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Abstract: In this paper we have investigated the complete integrability of the system
of six coupled nonlinear ODEs (ordinary differential equations), which arose in the
ODE reduction of uniformly stratified fluid contained in rotating rectangular box of
dimension L × L × H . The reduced system is completely integrable if the Rayleigh
number Ra = 0. Whereas, Ra 6= 0 is the case of non integrability and we have
obtained the solutions in the form of logarithmic psi-series. We conclude that weak
singular solutions exist with movable pole type singularity, which are cluster in a
self-similar fashion.
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1 Introduction

In the fluid dynamics, the flow of fluid in the atmosphere and in the ocean is governed
by Boussinesq equations. Majda and Shefter [3] analyzed certain ODE reduction of
Boussinesq equations. Srinivasan et al. [15] extended this work and they gave the detail
mathematical analysis of reduced system of six coupled ODEs. Whereas, Desale and
Dasre [5] wrote the C-Programme to determine the numerical solutions on stable and
unstable manifolds. Furthermore, Desale [4] had given the complete analysis of the
system and also tested the system for complete integrability by determining four first
integrals and used the Jacobi’s theorem. Also, he has demonstrated the stability of non
degenerate critical point. For the similar text of bifurcation analysis near the degenerate
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critical point one may refer to [14]. The rigorous mathematical analysis and special
solutions of rotating stratified Boussinesq equations have been discussed by Desale and
Sharma in their paper [7].

In his study of onset of instabilities in the stratified fluids at large Richardson number
Paul Painlevé [12, 13] classified algebraic differential equations of first and second order
whose solutions in the complex domain are devoid of movable essential singularities or
movable branch point. The ODE possessing this property is said to be of Painlevé type.
Painlevé test in view of partial differential equations is generally known as WTC (Weiss-
Tabor-Carnevale [16]) test which is further modified by Kichenassamy and Srinivasan [9].
In their paper [8], Desale and Srinivasan tested the reduced system of stratified Boussi-
nesq equations in the light of the ARS (Ablowitz, Ramani and Segur [1]) conjuncture.
In continuation of this work Desale & Patil [6] tested the system of six coupled ODEs
for complete integrability using the Painlevé test.

In this paper we have tested the system of six coupled nonlinear ODEs for its complete
integrability via Painlevé test. We have the non integrable case for the Rayleigh number
Ra 6= 0 causing the singular solution in the form of logarithmic psi-series, which is the
weak solution. The presence of logarithm term in the series implies that the solution in
question have singularity which is cluster in self similar fashion. This is sometime viewed
as possible symptom for non-integrable behavior.

This paper consists of five sections. Section 1 is introduction, Section 2 gives ODE
reduction of uniformly stratified fluid contained in rotating rectangular box. In Section
3, we provided the preliminary work which is the base for investigation of weak solutions
in the non integrable case. Whereas, in Section 4, we determined the weak solutions.
Finally, we conclude the result in Section 5.

2 Dynamics of an Uniformly Stratified Fluid Contained in Rotating Box

We now begin by describing the rotating stratified Boussinesq equations (see Majda [2])

D~v

Dt
+ f(ê3 × ~v) = −∇p+ ν(∆~v)−

gρ̃

ρb
ê3,

div ~v = 0,
Dρ̃

Dt
= κ∆ρ̃,

(1)

where ~v denotes the velocity field, ρ is the density which is the sum of constant reference
density ρb and perturbation density ρ̃, p is the pressure, g is the acceleration due to gravity
that points in −ê3 direction, f is the rotation frequency of earth, ν is the coefficient of
viscosity, κ is the coefficient of heat conduction and D

Dt
= ∂

∂t
+ (~v · ∇) is a convective

derivative. For more about rotating stratified Boussinesq equations one may see Majda
[2].

In the frame of reference of an uniformly stratified fluid contained in rotating rectan-
gular box of dimension L×L×H , which is temperature stratified with fixed zeroth order
moments of mass and heat (so that there is neither net evaporation or precipitation,
nor any net river input or output, and neither heating nor cooling). The container is
assumed to be in steady uniform rotation on an f -plane. Maas [11] reduces the system
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of equations (1) into the following system of six coupled ODEs:

Pr−1 d~w

dt
+ f ′ê3 × ~w = ê3 × ~b− (w1, w2, rw3) + T̂ ~T,

d~b

dt
+ ~b× ~w = −(b1, b2, µb3) +Ra~F.

