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Abstract: This paper deals with fuzzy modeling and robust control of nonlinear
systems affected by bounded uncertainties. The proposed fuzzy model is composed
of two parts: a linear uncertain part and a nonlinear one. The linear uncertain part
is obtained by the nominal system linearization around some operating points. The
nonlinear part is approximated by a Takagi-Sugeno fuzzy system whose parameters
are estimated using the descent gradient method. A robust pole assignment called
‘pole colouring‘ is used for the system control. This strategy of control is synthe-
sized based only on the linear uncertain part of the decomposed model. Finally, two
simulation examples are treated to illustrate the effectiveness of the proposed fuzzy
modeling and control approaches.
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1 Introduction

The modeling of an uncertain nonlinear system is an important step for the system anal-
ysis and control. It consists in developing a mathematical model ensuring the required
accuracy and having a useful structure. In fact, a model must reproduce correctly the
dynamics of the considered system even in the presence of nonlinearities, uncertainties
and perturbations. These constraints make the classical modeling methods limited. So
the evolutionist techniques, such as fuzzy systems [1] and neural networks [2] are con-
sidered as potential solutions for this problem. Indeed, they are considered as universal
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approximators [3, 4]. So, they can reproduce any nonlinear dynamics with an arbitrary
accuracy.

In this paper, fuzzy systems are considered for nonlinear uncertain systems model-
ing. They are classified as intelligent modeling tools. A fuzzy system is described by
a set of IF-THEN fuzzy rules. According to fuzzy rules conclusions, two types of fuzzy
systems are distinguished: Mamdani fuzzy systems [5] and Takagi-Sugeno fuzzy ones [6].
Mamadani fuzzy systems present linguistic conclusions. However, Takagi-Sugeno fuzzy
systems possess numerical ones. Two types of fuzzy rules generation approaches are
distinguished: manual and analytic ones.

Takagi-Sugeno fuzzy systems are considered as powerful modeling tools [7]. Their pa-
rameters are often identified using training algorithms such as descent gradient method
[8–10], recursive least square algorithm [11], orthogonal least square algorithm [12], ge-
netic algorithms [13, 14] and robust algorithms [15, 16]. There are several works about
fuzzy modeling of nonlinear systems [17–20] and also uncertain ones [21, 22].

A real system is by nature uncertain. So, the use of classical control methods doesn′t
guarantee the desired performance indexes. In fact, when the system parameters move
from the nominal ones, the desired performances are not satisfied whence the necessity
of the use of a robust control where uncertainties are explicitly taken into account. In
the literature, there are several researches about the robust control such as the sliding
mode [23,24], the gain scheduling [25], the H2 performance [26], the H∞ performance [27]
and the robust tracking control [28, 29]. Also, there are some researches about robust
control for linear uncertain discrete-time systems such as robust pole assignment. It is an
interesting control method for linear uncertain systems. It consists of the location of the
closed-loop system poles by considering the parameters variations. Nurges [30] proposed
the location of the characteristic equation parameters in a stable polytope, also the
uncertainties effects on characteristic equation coefficients could be minimized [31–33].
The minimization of the maximum distance between desired poles and obtained ones was
proposed by Soylemez and Munro [34]. Discrete-time pole region was approximated by
linear matrix inequality for robust pole assignment control design [35, 36].

These robust control techniques could be combined with fuzzy logic tools to benefit
from those advantages [37–43]. For example Abid et al [37] used a robust fuzzy sliding
mode controller for nonlinear discrete-time systems with parametric uncertainties. Also,
Wu [38] proposed a robust H2 fuzzy controller for the same purpose.

In this paper, fuzzy modeling and robust pole assignment control for uncertain non-
linear systems are considered. The proposed model involves two parts: (1) a linear
uncertain one whose parameters are affected by bounded uncertainties and (2) a nonlin-
ear one which is approximated by a Takagi-Sugeno fuzzy system. The linear uncertain
part parameters are obtained by the nominal system linearization around some operat-
ing points. The Takagi-Sugeno fuzzy system synthesis needs two main phases: (1) the
premises variables determination and (2) the conclusions parameters estimation. In fact,
the premises variables determination consists essentially in input space partitioning and
the conclusions parameters are estimated using the descent gradient method.

