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Integral Estimates of Solutions to Nonlinear Systems

and Their Applications

On the occasion of centenary of the birth of Professor A.N.Golubentsev

A.A. Martynyuk 1∗, D.Ya. Khusainov 2 and V.A. Chernienko 2

1 Institute of Mechanics of National Academy of Science of Ukraine,
Nesterov Str., 3, Kyiv, 03057, Ukraine

2 Taras Shevchenko National University of Kyiv,
Volodymyrska Str., 64, Kyiv, 01601, Ukraine

Received: June 27, 2015; Revised: January 25, 2016

March 29, 2016 marks the 100th birthday of Professor A.N. Golubentsev, the famous
scientist in the field of machine mechanics and applied mathematics. For the detailed
analysis of his scientific investigations and his contribution to the development of the
Institute of Mechanics of NAS of Ukraine see the paper [13] and the book [14].

Abstract: The paper deals with the nonlinear systems of ordinary differential equa-
tions. New estimates of the norms of solutions for systems under consideration are
established via nonlinear integral inequalities. The results are illustrated by the prob-
lems on boundedness of solutions, finite-time stability and exponential approximation
of solution to a class of nonlinear systems.

Keywords: nonlinear system; bounded solutions; finite-time stability.

Mathematics Subject Classification (2010): 34A34, 34C11, 34C60, 93D05.

1 Introduction

For solution of problems of nonlinear dynamics different analytical and qualitative meth-
ods of general theory of equations are applied being adapted to a particular problem
or a class of similar problems. For instance, in monograph [1] a method of dynamics
analysis is considered for the systems described by the equations containing integrals
with variable upper limit. The authors discuss physical meaning of the resolvent of inte-
gral equation and present basic analytical correlations relating the character of transient
process in the system with its parameters. As to the dynamics of machines, a resolvent

∗ Corresponding author: mailto:center@inmech.kiev.ua

c© 2016 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 1
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analytic expression is given for the systems of high order equations. In the investigation
of nonlinear dynamics of machines the systems are treated which contain elastoplastic
links, nonlinear couplings with hysteresis characteristic, etc.

Stability investigations of nonlinear system motions on finite and unbounded time
interval for given estimates of the initial and subsequent perturbations were summarized
in monograph [2].

In monographs [3 – 5] two classical theories of mathematics and mechanics have been
developed. One was the theory of integral inequalities, and the other was a general theory
of motion stability in terms of integral inequalities.

The present paper proposes estimates of norm of solutions to nonlinear systems based
on the theory of nonlinear integral inequalities. Problems on boundedness of solutions,
motion stability on finite time interval and exponential convergence of solutions for one
class of nonlinear systems are considered as applications.

2 Statement of the Problem

Consider a model of some physical system described by a system of perturbed motion
equations of the form

dx

dt
= F (t, x), (1)

x(t0) = x0, (2)

where x ∈ R
n, F (t, x) is a vector-function definite and continuous with respect to (t, x) ∈

R
n
+.
Further we shall assume that for the initial values (t0, x0) ∈ J × D the solution to

the initial problem (1)–(2) is definite for all t ∈ J . Here J ⊂ R+ and D ⊆ R
n is an open

domain in R
n. It is known that the solution x(t) of the initial problem (1)–(2) through

the point (t0, x0) satisfies the integral equation

x(t) = x0 +

t
∫

t0

F (s, x(s))ds (3)

on the interval where the solution x(t) = x(t, t0, x0) is definite.
Assume that for the right-hand part of nonlinear system (1) there exist nonnegative

continuous functions a(t) and b(t) on any finite interval J such that

‖F (t, x)‖ ≤ a(t)‖x‖+ b(t)‖x‖k, (4)

where k > 1 and ‖ · ‖ is an Euclidean norm of the vector.
It is of interest to estimate the norm of solutions x(t) to system (1) and to study

behavior of the solutions on unbounded or finite time interval when inequality (4) is
satisfied.

3 New Estimate of Solutions

We shall obtain uniform estimate of the norm of solutions to nonlinear system (1) with
the initial conditions (2) when the condition (4) is satisfied.

The following result holds.
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Lemma 1 (see [7, 8]) For the right-hand part of system (1) assume that estimate (4)
of the domain of values (t, x) ∈ J ×D is satisfied and, besides,

L(t) = 1− (k − 1)‖x0‖
k−1

t
∫

t0

b(s) exp

[

(k − 1)

s
∫

t0

a(τ)dτ

]

ds > 0 (5)

for all t ∈ J . Then for the norm of solutions x(t) of system (1), when (t0, x0) ∈ J ×D
the estimate

‖x(t)‖ ≤ ‖x0‖ exp

( t
∫

t0

a(s)ds

)

(L(t))−
1

k−1 (6)

is valid for all t ∈ J .

Proof. From the integral equation (3) under condition (4) we have the estimate

‖x(t)‖ ≤ ‖x0‖+

t
∫

t0

(a(s)‖x(s)‖ + b(s)‖x(s)‖k)ds, (7)

that is equivalent to the following one

‖x(t)‖ ≤ ‖x0‖+

t
∫

t0

(a(s) + b(s)‖x(s)‖k−1)‖x(s)‖ds (8)

for all t ∈ J . Applying the Gronwall–Bellman lemma [6] to inequality (8) we get

‖x(t)‖ ≤ ‖x0‖ exp

[ t
∫

t0

(a(s) + b(s)‖x(s)‖k−1)ds

]

. (9)

Then, we represent inequality (9) as

‖x(t)‖k−1 ≤ ‖x0‖
k−1 exp

[

(k − 1)

t
∫

t0

(a(s) + b(s)‖x(s)‖k−1)ds

]

(10)

and estimate from above the term

exp

[

(k − 1)

t
∫

t0

b(s)‖x(s)‖k−1ds

]

. (11)

Multiplying both parts of inequality (10) by the expression

−(k − 1)b(t) exp

[

− (k − 1)

t
∫

t0

b(s)‖x(s)‖k−1ds

]

,
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we arrive at

−(k − 1)b(t)‖x(t)‖k−1 exp

[

− (k − 1)

t
∫

t0

b(s)‖x(s)‖k−1ds

]

≥ −(k − 1)‖x0‖
k−1b(t) exp

[

(k − 1)

t
∫

t0

a(s)ds

]

.

Hence, it follows that

d

dt

(

exp

[

− (k − 1)

t
∫

t0

b(s)‖x(s)‖k−1ds

])

≥ −(k − 1)‖x0‖
k−1b(s) exp

[

(k − 1)

t
∫

t0

a(s)ds

]

.

(12)

Integrating inequality (12) between t0 and t ∈ J we obtain

exp

[

− (k − 1)

t
∫

t0

b(s)‖x(s)‖k−1ds

]

≥ L(t).

Under condition (5) the above inequality yields the estimate of the term (11) as
follows

exp

[

(k − 1)

t
∫

t0

b(s)‖x(s)‖k−1ds

]

≤ (L(t))−1 for all t ∈ J. (13)

In view of estimate (13) we rewrite inequality (10) as

‖x(t)‖k−1 ≤ ‖x0‖
k−1 exp

[

(k − 1)

t
∫

t0

a(s)ds

]

(L(t))−1. (14)

Since k > 1, we get from (14) the estimate (6), i.e.

‖x(t)‖ ≤ ‖x0‖ exp

( t
∫

t0

a(s)ds

)

(L(t))−
1

k−1

for all t ∈ J . This proves Lemma 1.

Corollary 1 In inequality (4) let the function b(t) ≡ 0 for all t ∈ J . Then estimate
(6) becomes

‖x(t)‖ ≤ ‖x0‖ exp

( t
∫

t0

a(s)ds

)

for all t ∈ J. (15)

This is the known Gronwall-Bellman estimate [6, p. 96].
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Corollary 2 In inequality (4) let the function a(t) ≡ 0 for all t ∈ J . Then estimate
(6) becomes

‖x(t)‖ ≤ ‖x0‖

{

1− (k − 1)‖x0‖
k−1

t
∫

t0

b(s)ds

}

−
1

k−1

(16)

for all t ∈ J whenever

1− (k − 1)‖x0‖
k−1

t
∫

t0

b(s)ds > 0.

Estimate (16) is obtained as well by the direct application of the Bihari lemma (see
[9] to the inequality

‖x(t)‖ ≤ ‖x0‖+

t
∫

t0

b(s)‖x(s)‖kds.

Remark 1 In paper [8] new estimates of the norm of solutions are presented for
some characteristic types of nonlinear mechanics equations.

4 Applications

We shall make use of the estimate (6) to solve some problems of system dynamics.

4.1 Boundedness of Motion

In system (1) let the vector-function F (t, x) be definite and continuous on J × R
n. We

shall cite some definitions according to [10].

Definition 1 The solution x(t) = x(t, t0, x0) of system (1) is bounded, if there exists
β > 0 such that ‖x(t, t0, x0)‖ < β for all t ≥ t0, where β can depend on every solution.

Definition 2 The solution x(t) of system (1) is equi-bounded, if for any α > 0 and
t0 ∈ J there exists β(t0, α) > 0 such that if ‖x0‖ < α, then ‖x(t, t0, x0)‖ < β(t0, α) for
all t ≥ t0.

Estimate (6) provides the following results.

Theorem 1 If for any x0 ∈ R
n, ‖x0‖ < ∞, all conditions of Lemma 1 are satisfied

and, in addition, there exists β > 0 such that

exp

( t
∫

t0

a(s)ds

)

(L(t))
−

1

k−1 <
β

‖x0‖
for all t ≥ t0,

then the motion described by the equation (1) is bounded.

Theorem 2 If for ‖x0‖ < α and

L∗(t) = 1− (k − 1)αk−1

t
∫

t0

b(s) exp

[

(k − 1)

s
∫

t0

a(τ) dτ

]

ds > 0
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all conditions of Lemma 1 are satisfied and there exists β(t0, α) > 0 such that

exp

( t
∫

t0

a(s)ds

)

(L∗(t))−
1

k−1 <
β(t0, α)

α
for all t ≥ t0,

then the motion described by the equation (1) is equi-bounded.

Similar results can be established in terms of estimates (15) and (16) and Corollaries
1 and 2.

The proof of Theorems 1 and 2 follows immediately from the estimate (6) and Defi-
nitions 1 and 2.

4.2 Finite-Time Stability of Motion

For solution x(t) = x(t, t0, x0) of the problem (1)–(2) we shall give the following defini-
tions (see [2] and bibliography therein).

Definition 3 The motion of system (1) is:

(a) stable with respect to the values (λ,A, t0, T ), 0 < λ ≤ A, if for any solution
x(t) with the initial conditions x0 : ‖x0‖ < λ it follows that ‖x(t)‖ < A for all
t ∈ [t0, t0 + T ];

(b) uniformly stable with respect to the values (λ,A, t0, T ), 0 < λ ≤ A, if for any
solution x(t) the condition ‖x(t1)‖ < λ implies ‖x(t)‖ < A for any t ≥ t1, (t, t1) ∈
[t0, t0 + T ].

Based on Lemma 1 we shall formulate the following result.

Theorem 3 The motion of system (1) is:

(a) stable with respect to the values (λ,A, t0, T ), if all conditions of Lemma 1 are sat-

isfied as well as the inequality

exp





t
∫

t0

a(s)ds



 (L(t))
−

1

k−1 <
A

λ
for all t ∈ [t0, t0 + T ]; (17)

(b) uniformly stable with respect to the values (λ,A, t0, T ), if the inequality (17) is

satisfied for any t1 ∈ [t0, t0 + T ] such that ‖x(t1)‖ < λ.

In terms of estimates (15) and (16) we obtain the following results.

Theorem 4 Let all conditions of Corollary 1 be satisfied as well as the inequality

t
∫

t0

a(s)ds ≤ ln

(

A

λ

)

for all t ∈ [t0, t0 + T ]. (18)

Then the motion of system (1) is stable with respect to the values (λ,A, t0, T ).

Theorem 5 Let all conditions of Corollary 2 be satisfied as well as the inequality

{

1− (k − 1)αk−1

t
∫

t0

b(s)ds

}

−
1

k−1

<
A

λ
for all t ∈ [t0, t0 + T ]. (19)
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Then the motion of system (1) is stable with respect to the values (λ,A, t0, T ).

The proof of Theorems 3–5 is based on the estimates (6), (15), (16) and Definition
3(a). The assumptions on motion uniform stability of system (1) with respect to the
values (λ,A, t0, T ) are made in terms of estimates (18) and (19), provided that ‖x(t1)‖ <
λ for any t1 ∈ [t0, t0 + T ].

4.3 Exponential Convergence of Solutions to Systems with Quadratic Non-

linearity

Consider systems (1) with a particular type nonlinearity, namely, the systems with
quadratic nonlinearity (see [11, 12] and bibliography therein)

ẋ(t) = Ax(t) +XT (t)Bx(t), x(0) = x0. (20)

Here x ∈ R
n, A is a rectangular n2 × n-matrix consisting of symmetric square matrices

Bi, i = 1, 2, . . . , n,

Bi =









bi11 bi12 . . . bi1n
bi12 bi22 . . . bi2n
. . . . . . . . . . . . . . . . . . .
bi1n bi2n . . . binn









,

XT (t) = {X1(t), X2(t), . . . , Xn(t)} is a rectangular n × n2-matrix consisting of square
n × n-matrices Xi(t) with vectors x(t) on their i-th lines, and the other elements are
zero, i.e.

X1(t) =









x1(t) x2(t) . . . xn(t)
0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0









, X2(t) =









0 0 . . . 0
x1(t) x2(t) . . . xn(t)
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0









, . . . ,

Xn(t) =









0 0 . . . 0
0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .
x1(t) x2(t) . . . xn(t)









.

Here and elsewhere the vector and matrix norms are specified by the formulas

‖x(t)‖ =

{ n
∑

i=1

x2
i (t)

}1/2

, ‖B‖ = {λmax(B
TB)}1/2,

where λmax(·) and λmin(·) are extreme eigenvalues of the corresponding symmetric ma-
trices.

Let the matrix A of the linear part of system (20) be asymptotically stable. Then,
according to the theory of stability by first approximation (see [6]) the zero solution of
nonlinear system (20) will also be asymptotically stable. We shall take the quadratic
form V (x) = xTHx as the Lyapunov function and compute its total derivative by virtue
of system (20)

d

dt
V (x(t)) = [Ax(t) +XT (t)Bx(t)]THx(t) + xt(t)H [Ax(t) +XT (t)BNx(t)]

= xT (t)[(ATH +HA) + (BTX(t)H +HXT (t)B)]x(t).
(21)
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Since the matrix A is asymptotically stable by assumption, for an arbitrary positive
definite matrix C the matrix Lyapunov equation

ATH +HA = −C (22)

possesses a unique solution in the form of positive definite matrix H . In view of the fact
that H is a solution of the Lyapunov equation (22) we get from (21) that

d

dt
V (x(t)) = −xT (t)[C − (BTX(t)H +HXT (t)B)]x(t). (23)

The stability domain of the zero solution of system (20) is the interior of the surface of
the level of the Lyapunov function V (x) = r > 0 located inside the domain

G0 = {x ∈ R
n : C −BTXH −HXTB > Θ},

where the symbol

C −BTXH −HXTB > Θ (24)

is understood as positive definiteness of the matrix. We shall replace the condition (24)
by a more “rough” one. Since for the chosen vector and matrix norms the correlation

‖X(t)‖ = ‖x(t)‖,

holds true, for the total derivative of the Lyapunov function (21) the estimate

d

dt
V (x(t)) ≤ − [λmin(C)− 2‖H‖‖B‖‖x(t)‖]‖x(t)‖2. (25)

is satisfied.
We designate

G0 =

{

x ∈ R
n : ‖x‖ <

λmin(C)

2‖H‖‖B‖

}

. (26)

Then the domain of “guaranteed” stability is specified by the expression

Gr0 = max
r>0

{Cr : Gr ⊂ G0}, Gr = {x ∈ R
n : xTHx < r2}. (27)

From this dependence it follows that for the “maximal” stability domain be defined, it

is necessary to “imbed” the ellipsoid xTHX = r2 into a sphere of radius R =
λmin(C)

2‖H‖‖B‖
and to extend it for r → ∞ until the ellipsoid surface touches the sphere.

Theorem 6 Let the matrix of the linear part of system (20) be asymptotically stable.

Then the zero solution of system (20) is asymptotically stable and for the solutions of the

system satisfying the initial conditions

‖x0‖ <
γ(H)

2‖B‖ϕ(H)
, (28)

where

ϕ(H) =
λmax(H)

λmin(H)
, γ(H) =

λmin(C)

λmax(H)
,
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the convergence of solutions obeys the estimate

‖x(t)‖ ≤
γ(H)

√

λmin(Y )‖x0‖
[

γ(H)− 2‖B‖ϕ(H)‖x0‖
]

e
1

2
γ(H)t + 2‖B‖ϕ(H)‖x0‖.

(29)

Proof. In order to obtain estimate (29) we use the Lyapunov function V (x) = xTHx
with total derivative (25). Since for the quadratic function V (x) = xTHx the two-sided
inequality

λmin(H)‖x‖2 ≤ V (x) ≤ λmax(H)‖x‖2 (30)

is valid, the inequality (25) can be rewritten as

d

dt
V (x(t)) ≤ −

λmin(C)

λmax(H)
V (x(t)) + 2λmax(H)‖B‖

V 3/2(x(t))

λ
3/2
min(H)

. (31)

Using the designation (28) we rewrite the obtained expression as

d

dt
V (x(t)) ≤ −γ(H)V (x(t)) + 2

‖B‖ϕ(H)
√

λmin(H)
V 3/2(x(t)).

Dividing this inequality by the expression V 3/2(x) we get the estimate

V −3/2(x(t))
dV (x(t))

dt
≤ −γ(H)V −1/2(x(t)) + 2

‖B‖ϕ(H)
√

λmin(H)
.

Hence, having designated V −1/2(x(t)) = z(t), we arrive at

−2
dz(t)

dt
≤ −γ(H)z(t) + 2

‖B‖ϕ(H)
√

λmin(H)
,

and then
dz(t)

dt
≥ −

1

2
γ(H)z(t)−

‖B‖ϕ(H)
√

λmin(H)
.

Solving this inequality (in the same way as the linear inhomogeneous Bernoulli equation)
we get

z(t) ≥

[

z0 − 2
‖B‖ϕ(H)

γ(H)
√

λmin(H)

]

e
1

2
γ(H)t + 2

‖B‖ϕ(H)

γ(H)
√

λmin(H)
.

Substitution V −1/2(x(t)) = z(t) yields the estimate

V −1/2(x(t)) ≥

[

V −1/2(x0)− 2
‖B‖ϕ(H)

γ(H)
√

λmin(H)

]

e
1

2
γ(H)t + 2

‖B‖ϕ(H)

γ(H)
√

λmin(H)
.

Hence

V 1/2(x(t)) ≤

{[

V −1/2(x0)− 2
‖B‖ϕ(H)

γ(H)
√

λmin(H)

]

e
1

2
γ(H)t + 2

‖B‖ϕ(H)

γ(H)
√

λmin(H)

}

−1

.
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Application of the two-sided inequality for the quadratic form (30) gives

√

λmin(H)(‖x(t)‖ ≤

{[

1
√

V (‖x0‖)
− 2

‖B‖ϕ(H)

γ(H)
√

λmin(H)

]

e
1

2
γ(H)t+ 2

‖B‖ϕ(H)

γ(H)
√

λmin(H)

}

−1

≤

{[

1
√

λmin(H)‖x0‖
− 2

‖B‖ϕ(H)

γ(H)
√

λmin(H)

]

e
1

2
γ(H)t + 2

‖B‖ϕ(H)

γ(H)
√

λmin(H)

}

−1

=
γ(H)

√

λmin(H)‖x0‖
[

γ(H)− 2‖B‖ϕ(H)‖x0‖
]

e
1

2
γ(H)t + 2‖B‖ϕ(H)‖x0‖

.

Thus, for solutions x(t) of system (20) with the initial conditions from the domain
(27), i. e. x0 ∈ G0, we obtain the estimate of solutions convergence of (29) type. This
completes the proof.

Remark 2 Consider the first order scalar equation

ẋ(t) = −ax(t) + bx2(t), a > 0, x(0) = x0. (32)

This equation is an equation with separating variables and its exact solution is the
function

x(t) =
ax0e

−at

a− bx0[1− e−at]
. (33)

Consider the application of the method of Lyapunov functions with the function V (x) =
x2 for the equation (32). For this function λmax(H) = λmin = 1. The total derivative by
virtue of the linear part of system (32) is

d

dt
V (x(t)) = −2ax2(t).

Therefore, ϕ(H) = 1, γ(H) = 2a. The convergence estimate (29) for solutions of the
equation with the initial conditions ‖x0‖ < a/|b| is of a similar form

‖x(t)‖ ≤
a‖x0‖

[a− |b|‖x0‖]eat + |b|‖x0‖
=

a‖x0‖e
−at

a− |b|[1− e−at]
→ 0.

Thus, for the scalar equation (32) with the exact solution (33) the convergence esti-
mate coincides with the estimate obtained by the application of the quadratic Lyapunov
function.

5 Concluding Remarks

The proposed method for estimating the norm of solutions to nonlinear systems possesses
a considerable potential for application in the investigation of particular mechanical and
other nature systems. Efficiency of the proposed estimation is illustrated by the example
of a first order scalar equation, for which the convergence estimate is obtained by means
of the direct Lyapunov method.
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Abstract: Let G be a graph and S ⊆ V (G). We denote by 〈S〉 the subgraph of
G induced by S. For each vertex u ∈ S and for each v ∈ V (G) − S, we define
d(u, v) = d(v, u) to be the length of the shortest path in 〈V (G)− (S − {u})〉 if such
a path exists, and ∞ otherwise. Let v ∈ V (G). We define ws(v) =

∑
u∈S

1

2d(u,v)−1

if v /∈ S, and ws(v) = 2 if v ∈ S. If, for each v ∈ V (G), we have ws(v) ≥ 1,
then S is an exponential dominating set. The smallest cardinality of an exponen-
tial dominating set is the exponential domination number γe(G). In this paper,
we consider the exponential domination number in total graphs. We determine the
exponential domination number of T (G) for some specific graphs G.

Keywords: graph vulnerability; network design and communication; domination;
exponential domination number; total graph.

Mathematics Subject Classification (2010): 05C40, 05C69, 68M10, 68R10.

1 Introduction

In a communication network, the vulnerability measures the resistance of network to dis-
ruption of operation after the failure of certain stations or communication links. The sta-
bility of communication networks is of prime importance to network designers (see [9,10]).
If we think of the graph as modeling a communication network, many graph theoretical
parameters have been used to describe the stability of communication networks includ-
ing connectivity, toughness, integrity, domination and its variations (see [1,2,4,5]). The
domination number is one of the measures of the graph vulnerability.

Domination in graphs is a well-studied concept in graph theory. Domination based
parameters reveal an underlying efficient communication network in which a vertex can

∗ Corresponding author: mailto:aysun.aytac@ege.edu.tr
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affect all its neighborhood vertices in some sense. In real life applications, we can en-
counter that a vertex can affect both its neighborhood vertices and all vertices within
a given distance. Distance domination is a kind of this situation. There has been no
framework yet in which the effect of a vertex broadens beyond its neighborhood while
decreasing by distance. It has been suggested (see [7]) that exponential domination is
a model for the reliability of the spread of information or gossip. In this model, the
dominating strategy of a vertex decreases exponentially with a distance, by the factor
1/2. Therefore, it is possible that a vertex v is dominated by one of its neighbors or by
some vertices that are closer to v. The assumption is that gossip heard directly from a
source is totally reliable, while gossip passed from person to person loses half its credi-
bility with each individual in the chain. Finding the exponential domination number in
this application amounts to determining the minimum number of sources needed so that
each person gets fully reliable information.

In this paper, we consider simple finite undirected graphs without loops and multiple
edges. Let G = (V,E) be a graph with vertex set V = V (G) and an edge set E = E(G).
For vertices u of a graph G, the open neighborhood of u is N(u) = {v ∈ V (G)|(u, v) ∈
E(G)}. We define analogously for any S ⊆ V (G) the open neighborhood N(S) =⋃
u∈S N(u). The closed neighborhood of u is N [u] = u ∪ N(u). For a set S ⊆ V , its

closed neighborhood N [S] = N(S) ∪ S. A set S is dominating set of G if N [S] = V , or
equivalently, every vertex in V −S is adjacent to at least one vertex of S. The dominating
number γ(G) is the minimum cardinality of a dominating set of G.

The distance d(u, v) between two vertices u and v in G is the length of the shortest
path between them. If u and v are not connected, then d(u, v) = ∞ , and for u = v,
d(u, v) = 0. The diameter of G, denoted by diam(G) is the largest distance between two
vertices in V (G) (see [3, 4]).

Throughout this paper, the largest integer not larger than x is denoted by bxc and
the smallest integer not smaller than x is denoted by dxe.

The paper proceeds as follows. In Sections 2 and 3, the definition of exponential
domination number and known results are given, respectively. In Section 4, we give
some results on the exponential domination number of total graphs. Formulas for the
exponential domination number of the graphs obtained by binary graph operations are
given in Section 5.

2 Exponential Domination Number

The exponential domination number of a graph is a new characteristic for graph vulner-
ability introduced in [7]. This definition is in the following:

This parameter is a variation of distance domination in which, as described in the
motivation already given, the ’dominating power’ radiating from a vertex declines ex-
ponentially with distance. Let G be a graph and S ⊆ V (G). We denote by 〈S〉 the
subgraph of G induced by S. For each vertex u ∈ S and for each v ∈ V (G)−S, we define
d(u, v) = d(v, u) to be the length of the shortest path in 〈V (G) − (S − {u})〉 if such a
path exists, and ∞ otherwise. Let v ∈ V (G). The definition is

ws(v) =

{ ∑
u∈S

1
2d(u,v)−1

, if v /∈ S,
2, if v ∈ S.

We refer to ws(v) as the weight of S at v (note that we define ws(v) = 2 if v ∈ S since
then v contributes ws(v)/2d to every vertex it exponentially dominates at distance d).
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If, for each v ∈ V (G), we have ws(v) ≥ 1, then S is an exponential dominating set.
The smallest cardinality of an exponential dominating set is the exponential domination
number, γe(G), and such a set is a minimum exponential dominating set, or γe(G) -set
for short. If u ∈ S and v ∈ V (G)− S and 1

2d(u,v)−1
> 1, then we say that u exponentially

dominates v. Note that if S is an exponential dominating set, then every vertex of
V (G)− S is exponentially dominated, but the converse is not true (see [7, 8]).

3 Basic Results

Theorem 3.1 [7] For every positive integer n, γe(Pn) = dn+1
4 e.

Theorem 3.2 [7] For every positive integer n,

γe(Cn) =

{
2, if n = 4,
dn4 e, if n 6= 4 ∈ S.

Theorem 3.3 [7] If G is a connected graph of diameter d, then γe(G) ≥ dd+2e
4 .

Theorem 3.4 [7] If G is a connected graph of order n, then γe(G) ≤ 2
5 (n+ 2).

Theorem 3.5 [7] Let G be a connected graph of order n and T be a spanning tree
of G. Then γe(G) ≤ γe(T ).

4 Exponential Domination Number of Total Graphs

In this section, the exponential domination number of total graph of a graph is calculated
and formula for the exponential domination number of γe(T (G)) is given.

Definition 4.1 [3, 4] The vertices and edges of a graph are called its elements. Two
elements of a graph are neighbors if they are either incident or adjacent. The total graph
T (G) of the graph G = (V (G), E(G)), has vertex set V (G) ∪ E(G), and two vertices of
T (G) are adjacent whenever they are neighbors in G.

Example 4.1

Figure 1: Total graph T (P8).
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The following table shows us the weight of S1 at all vertices of the graph T (P8),
where S1 = {v2, v8, v12, v14}.

v d(v, v2) d(v, v8) d(v, v12) d(v, v14) ws1(v)

v1 1 1 4 7 2.135
v2 - - - - 2
v3 1 3 2 4 1.875
v4 2 4 1 3 1.875
v5 3 5 1 2 1.81
v6 4 6 2 1 1.655
v7 5 7 3 1 1.325
v8 - - - - 2
v9 1 1 3 6 2.281
v10 1 2 2 5 2.015
v11 2 3 1 4 1.875
v12 - - - - 2
v13 4 6 1 1 2.156
v14 - - - - 2
v15 6 8 4 1 1.147

For S1 set, ∀v ∈ V (T (P8)), ws(v) ≥ 1 is satisfied. So, S1 set is an exponential
dominating set.