(2)

In these equations, ~b = (b1, b2, b3) is the center of mass, ~w = (w1, w2, w3) is the basin’s

averaged angular momentum vector, ~T is the differential momentum, ~F are the buoyancy
fluxes, f ′ = f/2rh is the earth rotation, r = rv/rh is the friction (rv,h are the Rayleigh
damping coefficients), Ra is the Rayleigh number, Pr is the Prandtl number, µ is the
diffusion coefficient and T̂ is the magnitude of the wind stress torque.

Neglecting diffusive and viscous terms, Maas [11] considers the dynamics of an ideal
rotating, uniformly stratified fluid in response to forcing. He assumes this to be due solely
to differential heating in the meridional (y) direction. ~F = (0, 1, 0), the wind effect is

neglected i.e. ~T = 0. For Prandtl number Pr, equal to one, the system of equations (2)
reduces to the following ideal rotating, uniformly stratified system of six coupled ODEs

d~w

dt
= −f ′ê3 × ~w + ê3 × ~b,

d~b

dt
= −~b× ~w +Ra~F.

(3)

In his paper, Desale [4] has demonstrated the complete integrability of the system (3)
for Ra = 0 using the first integrals and Jacobi’s theory. Desale and Patil [6] continued
this work and tested the system for complete integrability via Painlevé test. In this
paper we investigate the case of non integrability Ra 6= 0. In the following section we
consider the case of non integrability and obtain the weak singular solution in the form
of logarithmic-psi series.

3 Preliminaries

We have a system of ODEs (3), which can be written component-wise as:

ẇ1 = f ′w2 − b2, ẇ2 = −f ′w1 + b1, ẇ3 = 0,

ḃ1 = w2b3 − w3b2, ḃ2 = w3b1 − w1b3 +Ra, ḃ3 = w1b2 − w2b1.
(4)

Since ẇ3 = 0, which gives us w3 = constant = k1. Consequently, we have the following
system of ODEs:

ẇ1 = f ′w2 − b2, ẇ2 = −f ′w1 + b1,

ḃ1 = w2b3 − k1b2, ḃ2 = k1b1 − w1b3 +Ra, ḃ3 = w1b2 − w2b1.
(5)

Desale and Patil [6] obtained the solution of the system (5) in the form of the following
power series:

w1(t) =

∞
∑

j=0

w1jτ
j+m1 , w2(t) =

∞
∑

j=0

w2jτ
j+m2 ,

b1(t) =

∞
∑

j=0

b1jτ
j+n1 , b2(t) =

∞
∑

j=0

b2jτ
j+n2 , b3(t) =

∞
∑

j=0

b3jτ
j+n3 ,

(6)
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where τ = t − t0 and t0 is an arbitrary position of singularity. Also, the authors found
that there were several possible cases of dominant balance of the system (5) and among
those possible cases they obtained the singular solution only in the following case of
principle dominant balance

ẇ1 = −b2, ẇ2 = b1, ḃ1 = w2b3, ḃ2 = −w1b3, ḃ3 = w1b2 − w2b1. (7)

Consequently, they have determined the exponents as

m1 = m2 = −1, n1 = n2 = n3 = −2 (8)

and possible branches of leading order coefficients as listed below

w10 = ±

√

−4− k22 , w20 = k2, b10 = −k2, b20 = ±

√

−4− k22 , b30 = 2. (9)

Furthermore, the authors have given the following recursive relations to determine the
coefficients w1j , w2j , b1j, b2j and b3j for j = 1, 2, 3 . . ..













j − 1 0 0 1 0
0 j − 1 −1 0 0
0 −b30 j − 2 0 −w20

b30 0 0 j − 2 w10

−b20 b10 w20 −w10 j − 2

























w1j

w2j

b1j
b2j
b3j













=













Aj

Bj

Cj

Dj

Ej













, (10)

where
Aj = f ′w2(j−1), Bj = −f ′w1(j−1),

Cj = −k1b2(j−1) +

j−1
∑

k=1

w2kb3(j−k),

Dj = k1b1(j−1) −

j−1
∑

k=1

w1kb3(j−k),

Ej =

j−1
∑

k=1

w1kb2(j−k) −

j−1
∑

k=1

w2kb1(j−k) .

