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Abstract: In this paper, we propose a new approach to design a reduced observer
based state feedback control for bounded linear time variant systems by means of
shifted Legendre polynomials. The main objective is to force the controlled LTV

system output to follow that of a linear reference model. On these grounds, aug-
mented state modeling and useful Kronecker product properties are applied. Hence,
an optimization problem is derived. Once the observation and control gains are deter-
mined by solving the latter problem, the stability of the closed loop system is checked
through LMIs conditions. Simulation results illustrate the pertinence of the proposed
method.
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1 Introduction

Modeling a physical process is a crucial step toward its analysis and adapted control
synthesis. Indeed, the chosen mathematical model should be accurate enough in order to
describe correctly dynamics of the system evolution. Moreover, most physical systems are
described by nonlinear models which are not easy to study. A simplification alternative
consists in linearizing the systems around some operating points, the procedure remains a
very conservative approach. A global method consists in a linearization along a trajectory,
that often leads to a linear time varying system (LTV) [2]. Thus, this type of models
offer a good compromise between simplicity and ability to reproduce with fidelity the
behavior of some real processes namely, highway vehicle [1], electronic circuit design [3]
and biochemical systems [8]. Accordingly, several studies have focused on poles and zeros
definition for these particular systems [4], also problems related to the controllability
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and observability analysis [9], the identification [13,14], the stability analysis [7] and the
control [11, 12] of LTV systems have been the subject of many publications.

Orthogonal functions are a well developed mathematical tool for dynamic systems
analysis and control. In fact, it had been firstly introduced for optimal control [6] and
identification [16] of LTI systems. Lately, in literature there appeared extended works
to cover nonlinear systems identification [20], stabilization analysis [27] and optimal
control [25]. LTV systems have been also among the fields of application of that wise
approximation tool, namely, for model order reduction [22], state analysis [23], identifica-
tion [15] and optimal control [24]. Indeed, the projection of the state differential equation
of the dynamic system over an orthogonal basis and introducing useful properties of the
latter tool such as operational matrices jointly used with the Kronecker product may
transform the time depending differential equation into stationary algebraic relations.

In this work, shifted Legendre polynomials are basically used to deduce an observer
based state feedback control, the latter tool may have advantages over other orthogo-
nal functions. This was shown by examples [16] where shifted Legendre polynomials
converge to the exact solution of a differential equation faster than the other types of or-
thogonal functions, as, for example Walsh functions, Hermite and Laguerre polynomials.
We underline that the derived control law has to ensure, not only stability but also a
performance level dictated by a linear reference model used for tracking purposes, which
is effectively the main contribution of the proposed study compared to major methods
in literature which focused only on stabilization problem [17]. Consequently, a mathe-
matical development will be exposed which is based on the use of interesting properties
of shifted Legendre polynomials. The final result is given as a nonlinear criterion whose
minimization with optimization Toolbox routines of MATLAB leads to the desired con-
trol gains. The last step is to check the asymptotic stability of the closed loop system
through Bounded Real Lemma.

The paper is organized as follows. In Section 2, we introduce the studied systems
and explain the main objective of the work. In Section 3, the proposed development
for a reduced observer based control law applied to time variant linear systems using
shift Legendre polynomials is carried out. In Section 4, stability analysis is handled
using existing LMIs results for polytopic systems. In Section 5, the effectiveness of the
developed method is checked out by a DC motor benchmark.

2 Problem Statement

In this work we consider the linear time variant system described by the following state
equations:







ẋ(t) = A(t)x(t) +B(t)u(t),
y(t) = Cx(t),
x(0) = x0,

(1)

where u ∈ R
m is the control vector, x ∈ R

n is the state vector and y ∈ R
l is the output

vector. Matrices A(t), B(t), C and the vector x(t) have the following forms:

A(t) =

[

A11(t) A12(t)
A21(t) A22(t)

]

, B(t) =

[

B1(t)
B2(t)

]

, x(t) =

[

x1(t)
x2(t)

]

, C =
[

Il O1

]

with

O1 = 0(l, n− l), x1(t) ∈ R
l, B1(t) ∈ R

l,m.
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System (1) matrices could be written as ∀t > 0, A(t) = [aij(t)] and B(t) = [bij(t)] and
each term verifies the following boundedness:

aij 6 aij(t) 6 aij and bij 6 bij(t) 6 bij , (2)

where aij , bij and aij , bij are some constant values corresponding respectively to the

minimum and maximum of aij(t) and bij(t).
We assume that such system satisfies the controllability and observability conditions

[9]. Our objective is then to design both reduced order observer and state feedback
control law in order to ensure desired performances for the controlled system.