The following table shows us the weight of S2 at all vertices of the graph T (P8), where
S2 = {v5, v10, v14}.

v d(v, v5) d(v, v10) d(v, v14) ws2(v)

v1 4 2 6 0.656
v2 3 1 5 1.56
v3 2 1 4 1.625
v4 1 2 3 1.75
v5 - - - 2
v6 1 4 1 2.125
v7 2 5 1 1.56
v8 5 2 7 0.575
v9 4 1 6 1.156
v10 - - - 2
v11 2 1 3 1.75
v12 1 2 2 2
v13 1 3 1 2.25
v14 - - - 2
v15 3 6 1 1.281

For S2 set, wS2
(v1) ≥ 1 and condition wS2

(v8) ≥ 1 is not satisfied. So, S2 is not
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an exponential dominating set.
The following table shows us the weight of S3 at all vertices of the graph T (P8),

where S3 = {v8, v11, v14}.

v d(v, v8) d(v, v11) d(v, v14) ws3(v)

v1 1 3 6 1.281
v2 2 2 5 1.06
v3 3 1 4 1.375
v4 4 1 3 1.375
v5 5 2 2 1.06
v6 6 3 1 1.281
v7 7 4 1 1.14
v8 - - - 2
v9 1 2 6 1.531
v10 2 1 5 1.56
v11 - - - 2
v12 5 1 2 1.56
v13 6 2 1 1.531
v14 - - - 2
v15 8 5 1 1.067

For S3 set, ∀v ∈ V (T (P8)), ws(v) ≥ 1 is satisfied. So, S3 set is an exponential
dominating set.

Similarly, we can get a lot of exponential dominating sets of the graph T (P8) but,
for exponential domination number we need the minimum cardinality of among all ex-
ponential dominating sets. Here, γe(T (Pn)) = min{|S1|, |S3|} = min{4, 3} = 3.

Theorem 4.1 Let Pn be a path graph with n vertices and T (Pn) ∼= G be a total graph
of Pn with 2n− 1 vertices. Then γe(G) = dn3 e.

Proof. The domination number of Pn is γ(Pn) = dn3 e. If we add the vertices of
the domination set to γe − set, every vertex v in γe − set is adjacent to four vertices
in graph G. For ∀u ∈ Nγe−set(v), ws(u) ≥ 1. The length of the shortest path, from
∀u ∈ V (G) − Nγe−set[v] remaining vertices to exactly two vertices in γe − set is 2. So,
ws(u) ≥ 1. Consequently, exponential domination number of G is

γe(G) = dn3 e.

The proof is completed.

Theorem 4.2 Let Cn be a cycle graph with n vertices and T (Cn) ∼= G be a total
graph of Cn with 2n vertices. Then, for n > 3 γe(G) = dn3 e.

Proof. The proof is similar to the proof of Theorem 7.

Theorem 4.3 Let S1,n be a star graph with n+1 vertices and T (S1,n) ∼= G be a total
graph of S1,n with 2n+ 1 vertices. Then γe(G) = 1.
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Proof. Every vertex in G is adjacent to centre vertex c in G. So, we can add only
centre vertex c to γe−set. Hence, we have ws(v) = 1 for ∀v ∈ V (G)−{c} and ws(c) = 2.
Therefore, the result is obvious.

The proof is completed.

Theorem 4.4 Let Kn be a complete graph with n vertices and T (Kn) ∼= G be a total
graph of Kn with (n2 + n)/2 vertices. Then, γe(G) = 2.

Proof. Since in a complete graph all vertices are mutually adjacent, distance between
each pair of vertex is 1. Distance between remaining vertices in V (G) − V (Kn) and
any vertex in Kn is at most 2. Hence, condition ws(v) ≥ 1 is not satisfied for some
v ∈ V (G) − V (Kn). As in the proof of Theorem 7, one more vertex in Kn should be
added to γe − set for the length of the path from vertices in V (G) − V (Kn) to exactly
two vertices in γe − set to be 2. Hence, we have γe(G) = 2.

The proof is completed.

Theorem 4.5 Let W1,n be a wheel graph with n+ 1 vertices and T (W1,n) ∼= G be a
total graph of W1,n with 3n+ 1 vertices. Then, γe(G) = dn4 e+ 1.

Proof. Let the vertex-set of graph G be V (G) = V1(G) ∪ V2(G) ∪ V3(G) ∪ V4(G)
where,

V1(G) = The set contains the center vertex c of graph W1,n.
V2(G) = The set contains all vertices of graph W1,n, except center vertex.
V3(G) = The set contains the edges of graph W1,n, which are adjacent to center

vertex; are the vertices of graph T (W1,n).
V4(G) = The set contains the edges of the cycle of graph W1,n are the vertices of

graph T (W1,n).
The center vertex c is adjacent to every vertex in V2(G) and V3(G). So, the centre

vertex c should be added to γe − set. But, the length of the path from ∀u ∈ V4(G) to
every vertex in γe − set is 2. Therefore, condition ws(u) ≥ 1 is not satisfied. As in the
proof of Theorem 7, the length of the path from every vertex in V4(G) to exactly two
vertices in γe − set should be 2. The length of the path from every vertex in V2(G) to

two vertices in V4(G) is 1 and two vertices in V4(G) is 2. Hence, d |V2(G)|
4 e = dn4 e vertices

in V2(G) should be added to γe − set. There is already the center vertex c in γe − set.
Hence, we have γe(G) = dn4 e+ 1.

The proof is completed.

5 Corona and join graphs, the exponential domination number

Definition 5.1 [3,4] The corona G1oG2 is obtained by taking one copy of G1 and
|G1| copies of G2 , and by joining each vertex of the ith copy of G2 to the ith vertex of
G1, i=1,2,...,|G1|.

Definition 5.2 [3,4] Let G1 and G2 be two disjoint graphs. The join of G1 and
G2 with disjoint vertex sets V (G1) and V (G2) and edge sets E(G1) and E(G2) is the
graph G = G1 + G2 with vertex set V (G) = V (G1) ∪ V (G2) and edge set E(G) =
E(G1) ∪ E(G2) ∪ {(u, v) : u ∈ V (G1), v ∈ V (G2)}.

Theorem 5.1 Let G1
∼= Pn be a path graph with n vertices and G be any connected

graph. Then, γe(G1oG) = bn−22 c+ 2.
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Proof. If |V (G)| = n1, then |V (G1oG)| = n(n1 + 1). Every vertex in G1 except the
end vertices is adjacent to n1 vertices and two vertices in G1. The path between every
vertex in G1 except the end vertices and n(n1 + 1)− (n1− 2) vertices in G1oG is at least
2. So, we obtain the minimum exponential domination set S by adding some vertices in
G1 to S and S ⊆ V (G1). Two end vertices of graph G1 should be added to exponential
domination set S of G1oG. Otherwise, for ∀v ∈ V (G1oG) − V (G1) that are adjacent
to these end vertices, ws(v) ≥ 1 is not satisfied, since the length of the path between v
and one vertex in G1oG is 2; the length of the path between v and the other remaining
vertices in G1oG is at least 3. If we add bn−22 c vertices in G1 except these end vertices,
to S, for ∀u ∈ V (G1oG) ws(u) ≥ 1 is satisfied. There are already two end vertices in S.
Hence, we have γe(G1oG) = bn−22 c+ 2.

The proof is completed.

Theorem 5.2 Let G1
∼= Cn be a cycle graph with n vertices and G be any connected

graph. Then, γe(G1oG) = dn2 e.

Proof. If |V (G)| = n1, then |V (G1oG)| = n(n1 + 1). Every vertex in G1 is adjacent
to n1 vertices and two vertices in G1. The path between every vertex in G1 and n(n1 +
1) − (n1 − 2) vertices in G1oG is at least 2. So, we obtain the minimum exponential
domination set S by adding some vertices in G1 to S and S ⊆ V (G1). We obtain S by
adding ∀v ∈ S satisfies d(u, v) ≤ 2 or d(u, v) =∞ for ∀u ∈ (V (G1oG)−S). So, there must
be dn2 e vertices from G1 in S . Consequently, ws(x) ≥ 1 satisfying for ∀x ∈ V (G1oG)
and we have

γe(G1oG) = dn2 e.

The proof is completed.

Corollary 5.1 Let G1
∼= Cn. Then, γe(G1oG) = diam(G1).

Theorem 5.3 Let G1
∼= S1,n be a star graph with n + 1 vertices and G be any

connected graph. Then, γe(G1oG) = 4.

Proof. We denote the centre vertex of G1 by c. In G1oG, for ∀u ∈ V (G) and
∀v ∈ V (G1 − {c}) d(u, v) ≤ 3. If we set S with vertices from G1 − {c} then vertex v
contributes at least 1

2d(u,v)−1
= 1

22 to ws(u). Hence, adding any 4 vertices from G1 − {c}
to S is sufficient and we have

γe(G1oG) = 4.

The proof is completed.

Theorem 5.4 Let G1
∼= W1,n be a wheel graph with n + 1 vertices and G be any

connected graph. Then, γe(G1oG) = 4.

Proof. The proof is similar to the proof of Theorem 17.

Theorem 5.5 Let G1
∼= Kn be a complete graph with n vertices and G be any con-

nected graph. Then γe(G1oG) = 2.

Proof. The length of the path between ∀v ∈ G1oG and every vertex in G1 is at most
2. So, it is easy to see that diam(G1oG) = 3. Hence, S ⊆ V (G1) satisfying ws(v) ≥ 1.
It is sufficient to add any two vertices to S. Therefore, we have
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γe(G1oG) = 2.

The proof is completed.

Corollary 5.2 For any two graphs G1 and G2, G1oG2 ≥ ddiam(G1oG2)
2 e.

Theorem 5.6 Let G1 and G2 be any two graphs having respectively diameters d1
and d2. If diam(G1) = d1 < diam(G2) = d2, then γe(G1 +G2) = γe(G1).

Proof. We assume that diam(G1) = d1 < diam(G2) = d2. By the definition of
γe(G1), we can not reduce any vertex from γe(G1) and every vertex in G2 is adjacent
to every vertex in γe(G1). If we add every vertex in γe(G1) to S minimum exponential
number of G1 +G2, for ∀u ∈ G1 ws(u) ≥ 1 and for ∀v ∈ V (G2) ws(v) = 1 is satisfied.

The proof is completed.

6 Conclusion

In an administrative setup, decisions are taken by a small group who have effective
communication links with other members of the organization. Domination in graphs
provides a model for such a concept. The domination in graphs is one of the concepts
in graph theory which has attracted many researchers to work on it because of its many
and varied applications in such fields as linear algebra and optimization, design and
analysis of communication networks, and social sciences and military surveillance. Many
variants of dominating models are available in the existing literature. Dankelmann et al.
(see [7]) recently defined exponential domination. Hence, in this paper, we investigate
the exponential domination number of some total graphs. Moreover some results about
exponential domination number of graphs obtained by graph operations are established.
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1 Introduction

The hybrid dynamic systems are systems that consist of coupled discrete and continuous
components. Any electromechanical system with computerized controller is a hybrid
system in general. In the past, the modeling and analysis of hybrid system have been done
separately for its discrete and continuous components. The overall system is designed
in a rather empirical fashion. Since computer-aided control is becoming more and more
significant in modern system design practice, we face a major challenge: the development
of intelligent, reliable, robust and safe computer-controlled systems [1–4]. The foundation
for modeling and analysis systems must be established formatting [5].

Whatever be the electro-mechanical system it has be ruled by the following equation

[S] = [P ] ∗ [A] ∗ [C], (1)

where: S is an electro-mechanical system, P is a power supply, A is an actuator, C is a
control. Hence, to make the system working at its optimum and running under the most
efficient ability the parameters of the equations have to meet the following criteria:

[S]r = [P ]p ∗ [A]s ∗ [C]o. (2)

So, to construct a system that works in optimal status and in very favorable condi-
tions, i.e. that tends towards to ideal, we must construct a highly reliable actuator with
a good yield, good stability, and with a perfect power supply and robust control.

We need to add the third term so that the system operates in a closed loop. We
explain the three terms of equation (2).

2 Electro-Mechanical System

Our actuator [A] is synchronous permanent magnet motor (PMSM), which has good
characteristics such as high power density, high torque to inertia ratio and efficiency,
The use of permanent magnet synchronous machine (PMSM) is in constant progress, in
particular in the areas where significant performance is needed. The specific contributions
of the synchronous machine are in relation to the gain in weight and volume, but also
in the dynamic, thanks to more efficient control laws. For these reasons, this type of
actuator is strongly preferred in the field of aeronautics [6, 7].

2.1 Machine model PMSM

The equations of electrical machines are described in reference d, q by the following
equations [8]:

did
dt

= −
R

Ld
id +

Lq

Ld

p Ω iq +
1

Ld

vd,

diq
dt

= −
R

Lq

iq +
Ld

Lq

p Ω id −
φf

Lq

p Ω+
1

Lq

vq, (3)

dΩ

dt
=

3p

2J
(φf iq + (Ld − Lq)idiq)−

1

J
Tr −

Fc

J
Ω,

where vd, vq, id, iq represent the stator voltages and currents returned to the axis d and
q.
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3 The Power Supply Study

The power supply is represented here by Multivel voltage-source inverters, that have been
receiving more and more attention in the past few years for high- and medium-power
induction-motor (IM) drive applications. Many multilevel inverter configurations and
pulse width modulation (PWM) techniques are presented to improve the output voltage
harmonic spectrum [9,10]. Some of the popular multilevel configurations are the neutral
point clamped (NPC), series-connected H-bridge, flying capacitor, etc. Although they
can be configured for more than two levels, as the number of levels increases, the power
circuit and control complexity due to a large number of devices, increase. An optimum
topology for multilevel inverters with more than three levels has not been achieved until
now [9, 11, 12].

A multilevel inverter has four main advantages over the conventional bipolar inverter.
First, the voltage stress on each switch is decreased due to series connection of the
switches. Therefore, the rated voltage and consequently the total power of the inverter
could be safely increased. Second, the rate of change of voltage (dv/dt) is decreased due
to the lower voltage swing of each switching cycle. Third, harmonic distortion is reduced
due to more output levels. Forth, lower acoustic noise and electromagnetic interference
(EMI) is obtained [13, 14].

Furthermore, the proposed hybrid PDPWM offers better harmonic performance com-
pared to its conventional PWM counterpart [9], applying this technique for supplying
the PMSM.

Figure 1: Schematic diagram of the inverter topology used to verify the proposed hybrid
modulations.

Multilevel pulse width modulation is based on comparison of sinusoidal reference
signal with each carrier to determine the voltage level that the inverter should switch
to. Carrier based N level PWM operation consists of N-1 different carriers [13, 15]. The
carriers have the same frequency fc, the same peak to peak amplitude V , and are disposed
so that the bands they occupy are contiguous. They are defined as [13]

Ci = V

(
(−1)f(i)yc(ωc, ϕ) + i−

N

2

)
, i = 1, . . . , N − 1, (4)
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where yc is a normalized symmetrical triangular carrier defined as

yc(ωc, ϕ) = (−1)[α] ((α mod 2)− 1) +
1

2
, (5)

α =
ωct+ ϕ

π
, ωc = 2πfc, (6)

where ϕ represents the phase angle of yc, yc is a periodic function with the period
Tc = 2π/ωc. It is shown that using symmetrical triangular carrier generates less harmonic
distortion at the inverter’s output [16].

While the multilevel PWM techniques developed thus far have been extensions of
two level PWM methods, the multiple levels in a cascaded inverter offer extra degrees of
freedom and greater possibilities in terms of device utilization, state redundancies, and
effective switching frequency.

In this paper, we proposed this method [13]. The hybrid multilevel PWM scheme is
presented which takes advantage of the special properties available in conventional PWM
methods and minimizes switching losses with better harmonic performance. Figure 2
shows the carriers and the reference signals for a five level PWM using PD technique
with mi = 0.8 and carrier frequency fc = 1050hz [13].
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Figure 2: The references and carrier waves (triangular) for a five level inverter.

The proposed hybrid PWM is the combination of low frequency PWM and high
frequency SPWM. In each cell of cascaded inverter, the four power devices are operated
[13].

At two different frequencies, two being commutated at low frequency, i.e., the funda-
mental frequency of the output, while the other two power devices are pulse width mod-
ulated at high frequency. This arrangement causes the problem of differential switching
losses among the switches [13].

An optimized sequential signal is added to the hybrid PWM pulses to overcome this
problem. The low and high frequency PWM signals are shown in Figure 3. An opti-
mized hybrid PDPWM method commutates the power switches at high frequency and
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Figure 3: Low and high frequency hybrid PWM pulses at mi=0.8 and fc = 1050hz.

low frequency sequentially. A common sequential signal and low frequency PWM signals
are used for all cells in cascaded inverter. A high frequency SPWM for each cell is ob-
tained by the comparison of the rectified modulation waveform with corresponding phase
disposition carrier signal. The low frequency PWM signal should be synchronized with
the modulation waveform. In Figure 4, the gate pulses are generated by a hybrid PWM
controller. This controller is designed to mix the sequential signal, low frequency PWM
and high frequency phase disposition sinusoidal PWM and to generate the appropriate
gate pulses for cascaded inverter [17].

The previous section has presented the formulation of an optimized hybrid PDPWM
switching pattern of a five level inverter. For completeness, the generalized formulation
that suits N level inverter is presented [13].

4 Generalized Predictive Controller

The MPC provides various algorithms and the best algorithm is generalized predictive
algorithm (GPC). MPC is one of the advanced control strategies, which can forecast the
future response of the plant and optimize the control input with the help of a model of the
plant. The prediction model will be augmented by the model of state space matrices [18].

In recent years, model predictive control (MPC) seems to be one of the most attractive
advanced process control algorithms both in academia and in industry. The combination
of new control design concepts in MPC, such as model prediction, receding horizon
optimization and real-time correction, makes it possible to yield high performance for
control systems. Among various MPC algorithms, general predictive control (GPC) has
received particular attention. However, in contrast to the rapid development of MPC in
application areas, the theoretical study of MPC properties seems still scarce. Only a little
number of studies have been focused on the closed-loop properties of GPC and other MPC
algorithms in relationship with the tuning parameters. Among these, excellent results
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Figure 4: Optimized hybrid PWM switching pattern for five level cascaded multilevel inverter.

have been achieved by Clarke et al [19,20]. In the form of LQ problem, some new results
on the GPC properties such as deadbeat control and stability were presented [19].

4.1 Formulation of Generalized Predictive Control

Most single-input single-output (SISO) plants, when considering operation around par-
ticular set points and after linearization, can be described by equation (7) [21].

A(q−1)y(t) = B(q−1)u(t) + C(q−1)ξ(t), (7)

where u(t) and y(t) are the control and output sequence of the plant and ξ(t) is a zero
mean white noise. A, B and C are the following polynomials in the backward shift
operator q−1:

A(q−1) = 1 + a1q
−1 + · · ·+ anaq

−na,

B(q−1) = q−d
(
b0 + b1q

−1 + · · ·+ bnbq
−nb

)
, (8)

C(q−1) = 1 + c1q
−1 + · · ·+ cnaq

−na,

where d is the dead time of the system. This model is known as a controller auto-
regressive moving-average (CARIMA) model. It has been argued that for many industrial
applications in which disturbances are non-stationary an integrated CARMA (CARIMA)
model is more appropriate. A CARIMA model is given by equation (9) [21]:

A(q−1)y(t) = B(q−1)u(t) + C(q−1)
ξ(t)

∆(q−1)
(9)

with ∆(q−1) = 1 − q−1. For simplicity, polynomial C in equation (9) is chosen to be 1.
Notice that if C−1 can be truncated it can be absorbed into A and B.
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From the previous equation (9), a polynomial optimal predictor is designed in the
following form:

y(t+ j) = [Fj(q
−1)y(t)+Hj(q

−1)∆u(t−1)]+[Gj(q
−1)∆u(t+1)+Jj(q

−1)ξ(t+ j)], (10)

where Gj , Fj , Hj , Jj are the terms representing respectively the future, present, past,
and the term related to disturbance. The first bracketed expression in equation (10)
represents the free response. The criterion is a weighted sum of square predicted future
errors and square control signal increments.

Cost Function

GPC algorithm consists of applying a control sequence that minimizes a cost function of
the form given in equation (11) [21]:

j =

N2∑

N1

(ŷ(t+ j)− w(t + j))2 + λ

Nu∑

N1

∆u(t+ j − 1)2. (11)

Under the hypothesis
∆u(t+ j) = 0 ∀j > Nu (12)

with: w(t + j) reference applied at time t + j, ŷ(t + j) predicted output at time t + d,
u(t+ j − 1) command increment at the instant t+ j − 1.

The relation (12) indicates that when the step of prediction j reaches the value fixed
for the control horizon Nu, the change order will be canceled and therefore the future
order will stabilize. This hypothesis will eventually simplify the control calculation.

The criterion requires the definition of four setting parameters, whereNu is the control
horizon, N1 is the minimum prediction horizon, N2 is the maximum prediction horizon
and λ are control weighting factors.

The control law is obtained by minimizing the previous criterion
∂J

∂u
= 0 such as

Ũ = M [w − if(q−1)y(t)− ih(q−1)∆u(t− 1)]. (13)

By reason of certain benefits introduced by the polynomial structure, we chose to formu-
late the control law in the canonical form of an RST controller.

Conventionally, in predictive control, only the first value of the sequence, equation
(13) is finally applied to the system in agreement with the strategy of receding horizon,
the whole process being effected again at the period of next sampling

∆uopt(t) = −m′

1

[
if(q−1)y(t) + ih(q−1)∆u(t− 1)− w

]
(14)

with m′

1: first row of the matrix M .
The GPC controller is implemented in a form of the RST by difference equation:

S(q−1)∆(q−1)u(t) = −R(q−1)y(t) + T (q)w(t). (15)

This provides by identification the three polynomials R, S and T constituting the equiv-
alent linear regulator [18]:

S(q−1) = 1 +m′

1ih(q
−1)q−1, d◦

[
S(q−1)

]
= d◦

[
B(q−1)

]
,

R(q−1) = m′

1if(q
−1)q−1, d◦

[
R(q−1)

]
= d◦

[
A(q−1)

]
, (16)

T (q) = m′

1

[
qN1 . . . qN2

]′
, d◦ [T (q)] = N2,
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with:

if(q−1) =
[
FN1

(q−1) . . . FN2
(q−1)

]′
,

ih(q−1) =
[
HN1

(q−1) . . .HN2
(q−1)

]′
,

Ũ = [∆u(t) . . .∆u(t+Nu − 1)]′ , (17)

ŷ = [ŷ(t+N1) . . . ŷ(t+N2)]
′

,

w = [w(t +N1) . . . w(t+N2)]
′

G =




gN1

N1
gN1

N1−1 . . . . . .

gN1+1
N1+1 gN1+1

N1
. . . . . .

. . . . . . . . . . . .

gN2

N2
gN2

N2−1 . . . gN2

N2−Nu+1


 .

4.2 Reformulation of GPC control with adaptive control

We start with the definition of the performance error. Consider first the following re-
gressor [22]. The starting point of this reformulation is constituted of setting equation
presented in the previous paragraph, in particular, relationships to obtain the optimal
control sequence.

4.3 Vectors parameters and regressor

The control law equation (13) may be transcribed in the form of the following matrix:

Mw = θ′Φ(t) (18)

which involves the matrix of parameters θ of dimension (na + nb + Nu + 1) × Nu with
na and nb being degrees of A(q−1) and B(q−1), respectively,

θ′ = [M if |Nu M ih], (19)

where if and ih matrices are formed of polynomial coefficients contained in if(q−1) and
ih(q−1), and the following vector called regressor dimension (na + nb +Nu + 1):

Φ(t) =
[
y(t) . . . y(t− na) ũ′ ∆u(t− 1) . . .∆u(t+ nb)

]
. (20)

The matrix of parameters θ contains, on its first line, the coefficients of the polynomials
R and S′. Indeed, from equation (14), the polynomial m′

1if(q
−1) corresponds to R and

m′

1ih(q
−1)q−1 corresponds to S′. The regressor Φ(t) is the output vector and past orders

including unknown commands ũ of dimension Nu.
We also note that when Nu = 1, the matrix θ is reduced to a vector including direct

polynomial coefficients R and S′.

4.4 The method for updating

The matrix controller parameters can be updated as most of strategies. Here we can
mention the gradient method and the recursive least squares method

θ̂(t+ 1) = θ̂(t) + Fφ(t)ε0(t+ 1) (21)
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with the use of the algorithm of Trace constant for determining the adaptation gain at
time t. To obtain a recursive algorithm, we consider the estimate θ̂(t+ 1).

After development, it follows the A.A.P:

θ̂(t+ 1) = θ̂(t) + F (t+ 1)φ(t)ε0(t+ 1) (22)

with

F (t+ 1) = F (t)−
F (t)φ(t)φ(t)TF (t)

1 + φ(t)TF (t)φ(t)
, (23)

where θ̂ is the vector of the estimated parameters and F (t+1)φ(t)ε0(t+1) represents the
correction term, F is the adaptation gain, φ is the vector of observations (or measures)
and ε is the prediction error (error adaptation), that is to say the difference between the
measured process output and the predicted output [22].

Figure 5: Structure equivalent of direct adaptive predictive control, control loop of RST and
adaptation mechanism.

5 Simulation Results and Discussion

Figure 6 represents the overall structure of speed control of PMSM fed by a hybrid
structure cascade five-level inverter, using the adaptive predictive control. To test the
effectiveness of the proposed control strategy for adjusting the speed, we have used
numerical simulation in the following cases:

• Step response of speed.

• Start unloading and then applying a torque resistant.

• Reverse speed.
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Figure 6: Global structure for regulating the PMSM.
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Figure 7: PMSM performance of the machine fed by the hybrid inverter.
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Figure 8: Top trace is phase current (ia). Second trace is normalized harmonic spectrum of
phase current (technique of PI controller fed by five level inverter (NPC)).
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Figure 11: Top trace is phase current (ia). Second trace is normalized harmonic spectrum of
phase current (technique of adaptive predictive control fed by hybrid inverter).

Table 1. Comparison of different strategies proposed.

Controller With PI with five adaptive Predictive adaptive Predictive
power supply livel (NPC) with five livel(NPC) with hybrid inverter.
Rotor speed 314(rd/s) at 0.4sec 314(rd/s) at 0.2 sec 314(rd/s) at 0.2 sec

THD 37.95 30.85 22.41

5.1 Discussion of the results of adaptive predictive control

As shown in Figure 7 it appears that for a reference of 314 rd/s during unloaded starting,
the steady state is achieved at t = 0.2s, which is a very appreciable response time,
compared with the conventional PID controller. The application of the load between
t = 0.4s and 0.8s causes a slight loss of speed that is quickly restored. Also note that
this load has no influence on the direct current component, indicating that the vector
control is effective. By analyzing the graph of the harmonic spectrum of the phase
current, we notice that there is a very big improvement in the pace of the phase current
compared to a five-level inverter. Finally, when reversing the speed reference we observe
an excessive increase in the starting current, which is justified by the large variation
subjected to the machine (from 314rd /s to -314rd /s). The time of the establishment of
the speed increased slightly to reach t = 0.34s. However, upon reversal of the reference,
we see an appearance of exceeding in terms of the response, so a runaway effect occurs,
which led us to introduce an anti-windup device. The latter is not enough to limit the
speed so it is recommended to act on the GPC parameters to remedy this problem.

5.2 Influence of the GPC parameters

As mentioned in references [23], for maintaining N1, Nu, and λopt to the values 1, 1 and
trace (G’G) respectively, and varying N2 to reconcile between a rapid response and an
acceptable startup current, it is necessary to find a set of parameters that can meet these
requirements. To do this, the influence of parameters on the magnitudes of the PMSM
is analyzed through the following figure: It appears that a strong increase for N2 results
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Figure 12: Parameter sets.

in a slow system response, while too large a decrease results in a large overshoot about
the set-point (runaway). Note that when N2 increases the response time increases. This
leads to a supplementary computation time which, to be reduced, must be accompanied
by an anti-windup device used primarily to limit both the speed around the set-point and
the admissible starting current, in our case the best choice for N2 or N2optimum

= 120. It
is clear that the time to response is very large in the case of conventional PID controller
even if N2 = 180, as well as the rejection of disturbance is very good in the adaptive
predictive control (see Figure 12).