(11)

The above recursive relations (10) determine the unknown expansion coefficients uniquely
unless the determinant of coefficient matrix is zero. Those values of j at which the
determinant of coefficient matrix vanishes are called the resonances and these are

j = −1, 0, 2, 3, 4. (12)

We see that all resonances are simple. Here j = −1, is a usual resonance and j = 0 is
corresponding to the arbitrariness of w20 in leading order coefficients.

Desale and Patil [6] have considered the following case of leading order coefficients

w10 =
√

−4− k22 , w20 = k2 (arbitrary constant),

b10 = −k2, b20 =
√

−4− k22 , b30 = 2
(13)

and they have determined the singular solution passing through it. Ultimately they
have checked the compatibility conditions at j = 1 and j = 2. They have obtained the
following expansion coefficients:

w11 = 1
2 (f

′k2 − k1k2), w21 = 1
2 (−f ′ + k1)

√

−4− k22 ,

b11 = f ′
√

−4− k22 , b21 = f ′k2, b31 = 0.
(14)
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w12 = 1
2 (f

′k1 − k3)
√

−4− k22 , w22 = k2

2 (f ′k1 − k3),

b12 = k2

2

[

(f ′)2 − k3
]

, b22 = 1
2

[

k3 − (f ′)2
]
√

−4− k22 , b32 = k3.
(15)

An arbitrary constant b32 = k3 involved in (15) because of j = 2 is a resonance. While
checking the compatibility conditions at resonance j = 3, they have concluded that the
compatibility condition holds only if Ra = 0. Implying that Ra 6= 0 is a non integrable
case. Thus, it motivates us to study this non integrable case and in the following section
we are going to obtain weak singular solutions.

4 Weak Singular Solution

In this section we have studied the non integrable case of system (5) that is, we have
obtained the weak singular solutions in terms of logarithmic psi series.

We are going to find the singular solutions in the form of

tν
∑

m≥l≥0

um,l(x)t
m(ln t)l, (16)

which are suggested by Kichenassamy and Srinivasan [9]. They also made an interesting
remark that l = 1 suffices if all the resonances are simple and 1 is not a resonance. In
this case, we also have simple resonances j = −1, 0, 2, 3, 4. Therefore, our solution will
be in the form of

tν
∑

m≥1

um,1(x)t
m(ln t). (17)

With above remarkable feature and compatibility conditions hold for j = 0, 1 and 2,
we restructure the power series given by (6) as follows:

w1(t) = w10τ
−1 + w11 + w12τ +

∞
∑

j=3

w1j(log τ)τ
j−1,

w2(t) = w20τ
−1 + w21 + w22τ +

∞
∑

j=3

w2j(log τ)τ
j−1,

b1(t) = b10τ
−2 + b11τ

−1 + b12 +

∞
∑

j=3

b1j(log τ)τ
j−2,

b2(t) = b20τ
−2 + b21τ

−1 + b22 +

∞
∑

j=3

b2j(log τ)τ
j−2,

b3(t) = b30τ
−2 + b31τ

−1 + b32 +

∞
∑

j=3

b3j(log τ)τ
j−2.

(18)

In the above equations (18) expansion coefficients w1j , w2j , b1j , b2j and b3j for j = 1, 2, 3
are given by the equations (13), (14) and (15). The power series given by (18) provide
us the weak singular solution in the form of logarithmic psi series.

• Compatibility condition at the resonance j = 3. Now we proceed to check
the compatibility condition at the resonance j = 3. At the resonance level j = 3, we
substitute equations (18) into the system of differential equations (5), then equating like
powers of τ and τ(log τ) with j = 3, we get the following systems of non-homogeneous
linear equations (19) and (20)

w13 = f ′w22, w23 = −f ′w12, b13 = k3w21 − k1b22,
b23 = k1b12 − k3w11 +Ra, b33 = w11b22 + w12b21 − w21b12 − w22b11.

(19)
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2w13 = −b23, 2w23 = b13, b13 = b33w20 + w23b30,
b23 = −w10b33 − w13b30, b33 = w13b20 + w10b23 − w23b10 − w20b13.

(20)

Solving (19) and (20) together, we obtain the system of linear equations, which is in
matrix form as given below













0 0 0 1 0
0 0 1 0 0
0 2 0 0 k2
−2 0 0 0 −

√

−4− k22
√

−4− k22 −k2 −k2
√

−4− k22 0

























w13

w23

b13
b23
b33













=













−2f ′w22

−2f ′w12

w21b32 − k1b22
k1b12 − w11b32 +Ra

w11b22 + w12b21 − b12w21 − w22b11













.