2.1 The state observer structure

We choose to design a reduced order observer which reproduces the non measurable state
component x2(t). Such observer is then described by state model of the following form:







ẇ(t) = (A22(t)− LrA12(t))w(t) + (B2(t)− LrB1(t))u(t)
+((A22(t)− LrA12(t))Lr + (Ā21(t)− LrA11(t)))y(t),
x̂2(t) = w(t) + Lry(t).

(3)

In these equations w(t) ∈ R
n−l is the state observer vector and x̂2(t) is the observation

of x2(t). Lr is the gain of the order observer.
Let us define the observation error by:

εr(t) = x2(t)− x̂2(t). (4)

It comes out then:

ε̇r(t) = ẋ2(t)− ˙̂x2(t) = (A22(t)− LrA12(t)) εr(t). (5)

The observation gain Lr is determined such that the observation error has the same
dynamics as a chosen observation reference model described by a linear state equation

ε̇r,ref(t) = Mrεr,ref (t), (6)

where Mr is a ((n− l)× (n− l)) matrix chosen such that the observer be faster than the
controlled system.

2.2 Strategy of control

The control strategy that we plan to develop uses the desired output yc(t), measured
and observed components of the state vector (y(t) and x̂2(t)). It can be expressed in the
following form:

u(t) = Nyc(t)−K1x1(t)−K2x̂2(t) (7)

with

N ∈ R
m×m,K1 ∈ R

m×l and K2 ∈ R
m×(n−l).

We can express the control law by the following equation:

u(t) = Nyc(t)−K1x1(t)−K2x̂2(t) = Nyc(t)−K1x1(t)−K2x2(t) +K2εr(t). (8)
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The gain matrices N , K1 and K2 are determined such that the controlled system presents
the same behavior of a chosen reference linear model:

{

ż(t) = Ez(t) + Fyc(t),
yr(t) = Gz(t),

(9)

where yc ∈ R
m is the input vector, z ∈ R

r is the state vector and yr ∈ R
l is the output

vector.

3 Proposed Observation and Control Approach

By taking into account, equations (1) and (8), state variables could be written as folows:







ẋ1(t) = (A11(t)−B1(t)K1)x1(t)+(A12(t)−B1(t)K2)x2(t)+B1(t)Nyc(t)+B1(t)K2εr(t),
ẋ2(t) = (A21(t)−B2(t)K1)x1(t)+(A22(t)−B2(t)K2)x2(t)+B2(t)Nyc(t)+B2(t)K2εr(t),
y(t) = x1(t).

(10)
The augmented state is defined by the concatenation of states related to the original
system and the observation error:

x̃(t) =





x1(t)
x2(t)
εr(t)



 .

Hence, equations of the closed loop system take the following form:

{

˙̃x(t) = Ã(t)x̃(t) + B̃(t)yc(t),

ỹ(t) = C̃x̃(t),
(11)

with

Ã(t) =





ã11 ã12 ã13
ã21 ã22 ã23

0(n− l, l) 0(n− l, n− l) ã33



 , B̃(t) =





B1(t)N
B2(t)N

O2



 , C̃ =
[

Il O3

]

,

where

ã11 = A11(t)−B1(t)K1, ã12 = A12(t)−B1(t)K2, ã21 = A21(t)−B2(t)K1,
ã22 = A22(t)−B2(t)K2, ã13 = B1(t)K2, ã23 = B2(t)K2, ã33 = A22(t)− LrA12(t),
O2 = 0(n− l,m), O3 = 0(l, 2(n− l)).

