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1 Introduction

The outstanding Russian mathematician and mechanical engineer Vladimir Ivanovich
Zubov (1930-2000) made an invaluable contribution to the development of Stability The-
ory and Control Theory.

V. I. Zubov was born on April 14, 1930 in Kashira town, Moscow region, Russia. In
1945 he finished a middle school. At the age of 14, Vladimir was wounded by a hand
grenade explosed accidently and soon failed eyesight. In 1949 he finished the Leningrad
special school for blind and visually impaired children and entered the Mathematical
and Mechanical Faculty of the Leningrad State University. In 1953, after graduating
with honors, he joined the University faculty and since then his career was inseparably
associated with the Leningrad (now, Saint Petersburg) State University.

In 1955, V. I. Zubov defended his PhD thesis “Boundaries of the Asymptotic Stability
Domain” in which he proved the theorem on the asymptotic stability domain. This result
is now known as Zubov’s theorem.
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Further Zubov’s activities involved both pure fundamental investigations and solution
of applied real-life problems in several fields — from spacecraft to ship control.

In 1969, the Faculty of Applied Mathematics and Control Processes was founded at
the Leningrad State University with Vladimir Zubov’s appointment as its first dean. Two
years later, a Research Institute of Computational Mathematics and Control Processes
was set up by the USSR Government. Zubov became its brains-and-heart. In particular,
he headed the projects on the design, development and operation of systems of self-guided
winged missiles, and tactical schemes construction for the USSR Navy to oppose aircraft
carriers of the potential enemy.

Zubov’s scientific activities was surveyed in the paper [8] dedicated to his 80th Birth-
day. In the present review, we would like to focus on Zubov’s works on the problem of
stability by nonlinear approximation together with their ramifications in the last decade
publications.

2 Stability Analysis by Nonlinear Approximation

The basic tool for the stability analysis of motions of differential equation systems is
the Lyapunov direct method (or the Lyapunov functions method). However, it should
be recalled that until now, a general algorithm has not been yet constructed for the
Lyapunov function generation for an arbitrary nonlinear system. The most common
approach to the problem consists in, firstly, reduction of an original system to a simpler
one, secondly, stability investigation of the reduced system via the Lyapunov function
construction, and, thirdly, subsequent testing of this function as a potential candidate
for the Lyapunov function of the original system.

A. M. Lyapunov has determined conditions under which the conclusion on the sta-
bility of the zero solution for a nonlinear system can be obtained via the analysis of the
corresponding system of linear approximation [22]. However, it is worth mentioning that
in numerous applications it is required to study differential equation systems for which
the expansions of the right-hand sides in powers of the phase variables do not contain
linear terms at all. Thus, there arises a problem of stability by nonlinear approximation.

The first theorems on stability by nonlinear approximation were proved by I. G.
Malkin, N. N. Krasovskii and V. I. Zubov [21, 23, 35, 36]. In these papers, systems with
homogeneous right-hand sides were considered as the first approximation.

Definition 2.1 Let R be the field of real numbers, R
n denote the n-dimensional

Euclidean space. A function f(x) : Rn → R is called homogeneous of the order µ, where
µ is a positive rational with the odd denominator, if

f(λx) = λµf(x) (1)

for λ ∈ R and x ∈ R
n. In the case when µ is a positive real number, and equality (1)

holds for λ ≥ 0 and x ∈ R
n, the function f(x) is called positive homogeneous of the

order µ.

Consider the system of differential equations

ẋ(t) = F(x(t)) (2)

and the corresponding perturbed system

ẋ(t) = F(x(t)) +G(t,x(t)). (3)
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Here x(t) ∈ R
n is the state vector; components of the vector F(x) are homogeneous

functions of the order µ > 0 which are continuous for all x ∈ R
n; vector function G(t,x)

is continuous for t ≥ 0, ‖x‖ < H and satisfies the inequality ‖G(t,x)‖ ≤ c‖x‖σ, where c

and σ are positive constants, 0 < H ≤ +∞, and ‖ · ‖ denotes the Euclidean norm of a
vector. Thus, systems (2) and (3) admit the zero solution.