Also, the right choice of N2 does not influence the response time only, but also the
shape of the phase current. The following table clearly shows the THD of each value of
N2.

Table 2. Comparison of the THD for different values of N2:

N2:maximum 180 120 50
prediction horizon

THD 31.78 22.41 48.75

6 Conclusion

The association between predictive control that has the ability to anticipate future events
and can take control actions accordingly and the adaptive control whose main role is to
eliminate the effect of disturbances in order to control better the system, relatively to the
conventional controller. In addition, the proposed hybrid inverter gives better harmonic
performance compared to its conventional homologue PWM. The simulation results show
a vast improvement in the current waves and good agreement with the adaptive predictive
control used to control the PMSM. Despite the introduction of the load and the inversion
of the set-point, this system is characterized by a better control of the MASP transient
regime, which conducts to good response times with an assured decoupling and a fast
enough dynamic rejection of disturbances. With a good choice of the actuator (PMSM)
and a robust control (adaptive predictive) and with a good fed (hybrid inverter) like
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ours, we could check the first formula of our paper. Therefore our system can provide
superior performances in terms of increased efficiency and reduced noise.
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Abstract: This paper is concerned with the approximate controllability of nonlinear
fractional impulsive stochastic differential equations with nonlocal conditions and
infinite delay in Hilbert spaces. By using the Krasnoselskii-Schaefer-type fixed point
theorem and stochastic analysis theory, some sufficient conditions are given for the
approximate controllability of the system. At the end, an example is given to illustrate
the application of our result.
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1 Introduction

The controllability is one of the fundamental concepts in linear and nonlinear control
theory, and plays a crucial role in both deterministic and stochastic control systems
(see e.g. Zabczyk, [27]).The controllability of nonlinear systems represented by evolution
equations or inclusions in abstract spaces and qualitative theory of fractional differential
equations has been extensively considered in many publications and monographs, an
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extensive list of these publications can be found in Mahmudov [16] and the references
contained therein.

On the other hand, the study of stochastic differential equations has attracted great
interest due to their applications in characterizing many problems in physics, biology,
chemistry, mechanics, and so on (see [6,7,9,12,17]) and the references contained therein).
In practice, deterministic systems often fluctuate due to environmental noise. So it is
important and necessary for us to discuss the stochastic control problems.

The problem with nonlocal condition, which is a generalization of the problem of clas-
sical condition, was motivated by physical problems. The pioneering work on nonlocal
conditions is due to Byszewski (see [3–5]). Since it is demonstrated that the nonlocal
problems have better effects in applications than the classical Cauchy problems, stochas-
tic differential equations with nonlocal conditions were studied by many authors and
some basic results on nonlocal problems have been obtained. Slama and Boudaoui [26]
obtained sufficient conditions for the existence of mild solutions for the fractional im-
pulsive stochastic differential equation with nonlocal conditions and infinite delay. (For
more details see [1, 24] and the references contained therein).

The approximate controllability of stochastic or deterministic systems has received
extensive attention where a pioneering work has been reported by Bashirov and Mah-
mudov [2]. Mahmudov [15] investigated the controllability of infinite dimensional linear
stochastic systems, and in [10] Dauer and Mahmudov extended the results to semilinear
stochastic evolution equations with finite delay. Sakthivel et al. [23] studied the approx-
imate controllability of nonlinear deterministic and stochastic evolution systems with
unbounded delay in abstract spaces. Kumar and Sukavanam [13] established sufficient
conditions of the approximate controllability for a class of fractional order semilinear
control systems with bounded delay. Shukla et al. [25] studied the approximate con-
trollability of semilinear stochastic control system with nonlocal conditions in a Hilbert
space, the results are obtained by using Sadovskii’s fixed point theorem.

Recently, the approximate controllability of fractional stochastic differential systems
has been investigated. Sakthivel et al. [22] studied a class of control systems described
by nonlinear fractional stochastic differential equations in Hilbert spaces. Sufficient con-
ditions for approximate controllability of fractional stochastic differential equations are
formulated by using fixed point technique, fractional calculus, and stochastic analysis
technique. Rajiv Ganthi and Muthukumar [20] discussed the approximate controllability
of fractional stochastic integral equation with finite delays in Hilbert spaces, and the re-
sults are obtained by using the assumption that the corresponding linear integral equation
is an approximate controllable and a stochastic version of the Banach fixed point theorem.
Muthukumar and Rajivganthi [18] studied the approximate controllability of fractional
order neutral stochastic integro-differential system with nonlocal conditions and infinite
delay in Hilbert spaces under the assumptions that the corresponding linear system is
approximately controllable. Guendouzi [11] discussed the existence and approximate
controllability for impulsive fractional-order stochastic infinite delay integro-differential
equations in Hilbert space, sufficient conditions for the approximate controllability of
impulsive fractional stochastic system are derived by using Krasnoselskii’s fixed point
theorem with stochastic analysis theory. Zang and Li [28] studied the approximate con-
trollability of fractional impulsive neutral stochastic differential equations with nonlocal
conditions and infinite delay. Sufficient conditions are given for the approximate control-
lability of the system by using the Krasnoselskii-Schaefer-type fixed point theorem and
stochastic analysis theory.
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For the best of our knowledge, there is no work reported on approximate control-
lability of nonlinear fractional impulsive stochastic differential equations with nonlocal
conditions and infinite delay. Motivated by this consideration, in this paper we will study
the approximate controllability of nonlinear fractional impulsive stochastic differential
equations with nonlocal conditions and infinite delay in Hilbert space. Our approach
is based on the fixed point theorem. The rest of this paper is organized as follows. In
Section 2, we introduce some preliminaries such as definitions of fractional calculus and
some useful lemmas. In Section 3, we prove our main results. Finally in Section 4, an
example is given to demonstrate the application of our results.

2 Preliminaries and Basic Properties

In this section, we introduce some notations and preliminary results, needed to establish
our results. Throughout this paper, H,U are two separable Hilbert spaces and L(U,H)
is the space of bounded linear operators from U into H. For convenience, we will use
the same notation ‖ . ‖ to denote the norms in H,U and L(U,H), and use 〈., .〉 to
denote the inner product of H and U without any confusion. Let (Ω,F , {Ft}t≥0,P) be
a complete filtered probability space satisfying the usual conditions (i.e., it is increasing
and right continuous, while F0 contains all P-null sets of F). Let W = (Wt)t≥0 be a
Q-Wiener process defined on (Ω,F , {Ft}t≥0,P) with the covariance operator Q such that
TrQ <∞. Let W =W (t)t≥0 be a Q-Wiener process defined on (Ω,F , {Ft}t≥0,P) with
the covariance operator Q, that is

E〈W (t), x〉〈W (s), y〉 = (t ∧ s)〈Qx, y〉 ∀x, y ∈ U and t, s ∈ [0, T ],

where Q is a positive, self-adjoint, trace class operator on U.
Let L 0

2 = L2(U,H) be the space of all Hilbert-Schmidt operators from U to H

with the inner product < ϕ,ψ >L 0

2

= Tr[ϕQψ∗]. We consider the following fractional
stochastic impulsive integro-differential systems with nonlocal conditions:





Dα
t x(t) = Ax(t) +Bu(t) + f(t, xt, B1x(t))

+σ(t, xt, B2x(t))dW (t), t ∈ J = [0, T ], T > 0, t 6= tk,
∆x(tk) = Ik(x(t

−
k )), k = 1, · · · ,m,

x(0) + g(x) = x0 = φ, φ ∈ Bh,

(1)

where Dα
t is the Caputo fractional derivative of order α, 0 < α < 1, the state variable x(.)

takes the value in the separable Hilbert space H; A : D(A) ⊂ H → H is the infinitesimal
generator of a strongly continuous semigroup of a bounded linear operators T (t), t ≥ 0
in the Hilbert space H. The control function u(.) is given in L2(J ;U), U is a Hilbert
space; B is a bounded linear operator from U into H. The history xt : (−∞, 0] →
H, xt(θ) = x(t+ θ), θ ≤ 0 belongs to an abstract phase space Bh; f : J ×Bh ×H → H,
σ : J × Bh × H → L 0

2 and g : Bh → H are appropriate functions to be specified later;
Ik : H → H, (k = 1, 2, · · · ,m), are appropriate functions. The terms B1x(t) and B2x(t)

are given by B1x(t) =
∫ t

0
K(t, s)x(s)ds and B2x(t) =

∫ t

0
P (t, s)x(s)ds respectively, where

K,P ∈ C(D,R+) are the set of all positive continuous functions on D = {(t, s) ∈ R
2 :

0 ≤ s ≤ t ≤ T }. Here 0 = t0 ≤ t1 ≤ · · · ≤ tm ≤ tm+1 = T , ∆x(tk) = Ik(x(t
−
k )) =

x(t+k )−x(t
−
k ), x(t

+
k ) = limh→0 x(tk+h) and x(t

−
k ) = limh→0 x(tk−h) represent the right

and left limits of x(t) at t = tk respectively. The initial data φ = {φ(t); t ∈ (−∞, 0]}
is an F0-measurable, Bh-valued random variable independent of W (t) with finite second
moments.
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Now, we present the abstract space phase Bh. Assume that h : (−∞, 0] → (0,+∞)

with l =
∫ 0

−∞
h(t)dt < ∞ is a continuous function. We define the abstract phase space

Bh by

Bh :=
{
φ : (−∞, 0] → H, for any a > 0, (E | φ(θ |2)

1

2

is bounded and measurable function on

[−a, 0] and

∫ 0

−∞

h(s) sup
s≤θ≤0

(E | φ(θ |2)
1

2 < +∞

}
.

If Bh is endowed with the norm

‖φ‖Bh
:=

∫ 0

−∞

h(s) sup
s≤θ≤0

(E | φ(θ) |2)
1

2 , φ ∈ Bh,

then (Bh, ‖.‖Bh
) is a Banach space [19, 21].

Now we consider the space

Bb := {x : (−∞, T ] → H, such that x|Jk
∈ C(Jk,H)

and there exist x(t+k ), and x(t−k )

with x(tk) = x(t−k ), x0 = φ ∈ Bh, k = 1, · · · ,m
}
,

where x|Jk
is the restriction of x to Jk = (tk, tk+1], k = 0, 1, 2, · · · ,m. We endow a

seminorm ‖.‖Bb
on Bb, it is defined by

‖x‖Bb
= ‖φ‖Bh

+ sup
0≤s≤T

(E‖x(s)‖2)
1

2 , x ∈ Bb.

We recall the following lemma.

Lemma 2.1 [21] Assume that x ∈ Bb; then for t ∈ J, xt ∈ Bh. Moreover

l(E‖x(t)‖2)
1

2 ≤ l sup
s∈[0,t]

E‖x(s)‖2)
1

2 + ‖x0‖Bh
,

where l =
∫ 0

−∞
h(s)ds <∞.

Definition 2.1 [8] The Caputo derivative of order α for a function f : [0,∞) → R,
which is at least n-times differentiable can be defined as

Dα
a f(t) =

1

Γ(n− α)

∫ t

a

(t− s)n−α−1f (n)(s)ds = I(n−α)
a

(
dnf

dtn

)
(t) (2)

for n− 1 ≤ α < n, n ∈ N. If 0 < α ≤ 1, then

Dα
a f(t) =

1

Γ(1− α)

∫ t

a

(t− s)−α

(
df(s)

ds

)
ds. (3)

Obviously, the Caputo derivative of a constant is equal to zero. The Laplace transform
of the Caputo derivative of order α > 0 is given as

L{Dα
t f(t);λ} = λαf̂(λ) −

n−1∑

k=0

λα−k−1f (k)(0) n− 1 ≤ α < n.
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Definition 2.2 The fractional integral of order α with the lower limit 0 for a function
f is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

(s− t)α−1f(s)ds (4)

provided the right-hand side is pointwise defined on [0,∞), where Γ is the gamma func-
tion.

Definition 2.3 A stochastic process x : J × Ω → H is called a mild solution of the
system (1) if

(i) x(t) is measurable and Ft-adapted, for each t ≥ 0;

(ii) x(t) ∈ H has càdlàg paths on t ∈ [0, T ] a.s., and satisfies the following integral
equation

x(t) = Tα(t)(φ(0) − g(x)) +
∫ t

0
(t− s)α−1Sα(t− s)Bu(s)ds

+
∫ t

0
(t− s)α−1Sα(t− s)f(s, xs, B1x(s))ds

+
∫ t

0
(t− s)α−1Sα(t− s)σ(s, xs, B2x(s))dW (t)

+
∑

0<tk<t Tα(t− tk)Ik(x(t
−
k )), t ∈ J ;

(5)

(iii) x0 = φ ∈ Bh on (−∞, 0] satisfying ‖φ‖Bh
<∞, where

Tα(t) =

∫ ∞

0

ξα(θ)T (t
αθ)dθ, Sα(t) = α

∫ ∞

0

θξα(θ)T (t
αθ)dθ

ξα(θ) =
1

α
θ−1− 1

α̟α(θ
− 1

α ) ≥ 0,

̟(θ) =
1

π

∞∑

n=1

(−1)n−1θ−nα−1Γ(nα+ 1)

n!
sin(nπα), θ ∈ (0,∞),

ξα is a probability density function defined on (0,∞), that is,

ξα ≥ 0, θ ∈ (0,∞), and

∫ ∞

0

ξα(θ)dθ = 1.

Lemma 2.2 [29] The operators Tα and Sα have the following properties:

(i) For any fixed t ≥ 0, Tα(t) and Sα(t) are linear and bounded operators, i.e., for any
x ∈ X,

‖Tα(t)x‖ ≤M‖x‖, ‖Sα(t)x‖ ≤
αM

Γ(1 + α)
‖x‖.

(ii) {Tα(t), t ≥ 0} and {Sα(t), t ≥ 0} are strongly continuous, which means that for
every x ∈ H and for 0 ≤ t

′

< t
′′

≤ T , we have

‖Tα(t
′′

)x− Tα(t
′

)x‖ → 0 and ‖Sα(t
′′

)x− Sα(t
′

)x‖ → 0, as t
′

→ t
′′

.

(iii) For every t ≥ 0, Tα(t) and Sα(t) are also compact operators if T (t) is compact for
every t > 0.
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In order to study the approximate controllability for the fractional control system
(1), we introduce the following linear fractional differential system

{
Dα

t x(t) = Ax(t) +Bu(t), t ∈ J,
x(0) = x0.

(6)

The controllability operator associated with (6) is defined by

ΓT
0 =

∫ T

O

(T − s)α−1Sα(t− s)BB∗S∗
α(T − s)ds,

where B∗ and S∗
α denote the adjoint of B and Sα, respectively.

Let x(T ;φ, u) be the state value of (1) at terminal time T , corresponding to the
control u and the initial value φ. Denote by R(T, φ) = {x(T ;φ, u) : u ∈ L2(J,U)} the
reachable set of system (1) at terminal time T , its closure in H is denoted by R(T, φ).

Definition 2.4 The system (1) is said to be approximately controllable on J if
R(T, φ) = L2(Ω,H).

Lemma 2.3 [14] The linear fractional control system (6) is approximately control-
lable on J if and only if λ(λI + ΓT

0 ) → 0 as λ→ 0+ in the strong operator topology.

Lemma 2.4 [29] (Krasnoselskii’s fixed point theorem) Let E be a Banach space, let
Ê be a bounded closed and convex subset of E, and let F1, F2 be maps of Ê into E such
that F1x + F2y ∈ Ê for every pair x, y ∈ Ê. If F1 is a contraction and F2 is completely
continuous, then the equation F1x+ F2x = x has a solution on Ê.

3 Main Results

In this section, we formulate sufficient conditions for the approximate controllability of
system (1). For this purpose, we first prove the existence of solutions for system (1).
Second, in Theorem 3.2, we shall prove that system (1) is approximately controllable
under certain assumptions.

In order to establish the results, we impose the following conditions

(H1) f : J × Bh ×H → H is continuous and there exist µ1, µ2 > 0 such that

E‖f(t, γ, x)− f(t, ψ, y)‖2
H
≤ µ1‖γ − ψ‖2Bh

+ µ2E‖x− y‖2
H
,

and there exist two continuous functions µ1, µ2 : J → (0,∞) such that

E‖f(t, ψ, x)‖2
H
≤ µ1(t)‖ψ‖

2
Bh

+ µ2(t)E‖x‖2
H
, (t, ψ, x) ∈ J × Bh ×H,

where µ∗
1 = sups∈[0,t] µ1(s) and µ

∗
2 = sups∈[0,t] µ2(s).

(H2) There exist ν1, ν2 > 0 such that

E‖σ(t, γ, x)− f(t, ψ, y)‖2
L 0

2

≤ ν1‖γ − ψ‖2Bh
+ ν2E‖x− y‖2

H
,

and there exist two continuous functions ν1, ν2 : J → (0,∞) such that

E‖σ(t, ψ, x)‖2
L 0

2

≤ ν1(t)‖ψ‖
2
Bh

+ ν2(t)E‖x‖2
H
, (t, ψ, x) ∈ J × Bh × L

0
2 ,

where ν∗1 = sups∈[0,t] ν1(s) and ν
∗
2 = sups∈[0,t] ν2(s).
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(H3) g is continuous, and there exist some positive constants δ1 such that

E‖g(x)‖2
H
≤ δ1‖x‖

2
Bh
.

(H4) The function Ik : H → H is continuous and there exist continuous nondecreasing
functions Lk such that, for each x ∈ H,

E‖Ik(x)‖
2
H
≤ LkE‖x‖2

H
and lim

r−→+∞

Lk(r)

r
= βk <∞, k = · · · , n.

(H5) The linear stochastic system (6) is approximately controllable on [0, T ].

The following lemma is required to define the control function.

Lemma 3.1 [15] For any xT ∈ L2(FT , H), there exists η(.) ∈ L2
F(Ω;L

2(J ;L0
2))

such that xT = ExT +
∫ T

0 η(s)dW (s).

Now, for any λ > 0 and xT ∈ L2(FT , H), we define the control function

uλ(t) = B∗S∗
α(T − t)(λI + ΓT

0 )
−1

×
[
ExT +

∫ t

0

η(s)dW (s) + Tα(T )(φ(0)− g(x))
]

−B∗S∗
α(T − t)

∫ t

0

(λI + ΓT
s )

−1(T − s)α−1Sα(T − t)f(s, xs, B1x(s))ds

−B∗S∗
α(T − t)

∫ t

0

(λI + ΓT
s )

−1(T − s)α−1Sα(T − t)g(s, xs, B2x(s))dW (s)

−B∗S∗
α(T − t)(λI + ΓT

0 )
−1

∑

0<tk<T

Tα(T − tk)Ik(x(t
−
k )).

Theorem 3.1 Assume that the conditions (H1)− (H4) hold. Then for each λ > 0 ,
the system (1) has a mild solution on [0, T ], provided that

[
4l2M2δ1+

(
MTα

Γ(1+α)

)2

(4l2µ∗
1 + µ∗

2B
∗
1) +

T 2α−1

2α−1

(
αM

Γ(1+α)

)2

(4l2ν∗1 + ν∗2B
∗
2)

+4l2mM2
∑m

k=1 βk

]
.
[
5 + 30T 2α

λ2α2

(
αMMB

Γ(1+α)

)4]
≤ 1

and

2

[
T 2α

α2

( αM

Γ(1 + α)

)2

(µ1l + µ2B
∗
1) +

T 2α−1

2α− 1

( αM

Γ(1 + α)

)2

(ν1l + ν2B
∗
2 )

]
< 1,

where B∗
1 = supt∈[0,T ]

∫ t

0 K(t, s)ds <∞ and B∗
2 = supt∈[0,T ]

∫ t

0 P (t, s)ds <∞.

Proof. For any λ > 0, define the operator Ψ : Bb → Bb by
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Ψx(t) = φ(t), t ∈ (−∞, 0],

Ψx(t) = Tα(t)(φ(0) − g(x)) +

∫ t

0

(t− s)α−1Sα(t− s)Buλ(s)ds

+

∫ t

0

(t− s)α−1Sα(t− s)f(s, xs, B1(x(s)))ds

+

∫ t

0

(t− s)α−1Sα(t− s)σ(s, xs, B2(x(s)))dW (t)

+
∑

0<tk<t

Tα(t− tk)Ik(x(t
−
k )), t ∈ J.

We shall show that the operator Ψ has a fixed point in the space Bb, which is the mild
solution of (1).

For φ ∈ Bh, we define φ̂ by

φ̂(t) =

{
φ(t), t ∈ (−∞, 0],

Tα(t)φ(0), t ∈ J ;
then φ̂ ∈ Bb.

Let x(t) = y(t)+ φ̂(t),−∞ < t < T . It is evident that y satisfies y0 = 0, t ∈ (−∞, 0]
and

y(t) =Tα(t)(−g(y + φ̂)) +

∫ t

0

(t− s)α−1Sα(t− s)Buλ(s)ds

+

∫ t

0

(t− s)α−1Sα(t− s)f(s, ys + φ̂s, B1(y(s) + φ̂(s)))ds

+

∫ t

0

(t− s)α−1Sα(t− s)σ(s, ys + φ̂s, B2(y(s) + φ̂(s)))dW (s)

+
∑

0<tk<t

Tα(t− tk)Ik(y(t
−
k ) + φ̂(t−k )), t ∈ J.

Set B0
b = {y ∈ Bb, such that y0 = 0 ∈ Bh} and for any y ∈ B0

b we have

‖y‖B0

b

= ‖y0‖Bh
+ sup

t∈J
(E‖y(t)‖2)

1

2 = sup
t∈J

(E‖y(t)‖2)
1

2 ,

thus (B0
b , ‖.‖B0

b

) is a Banach space.

Let Br =
{
y ∈ B0

b , ‖y‖2
B0

b

≤ r, r > 0
}
. The set Br is clearly a bounded closed

convex set in B0
b for each r > 0 and for each y ∈ Br. By Lemma 2.1 we have

‖yt + φ̂t‖
2
Bh

≤ 2(‖yt‖
2
Bh

+ ‖φ̂t‖
2
Bh

)
≤ 4(l2 sups∈[0,t]E‖y(s)‖2

H
+ ‖y0‖

2
Bh

)

+4(l2 sups∈[0,t]E‖φ̂(s)‖2
H
+ ‖φ̂0‖

2
Bh

)

≤ 4(‖φ‖2Bh
+ l2(r +M2E‖φ(0)‖2

H
)).

For the sake of convenience, we divide the proof into several steps.

Step 1. We claim that there exists a positive number r such that Ψ(Br) ⊂ Br. If
this is not true, then, for each positive integer r, there exists yr ∈ Br such that
E‖Ψ(yr)(t)‖2 > r for t ∈ (−∞, T ], t may depending upon r. However, on the other
hand, we have
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r ≤ E‖Ψ(yr)(t)‖2

≤ 5E‖Tα(t)[−g(y
r + φ̂)‖2

+5E‖
∫ t

0
(t− s)α−1Sα(t− s)Buλ(s)ds‖2

+5E‖
∫ t

0
(t− s)α−1Sα(t− s)f(s, yrs + φ̂s, B1(y

r
s + φ̂s))ds‖

2

+5E‖
∫ t

0
(t− s)α−1Sα(t− s)σ(s, yrs + φ̂s, B2(y

r
s + φ̂s))dW (t)‖2

+5E‖
∑

0<tk<t ‖Tα(t− tk)Ik(y(t
−
k ) + φ̂(t−k ))‖

2, t ∈ J.

By using (H1)-(H4), Lemma 2.1 and Hölder’s inequality, we obtain

r ≤ E‖(Ψyr)(t)‖2

≤ 5M2δ1‖y
r + φ̂‖2Bh

+ 5Tα

α

(
αMMB

Γ(1+α)

)2 ∫ t

0
(t− s)α−1E‖uλ(s)‖2ds

+5Tα

α

(
αM

Γ(1+α)

)2 ∫ t

0
(t− s)α−1E‖f(s, yrs + φ̂s, B1(y

r
s + φ̂s))‖

2ds

+5
(

αM
Γ(1+α)

)2 ∫ t

0 (t− s)2(α−1)E‖σ(s, yrs + φ̂s, B2(y
r
s + φ̂s))‖

2
L 0

2

ds

+5mM2
∑m

0=1E‖Ik(y(t
−
k ) + φ̂(t−k ))‖

2

≤ 5M2δ1r
′ + 30T 2α

λ2α2

(
αMMB

Γ(1+α)

)4

δ2

+5
(

MTα

Γ(1+α)

)2

(µ∗
1r

′ + µ∗
2B

∗
1(sups∈[0,T ]E‖x‖2)

+5T 2α−1

2α−1

(
αM

Γ(1+α)

)2

(ν∗1r
′ + ν∗2B

∗
2(sups∈[0,T ]E‖x‖2)

+5mM2
∑m

0=1 Lk(r
′),

≤ 5M2δ1r
′ + 30T 2α

λ2α2

(
αMMB

Γ(1+α)

)4

δ2

+5
(

MTα

Γ(1+α)

)2

(µ∗
1r

′ + µ∗
2B

∗
1r) + 5T 2α−1

2α−1

(
αM

Γ(1+α)

)2

(ν∗1r
′ + ν∗2B

∗
2r)

+5mM2
∑m

k=1 Lkr
′,

where r′ = 4(‖φ‖2Bh
+ l2(r +M2E‖φ(0)‖2

H
)) ,‖B‖ ≤MB and

δ2 = 2E‖x̄T‖
2 + 2

∫ t

0
E‖η(s)‖2

L 0

2

ds+M2‖φ‖2Bh
+M2δ1r

′

+
(

MTα

Γ(1+α)

)2

(µ∗
1r

′ + µ∗
2B

∗
1r) +

T 2α−1

2α−1

(
αM

Γ(1+α)

)2

(ν∗1r
′ + ν∗2B

∗
2r)

+mM2
∑m

k=1 Lkr
′.

Dividing both sides by r and taking the limit as r −→ ∞, we obtain

1 ≤
[
4l2M2δ1+

(
MTα

Γ(1+α)

)2

(4l2µ∗
1 + µ∗

2B
∗
1) +

T 2α−1

2α−1

(
αM

Γ(1+α)

)2

(4l2ν∗1 + ν∗2B
∗
2)

+4l2mM2
∑m

k=1 βk

]
.
[
5 + 30T 2α

λ2α2

(
αMMB

Γ(1+α)

)4]

which is a contradiction to our assumption. Thus, for each λ > 0, there exists some
positive number r such that Ψ(Br) ⊂ Br.

Next, we show that the operator Ψ is condensing, for convenience, we decompose
Ψ as Ψ = Ψ1 +Ψ2, where

(Ψ1y)(t) =

{ ∫ t

0 (t− s)α−1Sα(t− s)f(s, ys + φ̂s, B1(y(s) + φ̂(s)))ds

+
∫ t

0 (t− s)α−1Sα(t− s)σ(s, ys + φ̂s, B2(y(s) + φ̂(s)))dW (t),

(7)
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and

(Ψ2y)(t) =

{
Tα(t)(−g(y + φ̂)) +

∫ t

0 (t− s)α−1Sα(t− s)Buλ(s)ds

+
∑

0<tk<t Tα(t− tk)Ik(y(t
−
k ) + φ̂(t−k )), t ∈ [0, T ].

(8)

Step 2. We prove that Ψ1 is a contraction on Br. Let t ∈ J and y, y∗ ∈ Br, we have

‖(Ψ1y)(t)− (Ψ1y
∗)(t)‖2

H

≤ 2E‖
∫ t

0 (T − s)α−1Sα(T − s)
[
f(s, ys + φ̂s, B1(y(s) + φ̂(s)))

−f(s, y∗s + φ̂s, B1(y
∗(s) + φ̂(s)))

]
ds‖2

H

+2E‖
∫ t

0
(T − s)α−1Sα(T − s)

[
σ(s, ys + φ̂s, B2(y(s) + φ̂(s)))

−σ(s, y∗s + φ̂s, B2(y
∗(s) + φ̂(s)))

]
dW (t)‖2

H

≤ 2Tα

α

(
αM

Γ(1+α)

)2 ∫ t

0
(T − s)α−1

[
µ1‖y(s)− y∗(s)‖2Bh

+µ2E‖B1(y(s) + φ̂(s))−B1(y
∗(s) + φ̂(s)‖2

H

]
ds

+2
(

αM
Γ(1+α)

)2 ∫ t

0
(T − s)2(α−1)

[
ν1‖ys − y∗s‖

2
Bh

+ν2E‖B2(y(s) + φ̂(s))−B2(y
∗(s) + φ̂(s))‖2

H

]
ds

≤ 2

[
T 2α

α2

(
αM

Γ(1+α)

)2

(µ1l + µ2B
∗
1)

+T 2α−1

2α−1

(
αM

Γ(1+α)

)2

(ν1l + ν2B
∗
2)

]
‖y − y∗‖2

B0

b

,

where 2

[
T 2α

α2

(
αM

Γ(1+α)

)2

(µ1l + µ2B
∗
1 ) +

T 2α−1

2α−1

(
αM

Γ(1+α)

)2

(ν1l + ν2B
∗
2 )

]
< 1, hence

Ψ1 is a contraction.

