΓ(1 + kq)

Γ(lq + 1)Γ(kq − lq + 1)Γ(q + jq + kq + 1)
,

s2 =

∞
∑

j=0

∞
∑

k=0

tq+jq+kq

Γ(q + jq + kq + 1)
.

The graphs of α1, β1 and α2, β2 have been drawn in Figure 1 where q = 1
2 , t0 = 0.
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Figure 1: Coupled Lower and Upper Solutions of (11) with q = 1/2 using Theorem 3.1.

5 Conclusion

In this work we have mixed generalized quasilinearization method and generalized mono-
tone method to compute the coupled lower and upper solution of type I on the desired
interval. In addition, the method also provides the unique solution of the nonlinear prob-
lem. This mixed method yields superlinear convergence. Computation of the solution of
the coupled lower and upper solutions numerically involves the generalized Mittag-Leffler
function which involves the generalized binomial coefficients. In Figure 1, we can see that
t2 ≯ t1, since the evaluation of β2 is not accurate. This is due to the lack of knowledge of
product of Mittag-Leffler function and its accurate computation. We plan to develop the
necessary properties of the Mittag-Leffler function in our future work and obtain better
estimates for the sequences {αn} and {βn}.
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Abstract: This paper establishes a set of Benjamin-Bona-Mahony-like equations
(BBM-like) equations. By means of an advection dispersion equation, we can develop
several BBM-like equations. We show that these established equations share some of
the solitary wave solutions of the BBM equation. We also show that these developed
equations give paekon solutions, for specific values of the parameter included in these
equations, although these equations are not of the Camassa-Holm type of equations.
We also derive a variety of solitonic solutions.

Keywords: BBM-like equation; peakons; solitons.

Mathematics Subject Classification (2010): 74D10, 74D30, 37G20, 34A45.

1 Introduction

Nonlinear equations have been a subject of intensive study for decades in several areas
of mathematics, physics, engineering and other sciences. The study of these nonlinear
equations has been the topic of major research projects in nonlinear sciences. Another
interesting class of excitations consists of establishing nonlinear equations with significant
physical features [1–10].

The KdV equation reads
ut + uux + uxxx = 0. (1)

This equation models a variety of nonlinear wave phenomena such as shallow water waves,
acoustic waves in a harmonic crystal, internal gravity waves in oceans, blood pressure
pulses, and ion-acoustic waves in plasmas [1–7]. The KdV equation is completely inte-
grable and admits multiple-soliton solutions and exhibits an infinite number of conserved
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quantities. The Korteweg-de Vries (KdV) equation was derived to describe shallow wa-
ter waves of long wavelength and small amplitude. The KdV equation admits soliton
solutions which have been the subject of intense study for the last few decades. Re-
searchers remain intrigued by the physical properties of the KdV equation, in particular
the complete integrability and the possess of an infinite number of conserved quantities.

While the KdV equation has remarkable properties [3], some other aspects of this
equation are less favorable. This includes, e.g., an unbounded dispersion relation, that
is obviously non-physical [3]. Several noticeable attempts to improve the KdV model
were taken over the years. Benjamin-Bona-Mahony introduced the regularized long-wave
equation, or the BBM equation that reads

ut + ux + uux − uxxt = 0, (2)

replaces the third-order derivative in the KdV equation (1) by a mixed derivative −uxxt,
which, in turn, results in a bounded dispersion relation [3]. The BBM equation (2)
can be used to describe the behavior of an undular bore, in water, which comprises a
smooth wavefront followed by a train of solitary waves [6,7]. An undular bore can be
interpreted as the dispersive analog of a shock wave in classical non-dispersive, dissipative
hydrodynamics [7, 11-20].

Studies on nonlinear evolution equations are growing rapidly because these equations
describe real features in science, technology, and engineering fields. In the past decades,
a vast variety of powerful methods has been established to determine the exact solu-
tions for these equations and to study the scientific features of these solutions from many
points of view. Examples of these methods are the Hirota bilinear method [4], the simpli-
fied Hirota’s method [6], the Bäcklund transformation method, Darboux transformation,
Pfaffian technique, the inverse scattering method [4], the Painlevé analysis, the general-
ized symmetry method, the subsidiary ordinary differential equation method, and many
other methods that can be found in [13–20].