The robust pole assignment control proposed by Soylemez and Munro [34] is consid-
ered for the control of nonlinear uncertain systems. It is synthesized based only on the
linear uncertain part of the developed fuzzy model. It consists in optimizing a cost func-
tion by varying the uncertain parameters. The nonlinear part of the model is supposed
to be an additive perturbation.

This paper is organized as follows. In Section 2, the problem statement is presented.
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The proposed fuzzy modeling approach is explained in Section 3. In Section 4, the used
robust pole assignment control is detailed. In Section 5, two simulation examples are
presented to illustrate the proposed modeling and control approaches. Finally, concluding
remarks are given in Section 6.

2 Problem Statement

Consider the modeling and control problems of the class of nonlinear uncertain systems
described by the following expression:

y(k + 1) = F [y(k), . . . , y(k − n+ 1), u(k), . . . , u(k −m+ 1), p], (1)

where u and y are the system input and the system output, respectively. F is a known
nonlinear function and p is a parameters vector affected by additive uncertainties.

p = p0 +∆p, (2)

where p0 is the nominal parameters vector and ∆p is the uncertainties vector affecting
the system.

The proposed modeling approach consists in dividing the behavior of the considered
uncertain nonlinear system into two parts: a linear uncertain one yl and a nonlinear one
ynl [44, 45]

ym(k + 1) = yl(k + 1) + ynl(k + 1), (3)

where ym is the model output.
This modeling approach needs two main steps:

• Step 1: the determination of the linear uncertain part parameters.

• Step 2: the approximation of the nonlinear part ynl by a Takagi-Sugeno fuzzy
system.

In this paper, a robust pole assignment control is used for the system control. It is syn-
thesized considering only the linear uncertain part yl of the model 3. The nonlinear part
ynl is considered as an additive perturbation. In the following, the proposed techniques
for the model development will be presented. Also, the used approach for robust pole
assignment control will be detailed.

3 Fuzzy Model Identification

In this section, the proposed fuzzy modeling approach is detailed. The system dynamics
is decomposed into two terms: a linear uncertain expression and a nonlinear one. It will
be compared with a global Takagi-Sugeno fuzzy model to demonstrate its interest.

3.1 Decomposed fuzzy model

The decomposed fuzzy model identification consists in determining the linear uncertain
part yl and estimating the nonlinear part ynl by a Takagi-Sugeno fuzzy system. For each
part computation, the structure and parameters determinations are necessary.
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3.1.1 Linear uncertain part

The first part yl is a linear expression with uncertain bounded parameters.

yl(k + 1) = −

n∑

i=1

aiu(k) y(k − i+ 1) +

m∑

j=1

bju(k) u(k − j + 1). (4)

For aiu and bju the index u indicates uncertain parameters. aiu,i = 1, n and bju,j = 1,m
are bounded uncertain parameters. It is to be noted that the coefficients aiu and bju
are obtained by the nominal system linearization around some operating points. In fact,
around an operating point (Ul,Yl) , the dynamics of the considered system is described
by the expression

δy(k + 1) = −
n∑

i=1

ail δy(k − i+ 1) +
m∑

j=1

bjl δu(k − j + 1), (5)

where

ail = −
∂y(k + 1)

∂y(k − i+ 1)
|(Ul,Yl), (6)

bjl =
∂y(k + 1)

∂u(k − j + 1)
|(Ul,Yl), (7)

δy(k − i+ 1) = y(k − i+ 1)− Yl, i = 1, n, (8)

δu(k − j + 1) = u(k − j + 1)− Ul, j = 1,m, (9)

l = 1, L,

L is the considered operating points number. Using the expressions (8) and (9), the
system dynamics is represented as follows:

y(k+1) = −

n∑

i=1

ail y(k− i+1)+

m∑

j=1

bjl u(k− j+1)+ (Yl +

n∑

i=1

ail Yl −

m∑

j=1

bjl Ul). (10)

So, the linear part yl is given by the expression

yl(k + 1) = −

n∑

i=1

ail y(k − i+ 1) +

m∑

j=1

bjl u(k − j + 1). (11)

The nominal system must be linearized around some operating points to describe the
dynamics of the considered nonlinear system for the global operating area. The operating
points must be chosen properly. In fact, they have to be distributed on the global
operating area. So, the obtained coefficients aiu,i = 1, n and bju,j = 1,m are bounded
uncertain parameters:

aiu ∈ [minl=1···L ail ; maxl=1···L ail], bju ∈ [minl=1···L bjl ; maxl=1···L bjl].