The projection of the matrices A11(t), A12(t), A21(t), A22(t), B1(t) and B2(t) in a basis of
shifted Legendre polynomials truncated to an order N (See Section 7.3 of the Appendix)
can be written as:

A11(t) =
N−1
∑

i=0

A11,iNsi(t), A12(t) =
N−1
∑

i=0

A12,iNsi(t), A21(t) =
N−1
∑

i=0

A21,iNsi(t),

A22(t) =
N−1
∑

i=0

A22,iNsi(t), B1(t) =
N−1
∑

i=0

B1,iNsi(t), B2(t) =
N−1
∑

i=0

B2,iNsi(t).

(12)
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We can deduce now the projection of the matrice Ã(t) and B̃(t) in the same basis of
shifted Legendre polynomials truncated to an order N , with:

ÃiN =





ã11,iN ã12,iN ã13,iN
ã21,iN ã22,iN ã23,iN

0(n− l, l) 0(n− l, n− l) ã33,iN



 , B̃iN =





B1,iNN
B2,iNN

O2



 ,

where

ã11,iN = A11,iN −B1,iNK1, ã12,iN = A12,iN −B1,iNK2, ã21,iN = A21,iN − B2,iNK1,
ã22,iN = A22,iN −B2,iNK2, ã13,iN = B1,iNK2, ã23,iN = B2,iNK2,
ã33,iN = A22,iN − LrA12,iN .

The control law defined by the equation (8) has to carry the dynamics of the closed
loop system to reproduce as perfectly as possible that of a reference model which may
be defined as follows:

{

˙̃z(t) = Ẽz̃(t) + F̃ yc(t),

ỹr(t) = G̃z̃(t),
(13)

with

z̃ =

[

z
εref

]

, Ẽ =

[

E O4

OT
4 Mr

]

, F̃ =

[

F
O5

]

, G̃ =
[

G O6

]

,

O4 = 0(nr, n− l), O5 = 0(n− l,m) and O6 = 0(l, nr + n− 2l), where nr is the order of
the reference model defined by the equation (9).

The integration of the equation (11) on the time interval [0, t] leads to:

x̃(t)− x̃(0) =

t
∫

0

Ã(τ)x(τ)dτ +

t
∫

0

B̃(τ)yc(τ)dτ , (14)

where x̃(0) denotes the initial conditions vector.
The projection of the state vector x̃(t) and the order output yc(t) on the basis of

shifted Legendre polynomials leads to:

X̃NSN (t)− X̃0NSN (t) =
t
∫

0

N−1
∑

i=0

ÃiNsi(t)X̃NSN (t) +
t
∫

0

N−1
∑

i=0

B̃iNsi(t)ycNSN (t) (15)

Introducing now the product operational matrix (See Section 7.2 of Appendix) in equa-
tion (15) yields:

X̃NSN (t)− X̃0NSN (t) =
t
∫

0

N−1
∑

i=0

ÃiN X̃NMiSN (t) +
t
∫

0

N−1
∑

i=0

B̃iNycNMiSN (t). (16)

The use of the integration operational matrix (See Section 7.2 of the Appendix) yields:

X̃NSN (t)− X̃0NSN (t) =
N−1
∑

i=0

ÃiN X̃NMiPNSN (t) +
N−1
∑

i=0

B̃iNycNMiPNSN(t). (17)

Simplifying by the vector SN (t) and making use of the vec operator, which transforms a
matrix structure into a vector one and the specific property [21]

vec(ABC) =
(

CT ⊗A
)

vec(B), (18)
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equation (17) could be written as follows:

vec(X̃N )− vec(X̃0N ) =
N−1
∑

i=0

(

(MiPN )
T
⊗ ÃiN

)

vec(X̃N )

+
N−1
∑

i=0

(

(MiPN )
T
⊗ B̃iN

)

vec(ycN),

(19)

it comes out:

vec(X̃N) =









[

I((n−l)+n)×N −
N−1
∑

i=0

(

(MiPN )T ⊗ ÃiN

)

]−1

×
[

vec(X̃0N ) +

[

N−1
∑

i=0

(

(MiPN )
T
⊗ B̃iN

)

]

vec(ycN )

]









. (20)