The BBM equation is not integrable and admits one soliton solution given by

u(x, t) = −
12k2

4k2 − 1
sech2

(

kx+
k

4k2 − 1
t

)

, (3)

where k 6= ± 1
2 .

Moreover, the BBM equation has the singular solution

u(x, t) =
12k2

4k2 − 1
csch2

(

kx+
k

4k2 − 1
t

)

. (4)

The present paper is aimed at the derivation of entirely new Benjamin-Bona-Mahony-
like (BBM-like) equations that will give peakon solutions, i.e peak-shaped soliton solu-
tions, in addition to other travelling wave solutions, although these equations are not
of the Camassa-Holm type of equations. The derivation process, as will be seen later,
leads to an infinite number of such equations. We will also show that these new forms
share the solutions (3)–(4) with the BBM equation (2). To achieve our goals we will use
several tools that will be applied in order to extract exact solutions.

2 Formulations of the BBM-Like Equations

In this section, we will establish a class of BBM-like equations with distinct structures.
In a manner parallel to that used in [5], we introduce a generalized form of an advection
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dispersion equation as
ut + V ux + δuxxt = 0, (5)

where δ is an arbitrary dimensionless parameter and V (u, ux, uxx, · · · ) is an arbitrary
function. We assume that the travelling wave

u(x, t) = f(x− ct) = f(ξ), (6)

solves the BBM equation (2) and also solves the advection dispersion equation (5) for
the same speed c. Using ξ = x− ct transforms (2) and (5) to

− cf ′ + (1 + f)f ′ − uxxt = 0, (7)

and
− cf ′ + V f ′ + δuxxt = 0, (8)

respectively. Eliminating uxxt from these two equations, and by noting that f ′ 6= 0, we
obtain

V = (δ + 1)c− δ(1 + f) = (δ + 1)c− δ(1 + u). (9)

The advection dispersion equations, or the BBM-like equations can be obtained by using
a variety of values of the speed c, that can be obtained by integrating or differentiating
(7) as many times as we want and if possible.

We first solve (7) for c where we find

c = 1 + u−
uxxt

ux

. (10)

Substituting (10) into (9) gives

V = (δ + 1)(1 + u−
uxxt

ux

)− δ(1 + u). (11)

Substituting (11) into the generalized advection dispersion equation (5) gives

ut +

{

(δ + 1)(1 + u−
uxxt

ux

)− δ(1 + u)

}

ux + δuxxt = 0, (12)

which gives the standard BBM equation (2) for any value of δ.
We now turn for the derivation of the BBM-like equations. Integrating (7) and solving

for c we find

c = 1 +
1

2
u−

uxt

u
. (13)

Substituting for c from (13) into (9) gives

V1 = (δ + 1)

(

1 +
1

2
u−

uxt

u

)

− δ(1 + u). (14)

Inserting this result into the advection dispersion equation (5) gives

ut +

{

(δ + 1)

(

1 +
1

2
u−

uxt

u

)

− δ(1 + u)

}

ux + δuxxt = 0, (15)

that will be termed the first BBM-like equation.
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To determine more values for the speed c, we can differentiate (7) as many times as
we want. For example, differentiating (7) once and solving for c we find

c = 1 + u+
u2
x
− uxxxt

uxx

, (16)

and by differentiating (7) again and solving for c we obtain

c = 1 + u+
3uxuxx − uxxxxt

uxxx

. (17)

Other values for c can be determined by differentiating (7) as many times as we want.
Substituting (16) and (17) into (9) and simplifying one finds

V2 = (δ + 1)

(

1 + u+
u2
x − uxxxt

uxx

)

− δ(1 + u), (18)

and

V3 = (δ + 1)

(

1 + u+
3uxuxx − uxxxxt

uxxx

)

− δ(1 + u). (19)

Notice that V2 and V3 involve higher order derivatives than the dispersive term uxxt of the
BBM equation. Substituting V2 and V3 into (5) gives the following BBM-like equations

ut +

{

1 + u+ (δ + 1)

(

u2
x − uxxxt

uxx

)}

ux + δuxxt = 0, (20)

and

ut +

{

1 + u+ (δ + 1)

(

3uxuxx − uxxxxt

uxxx

)}

ux + δuxxt = 0, (21)

that will be termed the second and the third BBM-like equations respectively.
The first conclusion that we can make here is that the three derived BBM-like equa-

tions (15), (20) and (21) share the same soliton and singular solutions (3) and (4) that
we derived earlier for the standard BBM equation (2).

