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Abstract: In this paper, the attitude synchronization problem of two dumbbell satel-
lite models is addressed. To achieve this purpose, a synchronization approach based
on generalized Hamiltonian systems and state observer design reported in literature,
is applied. Potential applications of attitude synchronization are multi-satellites ar-
rays for self assembly structures, and resolution enhancement. Numerical results of
the synchronization behavior achievement are presented.
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1 Introduction

Modern space missions involve the use of multiple small satellites, this scheme introduces
several advantages compared to single satellite missions. An interesting topic regarding
these missions, is the attitude synchronization of the satellites. This allows to handle
larger structures than what can be launched. Some interesting applications include:
resolution enhancement, interferometry or, super-sized focal length [1], this behavior is
also useful for in-orbit-self-assembly operations [2].
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The mathematical model considered in this paper is reported in [3] and corresponds
to a dumbbell satellite. This model represents a simple structure consisting of two point
masses connected by a mass-less rod. This dumbbell satellite model is suitable for a
straightforward investigation of the general properties of the rigid body motion in a
gravity field and has attracted the attention of scientists since the middle of the past
century [4].

For attitude synchronization of two dumbbell satellites, the approach used in this
paper is the generalized Hamiltonian systems and design of nonlinear observer presented
in [5] which has been successfully applied in synchronization of chaotic systems, see
e.g. [6–11].

The paper is arranged as follows: Section 2 describes briefly the mathematical pre-
liminaries on synchronization of nonlinear oscillators from the perspective of generalized
Hamiltonian systems and design of nonlinear observer. Section 3 describes the dumbbell
satellite mathematical model used for attitude synchronization purposes. Then, Section
4 presents the attitude synchronization of two dumbbell satellites in master-slave cou-
pling via generalized Hamiltonian forms and state observer design approach. In Section
5, numerical results are discussed and finally some conclusions are given in Section 6.

2 Synchronization Via Generalized Hamiltonian Forms and Observer Design

In this section, briefly we describe the synchronization for two nonlinear dynamical sys-
tems via generalized Hamiltonian forms and nonlinear observer design approach, for
details see [5].

2.1 Generalized Hamiltonian Systems

Consider the following nonlinear dynamical system described by the state equation

ẋ = f (x) , x ∈ R
n. (1)

Following the approach provided in [5], many physical nonliner systems described by
equation (1) can be written in the following generalized Hamiltonian canonical form,

ẋ = J (x)
∂H

∂x
+ S (x)

∂H

∂x
, x ∈ R

n, (2)

where H (x) denotes a smooth energy function which is globally positive definite in R
n.

The column gradient vector of H , denoted by ∂H/∂x, is assumed to exist everywhere.
One of the most frequently used functions H (x) is the quadratic energy function of the
form

H (x) =
1

2
xTMx (3)

with M being a symmetric, positive definite, constant matrix. In such case, ∂H/∂x =
Mx. The square matrices J (x) and S (x) , present in (2), satisfy, for all x ∈ R

n, the
following properties, which represent the energy managing structure of the system:

J (x) + J T (x) = 0, S (x) = ST (x) . (4)

The vector field J (x) ∂H
∂x exhibits the conservative part of the system and it is also

referred to as the work-less part, or work-less forces of the system. The matrix S (x)
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is, in general, a symmetric matrix describing the working or nonconservative part of the
system. For certain systems, the symmetric matrix S (x) is negative definite or negative
semidefinite, in such cases the vector field is known as the dissipative part of the system.

Sometimes, specially in the contex of state observer design, the system under obser-
vation will be written in the special form

ẋ = J (x)
∂H

∂x
+ S (x)

∂H

∂x
+ F (x) , (5)

where F (x) represents a locally destabilizing vector field and S (x) is a symmetric ma-
trix, not necesarily of definite sign. However, many physical systems are already in the
generalized Hamitlonian canonical form (2).

2.2 Nonlinear Observer Design for a Class of Systems in Generalized Hamil-
tonian Form

For a complete description of the synchronization method, the reader is encouraged to
see [5]. A special class of generalized Hamiltonian systems with destabilizing vector field
and linear output map y is given by

ẋ = J (y) ∂H
∂x + (I + S) ∂H

∂x + F (y) , x ∈ R,n

y = C ∂H
∂x , y ∈ R

m,
(6)

where S is a constant symmetric matrix, not necessarily of definite sign. The matrix I
is a constant skew symmetric matrix. The vector variable y is referred to as the system
output. The matrix C is a constant matrix.

The estimate of the state vector x is denoted by ξ, and consider the Hamiltonian
energy function H (ξ) to be the particularization of H in terms of ξ, similarly, η is
the estimated output computed in terms of the estimated state ξ. The gradient vector
∂H (ξ) /∂ξ is, naturally, of the form Mξ with M being a constant symmetric positive
definite matrix.