(21)

Further, we solve the system and expansion coefficient are uniquely determined, which
are listed below

w13 =
(2f ′2k1 −Rak2 − 2f ′k3)k2

4(2 + k22)
, w23 =

(2(f ′2)k1 −Rak2 − 2f ′k3)
√

−4− k22
4(2 + k22)

,

b13 = −f ′(k1f
′ − k3)

√

−4− k22 , b23 = f ′k2(−f ′k1 + k3),

b33 =
(Ra+ f ′2k1k2 − f ′k2k3)

√

−4− k22
2(2 + k22)

.

(22)
• Compatibility condition at the resonance j = 4. Again we substitute (18) into
the system (5) and in these equations, we substitute the earlier determined expansion
coefficients which are given by (13), (14), (15) and (22). We simplify the both sides of
resultant equations and equating the powers of τ2 and τ2(log τ), we obtain the following
non-homogeneous systems of linear equations, which are given by the following equations

w14 = 0, w24 = 0, b14 = w22b32, b24 = −w12b32, b34 = −w22b12 + w12b22. (23)

3w14 = f ′w23 − b24,
3w24 = −f ′w13 + b14,
2b14 = w21b33 − w30b23 + w20b34 + w24b30,
2b24 = w30b13 − w10b34 − w11b33 − w14b30,
2b34 = w11b23 + w13b21 − w21b13 + w23b11

+ w14b20 − w24b10 − w20b14 + w10b24.

(24)

We solve the equations (23) and (24) together in the similar way as we adopted in the
previous case and determine the expansion coefficients uniquely at this resonance level,
which are listed below

w14 = 1
16(2+k2

2
)

[(

− 2f ′Rak2 − 2f ′2k21(8 + 3k22)− 16k23 + 2k22k3f
′2 − 4k22k

2
3

+ 2k42k
2
3 + 2Rak1k2 + 32f ′k1k3 − 2f ′3k22 + 10f ′k22k3 − 2f ′k42k3

)
√

−4− k22
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+
(

k62k3 + 8k22k3 + 6k42k3 − k62f
′ − 8f ′k22 − 6f ′k42

)

(−f ′2 + k3)
]

,

w24 = 1
16(2+k2

2
)

[(

8k2k3 + 6k32k3 + k52k3 − 8f ′k1k2 − 6f ′k32 − f ′k52
)

(f ′2 − k3)
√

−4− k22 + 2(k1Ra− f ′Ra− f ′k1k2(f
′2 − k3))(k

2
2 + 4)

− 2f ′2k21k2(4 + 3k22) + 8f ′2k2k3 + 2k32k3(f
′2 + 2k3 + k22k

2
3)− 2f ′k1k

5
2k3

]

b14 =
f ′k2(2f

′2k1 −Rak2 − 2f ′k3)

4(2 + k22)
, b24 =

f ′
√

−4− k22(2f
′2k1 −Rak2 − 2f ′k3)

4(2 + k22)
,

b34 = 1
8

[

k22((f
′3)k1 − f ′2k3 − f ′k1k3 + k23)

√

−4− k22 + 2k22k3(f
′k1 − k3)

]

.
(25)

• Compatibility condition for j ≥ 5. Here, we provide the recursion relations by
which we can determine expansion coefficients of logarithmic psi series (18) for j ≥ 5.
These relations will be obtained by substituting (18) into the system (5) and then equat-
ing the powers of τ j and τ j(log τ). This will result into two non homogeneous systems of
linear equations. Further, we combine these two systems together, the resultant system
is as given below that lead us to determine all the expansion coefficients













0 0 0 1 0
0 0 1 0 0
0 b30 0 0 w20

b30 0 0 0 w10

−b20 b10 w20 −w10 0

























w1j

w2j

b1j
b2j
b3j













=













Aj
∗

Bj
∗

Cj
∗

Dj
∗

Ej
∗













, (26)

where

Aj
∗ = f ′w2(j−1), Bj

∗ = f ′w1(j−1),
Cj

∗ = k1b2(j−1) − b31w2(j−1) − b32w2(j−2) − w21b3(j−1) − w22b3(j−2),
Dj

∗ = −k1b1(j−1) + w11b3(j−1) + w12b3(j−2) + b31w1(j−1) + b32w1(j−2),
Ej

∗ = w11b2(j−1) + w12b2(j−2) + b21w1(j−1) + b22w1(j−2)

+ w21b1(j−1) + w22b1(j−2) − b11w2(j−1) − b12w2(j−2).