Because our main concern of this work is to establish peakon solutions for the derived
BBM-like equations, which are not of the CH or DP type, in addition to other solutions,
we found that peakon solutions exist only for specific value of δ for each equation. Using
selected values of δ for the equations (15), (20) and (21), we obtain the following specific
BBM-like equations

ut +
{

1− 2
uxt

u

}

ux + uxxt = 0, δ = 1, (22)

ut +

{

1 + u−

(

u2
x − uxxxt

uxx

)}

ux − 2uxxt = 0, δ = −2, (23)

and

ut +

{

1 + u−
1

3

(

3uxuxx − uxxxxt

uxxx

)}

ux −
4

3
uxxt = 0, δ = −

4

3
. (24)

In what follows we will employ distinct tools to derive exact solutions for each of the
aforementioned forms (15), (20), and (21), that will be referred to as Form I, Form II,
and Form III respectively. Recall that peakon solutions exist only for specific values of
the parameter δ, whereas other solutions will be obtained for any selective value of δ.
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3 The Nonlinear BBM-Like Equation: Form I

In this section we will study form I of the nonlinear BBM-like equation

ut +

{

(δ + 1)

(

1 +
1

2
u−

uxt

u

)

− δ(1 + u)

}

ux + δuxxt = 0, (25)

where we will derive peakon solutions and other travelling wave solutions.

3.1 Peakon solution

As stated before, we found that peakon solution exists for (25) only for δ = 1, where (25)
becomes

ut +
{

1− 2
uxt

u

}

ux + uxxt = 0. (26)

To determine a peakon solution to (26), we assume the peakon solution is of the form

u(x, t) = Re−|kx−ct|. (27)

Substituting this assumption into (26) we solve the resulting equation to find that

c = −
k

k2 − 1
, k 6= ±1, (28)

and R can be any selective real number such as c. Consequently, the peakon solution is
given by

u(x, t) = Re
−|kx+ k

k2
−1

t|
. (29)

Recall that the standard BBM equation gives soliton solutions but not peakon solutions.
Figure 1 below shows the peakon solution (29).
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3.2 Soliton solutions

In this section, we will derive soliton solutions that satisfy the generalized BBM-like
equation (25) for specific values of the parameter δ. For this reason, we assume that the
solution for (25) has the form

u(x, t) = R+ sech2 (kx− ct). (30)

Substituting this assumption into the nonlinear BBM-like equation (25), and solving the
resulting equation for R and c, we find two sets of solutions given by

c = k

4k2+1 ,

R = − 2
3 ,

(31)

valid for δ = 1, and

c = 1
12k ,

R = 1−16k2

12k2 ,
(32)

valid for δ = −1.

This in turn gives the soliton solutions

u(x, t) = −
2

3
+ sech2(kx−

k

4k2 + 1
t), δ = 1, (33)

and

u(x, t) =
1− 16k2

12k2
+ sech2(kx−

1

12k
t), δ = −1. (34)

We point out that the first solution justifies also the BBM equation, whereas the second
solution satisfies only the BBM-like equation (25).

In a similar manner, we can derive the singular soliton solutions

u(x, t) =
2

3
+ csch2(kx−

k

4k2 + 1
t), δ = 1. (35)

and

u(x, t) = −
1 + 8k2

12k2
+ csch2(kx+

1

12k
t), δ = −1. (36)

Unlike the previous results of the soliton solutions, the first singular soliton solution (35)
satisfies the BBM-like equation (25), whereas the second solution (36) satisfies the BBM
and the BBM-like equations.