It is required to determine conditions under which the asymptotic stability of the zero
solution of (2) implies the same type of stability for the zero solution of the perturbed
system (3).

In [21, 23], the case has been studied when components of the vector F(x) are homo-
geneous forms of an integer order µ > 1. It was proved that if the inequality σ > µ holds,
then the perturbations do not disturb the asymptotic stability of the zero solution.

It is worth mentioning that Malkin’s proof was based on a geometric approach [23].
A family of closed surfaces surrounding the origin were constructed, and angles between
these surfaces and trajectories of system (3) were estimated. To prove the theorem
on the stability by nonlinear approximation, Krasovskii has used the Lyapunov direct
method, see [21]. He has determined conditions under which for system (3) there exists
a Lyapunov function solving the stability problem and satisfying estimates of a special
form.

V. I. Zubov has extended the results of [21, 23] to wider classes of systems, see [34–
36]. Unlike [21, 23], in [34–36] it was assumed that the components of the vector F(x)
are, in general, not forms, but homogeneous functions of the order µ > 0. Zubov has
established the following properties of solutions of homogeneous systems:

(i) if x(t,x0) is a solution of (2) starting from the point x0 at t = 0, then, for any
c ∈ R, the function cx(cµ−1t,x0) is the solution of (2) as well;

(ii) the zero solution of (2) can be asymptotically stable only in the case when µ is a
rational with the odd numerator and denominator;

(iii) if the zero solution of (2) is asymptotically stable, then it is globally asymptoti-
cally stable.

Zubov has investigated conditions under which for a homogeneous system there exists
a homogeneous Lyapunov function satisfying the assumptions of the Lyapunov asymp-
totic stability theorem. He has obtained the following result, see [35, 36].

Theorem 2.1 Let for solutions of (2) the inequality ‖x(t,x0)‖ ≤ bt−α be valid for
t ≥ T , ‖x0‖ = 1, where T, b, α are positive constants. Then there exist functions V (x)
and W (x) possessing the properties:

(a) V (x) and W (x) are continuous for x ∈ R
n positive homogeneous functions of the

orders γ and γ + µ− 1 respectively, where γ is sufficiently large positive number;
(b) functions V (x) and W (x) are positive definite;
(c) function V (x) is differentiable with respect to solutions of system (2), and the

equality V̇
∣

∣

(2)
= −W (x) holds.

Moreover, in the case when the right-hand sides of (2) are k times continuously dif-
ferentiable functions for x ∈ R

n, where k ≥ 1, while constructing functions V (x) and
W (x), one can choose V (x) in the class of k times continuously differentiable functions.

It was shown, see [36], that if the function F(x) is continuously differentiable for
x ∈ R

n, then the functions V (x) and W (x) satisfy the system of partial differential
equations

(

∂V (x)

∂x

)T

F(x) = −W (x),

(

∂V (x)

∂x

)T

x = γV (x). (4)
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Zubov has studied the problem of solvability of this system [36]. In particular, in the
case when n = 2, he has proposed a constructive approach for finding solutions of (4).

On the basis of Theorem 2.1, Zubov has determined the following stability and ulti-
mate boundedness criteria for the perturbed system (3), see [35, 36].

Theorem 2.2 Let the vector function F(x) be continuously differentiable for x ∈ R
n,

and inequality σ > µ hold. Then from the asymptotic stability of the zero solution of (2)
it follows that the zero solution of (3) is asymptotically stable as well.

Theorem 2.3 Let the vector function F(x) be continuously differentiable for x ∈ R
n,

and the inequality σ < µ hold. Then from the asymptotic stability of the zero solution of
(2) it follows that solutions of (3) are uniformly ultimately bounded.

Moreover, new stability conditions were established in the critical case of several zero
roots and in the critical case of several pairs of purely imaginary roots of characteristic
equation, see [36, 37, 39, 40].