In the same way the projection of the closed loop reference model (13), and the use of
the operational matrix of integration yield:

vec(Z̃N ) =









[

I(nr+(n−l))×N −
N−1
∑

i=0

(

PN
T ⊗ Ẽ

)

]−1

×
[

vec(Z̃0N ) +

[

N−1
∑

i=0

(

PN
T ⊗ F̃

)

]

vec(ycN)

]









. (21)

The condition permitting to have a similar behavior of the controlled system (11) and
reference model (13) can be written mathematically as follows:

ỹ(t) = ỹr(t) ⇔ C̃X̃(t) = G̃Z(t) ⇔
(

IN ⊗ C̃
)

vec(X̃N) =
(

IN ⊗ G̃
)

vec(Z̃N). (22)

It comes out:









(

IN ⊗ C̃
)

[

I((n−l)+n)×N −
N−1
∑

i=0

(

(MiPN )
T
⊗ ÃiN

)

]−1

×
[

vec(X̃0N ) +

[

N−1
∑

i=0

(

(MiPN )
T
⊗ B̃iN

)

]

vec(ycN)

]









=









(

IN ⊗ G̃
)

[

I(nr+(n−l))×N −
N−1
∑

i=0

(

PN
T ⊗ Ẽ

)

]−1

×
[

vec(Z̃0N ) +

[

N−1
∑

i=0

(

PN
T ⊗ F̃

)

]

vec(ycN)

]









.

(23)

Notice that

Z̃0N =

[

Z0N

εr,ref,0N

]

=

[

Inr

OT
4

]

Z0N +

[

O4

In−l

]

εr,ref,0N

and

X̃0N =

[

X0N

εr,0N

]

=





X1,0N

X2,0N

εr,0N



 =

[

Il
O7

]

X1,0N +





O8

In−l

O9



X2,0N

[

O10

In−l

]

εr,0N ,

where O7 = 0(2(n− l), l),O8 = 0(l, n− l), O9 = 0(n− l, n− l) and O10 = 0(n, n− l).
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In order to simplify the control problem, let us consider null initial condition for the
reference model (Z0N = 0) and null initial condition for the measurable components state
part (X1,0N = 0).

Moreover, intial conditions of the observation error, which are a priori unkown, should
meet those of the reference observation error model in order to minimize the distance
between both models (εr,0N = εr,ref,0N ). Consquently, equation (23) could be written
as follows:





















(

IN ⊗ C̃
)

[

I((n−l)+n)×N −
N−1
∑

i=0

(

(MiPN )
T
⊗ ÃiN

)

]−1

×














IN ⊗





O8

In−l

O9







 vec(X2,0N) +

(

IN ⊗

[

O10

In−l

])

vec(εr,ref,0N )

+

[

N−1
∑

i=0

(

(MiPN )T ⊗ B̃iN

)

]

vec(ycN)

































=









(

IN ⊗ G̃
)

[

I(nr+(n−l))×N −
N−1
∑

i=0

(

PN
T ⊗ Ẽ

)

]−1

×
[ (

IN ⊗

[

O4

In−l

])

vec(εr,ref,0N ) +

[

N−1
∑

i=0

(

PN
T ⊗ F̃

)

]

vec(ycN)

]









.

(24)

The relation (24) can be written as:

∆1vec(ycN) + ∆2vec(X2,0N ) + ∆3vec(εr,ref,0N ) = 0, (25)

where

∆1 =



























(

IN ⊗ C̃
)

[

I((n−l)+n)×N −
N−1
∑

i=0

(

(MiPN )
T
⊗ ÃiN

)

]−1

×
[

N−1
∑

i=0

(

(MiPN )
T
⊗ B̃iN

)

]









−

[

(

IN ⊗ G̃
)

[

I(nr+(n−l))×N −
N−1
∑

i=0

(

PN
T ⊗ Ẽ

)

]−1 [
N−1
∑

i=0

(

PN
T ⊗ F̃

)

]

]



















,

∆2 =





(

IN ⊗ C̃
)

[

I((n−l)+n)×N −
N−1
∑

i=0

(

(MiPN )T ⊗ ÃiN

)