3.3 Travelling waves solutions

In this section, we will derive more exact solutions that satisfy the generalized BBM-like
equation (25), for specific values of the parameter δ. In what follows, we will present the
approaches that will be used to derive these new solutions.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 15 (2) (2015) 209–220 215

3.3.1 Solutions in the sec2 or csc2 form

We assume that the solution for (25) has the form

u(x, t) = R+ sec2 (kx− ct). (37)

Substituting this assumption into the nonlinear BBM-like equation (25), and solving the
resulting equation for R and c, we find two sets of solutions given by

c = − k

4k2−1 ,

R = − 2
3 .

(38)

valid for δ = 1, and
c = − 1

12k ,

R = − 1+16k2

12k2 .
(39)

valid for δ = −1. This gives the exact solutions

u(x, t) = −
2

3
+ sec2(kx+

k

4k2 − 1
t), δ = 1, (40)

and

u(x, t) = −
1 + 16k2

12k2
+ sec2(kx+

1

12k
t), δ = −1, (41)

3.3.2 Solutions in the sin2 or cos2 form

We assume that the solution for (25) has the form

u(x, t) = R+ sin2 (kx− ct). (42)

Substituting this assumption into the nonlinear BBM-like equation (25), and solving the
resulting equation for R and c, we find only one set of solutions given by

c = − k

4k2+1 ,

R = − 1
2 .

(43)

valid for δ = 1 This gives the exact solution

u(x, t) = −
1

2
+ sec2(kx+

k

4k2 + 1
t), δ = 1. (44)

In a similar manner, we can derive the solution

u(x, t) = −
1

2
+ cos2(kx+

k

4k2 + 1
t), δ = 1. (45)

4 The Nonlinear BBM-Like Equation: Form II

In this section we will study form II of the nonlinear BBM-like equation

ut +

{

1 + u+ (δ + 1)
u2
x
− uxxxt

uxx

}

ux + δuxxt = 0, (46)

where we will derive peakon solutions and other travelling wave solutions.
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4.1 Peakon solution

As stated before, we found that peakon solution exists for (46) only for δ = −2, where
(46) becomes

ut +

{

1 + u−
u2
x − uxxxt

uxx

}

ux − 2uxxt = 0, δ = −2, (47)

To determine a peakon solution to (47), we assume the peakon solution is of the form

u(x, t) = Re−|kx−ct|. (48)

Substituting this assumption into (47) we solve the resulting equation to find that

c = −
k

k2 − 1
, k 6= ±1, (49)

and R can be any selective real number such as c. Consequently, the peakon solution is
given by

u(x, t) = Re
−|kx+ k

k2
−1

t|
. (50)

Recall that the standard BBM equation gives soliton solutions but not peakon solutions.
Moreover, the obtained peakon solution (50) is identical to the peakon solution obtained
earlier for the first form.

4.2 Soliton solutions

In this section, we will derive soliton solutions that satisfy the generalized BBM-like
equation (46). For this reason, we assume that the solution for (46) has the form

u(x, t) = R+ sech2 (kx− ct). (51)

Substituting this assumption into the nonlinear BBM-like equation (46), and solving the
resulting equation for R and c, we find one set of solutions given by

c = 1
12k ,

R = 1−16k2

12k2 ,
(52)

valid for any real value of δ.

This in turn gives the soliton solutions

u(x, t) =
1− 16k2

12k2
+ sech2(kx−

1

12k
t), (53)

which also satisfies the BBM equation.

In a similar manner, we can derive the singular soliton solutions

u(x, t) = −
1 + 8k2

12k2
+ csch2(kx+

1

12k
t), (54)

which also satisfies the BBM equation.
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4.3 Travelling waves solutions

In this section, we will derive more exact solutions that satisfy the generalized BBM-like
equation (46). In what follows, we will present the approaches that will be used to derive
these new solutions.