It is to be noted that the static terms (Yl +
∑n

i=1 ail Yl −
∑m

j=1 bjl Ul) will be taken
into account for the nonlinear part ynl synthesis.
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3.1.2 Nonlinear part

The nonlinear part ynl in the expression (3) is approximated by a Takagi-Sugeno fuzzy
system. It is described by a set of IF-THEN fuzzy rules having the following form:

if u(k) is A1
r · · ·and u(k −m+ 1) is Am

r and y(k) is B1
r · · ·and y(k − n+ 1) is Bn

r ,

then ynr(k + 1) = −

n∑

i=1

eri y(k − i+ 1) +

m∑

j=1

f r
j u(k − j + 1), (12)

where r = 1, R, R is the rules number. It is fixed after several simulations in order to
get a compromise between a minimal error and a reasonable rules number. Consider x

the premise variable vector such as: x = [u(k),. . ., u(k −m + 1), y(k),. . ., y(k − n + 1)].
The used membership function is the Gaussian

µr(xt) = exp[−
(xt − crt )

2

2(σr
t )

2
], t = 1, n+m. (13)

The dynamics of the nonlinear part ynl is described by the local models interpolation

ynl(k + 1) =

∑R
r=1 αr ynr(k + 1)

∑R

r=1 αr

, (14)

where

αr =

n+m∏

t=1

µr(xt). (15)

Consider θp = [crt , σ
r
t , r = 1, R, t = 1, n+m] the vector of the premises parameters of

the fuzzy system. crt and σr
t are, respectively, the center and the width of the Gaussian

function relating to the rth rule and the tth member of the premise variable vector x.
They are determined manually. In fact, the centers crt are determined by the operating
area partitioning and the widths σr

t are fixed such as there is neither discontinuity nor
overlapping between the membership functions. However, the vector of the conclusions
parameters is noted θc such as θc = [eri , f

r
j , r = 1, R, i = 1, n, j = 1,m]. The con-

clusions parameters are determined automatically. Indeed, they are estimated using the
descent gradient method. The criterion to minimize is given by the expression (16). It
is minimized through the minimization of the error corresponding to each example

Jc =

N∑

k=1

e(k), (16)

where

e(k) =
1

2
[ym(k)− y(k)]2, (17)

N is the size of the training data set.
The conclusions parameters are updated using the following expression

θc(τ) = θc(τ − 1)− ǫ
∂e(k)

∂ θc(τ − 1)
, (18)
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where τ is the iteration counter and ǫ is the learning rate. ∂e(k)
∂ θc(τ−1) is given by the

expression
∂e(k)

∂ θc(τ − 1)
= [ym(k)− y(k)]

∂ynl(k)

∂ θc(τ − 1)
. (19)

It should be noted that the linear part has been designed referring only to the nominal
nonlinear system. So, the uncertain parameters must be taken into account for the design
of the nonlinear part ynl. It is done by varying these parameters to collect the training
and the validation data sets.

3.2 Global Takagi-Sugeno fuzzy model

The Takagi-Sugeno fuzzy systems are usually used for the nonlinear systems description.
They are described by a set of IF-THEN fuzzy rules having the following form:

if u(k) is A1
r · · ·and u(k −m+ 1) is Am

r and y(k) is B1
r · · ·and y(k − n+ 1) is Bn

r ,

then ymc
r (k + 1) = −

n∑

i=1

gri y(k − i+ 1) +
m∑

j=1

hr
j u(k − j + 1) (20)

with r = 1, R.
The membership function is the Gaussian (13). The premises variables and the rules

number are those used for the decomposed fuzzy model (3). The dynamic of the consid-
ered system is approximated by the local models interpolation

ymc(k + 1) =

∑R
r=1 αr y

mc
r (k + 1)

∑R

r=1 αr

, (21)

where αr is given by expression (15) and ymc is the global Takagi-Sugeno fuzzy model
output.