]−1


IN ⊗





O8

In−l

O9











 ,

∆3 =













[

(

IN ⊗ C̃
)

[

I((n−l)+n)×N −
N−1
∑

i=0

(

(MiPN )T ⊗ ÃiN

)

]−1 (

IN ⊗

[

O10

In−l

])

]

−

[

(

IN ⊗ G̃
)

[

I(nr+(n−l))×N −
N−1
∑

i=0

(

PN
T ⊗ Ẽ

)

]−1 (

IN ⊗

[

O4

In−l

])

]













In order to verify such relation for any initial conditions X2,0N , εr,ref,0N and for any
output order ycN , we must ensure:

∆1 = 0, ∆2 = 0 and ∆3 = 0.

However, these conditions could not be totally realized. Hence, we have to look for
a pseudo-solution of this problem by minimizing the norms of matrices ∆1, ∆2 and ∆3,
denoted respectively δ1, δ2 and δ3, using optimization MATLAB routines.
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4 Stability Analysis of Closed Loop System

Once observation control parameters Lr, N , K1 and K2 are determined, the LTV model
defined by the equation (11) can be expressed in the following polytopic form such as

M =
[

Ã
∣

∣

∣B̃
]

belongs to a polytope of matrices M defined by [5]:

M =

{

M =
[

Ã(θ)
∣

∣

∣B̃(θ)
]

/M(θ) =
v

∑

i=1

(

θi

[

Ãi

∣

∣

∣B̃i

])

}

,

where

θ ∈ Θ =



















θ =











θ1
θ2
...
θv











/

v
∑

i=1

θi = 1



















.

The closed loop system (11) is mean square asymptotically stable with anH∞ disturbance
attenuation γ if and only if there exists a (n+ (n− l))× (n+ (n− l)) matrix P ≻ 0 such
that i = 1 . . . v, [10]:





ÃT
i P + PÃi PB̃i C̃T

B̃T
i P −γ2Im 0

C̃ 0 −Ip



 ≺ 0. (26)

5 Simulation Example

Let us consider the separated excitation DC motor described by the following equation
[26]:



























dΩ(t)
dt

= − fΩ(t)
J

+ KmΦ(t)I(t)
J

,

dI(t)
dt

= −KeΦ(t)Ω(t)
L

− RI(t)
L

+ V (t)
L

,

x(0) =
[

0 0.2
]T

,

where y = Ω(t) denotes rotational speed of rotor as measured output, I(t) and V (t) are
respectively the current and voltage of rotor, Φ(t) is the rotor flux. For this example, we
will assume the values for the physical parameters given in Table 1.

The rotor flux is considered as a time depending function defined by the following
relation:

Φ(t) = Φ0(1 + 0.1 sin(πt))

with Φ0 = 1.
The considered reference model of the controlled system is a second order system

characterized by the following parameter matrices:

E =

[

−10.5 −2.4
2 −14.75

]

, F =

[

0
1.5

]

, G =
[

0 10.15
]

.

The reference model of the observation error is characterized by the matrix:

Mr = −5.
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Table 1: Motor parameters.

L: rotor inductance 0.5 H
R: rotor resistance 2 Ω

Ke: electromotive force against 0.1 NmWb−1A−1

Km: electromagnetic torque 0.1 NmWb−1A−1

J : rotor and load inertias 0.006 kgm−2s−2

f : viscous friction coefficient 0.01 Nms

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

 

 
controlled DC motor
reference model

Figure 1: Step response of controlled DC motor and the considered reference model.

For N = 10 ( number of elementary SLPs functions) and T=5s, the obtained control
gains are the following:

N = 175.3, K1 = 158.6, K2 = 160.5, Lr = 1.8.

The norms of matrices ∆1, ∆2 and ∆3 are given by the following:

δ1 = 0.0446, δ2 = 0.0298, and δ3 = 0.0335.