Step 3. Ψ2 maps bounded sets into bounded sets in Br, Let us prove that for r > 0
there exists a r̂ > 0 such that for each y ∈ Br we have E‖(Ψ2y)(t)‖

2
H
< r̂ for t ∈ J .

Now we have

E‖Ψ2y(t)‖
2
H

≤ 3E‖Tα(t)(−g(y + φ̂))‖2

+3E‖
∫ t

0 (t− s)α−1Sα(t− s)Buλ(s)ds‖2

+3E‖
∑

0<tk<t Tα(t− tk)Ik(y(t
−
k ) + φ̂(t−k ))‖

2

≤ 3M2δ1r
′ + 18

λ2

T 2α

α2

(
αMMB

Γ(1+α)

)4

δ2 + 3M2m2
∑m

k=1 Lkr
′

= r̂.
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Step 4. The map Ψ2 is equicontinuous. Let u, v ∈ J , 0 ≤ u < v ≤ T , y ∈ Br, we obtain

E‖(Ψ2y)(v)− (Ψ2y)(u)‖
2
H
≤

5E‖Tα(v)− Tα(u)(−g(y + φ̂))‖2

+ 5E‖

∫ u

0

(u− s)α−1[Sα(v − s)− Sα(u− s)]Buλ(s)ds‖2

+ 5E‖

∫ u

0

[(v − s)α−1 − (u− s)α−1]Sα(v − s)Buλ(s)ds‖2

+ 5E‖

∫ v

u

(v − s)α−1Sα(v − s)Buλ(s)ds‖2

+ 5E‖
∑

0≤tk≤T

[Tα(v − tk)− Tα(u − tk)]Ik(y(t
−
k ) + φ̂(t−k ))‖

2.

Noting the fact that for every ǫ > 0, there exists a δ > 0 such that, whenever
|s1− s2| < δ for every s1, s2 ∈ J , ‖Tα(s1)−Tα(s2)‖ < ǫ and ‖Sα(s1)−Sα(s2)‖ < ǫ.
Therefore, when |v − u| < δ, we have

E‖(Ψ2y)(v)− (Ψ2y)(u)‖
2
H
≤5ǫ2δ1r

′ +
30ǫ2M2

B

λ2
T 2α

α2
δ2

+
30δ2
α2λ2

( αMMB

Γ(α+ 1)

)4

[vα − uα − (v − u)α]2

+
30δ2
α2λ2

( αMMB

Γ(α+ 1)

)4

(v − u)2α + 5mǫ2
m∑

k=1

Lkr
′.

The right hand of the inequality above tends to 0 as v −→ u and ǫ −→ 0, hence
the set {Ψ1y, y ∈ Br} is equicontinuous.

Step 5. The set V (t) = {Ψ2y(t), y ∈ Br} is relatively compact in Br. Let 0 < t ≤ T be
fixed and 0 < ǫ < t . For δ > 0, y ∈ Br, we define

Ψǫ,δ
2 y(t) ≤

∫∞

δ ξα(θ)T (t
αθ)(−g(y + φ̂))dθ

+α
∫ t−ǫ

0

∫∞

δ θ(t− s)α−1ξα(θ)T ((t− s)αθ)Buλ(s)dθds

+
∑

0<tk<t

∫∞

δ ξα(θ)T ((t− tk)
αθ)Ik(y(t

−
k ) + φ̂(t−k ))dθ

= T (ǫαδ)
∫∞

δ
ξα(θ)T (t

αθ − ǫαδ)(−g(y + φ̂)dθ

+αT (ǫαδ)
∫ t−ǫ

0

∫∞

δ
θ(t− θ)α−1ξα(θ)T ((t− s)αθ − ǫαδ)Buλ(s)dθds

+
∑

0<tk<t T (ǫ
αδ)

∫∞

δ
ξα(θ)T ((t− tk)

αθ − ǫαδ)Ik(y(t
−
k ) + φ̂(t−k ))dθ.

Then from the compactness of T (ǫαδ), we obtain that Vǫ,δ(t) = {Ψǫ,δ
2 y(t) : y ∈ Br}

is relatively compact in H for every ǫ, 0 < ǫ < t. Moreover, for y ∈ Br, we can
easily prove that Ψǫ,δ

2 y(t) is convergent to Ψ2y(t) in Br as ǫ −→ 0 and δ −→ 0,
hence the set V (t) = {Ψ2y(t) : y ∈ Br} is also relatively compact in Br. Thus, by
Arzela-Ascoli theorem Ψ1 is completely continuous. Consequently, from Lemma
2.4 Ψ has a fixed point, which is a mild solution of (1).

Theorem 3.2 Assume that (H1)-(H5) are satisfied, and the conditions of Theorem
3.1 hold. Further, if the functions f and σ are uniformly bounded, and T (t) is compact,
then the system (1) is approximately controllable on [0, T ].
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Proof. Let xλ be a solution of (1), then we can easily get that

xλ(t) = x̄T − λ(λI + ΓT
0 )

−1
[
ExT +

∫ t

0

η(s)dW (s) − Tα(T )(φ(0)− g(x))
]

+λ

∫ T

0

(λI + ΓT
s )

−1(T − s)α−1Sα(T − t)f(s, xλs , B1x
λ(s))ds

+λ

∫ T

0

(λI + ΓT
s )

−1(T − s)α−1Sα(T − t)σ(s, xλs , B2x
λ(s))dW (s)

+λ(λI + ΓT
0 )

−1
∑

0<tk<T

Tα(T − tk)Ik(x(t
λ
s )).

In view of the assumptions that f and σ are uniformly bounded on J , there is a
subsequence still denoted by f(s, xλs , B1x

λ(s)) and σ(s, xλs , B2x
λ(s)), which converges

weakly to, say f(s) in H , and σ(s) in L(U,H). On the other hand, by assumption
(H5), the operator λ(λI + ΓT

s )
−1 −→ 0 strongly as λ −→ 0+ for all 0 ≤ s ≤ T , and,

moreover, ‖λ(λI + ΓT
s )

−1‖ ≤ 1. Thus, the Lebesgue dominated convergence theorem
and the compactness of S yield

E‖xλ(t)−x̄T ‖
2 ≤ 4‖λ(λI+ΓT

0 )
−1‖2E‖ExT +

∫ T

0

η(s)dW (s)− Tα(T )(φ(0)− g(x))‖2

+ 4E
(∫ T

0

‖λ(λI+ΓT
s )

−1(T − s)α−1Sα(T − t)f(s, xλs , B1x
λ(s))‖ds

)2

+ 4E
∥∥∥
∫ T

0

‖λ(λI+ΓT
s )

−1(T−s)α−1Sα(T−t)σ(s, x
λ
s , B1x

λ(s))dW (s)
∥∥∥
2

+ 4‖λ(λI+ΓT
0 )

−1‖2E‖
∑

0<tk<T

Tα(T − tk)Ik(x(t
λ
s ))‖

2 → 0, as λ→ 0+.

This gives the approximate controllability of (1), the proof is complete.

4 An Example

As an application, we consider an impulsive stochastic partial differential equation of the
following form





Dα
t x(t, y) =

∂2

∂y2x(t, y) + b(y)u(t) +
∫ 0

−∞
H(t, y, s− t)Q(x(s, y))ds

+
∫ t

0
K(s, t)e−x(s,y)ds+

[ ∫ 0

−∞
V (t, y, s− t)U(x(s, y))ds

+
∫ t

0 p(s, t)e
−x(s,y)ds

]
dW (t) y ∈ [0, π], t ∈ [0, T ], T > 0, t 6= tk,

Ik(x(t
−
k , y)) = x(t+k , y)− x(t−k , y), k = 1, · · · ,m,

x(t, 0) = x(t, π) = 0, t ∈ [0, T ],
x(0, y) +

∫ π

0
G(y, z)x(t, z)dz = φ(t, y), t ∈ (−∞, 0].

(9)

Let U = H = L2([0, π]) and h(t) = e2t, t < 0, Then l =
∫ 0

−∞
h(s)ds = 1

2 .To study the
approximate controllability of (9), assume that H , Q, V and U are continuous; φ ∈ Bh.

We define the operator A by Ax = ∂2x
∂y2 . with domain D(A) = {x ∈ H, ∂x∂y ,

∂2x
∂y2 ∈

H and x(0) = x(π) = 0}. It is well known that A generates an analytic semi-

group T (t), t ≥ 0 given by T (t)x =
∑∞

n=1 e
−n2t〈x, en〉en, x ∈ H , and en(y) =

(2/π)1/2 sin(ny), n = 1, 2, · · · , is the orthogonal set of eigenvectors of A.
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Define the operators f : J × Bh × L2([0, π]) → H, σ : J × Bh × L2([0, π]) →
L 0

2 (U,H), g : Bh → L2([0, π]),

f(t, φ,B1x(t))(y) =

∫ t

−∞

H(t, y, s− t)Q(x(s, y))ds+

∫ t

0

K(s, t)e−x(s,y)ds,

σ(t, φ,B2x(t))(y) =

∫ 0

−∞

V (t, y, s− t)U(x(s, y))ds+

∫ t

0

p(s, t)e−x(s,y)ds,

g(y) =

∫ π

0

G(y, z)x(t, z)dz.

With the choice of A, f , σ and g can be rewritten as the abstract form of system (1).
Under the appropriate conditions on the functions f , σ, g and Ik as those in (H1)-(H5),
system (9) is approximately controllable.

5 Conclusion

Approximate controllability of nonlinear fractional impulsive stochastic differential equa-
tions with nonlocal conditions and infinite delay in Hilbert spaces has been investigated.
By employing fractional calculus, Krasnoselskii-Schaefer-type fixed point theorem and
stochastic analysis theory, sufficient conditions for the approximate controllability of
nonlinear fractional impulsive stochastic differential equations are formulated and proved
under the assumption that the associated linear system is approximately controllable.
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Abstract: In this paper we have investigated the complete integrability of the system
of six coupled nonlinear ODEs (ordinary differential equations), which arose in the
ODE reduction of uniformly stratified fluid contained in rotating rectangular box of
dimension L × L × H . The reduced system is completely integrable if the Rayleigh
number Ra = 0. Whereas, Ra 6= 0 is the case of non integrability and we have
obtained the solutions in the form of logarithmic psi-series. We conclude that weak
singular solutions exist with movable pole type singularity, which are cluster in a
self-similar fashion.

Keywords: completely integrable systems; non-integrable systems; Painlevé test;
singular solutions.
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1 Introduction

In the fluid dynamics, the flow of fluid in the atmosphere and in the ocean is governed
by Boussinesq equations. Majda and Shefter [3] analyzed certain ODE reduction of
Boussinesq equations. Srinivasan et al. [15] extended this work and they gave the detail
mathematical analysis of reduced system of six coupled ODEs. Whereas, Desale and
Dasre [5] wrote the C-Programme to determine the numerical solutions on stable and
unstable manifolds. Furthermore, Desale [4] had given the complete analysis of the
system and also tested the system for complete integrability by determining four first
integrals and used the Jacobi’s theorem. Also, he has demonstrated the stability of non
degenerate critical point. For the similar text of bifurcation analysis near the degenerate
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critical point one may refer to [14]. The rigorous mathematical analysis and special
solutions of rotating stratified Boussinesq equations have been discussed by Desale and
Sharma in their paper [7].

In his study of onset of instabilities in the stratified fluids at large Richardson number
Paul Painlevé [12, 13] classified algebraic differential equations of first and second order
whose solutions in the complex domain are devoid of movable essential singularities or
movable branch point. The ODE possessing this property is said to be of Painlevé type.
Painlevé test in view of partial differential equations is generally known as WTC (Weiss-
Tabor-Carnevale [16]) test which is further modified by Kichenassamy and Srinivasan [9].
In their paper [8], Desale and Srinivasan tested the reduced system of stratified Boussi-
nesq equations in the light of the ARS (Ablowitz, Ramani and Segur [1]) conjuncture.
In continuation of this work Desale & Patil [6] tested the system of six coupled ODEs
for complete integrability using the Painlevé test.

In this paper we have tested the system of six coupled nonlinear ODEs for its complete
integrability via Painlevé test. We have the non integrable case for the Rayleigh number
Ra 6= 0 causing the singular solution in the form of logarithmic psi-series, which is the
weak solution. The presence of logarithm term in the series implies that the solution in
question have singularity which is cluster in self similar fashion. This is sometime viewed
as possible symptom for non-integrable behavior.

This paper consists of five sections. Section 1 is introduction, Section 2 gives ODE
reduction of uniformly stratified fluid contained in rotating rectangular box. In Section
3, we provided the preliminary work which is the base for investigation of weak solutions
in the non integrable case. Whereas, in Section 4, we determined the weak solutions.
Finally, we conclude the result in Section 5.

2 Dynamics of an Uniformly Stratified Fluid Contained in Rotating Box

We now begin by describing the rotating stratified Boussinesq equations (see Majda [2])

D~v

Dt
+ f(ê3 × ~v) = −∇p+ ν(∆~v)−

gρ̃

ρb
ê3,

div ~v = 0,
Dρ̃

Dt
= κ∆ρ̃,

(1)

where ~v denotes the velocity field, ρ is the density which is the sum of constant reference
density ρb and perturbation density ρ̃, p is the pressure, g is the acceleration due to gravity
that points in −ê3 direction, f is the rotation frequency of earth, ν is the coefficient of
viscosity, κ is the coefficient of heat conduction and D

Dt
= ∂

∂t
+ (~v · ∇) is a convective

derivative. For more about rotating stratified Boussinesq equations one may see Majda
[2].

In the frame of reference of an uniformly stratified fluid contained in rotating rectan-
gular box of dimension L×L×H , which is temperature stratified with fixed zeroth order
moments of mass and heat (so that there is neither net evaporation or precipitation,
nor any net river input or output, and neither heating nor cooling). The container is
assumed to be in steady uniform rotation on an f -plane. Maas [11] reduces the system
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of equations (1) into the following system of six coupled ODEs:

Pr−1 d~w

dt
+ f ′ê3 × ~w = ê3 × ~b− (w1, w2, rw3) + T̂ ~T,

d~b

dt
+ ~b× ~w = −(b1, b2, µb3) +Ra~F.

(2)

In these equations, ~b = (b1, b2, b3) is the center of mass, ~w = (w1, w2, w3) is the basin’s

averaged angular momentum vector, ~T is the differential momentum, ~F are the buoyancy
fluxes, f ′ = f/2rh is the earth rotation, r = rv/rh is the friction (rv,h are the Rayleigh
damping coefficients), Ra is the Rayleigh number, Pr is the Prandtl number, µ is the
diffusion coefficient and T̂ is the magnitude of the wind stress torque.

Neglecting diffusive and viscous terms, Maas [11] considers the dynamics of an ideal
rotating, uniformly stratified fluid in response to forcing. He assumes this to be due solely
to differential heating in the meridional (y) direction. ~F = (0, 1, 0), the wind effect is

neglected i.e. ~T = 0. For Prandtl number Pr, equal to one, the system of equations (2)
reduces to the following ideal rotating, uniformly stratified system of six coupled ODEs

d~w

dt
= −f ′ê3 × ~w + ê3 × ~b,

d~b

dt
= −~b× ~w +Ra~F.

(3)

In his paper, Desale [4] has demonstrated the complete integrability of the system (3)
for Ra = 0 using the first integrals and Jacobi’s theory. Desale and Patil [6] continued
this work and tested the system for complete integrability via Painlevé test. In this
paper we investigate the case of non integrability Ra 6= 0. In the following section we
consider the case of non integrability and obtain the weak singular solution in the form
of logarithmic-psi series.

3 Preliminaries

We have a system of ODEs (3), which can be written component-wise as:

ẇ1 = f ′w2 − b2, ẇ2 = −f ′w1 + b1, ẇ3 = 0,

ḃ1 = w2b3 − w3b2, ḃ2 = w3b1 − w1b3 +Ra, ḃ3 = w1b2 − w2b1.
(4)

Since ẇ3 = 0, which gives us w3 = constant = k1. Consequently, we have the following
system of ODEs:

ẇ1 = f ′w2 − b2, ẇ2 = −f ′w1 + b1,

ḃ1 = w2b3 − k1b2, ḃ2 = k1b1 − w1b3 +Ra, ḃ3 = w1b2 − w2b1.
(5)

Desale and Patil [6] obtained the solution of the system (5) in the form of the following
power series:

w1(t) =

∞
∑

j=0

w1jτ
j+m1 , w2(t) =

∞
∑

j=0

w2jτ
j+m2 ,

b1(t) =

∞
∑

j=0

b1jτ
j+n1 , b2(t) =

∞
∑

j=0

b2jτ
j+n2 , b3(t) =

∞
∑

j=0

b3jτ
j+n3 ,

(6)
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where τ = t − t0 and t0 is an arbitrary position of singularity. Also, the authors found
that there were several possible cases of dominant balance of the system (5) and among
those possible cases they obtained the singular solution only in the following case of
principle dominant balance

ẇ1 = −b2, ẇ2 = b1, ḃ1 = w2b3, ḃ2 = −w1b3, ḃ3 = w1b2 − w2b1. (7)

Consequently, they have determined the exponents as

m1 = m2 = −1, n1 = n2 = n3 = −2 (8)

and possible branches of leading order coefficients as listed below

w10 = ±

√

−4− k22 , w20 = k2, b10 = −k2, b20 = ±

√

−4− k22 , b30 = 2. (9)

Furthermore, the authors have given the following recursive relations to determine the
coefficients w1j , w2j , b1j, b2j and b3j for j = 1, 2, 3 . . ..













j − 1 0 0 1 0
0 j − 1 −1 0 0
0 −b30 j − 2 0 −w20

b30 0 0 j − 2 w10

−b20 b10 w20 −w10 j − 2

























w1j

w2j

b1j
b2j
b3j













=













Aj

Bj

Cj

Dj

Ej













, (10)

where
Aj = f ′w2(j−1), Bj = −f ′w1(j−1),

Cj = −k1b2(j−1) +

j−1
∑

k=1

w2kb3(j−k),

Dj = k1b1(j−1) −

j−1
∑

k=1

w1kb3(j−k),

Ej =

j−1
∑

k=1

w1kb2(j−k) −

j−1
∑

k=1

w2kb1(j−k) .

(11)

The above recursive relations (10) determine the unknown expansion coefficients uniquely
unless the determinant of coefficient matrix is zero. Those values of j at which the
determinant of coefficient matrix vanishes are called the resonances and these are

j = −1, 0, 2, 3, 4. (12)

We see that all resonances are simple. Here j = −1, is a usual resonance and j = 0 is
corresponding to the arbitrariness of w20 in leading order coefficients.

Desale and Patil [6] have considered the following case of leading order coefficients

w10 =
√

−4− k22 , w20 = k2 (arbitrary constant),

b10 = −k2, b20 =
√

−4− k22 , b30 = 2
(13)

and they have determined the singular solution passing through it. Ultimately they
have checked the compatibility conditions at j = 1 and j = 2. They have obtained the
following expansion coefficients:

w11 = 1
2 (f

′k2 − k1k2), w21 = 1
2 (−f ′ + k1)

√

−4− k22 ,

b11 = f ′
√

−4− k22 , b21 = f ′k2, b31 = 0.
(14)
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w12 = 1
2 (f

′k1 − k3)
√

−4− k22 , w22 = k2

2 (f ′k1 − k3),

b12 = k2

2

[

(f ′)2 − k3
]

, b22 = 1
2

[

k3 − (f ′)2
]
√

−4− k22 , b32 = k3.
(15)

An arbitrary constant b32 = k3 involved in (15) because of j = 2 is a resonance. While
checking the compatibility conditions at resonance j = 3, they have concluded that the
compatibility condition holds only if Ra = 0. Implying that Ra 6= 0 is a non integrable
case. Thus, it motivates us to study this non integrable case and in the following section
we are going to obtain weak singular solutions.

4 Weak Singular Solution

In this section we have studied the non integrable case of system (5) that is, we have
obtained the weak singular solutions in terms of logarithmic psi series.

We are going to find the singular solutions in the form of

tν
∑

m≥l≥0

um,l(x)t
m(ln t)l, (16)

which are suggested by Kichenassamy and Srinivasan [9]. They also made an interesting
remark that l = 1 suffices if all the resonances are simple and 1 is not a resonance. In
this case, we also have simple resonances j = −1, 0, 2, 3, 4. Therefore, our solution will
be in the form of

tν
∑

m≥1

um,1(x)t
m(ln t). (17)

With above remarkable feature and compatibility conditions hold for j = 0, 1 and 2,
we restructure the power series given by (6) as follows:

w1(t) = w10τ
−1 + w11 + w12τ +

∞
∑

j=3

w1j(log τ)τ
j−1,

w2(t) = w20τ
−1 + w21 + w22τ +

∞
∑

j=3

w2j(log τ)τ
j−1,

b1(t) = b10τ
−2 + b11τ

−1 + b12 +

∞
∑

j=3

b1j(log τ)τ
j−2,

b2(t) = b20τ
−2 + b21τ

−1 + b22 +

∞
∑

j=3

b2j(log τ)τ
j−2,

b3(t) = b30τ
−2 + b31τ

−1 + b32 +

∞
∑

j=3

b3j(log τ)τ
j−2.

(18)

In the above equations (18) expansion coefficients w1j , w2j , b1j , b2j and b3j for j = 1, 2, 3
are given by the equations (13), (14) and (15). The power series given by (18) provide
us the weak singular solution in the form of logarithmic psi series.

• Compatibility condition at the resonance j = 3. Now we proceed to check
the compatibility condition at the resonance j = 3. At the resonance level j = 3, we
substitute equations (18) into the system of differential equations (5), then equating like
powers of τ and τ(log τ) with j = 3, we get the following systems of non-homogeneous
linear equations (19) and (20)

w13 = f ′w22, w23 = −f ′w12, b13 = k3w21 − k1b22,
b23 = k1b12 − k3w11 +Ra, b33 = w11b22 + w12b21 − w21b12 − w22b11.

(19)
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2w13 = −b23, 2w23 = b13, b13 = b33w20 + w23b30,
b23 = −w10b33 − w13b30, b33 = w13b20 + w10b23 − w23b10 − w20b13.

(20)

Solving (19) and (20) together, we obtain the system of linear equations, which is in
matrix form as given below













0 0 0 1 0
0 0 1 0 0
0 2 0 0 k2
−2 0 0 0 −

√

−4− k22
√

−4− k22 −k2 −k2
√

−4− k22 0

























w13

w23

b13
b23
b33













=













−2f ′w22

−2f ′w12

w21b32 − k1b22
k1b12 − w11b32 +Ra

w11b22 + w12b21 − b12w21 − w22b11













.

(21)

Further, we solve the system and expansion coefficient are uniquely determined, which
are listed below

w13 =
(2f ′2k1 −Rak2 − 2f ′k3)k2

4(2 + k22)
, w23 =

(2(f ′2)k1 −Rak2 − 2f ′k3)
√

−4− k22
4(2 + k22)

,

b13 = −f ′(k1f
′ − k3)

√

−4− k22 , b23 = f ′k2(−f ′k1 + k3),

b33 =
(Ra+ f ′2k1k2 − f ′k2k3)

√

−4− k22
2(2 + k22)

.

(22)
• Compatibility condition at the resonance j = 4. Again we substitute (18) into
the system (5) and in these equations, we substitute the earlier determined expansion
coefficients which are given by (13), (14), (15) and (22). We simplify the both sides of
resultant equations and equating the powers of τ2 and τ2(log τ), we obtain the following
non-homogeneous systems of linear equations, which are given by the following equations

w14 = 0, w24 = 0, b14 = w22b32, b24 = −w12b32, b34 = −w22b12 + w12b22. (23)

3w14 = f ′w23 − b24,
3w24 = −f ′w13 + b14,
2b14 = w21b33 − w30b23 + w20b34 + w24b30,
2b24 = w30b13 − w10b34 − w11b33 − w14b30,
2b34 = w11b23 + w13b21 − w21b13 + w23b11

+ w14b20 − w24b10 − w20b14 + w10b24.

(24)

We solve the equations (23) and (24) together in the similar way as we adopted in the
previous case and determine the expansion coefficients uniquely at this resonance level,
which are listed below

w14 = 1
16(2+k2

2
)

[(

− 2f ′Rak2 − 2f ′2k21(8 + 3k22)− 16k23 + 2k22k3f
′2 − 4k22k

2
3

+ 2k42k
2
3 + 2Rak1k2 + 32f ′k1k3 − 2f ′3k22 + 10f ′k22k3 − 2f ′k42k3

)
√

−4− k22
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+
(

k62k3 + 8k22k3 + 6k42k3 − k62f
′ − 8f ′k22 − 6f ′k42

)

(−f ′2 + k3)
]

,

w24 = 1
16(2+k2

2
)

[(

8k2k3 + 6k32k3 + k52k3 − 8f ′k1k2 − 6f ′k32 − f ′k52
)

(f ′2 − k3)
√

−4− k22 + 2(k1Ra− f ′Ra− f ′k1k2(f
′2 − k3))(k

2
2 + 4)

− 2f ′2k21k2(4 + 3k22) + 8f ′2k2k3 + 2k32k3(f
′2 + 2k3 + k22k

2
3)− 2f ′k1k

5
2k3

]

b14 =
f ′k2(2f

′2k1 −Rak2 − 2f ′k3)

4(2 + k22)
, b24 =

f ′
√

−4− k22(2f
′2k1 −Rak2 − 2f ′k3)

4(2 + k22)
,

b34 = 1
8

[

k22((f
′3)k1 − f ′2k3 − f ′k1k3 + k23)

√

−4− k22 + 2k22k3(f
′k1 − k3)

]

.
(25)

• Compatibility condition for j ≥ 5. Here, we provide the recursion relations by
which we can determine expansion coefficients of logarithmic psi series (18) for j ≥ 5.
These relations will be obtained by substituting (18) into the system (5) and then equat-
ing the powers of τ j and τ j(log τ). This will result into two non homogeneous systems of
linear equations. Further, we combine these two systems together, the resultant system
is as given below that lead us to determine all the expansion coefficients













0 0 0 1 0
0 0 1 0 0
0 b30 0 0 w20

b30 0 0 0 w10

−b20 b10 w20 −w10 0

























w1j

w2j

b1j
b2j
b3j













=













Aj
∗

Bj
∗

Cj
∗

Dj
∗

Ej
∗













, (26)

where

Aj
∗ = f ′w2(j−1), Bj

∗ = f ′w1(j−1),
Cj

∗ = k1b2(j−1) − b31w2(j−1) − b32w2(j−2) − w21b3(j−1) − w22b3(j−2),
Dj

∗ = −k1b1(j−1) + w11b3(j−1) + w12b3(j−2) + b31w1(j−1) + b32w1(j−2),
Ej

∗ = w11b2(j−1) + w12b2(j−2) + b21w1(j−1) + b22w1(j−2)

+ w21b1(j−1) + w22b1(j−2) − b11w2(j−1) − b12w2(j−2).

(27)

From the equation (26), we see that the determinant of coefficient matrix is nonzero for
the given leading order coefficients this implies that all expansion coefficients for j ≥ 5
are determined uniquely in terms of predetermined coefficients.