The conclusions parameters are adjusted using the descent gradient method. The
criterion to minimize is given by the expression (16) where e(k) is the following:

e(k) =
1

2
[ymc(k)− y(k)]2. (22)

The control of nonlinear uncertain systems (1) using the prescribed decomposed fuzzy
model (3) is considered. But, the control synthesis will be based only on the linear
uncertain part yl. Otherwise, the nonlinear part ynl will be considered as an additive
perturbation. In this case, the linear robust controllers as a robust pole assignment one
can be exploited.

4 Robust Pole Assignment Control

The robust pole assignment control proposed by Soylemez and Munro [34] is adopted
for the control of linear uncertain systems. It can be used for continuous-time and also
discrete-time linear systems affected by bounded uncertainties.

Consider a linear discrete-time system affected by bounded uncertainties and de-
scribed by the following transfer function

G(q−1) =
Bu(q

−1)

Au(q−1)
=

b1uq
−1 + · · · + bmuq

−m

1 + a1uq−1 + · · · + anuq−n
, (23)
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where bju ∈ [b−ju ; b+ju], j = 1,m and aiu ∈ [a−iu ; a+iu], i = 1, n.
The proposed controller is a PID one described by the expression

u(k) = u(k − 1) + q0 e(k) + q1 e(k − 1) + q2 e(k − 2), (24)

where

e(k) = yd(k)− y(k), (25)

yd is the desired output.
When using a PID controller (24), the closed-loop system has the characteristic equa-

tion (26) which is also affected by uncertain parameters

W (q−1, p) =
∑

i

Wi(p) q
−i, (26)

where p is the vector of uncertain parameters affecting the system.
The controller parameters θ are obtained through the minimization of the following

cost function

J = min
p

(Jp), (27)

θ = [q0; q1; q2]. (28)

There are multiple choices for the criterion Jp. It can be related to desired perfor-
mances like rise time, settling time · · · The simplest choice is the minimization of the
maximum distance between the nominal poles and the corresponding perturbed ones of
the closed-loop system. So, every pole takes one place in a disc centered on the corre-
sponding nominal pole

Jp = max
i=1···M

(|λ0
i − λ

p
i |), (29)

where λ0
i and λ

p
i are the nominal pole and its corresponding perturbed one of the closed-

loop system, respectively, M is the closed-loop system order. The controller synthesis
corresponds to an optimization problem which is solved using the function fminimax

from the Matlab toolbox.

5 Simulation Results

Two simulation examples are considered to show the effectiveness of the proposed mod-
eling approach and the performances of the suggested control scheme. The first example
is a chemical reactor and the second one is an academic system.

5.1 First example: Chemical reactor

Consider the modeling and the control problems of the chemical reactor [46] whose dy-
namics are described by the expression (30).

y(k + 1) = A1+B1 u(k)+A2 y(k) +q(k)B2 u
3(k)+A3 y(k − 1) u(k − 1) u(k), (30)

where [A1, A2, A3, B1, B2] = [0.558, 0.116, −0.034, 0.583, −0.127], q is an uncertain
parameter supposed to be variable and bounded in an interval: q(k) ∈ [0.9 ; 1.1], u is the
input flow of the product A and y is the concentration of the product B.
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Chemical reactionProduct A Product B

Figure 1: Chemical reactor.

5.1.1 Fuzzy modeling

The dynamics of the chemical reactor is decomposed as in equation (3). The linear
uncertain part yl is presented by the following expression

yl(k + 1) = −a1 y(k)− a2u(k) y(k − 1) + b1u(k) u(k) + b2u(k) u(k − 1). (31)

Since ∂y(k+1)
∂y(k) is constant, a1 is a certain parameter. a2u(k), b1u(k) and b2u(k)

are uncertain bounded parameters. They are obtained by the nominal system lin-
earization around two operating points: a1 = −0.116, a2u(k) ∈ [0.0014 ; 0.0218],
b1u(k) ∈ [0.3103 ; 0.5626] and b2u(k) ∈ [−0.0288 ; −0.0052].