A dynamic nonlinear state observer for the system (6) is obtained as

ξ̇ = J (y) ∂H
∂ξ + (I + S) ∂H

∂ξ + F (y) +K (y − η) ,

η = C ∂H
∂ξ ,

(7)

where K is a constant vector, known as the observer gain. The state estimation error,
defined as e = x− ξ and the output estimation error, defined as ey = y− η, are governed
by

ė = J (y) ∂H
∂e + (I + S − KC) ∂H

∂e , e ∈ R
n,

ey = C ∂H
∂e , ey ∈ R

m,
(8)

where the vector ∂H (e) /∂e with some abuse of notation, stands for the gradient vector of
the modified energy function, ∂H (e) /∂e = ∂H (x) /∂x−∂H (ξ) /∂ξ = M (x− ξ) = Me.
In the rest of this work, when needed, it is set that I + S = W .
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2.3 Synchronization of dynamical systems

Definition 2.1 Synchronization problem ( [12]): We say that the slave satellite (7)
synchronizes with the master satellite (6), if

lim
t→∞

‖x (t)− ξ (t)‖ = 0, (9)

no matter which initial conditions x (0) and ξ (0) hold. Here the state estimation error
e(t) = x (t)− ξ (t) represents the synchronization error.

Theorem 2.1 ( [5]) The state x(t) of the nonlinear system (6) can be globally, ex-
ponentially, asymptotically estimated by the state ξ(t) of an observer of the form (7), if
the pair of matrices (C,W) , or the pair (C,S), is either observable or, at least, detectable.

An observability condition on either of the pairs (C,W) or (C,S) is clearly a sufficient
but not necessary condition for asymptotic state reconstruction. A necessary and suffi-
cient condition for global asymtotic stability to zero of the state estimation error e(t) is
given by the following theorem.

Theorem 2.2 ( [5]) The state x(t) of the nonlinear system (6) can be globally, ex-
ponentially, asymptotically estimated by the state ξ(t) of an observer of the form (7) if
and only if there exists a constant matrix K such that the symmetric matrix

[W −KC] + [W −KC]T = [S − KC] + [S − KC]T

= 2
[

S − 1
2

(

KC + CTKT
)]

is negative definite.

The application of this method on the field of synchronization of chaotic circuits
implies the design of a state observer of the form (7) to act as the receiver of the chaotic
system in the form (6) considered as the emitter.

Several advantages of generalized Hamiltonian systems approach over other synchro-
nization techiniques are reported in the literature, the following advantages are enumer-
ated in [5] and [12] and reproduced below:

• It enables synchronization be achieved in a systematic way and clarifies the issue
of deciding on the nature of the output signal to be transmitted.

• It can be successfully applied to several well-known chaotic systems.

• It does not require the computation of any Lyapunov exponent.

• It does not require initial conditions belonging to the same basin of attraction.

3 Dumbbell Satellite Model

Typical models of a dumbbell satellite are given in [3] and [4]. In Figure 1 a graphical
interpretation can be observed. This model consists of two point masses coupled by a
mass-less rod. In this case, θ represents the attitude of the satellite and the (r, φ)-tuple
represents the position of the satellite with respect to a reference point.
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Figure 1: Dumbbell satellite representation.

In this model, the Lagrangian of the system with a normalized universal gravitational
constant (G), is given by

L = m(ṙ2 + r2φ̇2 + l2(θ̇ − φ̇)2) +
m√

l2 + r2 − 2lrcosθ
+

m√
l2 + r2 + 2lrcosθ

. (10)

Applying the Euler-Lagrange equation for θ, we can obtain the following differential
equation

2l2(θ̈ − φ̈) +
lrsinθ

(l2 + r2 + 2lrcosθ)3/2
− lrsinθ

(l2 + r2 − 2lrcosθ)3/2
= 0 (11)

by using a binomial approximation for both denominators, and taking into account that
r ≫ l, one can derive the differential equation of the attitude dynamics of a dumbbell
satellite

θ̈ +
3sin(2θ)

2r3
= φ̈. (12)

By using a similar procedure for r and φ, the differential equations are:

r̈ − rφ̇2 = − 1

r2
, (13)

d

dt
(r2φ̇) = 0. (14)

Equations (13) and (14) describe the Keplerian motion. By using the well-known
solutions, φ̈ can be computed. The equation (12) for the attitude dynamics of a dumbbell
satellite is given by

θ̈ +
3

2

sin (2θ)

r3
= − 2ε

√
1− ε2 sinE

a3(1− ε cosE)4
. (15)

Here a and ε refer to the semi-major axis and the eccentricity of the dumbbell sate-
llite’s orbital motion, respectively. E denotes the so-called eccentric anomaly and is
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Figure 2: Motion trajectory of a single dumbbell satellite.

related to time t via Kepler’s equation. If E is used eventually as an independent variable
rather than t [3], the second order differential equation for θ̈ can be obtained as follows

d2θ

dE2
− dθ

dE

ε sinE

1− ε cosE
+

3

2

sin (2θ)

1− ε cosE
= −2ε

√
1− ε2 sinE

(1− ε cosE)2
. (16)

Figure 2 shows the motion trajectory governed by the dynamics of the dumbbell
satellite model (13)-(15). Recasting the second order equation as a first order system
and writing x and t rather than θ and E, respectively, the attitude of the dumbbell
satellite is described in the state space as

ẋ1 = x2, (17a)

ẋ2 = −3

2

sin (2x1)

1− ε cos t
+

ε sin t

1− ε cos t
x2 −

2ε
√
1− ε2 sin t

(1− ε cos t)2
. (17b)

In this case, x1 represents the attitude (angular motion) while x2 represents the angular
velocity of the dumbbell satellite.