During the implementation of Painlevé algorithm with logarithmic terms, we observed
that all compatibility conditions were satisfied. Hence, the system (5) passes the Painlevé
test which indicate that the weak singular solution of the system (5) exists. The weak
singular solution of (3) in the considered case of leading order coefficients is as follows

w1(t) =
√

−4− k22τ
−1 + 1

2 (f
′k2 − k1k2) +

[

1
2 (f

′k1 − k3)
√

−4− k22
]

τ

+

[

(2f ′2k1 −Rak2 − 2f ′k3)k2
4(2 + k22)

]

(log τ)τ2 +
1

16(2 + k22)

[(

− 2f ′Rak2

− 2f ′2k21(8 + 3k22)− 16k23 + 2k22k3f
′2 − 4k22k

2
3 + 2k42k

2
3 + 2Rak1k2

+ 32f ′k1k3 − 2f ′3k22 + 10f ′k22k3 − 2f ′k42k3
)
√

−4− k22

+
(

k62k3 + 8k22k3 + 6k42k3 − k62f
′ − 8f ′k22 − 6f ′k42

)

(−f ′2 + k3)
]

(log τ)τ3

+

∞
∑

j=5

w1j(log τ)τ
j−1 ,
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w2(t) = k2τ
−1 +

[

1
2 (−f ′ + k1)

√

−4− k22
]

+
[

k2

2 (f ′k1 − k3)
]

τ

+
[(2(f ′2)k1 −Rak2 − 2f ′k3)

√

−4− k22
4(2 + k22)

]

(log τ)τ2

+ 1
16(2+k2

2
)

[(

8k2k3 + 6k32k3 + k52k3 − 8f ′k1k2 − 6f ′k32 − f ′k52
)

(f ′2 − k3)
√

−4− k22 + 2(k1Ra− f ′Ra− f ′k1k2(f
′2 − k3))(k

2
2 + 4)

− 2f ′2k21k2(4 + 3k22) + 8f ′2k2k3 + 2k32k3(f
′2 + 2k3 + k22k

2
3)

− 2f ′k1k
5
2k3

]

(log τ)τ3 +

∞
∑

j=5

w2j(log τ)τ
j−1 ,

w3(t) = k1 (arbitrary constant),

b1(t) = −k2τ
−2 +

[

f ′
√

−4− k22
]

τ−1 + k2

2

[

(f ′)2 − k3
]

+ (−f ′(k1f
′ − k3))

√

−4− k22(log τ)τ +
[f ′k2(2f

′2k1 −Rak2 − 2f ′k3)

4(2 + k22)

]

(log τ)τ2

+

∞
∑

j=5

b1j(log τ)τ
j−2,

b2(t) =
√

−4− k22τ
−2 + f ′k2τ

−1 +
[

1
2

(

(k3 − (f ′)2
)
√

−4− k22
]

+ (f ′k2(−f ′k1 + k3))(log τ)τ

+
[f ′(2f ′2k1 −Rak2 − 2f ′k3)

√

−4− k22
4(2 + k22)

]

(log τ)τ2 +

∞
∑

j=5

b2j(log τ)τ
j−2 ,

b3(t) = 2τ−2 + k3 +
(Ra+ f ′2k1k2 − f ′k2k3)

√

−4− k22
2(2 + k22)

(log τ)τ

+ 1
8

[

k22((f
′3)k1 − f ′2k3 − f ′k1k3 + k23)

√

−4− k22

+ 2k22k3(f
′k1 − k3)

]

(log τ)τ2 +

∞
∑

j=5

b3j(log τ)τ
j−2 .

(28)
Equations (28) contain four arbitrary constants k1, k2, k3, and arbitrary position of
singularity t0 satisfying the system of ODEs (3). The convergence of such logarithmic
psi series solutions is guaranteed by Kichenassamy and Littman [10].

In the similar way of calculations, we can find the singular solution to the system (3)
corresponding to the following branch of leading order coefficients:

w10 = −
√

−4− k22 , w20 = k2 (arbitrary constant),

b10 = −k2, b20 = −
√

−4− k22 , b30 = 2.
(29)

The weak singular solution to the system (3) for this branch of leading order coefficients
(29) is given by the following equations (30) and (31)

w1(t) = −
√

−4− k22τ
−1 + 1

2 (f
′k2 − k1k2) +

[

1
2 (−f ′k1 + k3)

√

−4− k22
]

τ

+

[

(2f ′2k1 −Rak2 − 2f ′k3)k2
4(2 + k22)

]

(log τ)τ2 +
1

16(2 + k22)

[(

− 2f ′Rak2

− 2f ′2k21(8 + 3k22)− 16k23 + 2k22k3f
′2 − 4k22k

2
3 + 2k42k

2
3
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+ 2Rak1k2 + 32f ′k1k3 − 2f ′3k22 + 10f ′k22k3 − 2f ′k42k3
)

(−
√

−4− k22)

+
(

k62k3 + 8k22k3 + 6k42k3 − k62f
′ − 8f ′k22 − 6f ′k42

)

(−f ′2 + k3)
]

(log τ)τ3

+

∞
∑

j=5

w1j(log τ)τ
j−1 ,

w2(t) = k2τ
−1 +

[

1
2 (f

′ − k1)
√

−4− k22
]

+
[

k2

2 (f ′k1 − k3)
]

τ

+
[(−2(f ′2)k1 +Rak2 + 2f ′k3)

√

−4− k22
4(2 + k22)

]

(log τ)τ2

+ 1
16(2+k2

2
)

[(

8k2k3 + 6k32k3 + k52k3 − 8f ′k1k2 − 6f ′k32 − f ′k52
)

(f ′2 − k3)(−
√

−4− k22) + 2(k1Ra− f ′Ra− f ′k1k2(f
′2 − k3))(k

2
2 + 4)

− 2f ′2k21k2(4 + 3k22) + 8f ′2k2k3 + 2k32k3(f
′2 + 2k3 + k22k

2
3)

− 2f ′k1k
5
2k3

]

(log τ)τ3 +

∞
∑

j=5

w2j(log τ)τ
j−1 ,

w3(t) = k1 (arbitrary constant),

b1(t) = −k2τ
−2 −

[

f ′
√

−4− k22
]

τ−1 + k2

2

[

(f ′)2 − k3
]

+ (f ′(k1f
′ − k3))

√

−4− k22(log τ)τ +
[f ′k2(2f

′2k1 −Rak2 − 2f ′k3)

4(2 + k22)

]

(log τ)τ2

+

∞
∑

j=5

b1j(log τ)τ
j−2 ,

b2(t) = −
√

−4− k22τ
−2 + f ′k2τ

−1 +
[

1
2

(

(−k3 + (f ′)2
)
√

−4− k22
]

+ (f ′k2(−f ′k1 + k3))(log τ)τ

+
[f ′(−2f ′2k1 +Rak2 + 2f ′k3)

√

−4− k22
4(2 + k22)

]

(log τ)τ2 +

∞
∑

j=5

b2j(log τ)τ
j−2,

(30)

b3(t) = 2τ−2 + k3 +
(−Ra− f ′2k1k2 + f ′k2k3)

√

−4− k22
2(2 + k22)

(log τ)τ

+ 1
8

[

k22(−(f ′3)k1 + f ′2k3 + f ′k1k3 − k23)
√

−4− k22

+ 2k22k3(f
′k1 − k3)

]

(log τ)τ2 +

∞
∑

j=5

b3j(log τ)τ
j−2 .

(31)

The result of this section can be summarized in the form of the following theorem.

Theorem 4.1 An ideal rotating, uniformly stratified system of six coupled ODEs (3)
is completely integrable for Rayleigh number Ra = 0. Whereas, Ra 6= 0 is the case of non
integrability and system (3) admits weak singular solutions in the form of logarithmic psi
series given by equations (28) and (30), (31) for two different branches of leading order
coefficients given by equations (9).

5 Conclusion

The reduced system of ODEs (3) which arose in the reduction of uniformly stratified
fluid contained in the rotating box of dimension L×L×H is completely integrable if the
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Rayleigh number Ra = 0. If Ra 6= 0 then the system (3) is non integrable. In this case
of non integrability we have determined the weak solutions (28) and (30), (31) in the
different branches of leading order. The solutions are in the form of logarithmic psi series
and the convergence of the series is guaranteed by Kichenassamy and Littman [10]. We
see that the nature of movable singularities are pole type singularities which are cluster
in a self similar fashion.
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Abstract: This paper continues modeling of an antagonistic game with two players
initiated in Dshalalow and Ke [4] which dealt with a stochastic game with player
A losing to player B. Theorem 1 in [4] gave an explicit functional of several key
components of the game, including the ruin time of A and the total casualties to
both players at the exit, i.e. at A’s ruin time. The claim of why the formula in
Theorem 1 of [4] for the above mentioned functional was explicit is fully justified.
Here we work on a particular case calculating Laplace-Carson inverse transforms and
probability density functions followed by numerics.
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1 Introduction

This paper models an antagonistic game with two players earlier initiated in Dshalalow
and Ke [4]. The first part of [4] dealt with a basic game when player A lost the game
to player B. Theorem 1 in [4] gave an explicit functional of several major components
of the game, including the ruin (exit) time, the total casualties to both players at the
exit. The claim of why the formula in Theorem 1 of [4] for the above mentioned func-
tional was explicit is finally justified in this paper. Here we analyze a particular case
evaluating Laplace-Carson inverse transforms and probability density functions followed
by numerical calculations.
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In short, the game initiated in [4] was modeled by a complex marked point process.
It included two marked Poisson processes representing incremental casualties to players
A and B during the conflict as well as the hitting times. Both processes were supposed
to be observed by a third party point process which preserved more or less crude infor-
mation about the course of the game. So, the ruin time as well as other events were
cumulative upon observation epochs. The literature on antagonistic games is very rich.
We mention just a few articles and books: [1, 5, 7–8, 11, 12]. The contemporary work
on antagonistic games finds its applications to economics [1, 7, 8, 11] and warfare [4, 5,
12]. The techniques used in this paper are based on fluctuation theory developed by the
first author in [4] and his earlier papers. Related work on fluctuation theory is in [9,10].

The paper is organized as follows. In Section 2, we give a brief description of the model
in [4]. Section 3 formalizes a special case making an assumption about the distributions of
casualties and observation process. The double inverse of the Laplace-Carson transform
is evaluated explicitly in terms of the modified Bessel functions of order zero and one.
Section 4 deals with one marginal functional of the ruin time and casualties to player
A, all in terms of the Laplace-Stieltjes transform. Other results, such as casualties to
player B and inverse of the Laplace-Stieltjes transform (that yields associated probability
density functions), are dealt in paper [6].

2 The Model

For consistency, we present some descriptional details of the model before we turn to
the special case. Let (Ω,F(Ω), P ) be a probability space and let FA,FB,Fτ ⊆ F(Ω) be
independent sub- σ-algebras. Suppose

A :=
∑

j≥1

wjεsj and B :=
∑

k≥1

zkεtk , s1, t1 > 0, (2.1)

are FA-measurable and FB-measurable marked Poisson random measures (εa is a point
mass at a) with respective intensities λA and λB and position independent marking.
They are specified by their transforms

Ee−αA(·) = eλA|·|[g(α)−1], g(α) = Ee−αw1 , Re(α) ≥ 0, (2.2)

Ee−βB(·) = eλB |·|[h(β)−1], h(β) = Ee−βz1, Re(β) ≥ 0, (2.3)

| · | is the Borel-Lebesgue measure, and wj and zk are nonnegative r.v.’s. Furthermore,
let

τ :=
∑

i≥0

ετi , τ0 > 0, (2.4)

be an Fτ -measurable delayed renewal process.
If

(A(t), B(t)) := A⊗ B ((−∞, t]) , (2.5)

then

(Aj , Bj) := (A(τj), B(τj)) = A⊗ B ((−∞, τj ]) , j = 0, 1, . . . , (2.6)

forms the observation process upon A⊗B embedded over τ , with respective increments

(Xj , Yj) = A⊗ B((τj−1, τj ]), j = 1, 2, . . . , (2.7)
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and
X0 = A0, Y0 = B0. (2.8)

Obviously, the bivariate marked point process

Aτ ⊗ Bτ :=
∑

j≥0

(Xj , Yj)ετj , (2.9)

where
Aτ =

∑

i≥0

Xiετi and Bτ =
∑

i≥0

Yiετi . (2.10)

are with position dependent marking and with Xj and Yj being interdependent. With
the notation

∆j := τj − τj−1, j = 1, 2, . . . , (2.11)

we evaluate the functional

γ(α, β, θ) = Ee−αXj−βYj−θ∆j = δ{θ + λA(1− g(α)) + λB(1− h(β))}, j = 1, 2, . . . ,
(2.12)

Re(α) ≥ 0, Re(β) ≥ 0, Re(θ) ≥ 0, (2.13)

where
δ(θ) = Ee−θ∆1, Re(θ) ≥ 0. (2.14)

is the common marginal Laplace-Stieltjes transform of ∆1, ∆2, . . . .
Analogously,

γ0(α, β, θ) = Ee−αA0−βB0−θτ0 = δ0{θ + λA(1 − g(α)) + λB(1 − h(β))}, (2.15)

where
δ0(θ) = Ee−θτ0. (2.16)

The game in this case is stochastic process Aτ ⊗ Bτ describing the evolution of a
conflict between players A and B known to an observer only upon process τ = {τ0, τ1, . . .}.
The game is over when on the kth observation epoch τk (for some k), the cumulative
damage to player A or B (Ak or Bk, respectively) exceeds its respective threshold M or
N (some positive real numbers). But we are looking into the paths of the game where
player A is losing first.

With the exit indices

µ := inf{j ≥ 0 : Aj = X0 +X1 + . . . +Xj > M } (2.17)

and
ν := inf{k ≥ 0 : Bk = Y0 + Y1 + . . .+ Yk > N }, (2.18)

Aµ and Bν are the respective cumulative damages to players A and B at their ruin times.
We will be concerned, however, with the ruin time of player A and thus restrict our game
to the confined trace σ-algebra F(Ω)∩{µ < ν}. In paper [4] (Dshalalow-Ke) the authors
studied a game between two players, A and B, in particular, the functional

Φµν = Φµν(α, β, θ) = E
[

e−αAµ−βBµ−θτµ1{µ<ν}

]

(2.19)

of the game. It represented the multivariate Laplace-Stieltjes transform of joint distri-
bution of the exit time τµ of the game and the status of the casualties to both players
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at the exit. The evolution of the game is followed here when player A loses the game to
player B.

Theorem 1 [4] below gives an explicit formula for Φµν . With (2.12) and (2.15) we
abbreviate

γ0(α, β, θ) := Ee−αX0−βY0−θ∆0 , Re(α) ≥ 0, Re(β) ≥ 0, Re(θ) ≥ 0, (2.20)

γ(α, β, θ) := Ee−αXj−βYj−θ∆j , Re(α) ≥ 0, Re(β) ≥ 0, Re(θ) ≥ 0, j > 0, (2.21)

Γ0 := γ0(α+ x, β + y, θ), Γ 1
0 := γ0(α, β + y, θ), (2.22)

Γ := γ(α+ x, β + y, θ), Γ 1 := γ(α, β + y, θ). (2.23)

The results are presented in terms of the inverse of the Laplace-Carson transform defined
as

LCpq(·)(x, y) := xy

∫ ∞

p=0

∫ ∞

q=0

e−xp−yq(·)d(p, q), Re(x) > 0, Re(y) > 0. (2.24)

Denote its inverse

LC−1
xy (·)(p, q) = L−1

xy

(

·
1

xy

)

, (2.25)

where L−1 is the inverse of the bivariate Laplace transform.

Theorem 1 [4] In light of abbreviations (2.20)–(2.23), the functional Φµν of the game

on the trace σ-algebra F (Ω) ∩ {µ < ν} satisfies the following formula:

Φµν = LC−1
xy

(

Γ 1
0 − Γ0 +

Γ0

1− Γ
(Γ 1 − Γ )

)

(M,N), (2.26)

which for the restricted functional (2.19) of only three major components can be rewritten

as

Φµν = LC−1
xy

(

Γ 1
0 − Γ0

1− Γ 1

1− Γ

)

(M,N). (2.27)

3 A Special Case

We assume that the intervals ∆1,∆2, . . . between the successive observation times
τ0, τ1, . . . are exponentially distributed with parameter δ, i.e.

δ(θ) := Ee−θ∆ =
δ

δ + θ
. (3.1)

We assume that the game starts from zero, i.e., X0 and Y0 are some constants and that

∆0 := 0. (3.2)

Furthermore, we assume that the marks in the processes A and B specified by g and h
in (2.2) and (2.3), respectively, are exponential with parameters g and h, i.e.

g(α) =
g

g + α
and h(β) =

h

h+ β
. (3.3)
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Our goal is to simplify Φµν of (2.27) for this special case to a form for which we can
find the Laplace-Carson inverse explicitly. We start with the first factor, Γ 1

0 of (2.27) by
unfolding notation (2.12):

Γ 1
0 = γ0(α, β + y, θ) = E[e−αX0−(β+y)Y0−θ∆0] = Ee−αX0−(β+y)Y0. (3.4)

Now we apply the Laplace-Carson inverse to (3.4):

LC−1
xy (Γ

1
0 )(p, q) = L

−1
xy

(

1

xy
e−αX0−(β+y)Y0

)

(p, q) = L
−1
y

(

1

y
e−αX0−(β+y)Y0

)

(q)

= e−αX0−βY01(Y0,∞)(q) = ψ1(Y0,∞)(q).

(3.5)

Turn to the second term Γ0
1−Γ 1

1−Γ
of (2.27). Firstly,

Γ0 = γ0(α+ x, β + y, θ) = e−(α+x)X0−(β+y)Y0 . (3.6)

Recall from (2.13) that γ(α, β, θ) = δ
[

θ + λA(1− g(α)) + λB(1− h(β))
]

. Using (3.1) we
get

1− γ(α, β, θ) =
θ(g + α)(h+ β) + λAα(h+ β) + λBβ(g + α)

(δ + θ)(g + α)(h+ β) + λAα(h+ β) + λBβ(g + α)
. (3.7)

Denote X := X(x) = g + α+ x and Y := Y (y) = h+ β + y. Then

1− Γ 1

1− Γ
=

1− γ(α, β + y, θ)

1− γ(α+ x, β + y, θ)

=
θ(g + α)Y + λAαY + λB(β + y)(g + α)

(δ + θ)(g + α)Y + λAαY + λB(β + y)(g + α)
· 1

θXY+λA(α+x)Y+λB(β+y)X
(δ+θ)XY+λA(α+x)Y+λB(β+y)X

.

Continuing with calculations we have

1− Γ 1

1− Γ
=

GY − λBh(g + α)

GδY − λBh(g + α)
· (δ + Λ)XY − λAgY − λBhX

ΛXY − λAgY − λBhX
= f1(Y )f2(X,Y ), (3.8)

where

Λ := θ + λA + λB , G := Λ(g + α)− λAg, Gδ := (δ + Λ)(g + α)− λAg, (3.9)

f1(Y ) :=
GY − λBh(g + α)

GδY − λBh(g + α)
, f2(X,Y ) :=

(δ + Λ)XY − λAgY − λBhX

ΛXY − λAgY − λBhX
. (3.10)

Here is how f2(X,Y ) can be evaluated to separate x and Y = Y (y):

f2(X,Y ) =
(δ + Λ)XY − λAgY − λBhX

ΛXY − λAgY − λBhX
= f3(Y ) +

ξ

x+ a
, (3.11)

where

f3(Y ) := 1 +
δ

Λ
+
λBhδ

Λ
· 1

ΛY − λBh
, (3.12)

ξ = ξ(Y ) :=
λAgδY

2

(ΛY − λBh)2
, (3.13)

a = a(Y ) := g + α− λAgY

ΛY − λBh
. (3.14)
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For the upcoming calculations we rewrite the function f3(Y ) as

f3(Y ) = b+ c · 1

Y − r
, (3.15)

where

b := 1 +
δ

Λ
, c :=

λBhδ

Λ2
, r :=

λBh

Λ
. (3.16)

(3.11) substituted in (3.8) gives

1− Γ 1

1− Γ
= f1(Y )

(

f3(Y ) +
ξ

x+ a

)

. (3.17)

Due to (3.5) and (3.6),

Γ0 = e−(α+x)X0−(β+y)Y0 = e−αX0−βY0e−xX0−yY0 = ψ · e−xX0−yY0 . (3.18)

With (3.17) and (3.18) substituted in Γ0
1−Γ 1

1−Γ
, we arrive at

Γ0
1− Γ 1

1− Γ
= ψ · e−xX0−yY0f1(Y )

(

f3(Y ) +
ξ

x+ a

)

. (3.19)

Now we apply the Laplace-Carson inverse to (3.19):

LC−1
xy

(

Γ0
1− Γ 1

1− Γ

)

(p, q) = L
−1
xy

(

1

xy
· Γ0

1− Γ 1

1− Γ

)

(p, q)

= L
−1
xy

{

1

y
· ψ · e−yY0f1(Y )

(

f3(Y ) · 1
x
e−xX0 +

ξ

a
· e−xX0

(

1

x
− 1

x+ a

))}

(p, q).

By Fubini’s theorem, we can apply univariate Laplace inverses first in x and then in
y. So

LC−1
xy

(

Γ0
1− Γ 1

1− Γ

)

(p, q)

= L
−1
y

{

ψ · e−yY0

[

1

y
f1(Y )f3(Y ) +

1

y
f1(Y )

ξ

a

(

1− e−a(p−X0)
)

]

1(X0,∞)(p)

}

(q).

(3.20)

To make (3.20) inversely transformable in a closed form we decompose the underly-
ing expressions with respect to y. The partial fraction decomposition will be rendered
throughout.

Let

σ := λBh(g + α) and f1(Y ) =
GY − λBh(g + α)

GδY − λBh(g + α)
=

GY − σ

GδY − σ
. (3.21)

Then the partial fraction decomposition of 1
y
f1(Y ) gives

1

y
f1(Y ) =

A

y
+

B

GδY − σ
, (3.22)

with

A =
G(h+ β)− σ

Gδ(h+ β)− σ
, B =

σ(Gδ −G)

Gδ(h+ β)− σ
. (3.23)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (1) (16) 59–72 65

Continuing working on the first term 1
y
f1(Y )f3(Y ) of (3.20) and using (3.15) and

(3.22) we get

1

y
f1(Y )f3(Y ) =

Ab

y
+

Bb

GδY − σ
+
Ac

y
· 1

Y − r
+

Bc

GδY − σ
· 1

Y − r
,

in notation,

= ϕ1(y) + ϕ2(y) + ϕ3(y) + ϕ4(y). (3.24)

Here is the partial fraction decomposition of ϕ3(y), and ϕ4(y). We distinguish three
cases with various combinations of α 6= 0, α = 0, δ 6= λA, and δ = λA.

(i) Case α 6= 0.

ϕ3(y) =
A3

y
+

B3

Y − r
and ϕ4(y) =

A4

GδY − σ
+

B4

Y − r
, (3.25)

where

A3 = −B3 =
Ac

h+ β − r
, A4 = (−Gδ)B4 =

GδBc

σ − rGδ

. (3.26)

Substituting (3.25) into (3.24) we have

1

y
f1(Y )f3(Y ) =

Ab

y
+

Bb/Gδ

Y − σ/Gδ

+

(

A3

y
− A3

Y − r

)

+

(

B4

Y − r
− B4

Y − σ/Gδ

)

=
(

Ab +A3

)1

y
+
(

B4 −A3

) 1

Y − r
+

(

Bb

Gδ

−B4

)

1

Y − σ/Gδ

(3.27)

(ii) Case α = 0 and δ 6= λ
A
. Here we have

ϕ1(y) =
θ(h+ β) + λBβ

(δ + θ)(h + β) + λBβ

(

1 +
δ

Λ

)

· 1
y
, (3.28)

ϕ2(y) =
λBhδ

(δ + θ)(h+ β) + λBβ
· 1

δ + θ + λB

(

1 +
δ

Λ

)

· 1

Y − λBh
δ+θ+λB

, (3.29)

ϕ3(y) =
θ(h+ β) + λBβ

(δ + θ)(h+ β) + λBβ
· c

h+ β − r

(

1

y
+

−1

Y − r

)

, (3.30)

ϕ4(y) =
λBhδ

2

(δ + θ)(h+ β) + λBβ
· 1

Λ(δ − λA)

( −1

Y − λBh
δ+θ+λB

+
1

Y − r

)

. (3.31)

Substituting (3.28)–(3.31) into (3.24) we obtain

1

y
f1(Y )f3(Y ) =

θ(h+ β) + λBβ

(δ + θ)(h + β) + λBβ

(

1 +
δ(h+ β)

Λ(h+ β − r)

)

1

y

+
−λAλBhδ

(δ − λA)(δ + θ + λB)
· 1

(δ + θ)(h+ β) + λBβ
· 1

Y − λBh
δ+θ+λB

+
λAλBhδ

Λ(δ − λA)
· 1

Λ(h+ β)− λBh
· 1

Y − r
.

(3.32)
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(iii) Case α = 0 and δ = λA. Here we have

ϕ1(y) =
θ(h+ β) + λBβ

Λ(h+ β)− λBh

(

1 +
λA
Λ

)

· 1
y
, (3.33)

ϕ2(y) =
λAλBh

Λ(h+ β)− λBh
· 1
Λ

(

1 +
λA
Λ

)

· 1

Y − r
, (3.34)

ϕ3(y) =
θ(h+ β) + λBβ

(h+ β − r)2
· λAλBh

Λ3

(

1

y
+

−1

Y − r

)

, (3.35)

ϕ4(y) =
λAλ

2
Bh

2δ

Λ(h+ β)− λBh
· 1

Λ3

(

1

Y − r

)2

. (3.36)

Substituting (3.33)–(3.36) into (3.24) we finally have

1

y
f1(Y )f3(Y ) =

θ(h+ β) + λBβ

Λ(h+ β)− λBh

(

1 +
λA(h+ β)

Λ(h+ β)− λBh

)

1

y

+
λ2AλBh

Λ2
· 2Λ(h+ β)− λBh

[Λ(h+ β)− λBh]2
· 1

Y − r

+
1

Λ3
· λ2Aλ

2
Bh

2

Λ(h+ β) − λBh

( 1

Y − r

)2

.

(3.37)

Now turn to the factor 1
y
f1(Y ) ξ

a
in the second term of (3.20). We begin with evalu-

ation of ξ
a
substituting (3.13) and (3.14),

ξ

a
= η · Y 2

Y − r
· 1

Y −R
, (3.38)

where

η :=
λAgδ

Λ
[

Λ(g + α)− λAg
] =

λAgδ

ΛG
and R :=

λBh(g + α)

Λ(g + α)− λAg
=

σ

G
. (3.39)

Represent the last two factors Y 2

Y −r
· 1

Y−R
of (3.38)–(3.39) as

Y 2

Y − r
· 1

Y −R
= 1 +

r2

(Y − r)(r −R)
− R2

(Y −R)(r −R)
. (3.40)

With (3.40) substituted in (3.38) we have

ξ

a
= η · Y 2

Y − r
· 1

Y −R
= η ·

(

1 +
r2

(Y − r)(r −R)
− R2

(Y −R)(r −R)

)

. (3.41)

Further, substituting (3.22) and (3.41) into the second term 1
y
f1(Y ) ξ

a
of (3.20), we arrive

at

1

y
f1(Y )

ξ

a
= η ·

(

A

y
+

B/Gδ

Y − σ/Gδ

)

+ α1 ·
1

y
· 1

Y − r
+ α2 ·

1

Y − σ/Gδ

· 1

Y − r

+ α3 ·
1

y
· 1

Y −R
+ α4 ·

1

Y − σ/Gδ

· 1

Y − R
,

(3.42)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (1) (16) 59–72 67

where

α1 :=
Ar2η

r −R
, α2 :=

Br2η

Gδ(r −R)
, α3 := − AR2η

r − R
, α4 := − BR2η

Gδ(r −R)
. (3.43)

Continuing with calculations, after a decomposition and some algebra, we arrive at:

(i) Case α 6= 0.

1

y
f1(Y )

ξ

a
= a1 ·

1

y
+ a2 ·

1

Y − σ/Gδ

+ a3 ·
1

Y −R
+ a4 ·

1

Y − r
, (3.44)

where
a1 = ηA+

α1

h+ β − r
+

α3

h+ β −R
, (3.45)

a2 =
ηB

Gδ

+
α2

σ/Gδ − r
+

α4

σ/Gδ −R
, (3.46)

a3 =
−α3

h+ β −R
+

−α4

σ/Gδ −R
, (3.47)

a4 =
−α1

h+ β − r
+

−α2

σ/Gδ − r
. (3.48)

(ii) Case α = 0 and δ 6= λA.

1

y
f1(Y )

ξ

a
=

λAδ(h+ β)2

Λ(h+ β)− λBh
· 1

(δ + θ)(h+ β) + λBβ
· 1
y

+
−λAλBhδ
Λ(δ − λA)

· 1

Λ(h+ β)− λBh
· 1

Y − r

+
λAλBhδ

(δ − λA)(δ + θ + λB)
· 1

(δ + θ)(h+ β) + λBβ
· 1

Y − λBh
δ+θ+λB

.