The nonlinear part ynl in the expression (3) is presented by a set of IF-THEN fuzzy
rules:

if u(k) is A1
r and u(k − 1) is A2

r and y(k) is B1
r and y(k − 1) is B2

r

then ynr(k + 1) = −er1 y(k)− er2 y(k − 1) + f r
1 u(k) + f r

2 u(k − 1). (32)

The obtained modeling results for the training set are given in Figure 2.

Figure 2: Evolution of the uncertain parameter (a), the input signal (b), the system and the
model outputs for the training set.

The obtained results for the validation set are presented in Figure 3.
In order to compare the proposed fuzzy modeling method to the classical one, a global

Takagi-Sugeno fuzzy model will be developed. It is described by a set of IF-THEN fuzzy



352 A. AYDI, M. DJEMEL AND M. CHTOUROU

Figure 3: Evolution of the uncertain parameter (a), the input signal (b), the system and the
model outputs for the validation set.

rules

if u(k) is A1
r and u(k − 1) is A2

r and y(k) is B1
r and y(k − 1) is B2

r

then ymc
r (k + 1) = −gr1 y(k)− gr2 y(k − 1) + hr

1 u(k) + hr
2 u(k − 1). (33)

The conclusions parameters are estimated using the descent gradient method. The
rules number is R = 16 and the learning rate is ǫ = 0.5 . For both models, the same
system input and output partitioning are considered. In addition, the same training and
validation sets are used.

The average value of the error committed by each model is evaluated in the validation
set to demonstrate the effectiveness of the proposed modeling approaches

E =

∑N

k=1 |y(k)− ym(k)|

N
. (34)

Decomposed fuzzy model Global Takgi-Sugeno fuzzy model
J (final) 0.0008 0.0008

Iteration number 6462 13740
E 0.0046 0.0049

Table 1: Comparison between the decomposed fuzzy model and the global Takagi-Sugeno fuzzy
one.

According to this table, for the same criterion value the decomposed model requires
less iterations number than the classical one. It is due to the system dynamics decom-
position effect which accelerates the training.

5.1.2 Robust pole assignment control

The chemical reactor is controlled by the PID controller (24) whose parameters are
determined using the described robust pole assignment and referring only to the linear
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uncertain part (31) of the decomposed fuzzy model. The poles are located considering the
parameter uncertainties of this part. The objective is to have a double pole z1 = z2 = 0.2
and two poles such as z3 = 0.1 and z4 = 0.3. The controller parameters are obtained
through the minimization of the cost function (27). The results of the optimization
problem resolution are the following: q0 = 0.2303, q1 = 0.1906 and q2 = 0.0118 .

For the uncertain parameter variations given in Figure 4, the results of the proposed
control scheme are illustrated in Figure 5.

Figure 4: Evolution of the uncertain parameter q(k).

Figure 5: Evolution of the robust PID control action (a), desired output and system output
(b).

For the chosen desired signal and uncertain parameter variations, the closed-loop
system has acceptable performances.
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5.2 Second example

Consider the nonlinear uncertain system described by the following expression [47]:

y(k + 1) =
y(k) y(k − 1) y(k − 2) u(k) [y(k − 2)− 1− q(k)]

1+ y2(k − 1)+ y2(k − 2)
+

u(k)

1+ y2(k − 1)+ y2(k − 2)
,

(35)
where q is a bounded uncertain parameter such as: q(k) ∈ [0 ; 0.5], u and y are the
system input and output, respectively.