Zubov has also derived estimates for the convergence rate of solutions for asymptot-
ically stable homogeneous system (2) and for the perturbed system (3), see [36]. He has
proved that if µ > 1, function F(x) is continuously differentiable for x ∈ R

n, and the zero
solution of (2) is asymptotically stable, then, there exist positive constants c1, c2, c3, c4
such that for solutions of (2) the inequalities

‖x0‖
(

c1 + c2‖x0‖
µ−1 t

)

−

1

µ−1 ≤ ‖x(t,x0)‖ ≤ ‖x0‖
(

c3 + c4‖x0‖
µ−1 t

)

−

1

µ−1 (5)

hold for any x0 ∈ R
n and for t ≥ 0. For the case when 0 < µ < 1, Zubov has obtained

conditions under which every solution of system (2) gets to the origin in a finite time, and
remains at this point thereafter. In his later works [41, 43], this property of homogeneous
systems with homogeneity orders less than one was used for the design of feedback
controls providing finite-time synchronization of dynamical systems motions.

Furthermore, Zubov has extended the above results to systems with generally homo-
geneous right-hand sides [38, 39].

Definition 2.2 A function f(x) : Rn → R is called generally homogeneous of the
order ν with respect to the dilation (m1, . . . ,mn), where ν,m1, . . . ,mn are positive ra-
tionals with the odd denominators, if

f(λm1x1, . . . , λ
mnxn) = λνf(x) (6)

for all λ ∈ R
n and x ∈ R

n. In the case when ν,m1, . . . ,mn are positive real numbers,
and equality (6) holds for λ ≥ 0 and x ∈ R

n, the function f(x) is called positive generally
homogeneous of the order ν with respect to the dilation (m1, . . . ,mn).

Definition 2.3 A vector field F(x) = (f1(x), . . . , fn(x))
T : Rn → R

n is called gen-
erally homogeneous of the order µ with respect to the dilation (m1, . . . ,mn), where
µ,m1, . . . ,mn are rationals with the odd denominators, such that mi > 0 and µ+mi > 0,
i = 1, . . . , n, if fi(λ

m1x1, . . . , λ
mnxn) = λµ+mifi(x1, . . . , xn), i = 1, . . . , n, for all λ ∈ R

and x ∈ R
n. System (2) is called generally homogeneous if its vector field F(x) is

generally homogeneous.
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In [38, 39], for generally homogeneous systems, conditions of the existence of generally
homogeneous Lyapunov functions were obtained, and criteria of stability and ultimate
boundedness by generally homogeneous approximation were found.

V. I. Zubov has also set up a problem of the stability by the first, in a broad sense,
approximation. He has investigated the conditions for stability of the zero solution for
arbitrary admissible functions included in the first approximation [39, 42].

In particular, systems of the form

ẋi(t) =

n
∑

j=1

pij(t)fj(xj(t)) + gi(t,x(t)), i = 1, . . . , n, (7)

have been considered [42]. Here coefficients pij(t) are continuous for t ≥ 0; functions
fj(xj) are continuous for |xj | < H (0 < H ≤ +∞) and belong to a sector-like constrained
set defined as follows: xjfj(xj) > 0 for xj 6= 0, j = 1, . . . , n; the perturbations gi(t,x)
are given and continuous for t ≥ 0, ‖x‖ < H .

The following issues were investigated:
(i) under what conditions the zero solution of the unperturbed system (gi(t,x) ≡ 0,

i = 1, . . . , n) is asymptotically stable for any admissible functions fj(xj)?
(ii) under what conditions perturbations do not destroy the asymptotic stability of

the zero solution?
On the basis of the obtained results, Zubov has developed new and effective ap-

proaches to the problem of stability analysis of nonlinear systems in the cases being
critical in the Lyapunov sense.

3 Some Extensions of Zubov’s Rezults

3.1 Existence of homogeneous Lyapunov functions

From Zubov’s results it follows that for system (2) with homogeneous polynomial right-
hand sides possessing the asymptotic stability property for its zero solution, it is always
possible to choose a Lyapunov function in the class of homogeneous functions. In [31],
the problem has been discussed whether it is possible to choose this function in the class
of homogeneous polynomials (forms) or not. The answer proves to be negative. For any
given positive integer γ, there exists a system from the family

ẋ1(t) = (α− ε)x3
1(t)− x3

2(t), ẋ2(t) = x3
1(t)− αx3

2(t), 0 < ε < α < 1,

such that the zero solution of this system is asymptotically stable but the derivative of
any form of the order γ with respect to this system is not sign-definite.