(3.49)

(iii) Case α = 0 and δ = λA.

1

y
f1(Y )

ξ

a
=

λ2A(h+ β)2

[ Λ(h+ β)− λBh]2
· 1
y
+

−λ2AλBh
Λ2

· 2Λ(h+ β) − λBh

[Λ(h+ β)− λBh]2
· 1

Y − r

+
−λ2Aλ2Bh2

Λ3
· 1

Λ(h+ β)− λBh

( 1

Y − r

)2
(3.50)

With (3.32) and (3.44) substituted into (3.20) we have

(i) Case α 6= 0.

LC−1
xy

(

Γ0
1− Γ 1

1− Γ

)

(p, q) = L
−1
y

{

ψ · e−yY0

[

(

Ab +A3 + a1

)1

y

+

(

Bb

Gδ

−B4 + a2

)

1

Y − σ/Gδ

+ a3 ·
1

Y −R
+
(

B4 −A3 + a4

) 1

Y − r

− e−a(p−X0)

(

a1 ·
1

y
+ a2 ·

1

Y − σ/Gδ

+ a3 ·
1

Y −R
+ a4 ·

1

Y − r

)]

× 1(X0,∞)(p)

}

(q).

(3.51)
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Correspondingly, we modify the above components in (3.51). After some algebra in
(3.26) and (3.45) and the use of notation (3.16), (3.23), (3.39), and (3.43) we arrive at

A3 =
Ac

h+ β − r
=

A

h+ β − r
· λBhδ

Λ2
=

A

h+ β − r
· rδ
Λ
, (3.52)

a1 = ηA+
α1

h+ β − r
+

α3

h+ β −R
=

λAgδ(h+ β)2

Λ(h+ β − r)[Gδ(h+ β)− σ]
. (3.53)

With (3.16) and (3.52)–(3.53) substituted into Ab +A3 + a1 we finally have

Ab+A3 + a1 = A(1 +
δ

Λ
) +

A

h+ β − r
· rδ
Λ

+
λAgδ(h+ β)2

Λ(h+ β − r)[Gδ(h+ β)− σ]
= 1. (3.54)

We continue calculating Bb
Gδ

−B4 + a2 in (3.51). After some algebra we arrive at

LC−1
xy

(

Γ0
1− Γ 1

1− Γ

)

(p, q) = L
−1
y

{

ψ · e−yY0

[

1

y
− e−a(p−X0)

(

a1 ·
1

y

+ a2 ·
1

Y − σ/Gδ

+ a4 ·
1

Y − r

)]

× 1(X0,∞)(p)

}

(q),

(3.55)

where

a1 =
λAgδ(h+ β)2

Λ(h+ β − r)[Gδ(h+ β)− σ]
, a2 =

λAgB

GδG′
δ

, (3.56)

a4 =
−Ar2λAgδ

ΛG(r −R)(h+ β − r)
+

BrλAgδ

ΛGG′
δ(r −R)

. (3.57)

(ii) Case α = 0 and δ 6= λA. Substituting (3.32) and (3.49) into (3.20), we have

LC−1
xy

(

Γ0
1− Γ 1

1− Γ

)

(p, q)

= L
−1
y

{

ψ · e−yY0

[

1

y
+
( −λAδ(h+ β)2

Λ(h+ β)− λBh
· 1

(δ + θ)(h+ β) + λBβ
· 1
y

+
λAλBhδ

Λ(δ − λA)
· 1

Λ(h+ β)− λBh
· 1

Y − r

+
−λAλBhδ

(δ − λA)(δ + θ + λB)
· 1

(δ + θ)(h + β) + λBβ
· 1

Y − λBh
δ+θ+λB

)

e−a(p−X0)

]

× 1(X0,∞)(p)

}

(q).

(3.58)
(iii) Case α = 0 and δ = λA. Substituting (3.37) and (3.50) into (3.20), we get

LC−1
xy

(

Γ0
1− Γ 1

1− Γ

)

(p, q)

= L
−1
y

{

ψ · e−yY0

[

1

y
+
( −λ2A(h+ β)2

[Λ(h+ β)− λBh]2
· 1
y
+
λ2AλBh

Λ2
· 2Λ(h+ β)− λBh

[Λ(h+ β)− λBh]2
· 1

Y − r

+
λ2Aλ

2
Bh

2

Λ3
· 1

Λ(h+ β)− λBh

( 1

Y − r

)2
)

e−a(p−X0)

]

1(X0,∞)(p)

}

(q).

(3.59)
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Now we need to handle e−a(p−X0) in (3.59) before inversely transforming the rest of the
terms. Unfold (3.14) by using notation (3.16), we have

a = g + α− λAg

Λ
· Y

Y − λBh
Λ

= ξ1 − ξ2 ·
1

Y − r
, (3.60)

where

ξ1 = g + α− λAg

Λ
, ξ2 =

λAλBhg

Λ2
. (3.61)

We finally have

e−a(p−X0) = e−(ξ1−ξ2·
1

Y −r
)(p−X0) = e−ξ1(p−X0)eξ2(p−X0)·

1
Y −r , (3.62)

where ξ2(p−X0) is positive (if p > X0) since ξ2 > 0 .
Now, we will apply the univariate Laplace-Carson inverse in y to (3.55), (3.58), and

(3.59). We will make use of the following formulas for the Laplace inverse (cf. [2,3]):

L−1
y

(

e−αy · 1

y + b

)

(q) = e−b(q−α)1(α,∞)(q), (3.63)

L−1
y

(

e−αy · e
a

y+b

y + b

)

(q) = e−b(q−α)I0
(

2
√

a(q − α)
)

1(α,∞)(q), (3.64)

L−1
y

(

e−αy · e
a

y+b1

y + b2

)

(q) = e−b1(q−α)I0
(

2
√

a(q − α)
)

1(α,∞)(q)

+ (b1 − b2) · e−b2(q−α)

∫ q−α

z=0

e(b2−b1)zI0
(

2
√
az
)

dz1(α,∞)(q),

(3.65)

L−1
y

(

e−αy · e
a

y+b

(y + b)2

)

(q) =

√

q − α

a
· e−b(q−α)I1

(

2
√

a(q − α)
)

1(α,∞)(q), (3.66)

where I0 and I1 are the modified Bessel functions of order zero and one, respectively.
Equation (3.65) can be readily proved, while the rest of the above formulas can be found
in references [2,3].

(i) Case α 6= 0. Using (3.63)–(3.66) in (3.55), then combining it with (3.5) we finally
have

LC−1
xy

(

Γ 1
0 − Γ0

1− Γ 1

1− Γ

)

(p, q)

= ψ

{

(a1 + a2 + a4)e
−ξ1(p−X0)e−(h+β−r)(q−Y0)I0

(

2
√

ξ2(p−X0)(q − Y0)
)

+ a1(h+ β − r)e−ξ1(p−X0)

∫ q−Y0

z=0

e−(h+β−r)zI0
(

2
√

ξ2(p−X0)z
)

dz

+ a2

(

σ

Gδ

− r

)

e−ξ1(p−X0)e
−(h+β− σ

Gδ
)(q−Y0)

×
∫ q−Y0

z=0

e
(r− σ

Gδ
)z
I0
(

2
√

ξ2(p−X0)z
)

dz

}

1(X0,∞)(p)1(Y0,∞)(q).

(3.67)
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Calculating a1 + a2 + a4 and other terms we arrive at

LC−1
xy

(

Γ 1
0 − Γ0

1− Γ 1

1− Γ

)

(p, q)

= ψ

{

λAgδ

ΛGδ

· e−ξ1(p−X0)e−(h+β−r)(q−Y0)I0
(

2
√

ξ2(p−X0)(q − Y0)
)

+
λAgδ(h+ β)2

Λ[Gδ(h+ β)− σ]
· e−ξ1(p−X0)

∫ q−Y0

z=0

e−(h+β−r)zI0
(

2
√

ξ2(p−X0)z
)

dz

+
−λAgδσ2

ΛG
2

δ[Gδ(h+ β)− σ]
· e−ξ1(p−X0)e

−(h+β− σ
Gδ

)(q−Y0)

×
∫ q−Y0

z=0

e
(r− σ

Gδ
)z
I0
(

2
√

ξ2(p−X0)z
)

dz

}

1(X0,∞)(p)1(Y0,∞)(q).

(3.68)

(ii) Case α = 0 and δ 6= λA. Using (3.63)–(3.66) in (3.58) and then (3.5) we have

LC−1
xy

(

Γ 1
0 − Γ0

1− Γ 1

1− Γ

)

(p, q)

= e−βY0

{

λAδ

Λ(δ + θ + λB)
· e−ξ1(p−X0)e−(h+β−r)(q−Y0)I0

(

2
√

ξ2(p−X0)(q − Y0)
)

+
λAδ(h+ β)2

Λ
· 1

(δ + θ)(h+ β) + λBβ
· e−ξ1(p−X0)

×
∫ q−Y0

z=0

e−(h+β−r)zI0
(

2
√

ξ2(p−X0)z
)

dz

+
−λAλ2Bh2δ

Λ(δ + θ + λB)2
· 1

(δ + θ)(h+ β) + λBβ
· e−ξ1(p−X0) · e−(h+β−

λBh

δ+θ+λB
)(q−Y0)

×
∫ q−Y0

z=0

e
(r−

λBh

δ+θ+λB
)z
I0
(

2
√

ξ2(p−X0)z
)

dz

}

1(X0,∞)(p)1(Y0,∞)(q).

(3.69)

(iii) Case α = 0 and δ = λA. Using (3.63)–(3.66) in (3.59) then (3.5) we get

LC−1
xy

(

Γ 1
0 − Γ0

1− Γ 1

1− Γ

)

(p, q)

= e−βY0

{

λ2A
Λ2

· e−ξ1(p−X0)e−(h+β−r)(q−Y0)I0
(

2
√

ξ2(p−X0)(q − Y0)
)

+
λ2A(h+ β)2

Λ
· 1

Λ(h+ β)− λBh
· e−ξ1(p−X0)

×
∫ q−Y0

z=0

e−(h+β−r)zI0 bigl(2
√

ξ2(p−X0)z
)

dz

+
−λ2Aλ2Bh2

Λ3
· 1

Λ(h+ β)− λBh

√

q − Y0
ξ2(p−X0)

· e−ξ1(p−X0)e−(h+β−r)(q−Y0)

× I1
(

2
√

ξ2(p−X0)(q − Y0)
)

}

1(X0,∞)(p)1(Y0,∞)(q),

(3.70)
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with the abbreviations:

ψ = e−αX0−βY0 , Λ = θ + λA + λB , σ = λBh(g + α), ξ1 = g + α− λAg

Λ
, (3.71)

ξ2 =
λAλBhg

Λ2
, r =

λBh

Λ
, Gδ = (δ + Λ)(g + α)− λAg. (3.72)

4 Marginal Functionals

Our next goal is to get the marginal transforms. This can be directly obtained from the
version of Φµν(α, β, θ) in (3.68)–(3.70).

Case 1. With β = θ = 0 we have the marginal Laplace–Stieltjes transform of the
amount of casualties to player A at the A’s ruin (which is the exit of the game):

Φµν(α, 0, 0) := E
[

e−αAµ1{µ<ν}

]

=

{

λAgδ

(λA + λB)(δ + λA + λB)
· 1

α+ (δ+λB)g
δ+λA+λB

· e−αMe
−(

λBg

λA+λB
)(M−X0)

× e
−(

λAh

λA+λB
)(N−Y0)I0

(

2

√

λAλBhg(M −X0)(N − Y0)

(λA + λB)2

)

+
λAhgδ

(λA + λB)(δ + λA)

× 1

α+ gδ
δ+λA

· e−αMe
−(

λBg

λA+λB
)(M−X0)

∫ N−Y0

z=0

e
−(

λAh

λA+λB
)z

× I0

(

2

√

λAλBhg(M −X0)z

(λA + λB)2

)

dz +

∫ N−Y0

z=0

[

−λAhgδ
(λA + λB)(δ + λA)

· 1

α+ gδ
δ+λA

+
λAhgδ(δ + λA + 2λB)

(λA + λB)(δ + λA + λB)2
· 1

α+ (δ+λB)g
δ+λA+λB

+
λ2AλBhg

2δ

(λA + λB)(δ + λA + λB)3

( 1

α+ (δ+λB)g
δ+λA+λB

)2
]

e−αM

× e
(

λAλBhg

(δ+λA+λB)2
· 1

α+
(δ+λB )g

δ+λA+λB

)(N−Y0−z)

e
−(

λBg

λA+λB
)(M−X0)e

−(
(δ+λA)h

δ+λA+λB
)(N−Y0)

× e
(

λBhδ

(λA+λB)(δ+λA+λB)
)z
I0
(

2

√

λAλBhg(M −X0)z

(λA + λB)2
)

dz

}

1(X0,∞)(M)1(Y0,∞)(N).

(4.1)
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Abstract: In this paper we prove the sufficient conditions for the existence and
uniqueness of piecewise continuous mild solutions to fractional integro-differential
equations in a Banach space with non instantaneous impulses. The results are es-
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1 Introduction

Let (X, ‖ · ‖) be a complex Banach space. The objective of this paper is to study the
solutions to a new class of abstract integro-differential equations of fractional order with
non-instantaneous impulses in X :

cDα
t [u(t) + ϕ(t, u(t))] = Au(t) + J1−α

t f(t, u(t)),

t ∈ (si, ti+1], i = 0, 1, · · · , N, 0 < α < 1,

u(t) = gi(t, u(t)), t ∈ (ti, si], i = 1, 2, · · · , N,

u(0) = u0,





(1)
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where A : D(A) ⊂ X → X is a sectorial operator on (X, ‖.‖), u0 ∈ X , 0 = t0 = s0 < t1 ≤
s1 ≤ t2 < · · · < tN ≤ sN ≤ tN+1 = T0 are pre-fixed numbers, gi ∈ C((ti, si]×X ;X) and
ϕ : [0, T0]×X → X, f : [0, T0]×X → X are suitably defined functions. The fractional
derivative cDα

t is to be understood in Caputo sense and Jα
t denotes the Riemann-Liouville

integral of order α. This paper is concerned with impulsive differential equations of
fractional order, where an impulsive action starts suddenly at the points ti and their
action stays active on the interval [ti, si].

Fractional differential equations arise as models in many fields of engineering and sci-
ence such as electrochemistry, electro-magnetics, electrical circuits control theory, visco-
elasticity, porous media, neuron modelling etc. [5, 9, 13, 15, 16, 18–20, 22]. The plentiful
occurrence and applications of fractional differential equations motivate the rapid devel-
opments and gained much attention in the recent years and have been studied exten-
sively in [2–4, 6, 7, 14, 23–27, 29, 30]. But systems with non-instantaneous impulses do
exist [10,11]. For example, one can consider the hemodynamical equilibrium of a person
in which impulses are non-instantaneous [10]. Such systems for the fractional differential
equations are less studied. Recently, Hernández and O’regan introduced and investi-
gated the existence of mild and classical solutions to a new class of abstract differential
equations with non-instantaneous impulses in X :

u′(t) = Au(t) + f(t, u(t)), t ∈ (si, ti+1], i = 0, 1, · · · , N, (2)

u(t) = gi(t, u(t)), t ∈ (ti, si], i = 1, 2, · · · , N,

u(0) = u0.

The operator A generates an infinitesimal C0-semigroup of bounded linear operators
(X, ‖.‖), the functions gi ∈ C((ti, si] ×X ;X) for each i = 1, 2, · · · , N and f : [0, T0] ×
X → X is a suitable function. The results are established by fixed point theorem with
appropriate gi and f [10].

Kumar et al [12] had extended the work in [10] to the following problem in a Banach
space X :

cDα
t u(t) +Au(t) = f(t, u(t), u(g(t))),

t ∈ (si, ti+1], i = 0, 1, · · · , N, 0 < α < 1,

u(t) = gi(t, u(t)), t ∈ (ti, si], i = 1, 2, · · · , N,

u(0) = u0,





(3)

where cDα
t is the Caputo fractional derivative of order α, −A generates an analytic

semigroup. The sufficient conditions are obtained if f and hi are Lipschitz continuous in
the second variable appropriately. For more details, we refer to [12].

With the strong motivation from Hernández and O’regan [10]; and Kumar et al.
[12], we establish the existence and uniqueness of piecewise continuous mild solution
to the class of fractional integro-differential equations (1), where the impulses are non-
instantaneous. The main results are new and complement to the existing ones that
generalize some results of [10, 12, 23] to the fractional integro-differential equations.

The paper is organized as follows. We collect the basic notations, definitions, lemmas
and theorems in Section 2. We prove the existence as well as uniqueness of solution of
(1) in Section 3. We provide an example in Section 4 as an application of the analytical
results obtained.
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2 Preliminaries and Assumptions

In this section, we will introduce some basic definitions, notations and lemmas that are
useful throughout this paper. For more details, we refer to [13, 15–20]. For the Banach
space X, we denote the Banach space of all bounded linear operator from X into X by
L(X). We denote a ball in X of radius r centered at y as Br(y,X). The set of all mth

order continuously differentiable functions from J(J ⊂ R) into X is denoted by Cm(J,X)
for m ∈ N. We begin with the following definition of sectorial operator.

Definition 2.1 A closed linear operator A is said to be sectorial of type ω if there
exist constants ω ∈ R, θ ∈ [π2 , π], and M > 0 such that

(a) ρ(A) ⊂ Σθ,ω = {λ ∈ C : | arg(λ− ω)| < θ, λ 6= ω},

(b) ‖R(λ,A)‖L(X) ≤
M

|λ−ω| , λ ∈ Σθ,ω.

Definition 2.2 For f ∈ L1((0, T ), X) and α ≥ 0, we define the Reimann-Liouville
integral of order α of f as

Jα
t f(t) = (f ∗Θα)(t) =

1

Γα

∫ t

0

(t− s)α−1f(s)ds, t > 0, α > 0, (1)

where J0
t f(t) = f(t) and

Θα(t) =





1

Γα
tα−1, t > 0,

0, t ≤ 0,

and Θ0(t) = 0.

Definition 2.3 If f ∈ Cm−1((0, T ), X) and (Θm−α ∗ f) ∈ Wm,1((0, T ), X), 0 ≤
m− 1 < α < m, m ∈ N, then the the Caputo fractional derivative of order α of f is
defined as

cDα
t f(t) = Dm

t Jm−α
t

(
f(t)−

m−1∑

0

f i(0)Θi+1(t)
)
, (2)

where Dm
t = dm

dtm and

Wm,1((0, T );X) =

{
f ∈ X : fm ∈ L1((0, T );X) f(t) =

m−1∑

j=0

f j(0)
tj

j!
+

tm−1

(m− 1)!
∗fm(t)

}
.

We note the following properties of Jα
t

Lemma 2.1 [28, Proposition 2.4] For α, β > 0, we have

(i) Jα
t J

β
t f(t) = Jα+β

t f(t) for all f ∈ L1(J ;X);

(ii) Jα
t (f ∗ g) = Jα

t f ∗ g for all f, g ∈ Lp(J ;X)(1 ≤ p < +∞);

(iii) The Caputo fractional derivative cDα
t is a left inverse of Jα

t :

cDα
t J

α
t f = f, for all f ∈ L1(J ;X),
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but in general not a right inverse, in fact, for all f(t) ∈ Cm−1(J ;X) with Θm−α ∗
f ∈ Wm,1(J,X)(m ∈ N, 0 ≤ m− 1 < α < m), one has

Jα
t (

cDα
t )f(t) = f(t)−

m−1∑

i=0

f (i)(0)Θi+1(t). (3)

We consider the following Cauchy problem

cDα
t u(t) + λu(t) = 0, t > 0,

u(0) = u0, 0 < α < 1. (4)

Then the solution of (4) is u(t) = S(t)u0, where S(t) = Eα,1(−λtα) = Eα(−λtα) [8],
where Eα,β is the generalized Mittag-Leffler function. The generalized Mittag-Leffler
function Eα,β is defined as

Eα,β :=

∞∑

k=0

zk

Γ(αk + β)
=

1

2πi

∫

χ

λα−βeλ

λα − z
dλ for α, β > 0, z ∈ C,

where χ is a contour that starts and ends at −∞ and encircles the disc |λ| ≤ |z|1/α

counterclockwise.
Replacing λ by −A, we rewrite S(t) as

S(t) =
1

2πi

∫

Bγ

eλtλα−1R(λα, A)dλ,

where Bγ denotes the Bromwich path. Moreover, if A is a sectorial operator of type ω
then A is the generator of a solution operator given by

Sα(t) =
1

2πi

∫

Υ

eλtλα−1(λα −A)−1dλ,

where Υ is suitable path lying on Σθ,ω. For more details, we refer the reader to [3,6,15,
16, 23, 27–29].

We consider the following Cauchy problem

cDα
t [u(t) + Φ(t)] = Au(t) + J1−α

t f(t), 0 < α < 1,

u(0) = u0 ∈ X,

}
(5)

where f : [0,∞) → X and A is a sectorial operator. The solution of (5) is given by the
following theorem.

Theorem 2.1 If f and Φ satisfy the uniform Hölder condition with exponent β ∈
(0, 1] and A is a sectorial operator, then the unique solution of the Cauchy problem (5)
is given by

u(t) = Sα(t)[u0 +Φ(0)]− Φ(t)−

∫ t

0

Tα(t− s)Φ(s)ds+

∫ t

0

Sα(t− s)f(s)ds,

where

Sα(t) =
1

2πi

∫

Γ

eλtλα−1R(λα, A)dλ, Tα(t) =
1

2πi

∫

Γ

eλtR(λα, A)dλ,

for a suitable path Γ lying on Σθ,ω.
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Proof. Applying the Riemann-Liouville fractional integral operator Jα
t to both sides

of equation (5), we get

Jα
t (

cDα
t )[u(t) + Φ(t)] = Jα

t Au(t) + J1
t f(t).

Using (1) and (3), we get

u(t) + Φ(t) = [u0 +Φ(0)] +
1

Γα

∫ t

0

(t− s)α−1Au(s)ds+

∫ t

0

f(s)ds

= [u0 +Φ(0)] +
1

Γα

∫ t

0

(t− s)α−1[Au(s) + Φ(s)]ds

−
1

Γα

∫ t

0

(t− s)α−1Φ(s)ds+

∫ t

0

f(s)ds. (6)

Applying the Laplace transform to equation (6), we get

(L(u +Φ))(λ) =
1

λ
[u0 +Φ(0)] +

1

λα
A(L(u +Φ)(λ) −

1

λα
(LΦ)(λ) +

1

λ
(Lf)(λ).

Since (λαI −A)−1 exists, i.e., λα ∈ ρ(A), we obtain

(L(u +Φ))(λ) = (λαI −A)−1
[
λα−1(u0 +Φ(0))− (LΦ)(λ) + λα−1(Lf)(λ)

]
.

Applying the inverse Laplace transform, we get

u(t) = Sα(t)[u0 +Φ(0)]− Φ(t)−

∫ t

0

Tα(t− s)Φ(s)ds+

∫ t

0

Sα(t− s)f(s)ds.

✷

We define the set PC(X) for the solution space as follows

PC(X) = {u : [0, T0] → X : u(·) is continuous at t 6= ti, u(t
−
k ) = u(tk), u(t

+
k )

exists for all i = 1, 2, · · · , N}.

We note that PC(X) is a Banach space endowed with the supremum norm

‖u‖PC := sup
t∈[0,T0]

‖u(t)‖.

Now, we define the functions ũi ∈ C([ti, ti+1];X) given by

ũi(t) =

{
u(t), for t ∈ (ti, ti+1],

u(t+i ), for t = ti.

For a ball Br ⊆ PC(X), we define

B̃i = {ũi : u ∈ Br}.

The following Arzela-Ascoli type lemma will be used to establish the main result.

Lemma 2.2 [10, Lemma 1.1] A set Br ⊆ PC(X) is relatively compact in PC(X) if

and only if B̃i is relatively compact in C([ti, ti+1];X ]) for every i = 0, 1, 2, · · · , N .
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Definition 2.4 A function u ∈ PC(X) is said to be a mild solution of the problem
(1) if u(0) = u0, u(t) = gi(t, u(t)) for all t ∈ (ti, si] and each i = 1, · · · , N, and

u(t) = Sα(t)[u0 + ϕ(0, u0)]− ϕ(t, u(t)) −

∫ t

0

Tα(t− s)ϕ(s, u(s))ds

+

∫ t

0

Sα(t− s)f(s, u(s))ds, for all t ∈ [0, t1],

and

u(t) = Sα(t− si)gi(si, u(si))− ϕ(t, u(t))−

∫ t

si

Tα(t− s)ϕ(s, u(s))ds

+

∫ t

si

Sα(t− s)f(s, u(s))ds, for all t ∈ [si, ti+1] i = 1, · · · , N.

3 The Main Results

In this section, we prove the existence of solution to problem (1). The idea of the proof
is based on [10,23]. We need the following hypothesis on f, ϕ and gi. Let V be an open
subset of X . For each v ∈ V , there is a ball B(v, r) such that B(v, r) ⊂ V for r > 0.

(H1) There exist constants Lf > 0, Lϕ > 0 such that the nonlinear maps f, ϕ : [0, T0]×
V → X , will satisfy the following conditions,

‖f(t, u)− f(t, u1)‖ ≤ Lf‖u− u1‖, (1)

‖ϕ(t, u)− ϕ(t, u1)‖ ≤ Lϕ‖u− u1‖, (2)

for all u, u1 ∈ V and t > 0.

(H2) The functions gi : [ti, si]×X → X are continuous and there are positive constants
Lgi such that

‖gi(t, x) − gi(t, y)‖ ≤ Lgi‖x− y‖,

for all x, y ∈ X, t ∈ [ti, si] and each i = 0, 1, · · · , N.

(H3) The solution operators Sα, Tα : R+ → L(X) are bounded i.e., there exist constants
M1 and M2 such that

‖Sα(t)‖L(X) ≤ M1, ‖Tα(t)‖L(X) ≤ M2 for t > 0.

And the operators (Sα(t))t≥0, (Tα(t))t≥0 are compact, where (Tα(t)) = t1−αTα(t).

Theorem 3.1 Let u0 ∈ X. Also let the assumptions (H1)-(H2) hold such that

L = max{M1(Lgi + Lf T0) + Lϕ(1 +M2T0), Lgi : i = 1, · · · , N} < 1. (3)

Then there exists a unique mild solution u ∈ PC(X) of the problem (1).
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Proof. We define a map ̥ : PC(X) → PC(X), given by ̥u(0) = u0, ̥u(t) =
gi(t, u(t)) for each t ∈ (ti, si], i = 1, · · · , N and

̥u(t) = Sα(t)[u0 + ϕ(0, u0)]− ϕ(t, u(t)) −

∫ t

0

Tα(t− s)ϕ(s, u(s))ds

+

∫ t

0

Sα(t− s)f(s, u(s))ds, for all t ∈ [0, t1],

and

̥u(t) = Sα(t− si)gi(si, u(si))− ϕ(t, u(t))−

∫ t

si

Tα(t− s)ϕ(s, u(s))ds

+

∫ t

si

Sα(t− s)f(s, u(s))ds, for all t ∈ [si, ti+1] and i = 1, · · · , N.

Then ̥ is well defined. Next we show that ̥ is a contraction map on PC(X). For
u, v ∈ PC(X), i = 1, · · · , N and t ∈ [si, ti+1], we have

‖̥u(t)−̥v(t)‖ ≤ ‖Sα(t− si)‖ ‖gi(si, u(si))− gi(si, v(si))‖

+‖ϕ(t, u(t))− ϕ(t, v(t))‖

+

∫ t

si

‖Tα(t− s)‖ ‖ϕ(s, u(s))− ϕ(s, v(s))‖ds

+

∫ t

si

‖Sα(t− s)‖ ‖f(s, u(s))− f(s, v(s))‖ds

≤ [M1(Lgi + LfT0) + Lϕ(1 +M2T0)]‖u− v‖PC(X).