Figure 1 illustrates step responses of controlled DC motor and the considered reference
model over an interval [0, T ] . Figure 2 shows the free motion of the current of rotor
and the observer. The asymptotic stability with an H∞ disturbance attenuation γ of the
closed loop system is verified by the feasible solution of the LMI defined in relation (26).
Obtained LMI variables were:

γ = 2.3547,

P =





0.8258 0.0418 0.0278
0.0418 0.0114 0.0048
0.0278 0.0048 0.0100



 .
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0 0.5 1 1.5 2 2.5
−0.05

0

0.05
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0.15

0.2

Time (s)

 

 

observer current
current of rotor

Figure 2: Free motion of the current of rotor and the observer.

6 Conclusions

In this paper, a new analytical approach was introduced for the synthesis of a reduced
observed feedback control for linear time variant systems by using shift Legendre poly-
nomials as an approximation tool. The use of the operational matrix of integration and
operational matrix of product has allowed the transformation of differential equations
into algebraic ones depending on gains of regulators. The main contribution of the paper
can be summarized as the system performance guaranty jointly with stability which is
obviously ensured. This is done by tracking a linear reference model. The effectiveness
of the developed method is checked out by a DC motor benchmark. The simulations re-
sults obtained show clearly the accuracy of the synthesized control law. In future works,
we intend to extend our development to handle the synthesis of observed state feedback
control for nonlinear systems via orthogonal functions.

7 Appendix

7.1 Legendre polynomials

Legendre polynomials denoted by LPs in litterature, have been the most used ones in
continuous control problems due to their high accuracy and a unit weighting function.
That is why we use them in our work. They are defined over the time interval τ ∈ [−1, 1]
and given by the recursive formula [18]:

(n+ 1)Pn+1(τ) = (2n+ 1) τPn(τ) − nPn−1(τ), for n = 1, 2, · · · (27)

with P0(τ) = 1 and P1(τ) = τ .
In order to obtain orthogonal Legendre polynomials on the interval [0, tf ], the follow-

ing change of variable is performed:

τ =
2t

tf
− 1 with 0 ≤ t ≤ tf (28)
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for 0 ≤ t ≤ tf , the shifted Legendre polynomials, denoted by SLPs, sn(t) are thus given
by:

(n+ 1) sn+1(t) = (2n+ 1)

(

2t

tf
− 1

)

sn(t)− nsn−1(t) (29)

with s0(t) = 1 and s1(t) =
2t
tf

− 1.

The principle of orthogonality of shifted Legendre polynomials is expressed by the
following equation [19]:

tf
∫

0

si(t)sj(t)dt =
tf

2i+ 1
δij . (30)

So, any integrable function on 0 ≤ t ≤ tf can be developed into a series of shifted
Legendre polynomials with a truncation to an order N under the following relation:

f(t) ∼=

N−1
∑

i=0

fisi(t) = FNSN (t) (31)

with
FN =

[

f0 f1 · · · fN−1

]

and
SN (t) =

[

s0(t) s1(t) · · · sN−1(t)
]T

.

7.2 Operational matrices

In the SLPs case, the operational matrix of integration PN could be built through the
following recurrent relation:

t
∫

0

sn(τ)dτ =
tf
2

×
1

2n+ 1
(sn+1(t)− sn−1(t)) (32)

and
t

∫

0

s0(τ)dτ =
tf
2
(s0(t) + s1(t)). (33)

Hence, the following algebraic relation for integral calculus could be stated:

t
∫

0

SN (t)dt ∼=PNSN (t). (34)

The operational vectors of product Kij have constant coefficients and verify the property
[20]:

∀i, j ∈ {0, 1, . . . , N − 1 } , si(t)sj(t) ∼= KT
ijSN (t). (35)

From the relationship (35), we can readily get the operational matrix of product:

MiN =







KT
i,0

...
KT

i,N−1






(36)
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that allows the approximation:

si(t)SN (t) ∼= MiNSN (t). (37)

7.3 Matrix functions approximation

Any time dependent matrix function A(t) ∈ R
n×m given by A(t) = [aij(t)] where aij(t)

are integrable over an interval 0 ≤ t ≤ tf can be developed into a series of shifted
Legendre polynomials with a truncation to an order N under the following relation:

A(t) ∼=

N−1
∑

i=0

AiNsi(t), (38)

where AiN ∈ R
n×m for i ∈ {0, 1, ..., N − 1} are matrices with constant coefficients.
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