5.2.1 Fuzzy modeling

The dynamics of the above system is described by the decomposed model (3). The linear
uncertain part yl is presented by the expression

yl(k + 1) = −a1u(k) y(k)− a2u(k) y(k − 1)− a3u(k) y(k − 2) + b1u(k) u(k), (36)

where a1u(k) , a2u(k), a3u(k) and b1u(k) are uncertain bounded parameters. They are
obtained by the nominal system linearization around some operating points: a1u(k) ∈
[−0.0761 ; 0.4003], a2u(k) ∈ [−0.4386 ; 0] , a3u(k) ∈ [−0.3516 ; 0.0543] and b1u(k) ∈
[0.5924 ; 1].

The nonlinear part ynl in the expression (3) is described by a set of IF-THEN fuzzy
rules

if u(k) is A1
r and y(k) is B1

r and y(k − 1) is B2
r and y(k − 2) is B3

r

then ynr(k + 1) = −er1 y(k)− er2 y(k − 1)− er3 y(k − 2) + f r
1 u(k). (37)

The rules number is R = 16 and the learning rate is ǫ = 0.2. The obtained modeling
results for the training set are given in Figure 6.

Figure 6: Evolution of the uncertain parameter (a), the input signal (b), the system and the
model outputs for the training set.

The modeling results for the validation set are illustrated in Figure 7.
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Figure 7: Evolution of the uncertain parameter (a), the input signal (b), the system and the
model outputs for the validation set.

This system can be also approximated by a global Takagi-Sugeno fuzzy system com-
posed of a set of IF-THEN fuzzy rules having the following form:

if u(k) is A1
r and y(k) is B1

r and y(k − 1) is B2
r and y(k − 2) is B3

r

then ymc
r (k + 1) = −gr1 y(k)− gr2 y(k − 1)− gr3 y(k − 2) + hr

1 u(k). (38)

The descent gradient method is applied for the estimation of the conclusions param-
eters. The rules number is R = 16 and the learning rate is ǫ = 0.2. For both models, the
same membership functions are used.

Decomposed fuzzy model Global Takgi-Sugeno fuzzy model
J (final) 0.025 0.025

Iteration number 4121 10999
E 0.0066 0.0079

Table 2: Comparison between the decomposed fuzzy model and the global Takagi-Sugeno
fuzzy one.

According to this table, the decomposed fuzzy model is slightly more accurate and
requires less time for the parameters training. It is due to the system dynamics decom-
position.

5.2.2 Robust pole assignment control

The robust PID controller (24) is applied for the control of the system (35). The PID
parameters are computed using the prescribed robust pole assignment and referring only
to the linear uncertain part (36) of the decomposed fuzzy model. The objective is to
have a double pole z1 = z2 = 0.1 and a double pole z3 = z4 = 0.2. The resulted PID
parameters are the following ones: q0 = −0.5658, q1 = 1.2047 and q2 = −0.5586.

For the uncertain parameter evolution given in Figure 8, the obtained control results
are illustrated in Figure 9.
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Figure 8: Evolution of the uncertain parameter q(k).

Figure 9: Evolution of the robust PID control (a), desired output and system output (b).

The resulted closed-loop system is stable and the static error is equal to zero for the
chosen uncertain parameter values. But, the obtained results for the transient time are
poor. So, the proposed control method is limited to the guarantee of desired perfor-
mances. In addition, there is no guarantee for the closed-loop system stability. This
may be caused by neglecting the nonlinear part of the model. So, in future works this
control approach must be robustified and a stability study must be done to guarantee
the performance and stability robustness of the closed-loop uncertain nonlinear system.

6 Conclusions

This study has developed new modeling and control schemes for nonlinear systems af-
fected by bounded uncertainties. The proposed model consists in dividing the behavior
of the considered system into two parts: a linear uncertain part and a nonlinear one. The
used techniques for the system modeling have been explained. In fact, the linear uncer-
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tain part has been obtained by the nominal system linearization around some operating
points and the nonlinear part has been approximated by a Takagi-Sugeno fuzzy system
whose parameters are estimated using the descent gradient method. A robust pole as-
signment control for the considered nonlinear system has been synthesized based only
on the linear uncertain part of the decomposed fuzzy model. Two simulation examples
have been treated to demonstrate the effectiveness of the suggested modeling approach
and to experiment the proposed control scheme.
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