Thus we obtain

‖̥u−̥v‖C([si,ti+1];X) ≤ [M1(Lgi + Lf T0) + Lϕ(1 +M2T0)]‖u− v‖PC(X). (4)

Similarly, we obtain

‖̥u−̥v‖C([0,t1];X) ≤ (M1LfT0 + Lϕ(1 +M2T0)‖u− v‖PC(X), (5)

‖̥u−̥v‖C((ti,si];X) ≤ Lgi‖u− v‖PC(X) i = 1, 2, 3, ...N. (6)

It follows from (4)-(6) that

‖̥u−̥v‖PC(X) ≤ L‖u− v‖PC(X). (7)

By the assumption (3), the map ̥(·) is a contraction and hence there exists a
unique mild solution of (1). ✷

By a ball Br with center at 0 and radius r, we mean the set Br(0,PC(X)) = {u ∈
PC(X) : ‖u‖PC ≤ r}. We define

Nf = sup
s∈[si,ti+1],v∈Br(0,PC(X))

‖f(s, v(s))‖ Nϕ = sup
s∈[si,ti+1],v∈Br(0,PC(X))

‖ϕ(s, v(s))‖.

Theorem 3.1 can be proved with a weaker assumptions on f . We prove the theorem
for the existence of mild solution to problem (1) with the following hypothesis.
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(H1)´ There exists constant Lϕ > 0 such that the nonlinear maps ϕ : [0, T0]×V →
X , will satisfy

‖ϕ(t, u)− ϕ(t, u1)‖ ≤ Lϕ‖u− u1‖, (8)

for all u, u1 ∈ V and t > 0.

Theorem 3.2 Let f : [0, T0]×X → X be a continuous function that maps a bounded
set into bounded set and ϕ(·, 0), gi(·, 0) are bounded for each u0 ∈ X. Let r > 1 and
0 < δ < 1 be two numbers such that

M1‖[u0 + ϕ(0, u0)]‖+ (1 +M1) max
i=1,··· ,N

‖gi(·, 0)‖ ≤ (1 − δ)r, (9)

max
i=1,··· ,N

{
Nϕ + Lgi(1 +M1)‖u‖PC + (M2Nϕ +M1Nf )T0

+(1 +M1)‖gi(t, 0)‖
}
≤ δr, (10)

(
M1 sup

s∈[0,t1],v∈Br(0,PC(X))

‖f(s, v(s))‖ +M2 sup
s∈[0,t1],v∈Br(0,PC(X))

‖ϕ(s, v(s))‖
)
T0 ≤ δr,

(11)
Also, we assume that

(1 +M1)Lgi + Lϕ(1 +M2T0) < 1. (12)

If assumptions (H1)´, (H2) and (H3) hold, then there exists a mild solution u ∈ PC(X)
to problem (1).

Proof. We decompose ̥ as

̥ = ̥1 +̥2,

where ̥1 =
∑N

i=0 ̥
1
i , ̥2 =

∑N
i=0 ̥

2
i and ̥k

i : PC(X) → PC(X), i = 0, 1, · · · , N, k =
1, 2. The map ̥k

i is given by

(̥1
iu)(t) =





gi(t, u(t)), for t ∈ (ti, si], i ≥ 1,

Sα(t− si)gi(si, u(si))− ϕ(t, u(t))

−
∫ t

si
Tα(t− s)ϕ(s, u(s))ds, for t ∈ (si, ti+1], i ≥ 1,

0, for t /∈ (ti, ti+1], i ≥ 0,

Sα(t)[u0 + ϕ(0, u0)]− ϕ(t, u(t))

−
∫ t

0 Tα(t− s)ϕ(s, u(s))ds, for t ∈ [0, t1], i = 0,

(̥2
iu)(t) =





∫ t

si
Sα(t− s)f(s, u(s))ds, for t ∈ [si, ti+1], i ≥ 0,

0, for t /∈ [si, ti+1], i ≥ 0.

The proof is divided into four steps.
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Step 1. We begin by showing ̥Br(0,PC(X)) ⊂ Br(0,PC(X)). Let u ∈
Br(0,PC(X)). For i ≥ 1 and t ∈ (ti, ti+1], we have

‖(̥1u)(t) + (̥2u)(t)‖

≤ ‖gi(t, u(t))− gi(t, 0)‖+ ‖gi(t, 0)‖+ ‖ϕ(t, u(t))‖

+ ‖Sα(t− si)‖ ‖gi(si, u(si))− gi(si, 0)‖+ ‖Sα(t− si)‖‖gi(si, 0)‖

+

∫ t

si

‖Tα(t− s)‖ ‖ϕ(s, u(s))‖ds+

∫ t

si

‖Sα(t− s)‖ ‖f(s, u(s))‖ds

≤ Nϕ + Lgi‖u(t)‖+ ‖gi(t, 0)‖+M1Lgi‖u(t)‖+M1‖gi(t, 0)‖

+M2Nϕ(t− si) +M1Nf (t− si)

≤ Nϕ + Lgi(1 +M1)‖u‖PC + (1 +M1)‖gi(t, 0)‖

+ (M2Nϕ +M1Nf)T0,

It follows from assumption (10) that

‖̥1u+̥1u‖PC ≤ r ∀i ≥ 1.

Similarly, for each t ∈ [0, t1], we have

‖(̥1u)(t) + (̥2u)(t)‖

≤ ‖Sα(t)‖ ‖u0 + ϕ(0, u0)‖ +

∫ t

0

‖Tα(t− s)‖‖ϕ(s, u(s))‖ds

+

∫ t

0

‖Sα(t− s)‖‖f(s, u(s))‖ds+ ‖ϕ(t, u(t))‖

≤ Nϕ +M1‖[u0 + ϕ(0, u0)]‖+ (M2Nϕ +M1Nf )T0.

Using (9) and (10), we can conclude that

‖̥1u+̥2u‖PC ≤ r.

Thus, we have ̥1u+̥2u ∈ Br(0,PC(X)).

Step 2. In this step, we prove that ̥1 =
∑N

i=0 ̥
1
i is a contraction on Br(0,PC(X)).

Let t ∈ (ti, ti+1] and u, v ∈ Br(0,PC(X)). For i = 1, · · · , N , we have

‖(̥1
iu)(t)− (̥1

i v)(t)‖ ≤
[
(1 +M1)Lgi + Lϕ(1 +M2T0)

]
‖u− v‖C((ti,ti+1],X).

Thus
∥∥∥∥∥

N∑

i=0

̥1
iu−

N∑

i=0

̥1
i v

∥∥∥∥∥
PC

≤
[
(1 +M1)Lgi + Lϕ(1 +M2T0)

]
‖u− v‖PC .

It is clear from (12) that ̥1 is a contraction on Br(0,PC(X)).
Step 3. We prove that the set {̥2u : u ∈ Br} is relatively compact i.e., the set

{(̥2u)(t) : u ∈ Br} is uniformly bounded, equicontinuous and for any t ∈ [0, T0].
The continuity of f implies that ̥2

i is continuous for each i = 0, 1, · · · , N and t ∈

[si, ti+1]. Thus ̥2 =
∑N

i=0 ̥
2
i is continuous and we have the following estimates

‖(̥2
iu)(t)‖ ≤ M1NfT0, for i = 0, 1, · · · , N
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for any u ∈ Br(0,PC(X)). Therefore, {̥2u : u ∈ Br} is uniformly bounded on Br. Next,
we prove that the set

⋃
̥2

iBr(0,PC(X))(t) for t ∈ [si, ti+1], i = 0, 1, · · · , N, is relatively
compact in X, where

̥2
iBr(0,PC(X))(t) = {(̥2

iu)(t) : Br(0,PC(X))}.

Applying mean value theorem for Bochner integral [17] and Young inequality, we have

(̥2
0u)(t) ⊂

t1+α

α
co{Sα(t− s)f(s, u(s)) : s ∈ [0, t1], u ∈ Br}.

Similarly, for t ∈ (si, ti+1], i = 1, · · · , N, we obtain

(̥2
iu)(t) ⊂

(t− si)
1+α

α
co{Sα(t− s)f(s, u(s)) : s ∈ [si, t1+i], u ∈ Br}.

It follows from assumption (H3) that {(̥2
iu)(t)} is a compact subset of X , for t ∈ I, u ∈

Br. So, ̥2 is compact.

Step 4. In this step, we prove that the set of functions [̥2
i

˜Br(0,PC(X))]i, i =
0, 1, · · · , N is an equicontinuous subset of C([ti, ti+1], X).

Clearly, [̥2
i

˜Br(0,PC(X))]i is equicontinuous on [ti, si], for each i = 0, 1, · · · , N . Let
t1, t2 ∈ (si, ti+1], i = 0, 1, · · · , N, with t1 < t2 and u ∈ Br(0,PC(X)), we get

‖˜̥2
iu(t2)−

˜̥2
iu(t1)‖ ≤

∫ t2

t1

‖Sα(t2 − s)‖ ‖f(s, u(s))‖ds

+

∫ t1

si

‖Sα(t2 − s)− Sα(t1 − s)‖‖f(s, u(s))‖ds.

(13)

For the first term on the right hand side of (13), we have
∫ t2

t1

‖Sα(t2 − s)‖‖ϕ(s, u(s))‖ds ≤ M1Nfs(t2 − t1). (14)

For t1 = si, it is easy to see that the second term on the right hand side of (13) will be
zero. If t1 > si and ν > 0 be sufficiently small, we have

∫ t1−ν

si

‖[Sα(t2 − s)− Sα(t1 − s)]‖‖f(s, u(s))‖ds

+

∫ t1

t1−ν

‖[Sα(t2 − s)− Sα(t1 − s)]‖‖f(s, u(s))‖ds

≤ Nf sup
s∈[si,t1−ν]

‖Sα(t2 − s)− Sα(t1 − s)‖(t1 − ν) + 2M1Nfν. (15)

It follows from (14) and (15) that

‖˜̥2
iu(t2)−

˜̥2
iu(t1)‖

tends to zero as t2 → t1 and ν → 0 for any u ∈ Br(0,PC(X)). This means that

[̥2
i

˜Br(0,PC(X))]i is equicontinuous. Thus [̥
2
i

˜Br(0,PC(X))]i is an equicontinuous sub-
set of C([ti, ti+1], X).

By Ascoli-Arzela theorem, {̥2u : u ∈ Br} is relatively compact. Hence ̥2 is a
completely continuous operator. So by Krasnoselskii’s fixed point theorem [1], ̥ has a
fixed point. This completes the proof of the existence of a mild solution. ✷
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4 Application

We discuss the following problem to illustrate the results. We consider the following
system with noninstantaneous impulse for fractional partial differential equations in
L2([0, π]),

cDα
t [u(t, x) + ∂xG(t, x, u(t, x))] =

∂2

∂x2
u(t, x)

+ 1
Γ(1−α)

∫ t

0

(t− s)−αF (s, x, u(s, x))ds,

(t, x) ∈
⋃N

i=1[si, ti+1]× (0, π),
u(t, 0) = u(t, π) = 0, t ∈ [0, T0],
u(0, x) = u0(x), x ∈ (0, π),
u(t, x) = Hi(t, x, u(t, x)), x ∈ (0, π), t ∈ (ti, si],





(1)

where 0 = t0 = s0 < t1 ≤ s1 < · · · < tN ≤ sN < tN+1 = T0. Here T0 is a fixed real
number, u0 ∈ X , F ∈ ([0, T0] × [0, π] × R,R) and Hi ∈ C((ti, si] × [0, π] × R,R) for all
i = 1, · · · , N .

Let X = L2([0, π]) and Au = ∂2

∂x2u with

D(A) = {u ∈ X :
∂u

∂x
,
∂2u

∂x2
∈ X,u(0) = u(π) = 0}.

Then the operator A : D(A) ⊂ X → X is the infinitesimal generator of a solution
operator {Sα(t)}t≥0 [3, see Theorem 3.1].

The system (1) can be formulated in the abstract form (1), where u(t) = u(t, .), i.e.,
u(t)(x) = u(t, x) and the functions f : [0, T0] × X → X and gi : (ti, si] × X → X are
given by

f(t, u(t))(x) = F (t, x, u(t, x)),

ϕ(t, u(t))(x) = ∂xG(t, x, u(t, x)),

gi(t, u(t))(x) = Hi(t, x, u(t, x)).

For t ∈ [0, T0], u ∈ X, x ∈ (0, π), we define f as

f(t, u(t))(x) =
2e−t|u(t, x)|

(a+ 2et)(1 + 2|u(t, x)|)
, a > −1.

Then f : [0, T0]×X → X is continuous function and satisfies

‖f(t, u1)− f(t, u2)‖ ≤ Lf ‖u1 − u2‖,

for u1, u2 ∈ X and Lf = 2
a+2 .

If we define gi as follows

gi(t, u(t))(x) =
(cos(et) + sin(e−t))|u(t, x)|

4(1 + |u(t, x)|)
,

t ∈ [ti, si], u ∈ X, x ∈ (0, π),

then gi : [ti, si]×X → X is continuous function and satisfies

‖gi(t, u1)− gi(t, u2)‖ ≤ Lgi‖u1 − u2‖,

for u1, u2 ∈ X and Lgi = 1
2 . Hence the assumptions in Theorem 3.1 are satisfied [25].

Thus we have the following theorem for the existence.
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Theorem 4.1 If ϕ is chosen such that

‖ϕ(t, u)− ϕ(t, v)‖ ≤ Lφ‖u− v‖, t ∈ [0, T0], u, v ∈ X

and

L = max{M1(1/2 +
2

a+ 2
T0) + Lϕ(1 +M2T0), 1/2 : i = 1, · · · , N} < 1,

then problem (1) has a unique piecewise continuous mild solution.
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1 Introduction

It is a fact that species does not survive alone. Individuals of one species are usually bio-
logically associated to members of other. Their interactions take several forms, depend-
ing on whether the influences are beneficial or detrimental. Among these interactions,
predator-prey relationship is considered to be an extremely important one. It is true that
the preys always try to develop the methods of evasion to avoid being eaten. However,
it is certainly not true that a predator-prey relationship is always harmful for the preys,
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it might be beneficial to both. Further, such a relationship often plays an important role
to keep ecological balance in nature. Mathematical modelling of predator-prey interac-
tion was started in 1920s. Interestingly, the first predator-prey model in the history of
theoretical ecology was developed independently by Alfred James Lotka (a US physical
chemist) and Vito Volterra (an Italian mathematician) [29,40]. Subsequently, this model
has been used as a machine to introduce numerous mathematical and practical concepts
in theoretical ecology. Many refinements of the Lotka-Volterra model have also been
made to overcome the shortcomings of the model and to get better insights of predator-
prey interactions. If we summarize the basic considerations behind such modelling, it
would be evident that the most crucial elements of predator-prey models are the choices
of growth function of the prey and functional response of the predator.

So far as the growth of the prey is concerned, many modellers have considered logistic
growth function to be a logically acceptable function. The function was introduced in
1838 by the Belgian mathematician Pierre Francois Verhulst [39]. If X(T ) denotes the
population density at time T , then the logistic growth equation is given by

dX

dT
= rX

(

1− X

K

)

, (1)

where r is the intrinsic per capita growth rate and K is the carrying capacity of the
environment. The logic behind this is very simple. As the resources (e.g., space, food,
essential nutrients) are limited, every population grows into a saturated phase from which
it cannot grow further; the ecological habitat of the population can carry just so much of
it and no more. Therefore, the per capita growth rate is a decreasing function of the size of
the population, and reaches zero as the population achieves a size that can be maintained;
further, any population reaching a size that is above this value will experience a negative
growth rate. However, there are many evidences where the reverse holds true in low
population density [9,18–20,31,34]. This phenomenon of positive density dependence of
population growth at low densities is known as the Allee effect [19, 37].

Warder Clyde Allee, the US behavioral scientist after whom the phenomenon is
named, was the pioneer to describe this concept (although Allee never used the term
‘Allee effect’) [2–4]. The term ‘Allee effect’ was introduced by Odum [33]. Since the late
eighties of the 20th century, the concept gained importance but there was a necessity of
clear-cut definitions and clarification of concepts. In 1999, three important reviews gave
these much needed definitions and clarifications, which are used even today [18, 36, 37].
There might be countless reasons for the Allee effect, such as difficulty in mate finding,
reduced antipredator vigilance, problem of environmental conditioning, reduced defense
against predators, and many others (for thorough reviews, see [9, 19]). The Allee effect
can be divided into two main types, depending on how strong the per capita growth
rate is depleted at low population densities. These two types are called the strong Allee
effect [26, 38, 42, 43] or critical depensation [14, 15, 28], and the weak Allee effect [37, 41]
or noncritical depensation [14, 15, 28]. Usually, the Allee effect is modelled by a growth
equation of the form

dX

dT
= rX

(

1− X

K

)(

X

K0
− 1

)

, (2)

where X(T ) denotes the population density at time T , r is the intrinsic per capita growth
rate, and K is the carrying capacity of the environment. Here 0 < K0 << K. When
K0 > 0 and the population size is below the threshold level K0, then the population
growth rate decreases [10,16,21,26], and the population goes to extinction. In this case,
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the equation describes the strong Allee effect [38,42,43]. On the contrary, the description
of weak Allee effect is also available (see [22, 42]). In this paper, we are concerned with
strong Allee effect. The above growth is often said to have a multiplicative Allee effect.
There is another mathematical form of the growth function featuring the additive Allee
effect. In this paper, we are not interested in additive Allee effect (interested readers
might see the works of Aguirre et al. [5,6]). A comparison of the logistic growth function
of (1) and the function representing the Allee effect in equation (2) is depicted in Figure
1.
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Logistic growth when r=2, K=5
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Figure 1: Comparison of the logistic growth function of (1) and the function representing the
Allee effect in equation (2), when r = 2 and K = 5. The blue curve is the logistic growth curve.
The magenta curve and the red curve are the graphs of the function on the right hand side of
(2) when K0 = 2 and K0 = 3, respectively.

Let us now turn our attention from the individual growth of the prey to the interaction
of the prey and its predator. The function that describes the number of prey consumed
per predator per unit time for given quantities of prey and predator is known as the
functional response or trophic function. Depending upon the behaviour of populations,
more suitable functional responses have been developed as a quantification of the relative
responsiveness of the predation rate to change in prey density at various populations of
prey. In this connection, Holling family of functional responses are the most focused [24,
25]. The Holling type-I functional response (or the Lotka-Volterra functional response) is
given by F (X) = αX , where X(T ) is the prey density at time T and α > 0 is a constant.
In particular, the Holling type-II functional response has become extremely popular,
and served as basis for a very large literature in predator-prey theory (see [30, 32, 35],
and references therein). The type-II functional response includes the fact that a single
individual can feed only until the stomach is not full, and so a saturation function would
be better to describe the intake of food. This is similar to the concept of the law of
diminishing returns borrowed from operations research, via a hyperbola rising up to an
asymptotic value. In other words, the functional response would be of the following form

F (X) =
αX

1 + ThαX
, (3)
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where X(T ) is the prey density at time T , α is the search efficiency of the predator for
prey, Th is the average handling time for each prey.

If a population is vulnerable to the Allee effect, there might be an important role of
herd behaviour of the population. Very recently, Angulo et al. [7] have suggested that
group behaviour diminishes extinction risks caused by the Allee effects. Now, when a
population lives forming groups, then all members of a group do not interact at a time.
There are many reasons for this herd behaviour, such as searching for food resources,
defending the predators, etc. As a consequence, it is necessary to search for suitable form
of functional response to describe this social behaviour. Only a few works have so far
tried to enlighten this area. These works demonstrated an ingenious idea that suitable
powers of the state variables can account for the social behaviour of the populations. For
example, to explore the consequence of forming spatial group of fixed shape by predators,
Cosner et al. [17] introduced the idea that the square root of the predator variable is to be
used in the function describing the encounter rate in two-dimensional systems. Similarly,
for three-dimensional systems, the two-third power of the predator in the encounter rate
would better describe such group behaviour by predators. Unfortunately, such an idea
has not been used by the researchers for about a decade. The work of Chattopadhyay
et al. [13] may be regarded as a strong recognition of this concept. Then came the most
innovative works of Ajraldi et al. [1] and Braza [12], which gave such modelling a new
dimension. We recall their central ideas in the next paragraph.

Let X be the density of a population that gathers in herds, and suppose that herd
occupies an area A. The number of individuals staying at outermost positions in the
herd is proportional to the length of the perimeter of the patch where the herd is located.
Clearly, its length is proportional to

√
A. Since X is distributed over a two-dimensional

domain,
√
X would therefore count the individuals at the edge of the patch. Thus, when

attack of a predator on this population is to be modelled, the functional response should
be in terms of square root of prey population. This is the main idea of Ajraldi et al. [1].
Braza [12] has placed a strong emphasis on this concept, and he has introduced a new
functional response, where the prey density in (3) is replaced by its square root. That
is, the functional response takes the form

F1(X) =
α
√
X

1 + Thα
√
X

. (4)

It is already mentioned that if a population is susceptible to the Allee effect, then
living in herds might be beneficial for it [7]. Now, if there is a predator, such behaviour
plays a key role so far as the vigilance and predation risk is concerned [31]. The dynam-
ics of predator-prey systems with herd behaviour of the prey has got the attention of
theoretical ecologists very recently, but in all the cases it is assumed that the prey has
a logistic growth (see [11] and references therein). It would be of utmost importance to
consider predator-prey systems with herd behaviour and the Allee effect. There should
be no denying that such considerations would be very interesting from both theoretical
and practical point of view. The dynamics of such models has so far not been studied in
literature. Our endeavour might accomplish such a necessity.

The rest of the paper is organized as follows. In Section 2, we present the mathemat-
ical model with basic considerations. Boundedness and positivity of the solutions of the
model are established in Section 3. Some results on the extinction of prey and predator
are derived in Section 4. Section 5 deals with all the possible equilibrium points of the
model and their stability analysis. A criterion for Hopf bifurcation is derived in Section
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6. To illustrate our analytical findings, computer simulations of variety of solutions of
the system are performed; and the results are presented in Section 7. Section 8 contains
the general discussion of the paper and biological significance of our analytical findings.

2 The Mathematical Model

At time T, let X(T ) denote the density of the prey, and Y (T ) denote the density of the
predator. We assume that the preys live in herds. We also consider a multiplicative
Allee effect in prey population growth. These considerations motivate us to introduce
the following predator-prey system within the framework of the following set of nonlinear
ordinary differential equations:

dX

dT
= rX

(

1− X

K

)(

X

K0
− 1

)

− α
√
XY

1 + Thα
√
X

, X(0) > 0,

dY

dT
= −δY +

βα
√
XY

1 + Thα
√
X

, Y (0) > 0.

(5)

The parameter r is the intrinsic growth rate of the prey, K is the carring capacity of the
prey, δ represents the death rate of the predator. We assume a strong Allee effect on the
prey. The parameterK0 with 0 < K0 << K is the prey population Allee threshold in the
absence of predators. As the prey exhibits herd behaviour, here we have used the modified
functional response (4) (suggested by Braza [12]) to represent the interaction between
prey and predator. So α, Th, β stand for the search efficiency of the predator for prey,
the average handling time for each prey, and the biomass conversion rate, respectively.
It is an obvious assumption that all the parameters are positive.

To reduce the number of parameters in the system (5), we use the following scaling

x =
X

K
, y =

Y

K
, and t = r

K

K0
T.

Then the system (5) takes the following form (after some simplifications)

dx

dt
= x(1 − x)(x−m)− b

√
xy

1 + a
√
x
, x(0) > 0,

dy

dt
= −dy +

c
√
xy

1 + a
√
x
, y(0) > 0,

(6)

where

m =
K0

K
, a = Thα

√
K, b =

αK0

r
√
K

, c =
βαK0

r
√
K

, d =
δK0

rK
.

3 Positivity and Boundedness

Positivity and boundedness of a model guarantee that the model is biologically well
behaved. For positivity of the system (6), we have the following theorem.

Theorem 3.1 All solutions of the system (6) that start in R
2
+ remain positive for-

ever.

The proof is simple and therefore it is omitted. The following theorem ensures the
boundedness of the system (6).
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Theorem 3.2 All solutions of the system (6) that start in R
2
+ are uniformly bounded.

Proof. Let (x(t), y(t)) be any solution of the system (6). We consider two possible
cases separately.

Case-I. Let x(0) ≤ 1. We claim that x(t) ≤ 1 for all t ≥ 0.
If possible, assume that our claim is not true. Then it is possible to find two positive
real numbers t′ and t′′ such that x(t′) = 1 and x(t) > 1 for all t ∈ (t′, t′′).
Now, for all t ∈ (t′, t′′), we have from the first equation of(6)

x(t) = x(0) exp

(
∫ t

0

φ(x(s), y(s))ds

)

,

where φ(x(t), y(t)) = (1− x(t))(x(t) −m)− b y(t)√
x(t)(1+a

√
x(t))

.

This implies that

x(t) = x(0)

[

exp

(

∫ t′

0

φ(x(s), y(s))ds

)]

[

exp

(
∫ t

t′
φ(x(s), y(s))ds

)]

= x(t′) exp

(
∫ t

t′
φ(x(s), y(s))ds

)

, for all t ∈ (t′, t′′).

Since m < 1, we have φ(x(t), y(t)) < 0 for all t ∈ (t′, t′′). Consequently, we have

x(t) < x(t′), where x(t′) = 1.

This is contrary to the assumption that x(t) > 1 for all t ∈ (t′, t′′). Thus our claim is
true.

Case-II. Let x(0) > 1. We claim that lim supt→∞ x(t) ≤ 1.
If possible, assume that this claim is false. Then x(t) > 1 for all t > 0. So φ(x(t), y(t)) < 0
(where φ has the same expression as in Case-I); and consequently, we have from the first
equation of(6) that

x(t) = x(0) exp

(
∫ t

0

φ(x(s), y(s))ds

)

< x(0).

Also from the first equation of (6), we obtain

dx

dt
< (x(0)−m)x(1 − x), where x(0)−m > 0.

This implies that lim supt→∞ x(t) ≤ 1, which is contradictory to our assumption. There-
fore our claim is true.

From the above two cases, we have lim supt→∞ x(t) ≤ 1.

Let W = cx+ by. Then, for large t, we have

dW

dt
= cx(1 − x)(x −m)− bdy

= cx{(1 +m)x−m− x2} − bdy
≤ c(1 +m)x− bdy
≤ 2c(1 +m)− λW, where λ = min{(1 +m), d}.
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Therefore,
dW

dt
+ λW ≤ 2c(1 +m).

Applying the theory of differential inequalities, we obtain

0 ≤ W (x, y) ≤ 2c(1 +m)

λ
+

W (x(0), y(0))

eλt
.

and for t → ∞,

0 ≤ W ≤ 2c(1 +m)

λ
.

Thus, all the solutions of (2.2) enter into the region

B =

{

(x, y) : 0 ≤ W ≤ 2c(1 +m)

λ
+ ǫ, for any ǫ > 0

}

.

Hence the theorem is proved. ✷

4 Extinction Scenarios

In this section, we find some conditions for extinction of the prey or predator. Here we
use the symbols x and y to represent lim supt→∞ x(t) and lim inft→∞ y(t), respectively.
We frequently use the fact that x ≤ 1, which is proved in Theorem 3.2.

The first two theorems of this section are on the extinction of the prey species. It is
quite obvious that if, after certain time, the prey population density lies below the Allee
threshold (moreover there is attack of predator), then it is really impossible for the prey
to survive. This fact is represented in mathematical terms in the following theorem.

Theorem 4.1 If x < m, then limt→∞ x(t) = 0.

Proof. If possible, let limt→∞ x(t) = µ > 0. The definition of x implies that for any
ǫ satisfying 0 < ǫ < m− x, there exists tǫ > 0 such that x(t) < x+ ǫ for t > tǫ.
Then, for t > tǫ, we have from the first equation of (6) that

x(t) = x(0) exp

[

∫ t

0

{

(1 − x(s))(x(s) −m)− b
√

x(s)y(s)

x(s)(1 + a
√

x(s))

)

ds

]

< x(0) exp

[
∫ t

0

(x+ ǫ−m) ds

]

< x(0) exp{−(m− x− ǫ)t} → 0 as t → ∞,

which is a contradiction. This proves the theorem. ✷

If the condition of the above theorem is satisfied, then the predator has no vital role
in leading the prey to extinction, because the Allee effect is enough to do this (of course,
the predator might expedite the process of extinction of the prey). The following theorem
shows that the predator might also play a key role to prompt the prey to die out.

Theorem 4.2 If y > 2
√
2

b
(1 + a

√
2)(1−m), then limt→∞ x(t) = 0.
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Proof. If possible, let limt→∞ x(t) = µ > 0. Since x ≤ 1, for any 0 < ǫ < 1 − m,
there exists tǫ > 0 such that x(t) < 1 + ǫ for t > tǫ.