L. Rosier has proved that it is possible to guarantee the existence of continuously
differentiable homogeneous functions for homogeneous systems under less conservative
conditions than those imposed in Zubov’s theorems, see [28].

Theorem 3.1 Let vector function F(x) be continuous for x ∈ R
n positive generally

homogeneous of the order µ ∈ R with respect to the dilation (m1, . . . ,mn), where mi > 0
and µ + mi > 0, i = 1, . . . , n. If the zero solution of (2) is asymptotically stable, then,
for any positive integer k, there exists a Lyapunov function V (x) possessing the following
properties:

(a) the function V (x) is k times continuously differentiable at the point x = 0, and
it is infinitely differentiable for x 6= 0;
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(b) function V (x) is positive definite;
(c) function V (x) is positive generally homogeneous of the order γ with respect to the

dilation (m1, . . . ,mn), where γ is an arbitrary number greater than kmaxi=1,...,nmi;
(d) the derivative of V (x) with respect to system (2) is negative definite.

The application of Theorem 3.1 permits us to weaken the conditions of known criteria
of the stability and the ultimate boundedness by nonlinear approximation.

For homogeneous systems, the problem of existence of homogeneous Lyapunov func-
tions satisfying the assumptions of the first Lyapunov instability theorem was studied
in [18].

3.2 Stability analysis of nonlinear systems via averaging

In [2, 3], nonlinear nonstationary systems whose right-hand sides are homogeneous with
respect to phase variables have been studied. For such systems, an approach for Lyapunov
functions constructing was proposed. Its application permits us to show that if the order
of homogeneity of the right-hand sides of the time-varying system under consideration is
greater than one, then the asymptotic stability of the zero solution of the corresponding
averaged system implies the same property for the zero solution of the original system.
These results have been further developed in [4, 5, 15, 26, 27, 30]. In particular, in [30],
a modification of the approach for the Lyapunov functions construction was suggested.
Other techniques for the determination of similar asymptotic stability conditions for
time-varying homogeneous systems have been developed in [26, 27].

Compared with the known stability conditions obtained by the application of av-
eraging technique, the principal novelty of the above results is that, to guarantee the
asymptotic stability for a nonstationary homogeneous system, the right-hand sides of
the system need not be fast time-varying. It is shown that in the averaging technique,
instead of a small parameter providing the fast time-variation of a vector field, the orders
of homogeneity can be used.

3.3 Stability of nonlinear complex and hybrid systems

In [24], a motion polystability problem for differential equation systems has been stud-
ied. In terms of matrix-valued Lyapunov functions, conditions of polystability for nonlin-
ear systems with separable motions by nonlinear and psevdo-linear approximation were
found.

Sufficient conditions of the asymptotic stability with respect to a part of variables for
equilibrium positions of nolinear complex systems have been derived in [4, 29].

In [20], an approach for the stability analysis of multiconnected systems by nonlin-
ear approximation was suggested. In [9, 10], the results of [20] were strengthened and
extended to wider classes of systems. It is worth mentioning that the approach in [20]
is based on the vector Lyapunov functions method, whereas in [9, 10] scalar Lyapunov
functions were proposed.

The stability problem for hybrid homogeneous systems was studied in [7, 32]. Suf-
ficient conditions were obtained under which a family of homogeneous subsystems ad-
mits a common Lyapunov function. The fulfilment of these conditions provides global
asymptotic stability of the zero solution of the corresponding switched system for any
admissible switching law. For the case when we can not guarantee the existence of such a
function, in [7], the multiple Lyapunov function and the dwell-time approaches were used
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to determine the classes of switching signals for which the zero solution of the hybrid
homogeneous system is locally or globally asymptotically stable. Stability conditions for
some types of nonlinear multiconnected systems with a variable structure were found in
[11, 33].

3.4 Preservation of stability under the digitization

In the papers [12, 14], the problem of preservation of stability under the digitization for
certain classes of nonlinear differential equation systems was studied.