(27)

From the equation (26), we see that the determinant of coefficient matrix is nonzero for
the given leading order coefficients this implies that all expansion coefficients for j ≥ 5
are determined uniquely in terms of predetermined coefficients.

During the implementation of Painlevé algorithm with logarithmic terms, we observed
that all compatibility conditions were satisfied. Hence, the system (5) passes the Painlevé
test which indicate that the weak singular solution of the system (5) exists. The weak
singular solution of (3) in the considered case of leading order coefficients is as follows

w1(t) =
√

−4− k22τ
−1 + 1

2 (f
′k2 − k1k2) +

[

1
2 (f

′k1 − k3)
√

−4− k22
]

τ

+

[

(2f ′2k1 −Rak2 − 2f ′k3)k2
4(2 + k22)

]

(log τ)τ2 +
1

16(2 + k22)

[(

− 2f ′Rak2

− 2f ′2k21(8 + 3k22)− 16k23 + 2k22k3f
′2 − 4k22k

2
3 + 2k42k

2
3 + 2Rak1k2

+ 32f ′k1k3 − 2f ′3k22 + 10f ′k22k3 − 2f ′k42k3
)
√

−4− k22

+
(

k62k3 + 8k22k3 + 6k42k3 − k62f
′ − 8f ′k22 − 6f ′k42

)

(−f ′2 + k3)
]

(log τ)τ3

+

∞
∑

j=5

w1j(log τ)τ
j−1 ,
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w2(t) = k2τ
−1 +

[

1
2 (−f ′ + k1)

√

−4− k22
]

+
[

k2

2 (f ′k1 − k3)
]

τ

+
[(2(f ′2)k1 −Rak2 − 2f ′k3)

√

−4− k22
4(2 + k22)

]

(log τ)τ2

+ 1
16(2+k2

2
)

[(

8k2k3 + 6k32k3 + k52k3 − 8f ′k1k2 − 6f ′k32 − f ′k52
)

(f ′2 − k3)
√

−4− k22 + 2(k1Ra− f ′Ra− f ′k1k2(f
′2 − k3))(k

2
2 + 4)

− 2f ′2k21k2(4 + 3k22) + 8f ′2k2k3 + 2k32k3(f
′2 + 2k3 + k22k

2
3)

− 2f ′k1k
5
2k3

]

(log τ)τ3 +

∞
∑

j=5

w2j(log τ)τ
j−1 ,

w3(t) = k1 (arbitrary constant),

b1(t) = −k2τ
−2 +

[

f ′
√

−4− k22
]

τ−1 + k2

2

[

(f ′)2 − k3
]

+ (−f ′(k1f
′ − k3))

√

−4− k22(log τ)τ +
[f ′k2(2f

′2k1 −Rak2 − 2f ′k3)

4(2 + k22)

]

(log τ)τ2

+

∞
∑

j=5

b1j(log τ)τ
j−2,

b2(t) =
√

−4− k22τ
−2 + f ′k2τ

−1 +
[

1
2

(

(k3 − (f ′)2
)
√

−4− k22
]

+ (f ′k2(−f ′k1 + k3))(log τ)τ

+
[f ′(2f ′2k1 −Rak2 − 2f ′k3)

√

−4− k22
4(2 + k22)

]

(log τ)τ2 +

∞
∑

j=5

b2j(log τ)τ
j−2 ,

b3(t) = 2τ−2 + k3 +
(Ra+ f ′2k1k2 − f ′k2k3)

√

−4− k22
2(2 + k22)

(log τ)τ

+ 1
8

[

k22((f
′3)k1 − f ′2k3 − f ′k1k3 + k23)

√

−4− k22

+ 2k22k3(f
′k1 − k3)

]

(log τ)τ2 +

∞
∑

j=5

b3j(log τ)τ
j−2 .

(28)
Equations (28) contain four arbitrary constants k1, k2, k3, and arbitrary position of
singularity t0 satisfying the system of ODEs (3). The convergence of such logarithmic
psi series solutions is guaranteed by Kichenassamy and Littman [10].