4 Synchronization of Two Dumbbell Satellites

As seen in the previous section, the equations (17) govern the attitude dynamics of the
dumbbell satellite. Therefore, take the state vector as xT = [x1, x2] and define an energy
function as H(x) = 1

2x
T Ix where I is the 2×2 identity matrix. The system (17) can be

rewritten in its generalized Hamiltonian form, according to equation (6), so in this way
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the master dummbell satellite in generalized Hamiltonian form is given by

[

ẋ1

ẋ2

]

=
1

2

[

0 1
−1 0

]

∂H

∂x
+

1

2

[

0 1
1 0

]

∂H

∂x

+

[

0

− 3
2

sin(2x1)
(1−ε cos(t)) +

ε sin(t)
1−ε cos(t)x2 − 2ε

√
1−ε2 sin(t)

(1−ε cos(t))2

]

. (18)

If we select y = x1 as the output, then the J , S, and C matrices are given by

J =
1

2

[

0 1
−1 0

]

, S =
1

2

[

0 1
1 0

]

, C =
[

1 0
]

. (19)

From equation (19) it can be seen that the pair (C,S) is observable. Therefore the
observer for the system (18) according to equation (7) (slave dumbbell satellite) has the
following form

[

ξ̇1
ξ̇2

]

=
1

2

[

0 1
−1 0

]

∂H

∂ξ
+

1

2

[

0 1
1 0

]

∂H

∂ξ

+

[

0

− 3
2

sin(2y)
(1−ε cos(t)) +

ε sin(t)
1−ε cos(t)ξ2 −

2ε
√
1−ε2 sin(t)

(1−ε cos(t))2

]

+

[

k1
k2

]

(x1 − ξ1) , (20)

where k1 and k2 are the observer gains. If the synchronization error is defined as e (t) =
x (t)− ξ (t), then the dynamics of this error are described as

[

ė1
ė2

]

=
1

2

[

−k1 1 + k2
− (1 + k2) 0

]

∂H

∂e

+
1

2

[

−k1 1− k2
1− k2 0

]

∂H

∂e
+

[

0 0

0 ε sin(t)
1−ε cos(t)

]

∂H

∂e
. (21)

Next, we examine the stability of the synchronization error (21) between the mas-
ter dumbbel satellite (18) in Hamiltonian form and slave dumbbell satellite (20) state
observer. Invoking to Theorem 2.2, we have that

2

[

S − 1

2

(

KC + CTKT
)

]

< 0,

and
[

−2k1 1− k2
1− k2 0

]

< 0 (22)

by applying the Sylvester’s criterion – which provides a test for negative definiteness of a
matrix – thus, we have the mentioned 2× 2 matrix will be negative definite matrix, if we
choose k1 and k2 such that the condition (22) holds. In the following numerical results,
we have used k1, k2 > 0 to satisfy the stability condition (22).

5 Numerical Results

In this section, numerical results are reported for synchronization of the attitude and
angular velocity of two dumbbell satellites, by using generalized Hamiltonian forms and
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Figure 3: State attitudes x1(t), ξ1(t) (left) and state angular velocities x2(t), ξ2(t) (right) for
master and slave dumbbell satellites.
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Figure 4: Error dynamics of the attitude (left) and its angular velocity (right) for the numerical
simulation in Figure 3.

observer design (equations (18) and (20), respectively). Figure 3 shows the state trajec-
tories of master and slave satellites for the following values: initial conditions x1(0) = 10,
x2(0) = 4, ξ1(0) = 1, and ξ2(0) = 9, the eccentricity of the dumbell satellites ε = 0.3,
and the gains for slave satellite dumbbell k1 = k2 = 1.

The synchronization error dynamics between the master dumbbell satellite (18) and
its slave dumbbell satellite (20) are shown in Figure 4.

Figure 5 illustrates the synchronization between two dumbbell satellites xi vs ξi,
i = 1, 2.

6 Conclusion

In this paper, we have presented synchronization between two dumbbell satellites, in
particular for the attitude and for the angular velocity, from the perspective of generalized
Hamiltonian forms and state nonlinear observer design, an approach that has proven its
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Figure 5: Synchronization of two dumbbell satellites for xi vs ξi, i = 1, 2.

efficiency in the literature. The numerical results reported support the control laws
designed for attitude synchronization of two dumbbell satellites.

Attitude synchronization for satellites is intended to serve as a first control loop
for large array satellite missions; in which a large number of small satellites forms a
bigger system functioning as a whole for capabilities enhancement. Thus, in future, a
formation controller and the one presented above, can be used together for this type
of synchronization space missions with small dumbbell satellites, via synchronization
approach used in this paper.
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