4.3.1 Solutions in the sec2 or csc2 form

We assume that the solution for (46) has the form

u(x, t) = R+ sec2 (kx− ct). (55)

Substituting this assumption into the nonlinear BBM-like equation (46), and solving the
resulting equation for R and c, we find one set of solutions given by

c = − 1
12k ,

R = − 1+16k2

12k2 .
(56)

valid for any real value of δ. This gives the exact solutions

u(x, t) = −
1 + 16k2

12k2
+ sec2(kx+

1

12k
t). (57)

In a like manner, we can derive another exact solution of the form

u(x, t) = −
1 + 16k2

12k2
+ csc2(kx+

1

12k
t). (58)

5 The Nonlinear BBM-Like Equation: Form III

In this section we will study form III of the nonlinear BBM-like equation

ut +

{

1 + u+ (δ + 1)
3uxuxx − uxxxxt

uxxx

}

ux + δuxxt = 0, (59)

where we will derive peakon solutions and other travelling wave solutions.

5.1 Peakon solution

As stated before, we found that peakon solution exists for (59) only for δ = − 4
3 , where

(59) becomes

ut +

{

1 + u−
1

3
(
3uxuxx − uxxxxt

uxxx

)

}

ux −
4

3
uxxt = 0. (60)

To determine a peakon solution to (60), we assume the peakon solution is of the form

u(x, t) = Re−|kx−ct|. (61)

Substituting this assumption into (60) we solve the resulting equation to find that

c = −
k

k2 − 1
, k 6= ±1, (62)
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and R can be any selective real number such as c. Consequently, the peakon solution is
given by

u(x, t) = Re
−|kx+ k

k2
−1

t|
. (63)

It is obvious that although the three forms of the BBM-like equations differ in its
structures, but all three models gave the same peakon solution.

5.2 Soliton solutions

In this section, we will derive soliton solutions that satisfy the generalized BBM-like
equation (59) for specific values of the parameter δ. For this reason, we assume that the
solution for (59) has the form

u(x, t) = R+ sech2 (kx− ct). (64)

Substituting this assumption into the nonlinear BBM-like equation (59), and solving the
resulting equation for R and c, we find two sets of solutions given by

c = 1
12k ,

R = 1−16k2

12k2 ,
(65)

valid for any real value of δ.
This in turn gives the soliton solutions

u(x, t) =
1− 16k2

12k2
+ sech2(kx−

1

12k
t), δ = −1. (66)

In a similar manner, we can derive the singular soliton solutions

u(x, t) = −
1 + 8k2

12k2
+ csch2(kx+

1

12k
t), δ = −1. (67)

5.3 Travelling waves solutions

In this section, we will derive more exact solutions that satisfy the generalized BBM-like
equation (59), for specific values of the parameter δ. In what follows, we will present the
approaches that will be used to derive these new solutions.

5.3.1 Solutions in the sec2 or csc2 form

We assume that the solution for (59) has the form

u(x, t) = R+ sec2 (kx− ct). (68)

Substituting this assumption into the nonlinear BBM-like equation (59), gives the same
solution obtained before for form II, namely

u(x, t) = −
1 + 16k2

12k2
+ sec2(kx+

1

12k
t), (69)

and

u(x, t) = −
1 + 16k2

12k2
+ csc2(kx+

1

12k
t). (70)
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5.3.2 Solutions in the sin2 or cos2 form

We assume that the solution for (59) has the form

u(x, t) = R+ sin2 (kx− ct). (71)

Substituting this assumption into the nonlinear BBM-like equation (59), and solving the
resulting equation for R and c, we find only one set of solutions given by

δ = − 4
3 ,

c = k(3+2R
2(4k2+1) ,

(72)

where R is left as a free parameter. This gives the exact solution

u(x, t) = R+ sin2(kx+
k

4k2 + 1
t), (73)

In a similar manner, we can derive the solution

u(x, t) = R+ cos2(kx+
k

4k2 + 1
t). (74)

6 Conclusion

In this work we established three (BBM-like) equations that share some of the solitary
wave solutions with the standard BBM equation. We showed that these forms, although
are not of the same type as the CH or DP list of equations, but give peakon solutions
provided that each form has specific value of the parameter δ included in the equation.
This shows that the developed BBM-like equations can model solitary wave solutions
and peaked solitary waves solutions. In addition, the developed equations contain terms
with higher derivatives than the third-order term uxxt.
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