In the similar way of calculations, we can find the singular solution to the system (3)
corresponding to the following branch of leading order coefficients:

w10 = −
√

−4− k22 , w20 = k2 (arbitrary constant),

b10 = −k2, b20 = −
√

−4− k22 , b30 = 2.
(29)

The weak singular solution to the system (3) for this branch of leading order coefficients
(29) is given by the following equations (30) and (31)

w1(t) = −
√

−4− k22τ
−1 + 1

2 (f
′k2 − k1k2) +

[

1
2 (−f ′k1 + k3)

√

−4− k22
]

τ

+

[

(2f ′2k1 −Rak2 − 2f ′k3)k2
4(2 + k22)

]

(log τ)τ2 +
1

16(2 + k22)

[(

− 2f ′Rak2

− 2f ′2k21(8 + 3k22)− 16k23 + 2k22k3f
′2 − 4k22k

2
3 + 2k42k

2
3
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+ 2Rak1k2 + 32f ′k1k3 − 2f ′3k22 + 10f ′k22k3 − 2f ′k42k3
)

(−
√

−4− k22)

+
(

k62k3 + 8k22k3 + 6k42k3 − k62f
′ − 8f ′k22 − 6f ′k42

)

(−f ′2 + k3)
]

(log τ)τ3

+

∞
∑

j=5

w1j(log τ)τ
j−1 ,

w2(t) = k2τ
−1 +

[

1
2 (f

′ − k1)
√

−4− k22
]

+
[

k2

2 (f ′k1 − k3)
]

τ

+
[(−2(f ′2)k1 +Rak2 + 2f ′k3)

√

−4− k22
4(2 + k22)

]

(log τ)τ2

+ 1
16(2+k2

2
)

[(

8k2k3 + 6k32k3 + k52k3 − 8f ′k1k2 − 6f ′k32 − f ′k52
)

(f ′2 − k3)(−
√

−4− k22) + 2(k1Ra− f ′Ra− f ′k1k2(f
′2 − k3))(k

2
2 + 4)

− 2f ′2k21k2(4 + 3k22) + 8f ′2k2k3 + 2k32k3(f
′2 + 2k3 + k22k

2
3)

− 2f ′k1k
5
2k3

]

(log τ)τ3 +

∞
∑

j=5

w2j(log τ)τ
j−1 ,

w3(t) = k1 (arbitrary constant),

b1(t) = −k2τ
−2 −

[

f ′
√

−4− k22
]

τ−1 + k2

2

[

(f ′)2 − k3
]

+ (f ′(k1f
′ − k3))

√

−4− k22(log τ)τ +
[f ′k2(2f

′2k1 −Rak2 − 2f ′k3)

4(2 + k22)

]

(log τ)τ2

+

∞
∑

j=5

b1j(log τ)τ
j−2 ,

b2(t) = −
√

−4− k22τ
−2 + f ′k2τ

−1 +
[

1
2

(

(−k3 + (f ′)2
)
√

−4− k22
]

+ (f ′k2(−f ′k1 + k3))(log τ)τ

+
[f ′(−2f ′2k1 +Rak2 + 2f ′k3)

√

−4− k22
4(2 + k22)

]

(log τ)τ2 +

∞
∑

j=5

b2j(log τ)τ
j−2,

(30)

b3(t) = 2τ−2 + k3 +
(−Ra− f ′2k1k2 + f ′k2k3)

√

−4− k22
2(2 + k22)

(log τ)τ

+ 1
8

[

k22(−(f ′3)k1 + f ′2k3 + f ′k1k3 − k23)
√

−4− k22

+ 2k22k3(f
′k1 − k3)

]

(log τ)τ2 +

∞
∑

j=5

b3j(log τ)τ
j−2 .

(31)

The result of this section can be summarized in the form of the following theorem.

Theorem 4.1 An ideal rotating, uniformly stratified system of six coupled ODEs (3)
is completely integrable for Rayleigh number Ra = 0. Whereas, Ra 6= 0 is the case of non
integrability and system (3) admits weak singular solutions in the form of logarithmic psi
series given by equations (28) and (30), (31) for two different branches of leading order
coefficients given by equations (9).

5 Conclusion

The reduced system of ODEs (3) which arose in the reduction of uniformly stratified
fluid contained in the rotating box of dimension L×L×H is completely integrable if the
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Rayleigh number Ra = 0. If Ra 6= 0 then the system (3) is non integrable. In this case
of non integrability we have determined the weak solutions (28) and (30), (31) in the
different branches of leading order. The solutions are in the form of logarithmic psi series
and the convergence of the series is guaranteed by Kichenassamy and Littman [10]. We
see that the nature of movable singularities are pole type singularities which are cluster
in a self similar fashion.
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