In [12], the homogeneous system (2) and the corresponding difference system

y(k + 1) = y(k) + hF(y(k)) (8)

have been considered. Here y(k) ∈ R
n; components of the vector F(x) are homogeneous

functions of the order µ > 1 which are are continuously differentiable for all x ∈ R
n;

h > 0 is a digitisation step; k = 0, 1, . . ..
The following theorem was proved.

Theorem 3.2 If the zero solution of system (2) is asymptotically stable, then the
zero solution of (8) is asymptotically stable for any value of h > 0.

Thus, unlike the case of linear systems, for essentially nonlinear homogeneous systems,
the preservation of stability while passing from differential systems to difference ones can
be guaranteed for an arbitrary digitization step.

Furthermore, in [12, 14], theorems on the stability by nonlinear approximation were
obtained for various classes of difference systems.

3.5 Stability analysis of nonlinear time-delay systems

In the papers [5, 6, 13, 15], certain classes of nonlinear time-delay systems have been
studied. It was assumed that the trivial solution of a system is asymptotically stable
when delay is equal to zero. The Lyapunov direct method and the Razumikhin theorem
were used to show that if the system is essentially nonlinear, i.e., the right-hand sides of
the system do not contain linear terms, then the asymptotic stability of the zero solution
is preserved for an arbitrary positive value of the delay. On the basis of the proposed
approach, new delay-independent stability conditions have been obtained for wide classes
of nonlinear systems, see [5, 6, 13, 15].

In particular, in [6], homogeneous time-delay system of the form

ẋ(t) = F(x(t),x(t − τ)) (9)

has been considered. Here x(t) ∈ R
n; the components of the vector F(x,y) are homoge-

neous functions of the order µ > 1, defined for x,y ∈ R
n, and continuous with respect to

their variables, and continuously differentiable with respect to y; τ is a constant positive
delay. This means that system (9) admits the zero solution.

Theorem 3.3 Let the zero solution of the corresponding delay free system ẋ(t) =
F(x(t),x(t)) be asymptotically stable. Then the zero solution of (9) is asymptotically
stable for any value of τ > 0.
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3.6 Estimates of the convergence rate of solutions

Zubov’s results on the finite-time stability and synchronization have been vigorously
developed during the past decades, see [16, 17] and the references cited therein.

In [12], a discrete-time counterpart of estimates (5) was obtained for nonlinear ho-
mogeneous difference systems.

In [15], in terms of the Razumikhin approach, a procedure for the estimation of the
convergence rate of solutions for essentially nonlinear time-delay systems was developed.

3.7 Stability by the first, in a broad sense, approximation

Some results on the stability by the first, in a broad sense, approximation have been
obtained in [1, 5, 9, 10, 19, 20]. For instance, in [9, 10], a generalization of system (7)
was studied. With the aid of the well-known Martynyuk–Obolenskij stability criteria for
autonomous Wazewskij systems, see [25], an approach to the construction of Lyapunov
functions for the system in question was proposed, and existence conditions for such
functions were found. By the use of the Lyapunov functions constructed, new theorems on
the stability and ultimate boundedness by nonlinear approximation have been proved [9,
10].

4 Conclusion

Vladimir Zubov was a prominent scholar, engineer and university lecturer. In the previ-
ous sections we have reviewed just only one area of scientific activity of his own and his
successors.

Zubov is the author of about 200 publications including 31 monographs and text
books. He was an advisor for 20 DSc and about 100 PhD dissertations. Under Zubov’s
supervision, a worldwide famous school in control theory was developed in St. Petersburg.

In 1968 V. I. Zubov became the USSR State Prize winner for his pioneer works in
Control Theory. In 1981 he was elected a corresponding member of the Soviet Union
Academy of Sciences, and in 1998 he was awarded the title of the Honor Scholar of
the Russian Federation. In 1996, the Zubov scientific school “Processes of control and
stability” was the winner of the competition for the State support of leading scientific
schools of Russia. In 2001, the Research Institute of Computational Mathematics and
Control Processes of St. Petersburg State University was named after him.

For outstanding merits to the world science, Zubov’s name was perpetuated as a
name of minor planet ’ZUBOV 10022’. This asteroid has a size of 6 km, a brightness of
13.8 magnitude, and the greatest orbit’s semiaxis of 2.369 astronomical units.
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