From the definition of y, it follows that, for any 0 < ǫ′ < y− 2
√
2

b
(1+ a

√
2)(2−m), there

exists tǫ′ > 0 such that y(t) > y − ǫ′ for t > tǫ′ .
Then, for t > max{tǫ, tǫ′}, we have from the first equation of (6) that

dx

dt
< x(1 + ǫ−m)− b

√
xy

1 + a
√
1 + ǫ

,

< x(1 + ǫ−m)− bxy√
1 + ǫ(1 + a

√
1 + ǫ)

, as x <
√
1 + ǫ

√
x,

< x

{

2(1−m)−
b(y − ǫ′)

√
2(1 + a

√
2)

}

,

< − bx√
2(1 + a

√
2)

{

y − ǫ′ − 2
√
2

b
(1 + a

√
2)(1 −m)

}

< 0,

which implies that limt→∞ x(t) = 0, a contradiction.
Hence the theorem is established. ✷

A very simple criterion for the extinction of the predator is given in the following
theorem.

Theorem 4.3 If d > c, then limt→∞ y(t) = 0.

Proof. Since x ≤ 1, for any 0 < ǫ < d2

c2
− 1, there exists tǫ > 0 such that x(t) < 1+ ǫ

for t > tǫ. For t > tǫ, we have from the second equation of (6) that

dy

dt
= y

(

−d+
c
√
x

1 + a
√
x

)

< y
(

−d+ c
√
x
)

< y
(

−d+ c
√
1 + ǫ

)

< −cy

(

d

c
−
√
1 + ǫ

)

< 0.

Therefore, limt→∞ y(t) = 0. ✷

Remark 4.1 We notice that if the predator is aggressive (characterized by the high
value of b) or the Allee effect is very strong (m ≈ 1), then the condition of Theorem
4.2 might be satisfied automatically. On the other hand, if the maximal benifit of the
predator (in interaction with the prey) fails to overcome its loss due to death, then the
predator will be ultimately washed out from the system.

5 Equilibria and Their Stability

In this section, we find the equilibrium points of the system (6) and study their stability.
The nullclines are shown in Figure 2. The following lemma gives the equilibrium points
with the conditions of their existence.

Lemma 5.1 The trivial equilibrium E0(0, 0) of the system (6) always exists. There
are two axial (predator-free) equilibrium points E1(1, 0) and E2(m, 0), each of which also
exists unconditionally. The interior or coexistence equilibrium E∗(x∗, y∗) exists if and
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Figure 2: Nullclines of the system (6) for a = 0.89, b = 0.19, c = 0.21, d = 0.1, m = 0.17.

only if (c − ad)
√
m < d < (c − ad). When E∗(x∗, y∗) exists, the expressions for x∗ and

y∗ are given by

x∗ =
d2

(c− ad)2
, y∗ =

cx∗(1− x∗)(x∗ −m)

bd
.

It is not possible to linearize the system (6) about the trivial equilibrium. Therefore,
local stability of E0(0, 0) cannot be studied. However, results of the previous section
could provide some results on global stability of E0(0, 0). For example, if the conditions
of Theorem 4.1 and Theorem 4.3 are satisfied simultaneously, then E0(0, 0) is globally
stable. Also E0(0, 0) is globally stable if the conditions of Theorem 4.2 and Theorem 4.3
are satisfied. We are not interested to restate those results here.

The Jacobian matrix J(E1) at E1(1, 0) is given by

J(E1) =

[

m− 1 − b
1+a

0 −d+ c
1+a

]

.

Clearly, the eigenvalues of J(E1) are m − 1 and −d + c
1+a

. Since m < 1, the first
eigenvalue m− 1 is always negative. The second one will also be negative if and only if
c < d(1 + a). Thus we have the following theorem on stability of E1(1, 0).

Theorem 5.1 The equilibrium E1(1, 0) is locally asymptotically stable if and only if
c < d(1 + a).

Remark 5.1 We notice that the existence of E∗ destabilizes E1.

The Jacobian matrix J(E2) at E2(m, 0) is given by

J(E2) =

[

m(1 −m) − b
√
m

1+a
√
m

0 −d+ c
√
m

1+a
√
m

]

.
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The eigenvalues of J(E2) are m(1−m) and −d+ c
√
m

1+a
√
m
. The first eigenvalue is always

positive, as 0 < m < 1. The second one will be negative if and only if c
√
m < d(1+a

√
m).

Therefore, we have the following theorem.

Theorem 5.2 The equilibrium E2(m, 0) is always unstable. It is a saddle point if
and only if c

√
m < d(1 + a

√
m).

Finally, we consider the stability issue of the most important equilibrium E∗(x∗, y∗).
We have the following Jacobian matrix at E∗(x∗, y∗):

J(E∗) =

[

a11 a12
a21 0

]

,

where

a11 = (1− 2x∗)(x∗ −m) + x∗(1− x∗)− by∗

2
√
x∗(1 + a

√
x∗)2

,

a12 = − b
√
x∗

1 + a
√
x∗ , a21 =

cy∗

2
√
x∗(1 + a

√
x∗)2

.

The characteristic equation of J(E3) is

λ2 + Pλ+Q = 0,

where P = −tr J(E∗) = −a11, Q = det J(E∗) = −a12a21 > 0. A little algebraic
manipulation yields

P =
ABm− d2{2c(A− d2) +B}

2cA2
,

where A = (c − ad)2 and B = (c + ad)A − (3c + ad)d2. Then we have the following
theorem guaranteeing the stability of E∗(x∗, y∗).

Theorem 5.3 The necessary and sufficient condition for local asymptotic stability of
the interior equilibrium E∗(x∗, y∗) is that ∆ = ABm− d2{2c(A− d2) +B} > 0.

It would be interesting if we can establish some sort of global behaviour of the interior
equilibrium. Let Ω = {(x, y) ∈ R

2 : 0 < x < 1, y > 0}. Clearly, E∗(x∗, y∗) ∈ Ω. Then
we have the following theorem.

Theorem 5.4 If E∗(x∗, y∗) is locally asymptotically stable with d > c+m+ 2, then
E∗ attracts all solutions of the system (6) lying in Ω.

Proof. Let us write the first equation of the system (6) as dx
dt

= P (x, y), and the

second equation as dy
dt

= Q(x, y). Then, for all (x, y) ∈ Ω, we notice that

∂P

∂x
+

∂Q

∂y
= (1− 2x)(x −m) + x(1 − x)− by

2
√
x(1 + a

√
x)2

− d+
c
√
x

1 + a
√
x

≤ 2x+ 2mx−m− d+ c
√
x

≤ 2 +m− d+ c < 0.

Therefore, by Bendixson’s criterion, there is no periodic orbit in Ω. Hence the theorem
follows from the Poincaré-Bendixson theorem. ✷
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6 Hopf Bifurcation

In this section, we provide conditions for the occurrence of a simple Hopf bifurcation
near the interior equilibrium E∗(x∗, y∗). We use the Hopf bifurcation theorem [8,23,32]
for this purpose.

Theorem 6.1 If the equilibrium point E∗(x∗, y∗) exists, then Hopf bifurcation occurs

at m = m∗ = d2{2c(A−d2)+B}
AB

, provided m∗ is positive.

Proof. We notice that
(i) [tr J(E∗)]m=m∗ = 0,
(ii) [detJ(E∗)]m=m∗ > 0,
(iii) when m = m∗ the characteristic equation is λ2 + det J(E∗) = 0, whose roots are
purely imaginary,
(iv) [(d/dm)(tr J(E∗))]m=m∗ = − B

2cA 6= 0.

Hence all the conditions of the Hopf-bifurcation theorem are satisfied, and the theorem
follows. ✷

7 Numerical Simulation

In this section, we present computer simulations of some solutions of the system (6).
These simulations are performed to validate the analytical findings of the last two sec-
tions.

First, we take the parameters of the system (6) as m = 0.2, b = 0.19, a = 0.89, d =
0.1 and c = 0.17. Then c < d(1 + a), and consequently by Theorem 5.1, E1(1, 0) is
locally asymptotically stable. Figure 3 illustrates this. Clearly, x approaches 1 and y
dies out in finite time.

Next we consider the stability of the interior equilibrium. We take the parameter val-
ues as m = 0.17, b = 0.19, a = 0.89, d = 0.1 and c = 0.21. Then ∆ = 0.0000016314> 0.
Therefore, by Theorem 5.3, the interior equilibrium point E∗(x∗, y∗) = (0.6830, 1.2276)
is locally asymptotically stable. The corresponding phase portrait for different choices of
(x(0), y(0)) is depicted in Figure 4. Clearly the trajectories are stable spirals converging
to E∗. Figure 5 shows the behaviour of x and y with time, when (x(0), y(0)) = (0.85, 1.2),
and it is evident that (x, y) approaches to (x∗, y∗) in finite time.

If we gradually increase the value of m, keeping other parameters fixed, then following
Theorem 6.1, we have a critical value m∗ = 0.2096 such that E∗ loses its stability as m
passes through m∗. For m = 0.22 > m∗, we verify that E∗(0.6830, 1.1080) is unstable
(∆ = −0.0000004274 < 0) and there is a periodic orbit near E∗ (see Figure 6). The
oscillations of x and y in time are shown in Figure 7.

A bifurcation diagram is shown in Figure 8. As the parameter m passes through the
bifurcation value m∗ = 0.2096, there is a change in stability behaviour.

8 Concluding Remarks

Recently it has been suggested by researchers that herd behaviour of populations could
act as a buffer against population extinction due to the Allee effect (see [7]). Modelling
of the Allee effect has been done by many researchers. Nowadays there has been a
growing concern about modelling of herd behaviour of populations. In this paper, we
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Figure 3: Behaviour of the system (6) with time when m = 0.2, b = 0.19, a = 0.89, d = 0.1
and c = 0.17.
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Figure 4: Here m = 0.17, b = 0.19, a = 0.89, d = 0.1 and c = 0.21. Phase portrait
of the system (6) for different choices of x(0) and y(0) showing stable spirals converging to
E∗(0.6830, 1.2276).

have considered a predator-prey model where the prey shows herd behaviour and also
susceptible to the Allee effect. The number of parameters of the model has been reduced
by suitable scaling. Then the dynamical behaviours of the resulting model (6) is studied.
It is shown (in Theorem 3.1 and Theorem 3.2) that the solutions of the system (6) remain
non-negative forever, and they are uniformly bounded. These, in turn, imply that the
system is biologically well-behaved. We have derived some results on extinction of prey
and predator. It is seen that if there is a very strong the Allee effect, then it is almost
impossible for the prey to survive. Also, an aggressive predator might cause extinction
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Figure 5: Here the values of the parameters are as in Figure 4. When (x(0), y(0)) = (0.85, 1.2),
both the populations converge to their equilibrium-state values in finite time. The blue curve
represents x and the red one represents y.
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Figure 6: Here all the parameters are same as in Figure 4 except m = 0.22 > m∗. Phase
portrait of the system (6) showing a periodic orbit near E∗(0.6830, 1.1080).

of the prey, and this ultimately backfires (because the predator dies out in starvation,
which is clear from the second equation of (6)). It is also established that if the maximal
benefit of the predator (in interaction with the prey) fails to overcome its loss due to
death, then the predator would ultimately be washed out.

It has long been recognized that most of the studies of continuous time deterministic
models reveal two basic patterns: approach to an equilibrium or to a limit cycle. The
basic rationale behind such type of analysis is perhaps that these two patterns are very
common in many predator-prey systems we observe in nature. From this viewpoint, we
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Figure 8: A bifurcation diagram withm as bifurcation parameter, when b = 0.19, a = 0.89, d =
0.1 and c = 0.21. The blue curve depicts stable behavior and the magenta curve depict unstable
behavior.

have presented the stability analysis of the equilibrium points, and bifurcation analysis of
the most important interior equilibrium point. The criterion for existence of the interior
equilibrium suggests that an aggressive predator with moderate death rate might give
a guarantee for the coexistence equilibrium to be feasible. Also, the existence of the
interior equilibrium destabilizes E1. The Allee effect has a negative effect on the fitness
of the predator (see Figure 8). Further, the bifurcation analysis presented here shows
that the Allee effect could have a regulatory impact on the whole system.
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Formation et de Recherches en Sciences Exactes et Appliquées, Département de
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Abstract: We study a nonlinear elliptic problem with homogeneous Neumann
boundary condition, governed by a general Leray-Lions operator with variable expo-
nents and Radon measure data which does not charge the sets of zero p(.)-capacity.
We prove an existence and uniqueness result of weak solution.
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1 Introduction and Main Results

Our aim is to study the existence and uniqueness of a solution for nonlinear homogeneous
Neumann boundary value problem of the form

N(β, µ)





−∇ · a(x,∇u) + β(u) ∋ µ in Ω,

a(x,∇u).η = 0 on ∂Ω,

where η is the unit outward normal vector on ∂Ω, β is a maximal monotone graph on R

such that 0 ∈ β(0), a is a Leray-Lions operator, µ is a diffuse measure such that µ = µ⌊Ω
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and Ω ⊂ R
N is a smooth open bounded domain (N ≥ 1). We set dom(β) = [m,M ] ⊂ R

with m ≤ 0 ≤M .
Recall that a Leray-Lions operator which involves variable exponents is a

Carathéodory function a(x, ξ) : Ω × R
N −→ R

N (i.e. a(x, ξ) is continuous in ξ for
a.e. x ∈ Ω and measurable in x for every ξ ∈ R

N ) such that:
• There exists a positive constant C1 such that

|a(x, ξ)| ≤ C1(j(x) + |ξ|p(x)−1) (1)

for almost every x ∈ Ω and for every ξ ∈ R
N where j is a nonnegative function in

Lp′(.)(Ω), with
1

p(x)
+

1

p′(x)
= 1.

• The following inequalities hold

(a(x, ξ)− a(x, η)).(ξ − η) > 0 (2)

for almost every x ∈ Ω and for every ξ, η ∈ R
N , with ξ 6= η, and there exists C > 0 such

that
1

C
|ξ|p(x) ≤ a(x, ξ).ξ, (3)

for almost every x ∈ Ω, and for every ξ ∈ R
N .

In this paper, we make the following assumption on the variable exponent:

p(.) : Ω → R is a continuous function such that 1 < p− ≤ p+ < +∞, (4)

where p− := ess inf
x∈Ω

p(x) and p+ := ess sup
x∈Ω

p(x).

We denote by LN the N -dimensional Lebesgue measure of R
N and by Mb(X)

the space of bounded Radon measure in X , equipped with its standard norm
||.||Mb(X). Given ν ∈ Mb(X), we say that ν is diffuse with respect to the ca-

pacity W 1,p(.)(X)(p(.)−capacity for short) if ν(B) = 0 for every set B such that
Capp(.)(B,X) = 0, where the Sobolev p(.)−capacity of B is defined by

Capp(.)(B,X) = inf
u∈Sp(.)(B)

∫

X

(
|u|p(x) + |∇u|p(x)

)
dx,

with

Sp(.)(B) = {u ∈ W
1,p(.)
0 (X) : u ≥ 1 in an open set containing B and u ≥ 0 in X}.

In the case Sp(.)(B) = ∅, we set Capp(.)(B,X) = +∞.
The set of bounded Radon diffuse measure in the variable exponent setting is denoted

by M
p(.)
b (X).

Elliptic problems with measures data in the context of constant exponent was studied
by many authors (see [4–6,10,12]). The multivalued case for Dirichlet boundary condition
with constant exponent was studied by some authors among whose papers one can cite
the most recent one by Igbida et als [14]. The study of multivalued elliptic problems
with measure data in the context of variable exponent was carried out for the first time
by Nyanquini et als [16] under homogeneous Dirichlet Boundary condition. In [16], the
authors first proved a decomposition theorem for the measure data (more precisely, as
a sum of a function in L1(Ω) and of a measure in W−1,p′(.)(Ω)) and used it to prove,
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following [14], a result on existence and uniqueness of entropy solution of the problem
considered.

In this paper, we consider Neumann homogeneous boundary condition. Since the
boundary condition is the Neumann condition, we cannot work with the common space

W
1,p(.)
0 (Ω) in which, we can use the Poincaré inequality but also, when one uses the

integration by parts formula, the term which appears at the boundary due to the part
of the measure in W−1,p′(.)(Ω), vanishes. We have to work in the space W 1,p(.)(Ω). The
first main difficulty which appears in this case is that for the proof of some a priori
estimates, the famous Poincaré inequality doesn’t apply, and neither do the Poincaré-
Wirtinger inequality and the Poincaré-Sobolev inequality (since we have homogeneous
Neumann condition). A second main difficulty is that, when one uses the integration
by parts formula in the Yosida approximated problem (see problem N(βǫ, µǫ) below),
a term which cannot vanish appears at the boundary, for the part of the measure data
which is in W−1,p′(.)(Ω). In order to treat this difficulty, we consider a smooth domain

Ω in order to work with the space W
1,p̃(.)
0 (UΩ), where p̃(.) : UΩ → (1,∞) is continuous

such that p̃(x) = p(x) for all x ∈ Ω, and to go back later to the space W 1,p(.)(Ω). More
precisely, Ω is assumed to be a bounded domain in R

N with a boundary ∂Ω of class C1.
Then, Ω is an extension domain (see [8]), so we can fix an open bounded subset UΩ of
R

N such that Ω ⊂ UΩ, and there exists a bounded linear operator

E :W 1,p(.)(Ω) →W
1,p̃(.)
0 (UΩ),

for which
(i) E(u) = u a.e. in Ω for each u ∈W 1,p(.)(Ω),
(ii) ‖E(u)‖

W
1,p̃(.)
0 (UΩ)

≤ C‖u‖W 1,p(.)(Ω), where C is a constant depending only on Ω.

We define

M
p(.)
b (Ω) := {µ ∈ M

p̃(.)
b (UΩ) : µ is concentrated on Ω}.

This definition is independent of the open set UΩ. Note that for u ∈ W 1,p(.)(Ω)∩L∞(Ω)

and µ ∈ M
p(.)
b (Ω), we have

〈µ,E(u)〉 =

∫

Ω

u dµ.

On the other hand, as µ is diffuse (cf. Theorem 3.1 below), there exist f ∈ L1(UΩ) and
F ∈ (Lp̃′(.)(UΩ))

N such that µ = f− div(F ) in D′(UΩ). Therefore, we can also write

〈µ,E(u)〉 =

∫

UΩ

fE(u) dx+

∫

UΩ

F.∇E(u) dx.

Now, define the following spaces which are similar to that introduced in [1, 3] (see
also [7]). We note

T 1,p(.)(Ω) :=
{
u : Ω −→ R measurable; Tk(u) ∈W 1,p(.)(Ω) for all k > 0

}
.

As in [3], we can prove that for u ∈ T 1,p(.)(Ω), there exists a unique measurable function
w : Ω −→ R such that ∇Tk(u) = wχ{|u|<k} ∀k > 0. This function w will be denoted by
∇u.
We define T

1,p(.)
H (Ω) (see [7]) as the set of functions u ∈ T 1,p(.)(Ω) such that there exists

a sequence (uδ)δ ⊂W 1,p(.)(Ω) satisfying the following conditions:
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(i) uδ −→ u a.e. in Ω as δ → 0.
(ii) ∇Tk(uδ) −→ ∇Tk(u) in L1(Ω) for any k > 0 as δ → 0.
The symbol H in the notation is related to the fact that we consider here homogeneous
Neumann boundary condition.

Our main results are the following theorems.

Theorem 1.1 For any µ ∈ M
p(.)
b (Ω), the problem N(β, µ) has at least one solution

(u,w, ν) in the sense that

(u,w, ν) ∈ W 1,p(.)(Ω)× L1(Ω)×M
p(.)
b (Ω)

such that
(i) u ∈ dom(β) LN − a.e. in Ω,
(ii) w ∈ β(u) LN − a.e. in Ω,
(iii) ν ⊥ LN , ν+ is concentrated on [u =M ], ν− is concentrated on [u = m],
(iv) for any ϕ ∈ W 1,p(.)(Ω) ∩ L∞(Ω),

∫

Ω

a(x,∇u).∇ϕdx +

∫

Ω

wϕdx +

∫

Ω

ϕdν =

∫

Ω

ϕdµ. (5)

The uniqueness of the solution is given in the following theorem.

Theorem 1.2 Let (u1, w1, ν1) and (u2, w2, ν2) be two solutions of N(β, µ).
Then 





u1 − u2 = c a.e. in Ω,
w1 = w2 a.e. in Ω,
ν1 = ν2.

(6)

Moreover,

ν+ ≤ µs ⌊[u =M ] (7)

and

ν− ≤ −µs ⌊[u = m]. (8)

2 Preliminary

As the exponent p(.) appearing in (1) and (3) depends on the variable x, we must work
with Lebesgue and Sobolev spaces with variable exponents. We define the Lebesgue
space with variable exponent Lp(.)(Ω) as the set of all measurable function u : Ω −→ R

for which the convex modular

ρp(.)(u) :=

∫

Ω

|u|p(x) dx

is finite. If the exponent is bounded, i.e., if p+ < +∞, then the expression

|u|p(.) := inf {λ > 0 : ρp(.)(u/λ) ≤ 1}

defines a norm in Lp(.)(Ω), called the Luxembourg norm. The space (Lp(.)(Ω), |.|p(.)) is

a separable Banach space. Moreover, if 1 < p− ≤ p+ < +∞, then Lp(.)(Ω) is uniformly
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convex, hence reflexive, and its dual space is isomorphic to Lp′(.)(Ω), where
1

p(x)
+

1

p′(x)
=

1. Finally, we have the Hölder type inequality:
∣∣∣
∫

Ω

uv dx
∣∣∣ ≤

( 1

p−
+

1

(p′)−

)
|u|p(.)|v|p′(.), (9)

for all u ∈ Lp(.)(Ω) and v ∈ Lp′(.)(Ω).
Now, let

W 1,p(.)(Ω) :=
{
u ∈ Lp(.)(Ω) : |∇u| ∈ Lp(.)(Ω)

}
,

which is a Banach space equipped with the following norm

||u||1,p(.) = |u|p(.) + |(|∇u|)|p(.).

The space
(
W 1,p(.)(Ω), ||u||1,p(.)

)
is a separable and reflexive Banach space. For the

interested reader, more details about Lebesgue and Sobolev spaces with variable exponent
can be found in [11, 15].

An important role in manipulating the generalized Lebesgue and Sobolev spaces is
played by the modular ρp(.) of the space Lp(.)(Ω). We have the following result (cf. [13]):

Lemma 2.1 If un, u ∈ Lp(.)(Ω) and p+ < +∞, then the following properties hold:
i) |u|p(.) > 1 =⇒ |u|

p−

p(.) ≤ ρp(.)(u) ≤ |u|
p+

p(.);

ii) |u|p(.) < 1 =⇒ |u|
p+

p(.) ≤ ρp(.)(u) ≤ |u|
p−

p(.);

iii) |u|p(.) < 1 (respectively = 1;> 1) ⇐⇒ ρp(.)(u) < 1 (respectively = 1;> 1);
iv) |un|p(.) −→ 0 (respectively −→ +∞) ⇐⇒ ρp(.)(un) −→ 0 (respectively −→ +∞);

v) ρp(.)
(
u/|u|p(.)

)
= 1.

For a measurable function u : Ω → R, we introduce the functional

ρ1,p(.)(u) :=

∫

Ω

|u|p(x) dx+

∫

Ω

|∇u|p(x) dx.

Then, we have the following lemma (see [17, 18]).

Lemma 2.2 If un, u ∈ W 1,p(.)(Ω) and p+ < +∞, then the following properties hold:
(i) ‖u‖1,p(.) > 1 =⇒ ‖u‖

p−

1,p(.) ≤ ρ1,p(.)(u) ≤ ‖u‖
p+

1,p(.);

(ii) ‖u‖1,p(.) < 1 =⇒ ‖u‖
p+

1,p(.) ≤ ρ1,p(.)(u) ≤ ‖u‖
p−

1,p(.);

(iii) ‖u‖1,p(.) < 1 (respectively = 1;> 1) ⇐⇒ ρ1,p(.)(u) < 1 (respectively = 1;> 1);
(iv) ‖un‖1,p(.) −→ 0 (respectively −→ +∞) ⇐⇒ ρ1,p(.)(un) −→ 0 (respectively −→ +∞).

For any given l, k > 0, we define the function hl by hl(r) = min
(
(l+1− |r|)+, 1

)
and

the truncation function Tk : R → R by Tk(s) = max{−k,min(k, s)}.
For any l0 > 0, we consider a function h0 such that

(i) h0 ∈ C1
c (R), h0(r) ≥ 0, for all r ∈ R,

(ii) h0(r) = 1 if |r| ≤ l0 and h0(r) = 0 if |r| ≥ l0 + 1.
Let γ be a maximal monotone operator defined on R. We recall the definition of the

main section γ0 of γ:

γ0(s) =






the element of minimal absolute value of γ(s), if γ(s) 6= φ,
+∞, if [s,+∞) ∩D(γ) = φ,
−∞, if (−∞, s] ∩D(γ) = φ.
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We write for any u : Ω → R and k ≥ 0, {|u| ≤ k(< k,> k,≥ k,= k)} for the set
{x ∈ Ω/|u(x)| ≤ k(< k,> k,≥ k,= k)}.

To end this section, we give a useful convergence result.

Lemma 2.3 (Lebesgue generalized convergence theorem) Let (fn)n∈N be a sequence
of measurable functions and f be a measurable function such that fn → f a.e. in Ω. Let
(gn)n∈N ⊂ L1(Ω) such that for all n ∈ N, |fn| ≤ gn a.e. in Ω and gn → g in L1(Ω).
Then ∫

Ω

fn dx→

∫

Ω

f dx.

3 Decomposition of a Measure in M
p(.)
b (X)

Let X be an open subset of RN . We have the following result.

Theorem 3.1 Let p(.) : X1 ⊂ X −→ [1,+∞] with 1 < p− ≤ p+ < +∞ be a

continuous function and µ ∈ Mb(X). Then µ ∈ M
p(.)
b (X) if and only if µ ∈ L1(X) +

W−1,p′(.)(X).

Proof. The proof of Theorem 3.1 is carried out in the same way as in [16], Theorem
1.2.

4 Proof of Theorem 1.1

For every ǫ > 0, we consider the Yosida regularisation βǫ of β given by

βǫ =
1

ǫ

(
I − (I + ǫβ)−1

)
.

In accordance to [9], there exists a nonnegative, convex and l.s.c. function j defined
on R, such that β = ∂j. To regularize β, we consider

jǫ(s) = min
r∈R

{ 1

2ǫ
|s− r|2 + j(r)

}
, ∀s ∈ R, ∀ǫ > 0.

According to ( [9], Proposition 2.11) we have
(i) dom(β) ⊂ dom(j) ⊂ dom(j) ⊂ dom(β).

(ii) jǫ(s) =
ǫ

2

∣∣βǫ(s)
∣∣2 + j(Jǫ) where Jǫ = (I + ǫβ)−1,

(iii) jǫ is convex, Frechet-differentiable and βǫ = ∂jǫ,
(iv) jǫ ↑ j as ǫ ↓ 0.

Note that βǫ is a nondecreasing and Lipschitz-continuous function.

Since µ ∈ M
p̃(.)
b (UΩ), recall that ( cf. Theorem 3.1) µ = f − div(F ) in D′(UΩ) with

f ∈ L1(UΩ) and F ∈ (Lp̃′(.)(UΩ))
N where UΩ is the open bounded subset of RN which

extends Ω via the operator E.
We regularize µ as follows: ∀ǫ > 0, ∀x ∈ UΩ we define

fǫ(x) = T 1
ǫ
(f(x))χΩ(x).

Let (Fǫ)ǫ>1 ⊂ C∞
0 (UΩ) be a sequence such that Fǫ → F strongly in (Lp̃′(.)(UΩ))

N .
For any ǫ > 0, we set F̃ǫ = χΩFǫ and µǫ = fǫ − div(F̃ǫ). For any ǫ > 0, one has
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µǫ ∈ M
p(.)
b (Ω), µǫ ⇀ µ in Mb(UΩ) and µǫ ∈ L∞(Ω). Furthermore, for any k > 0 and

any ξ ∈ T 1,p(.)(Ω), ∣∣∣∣
∫

Ω

Tk(ξ) dµǫ

∣∣∣∣ ≤ kC(µ,Ω).

Lemma 4.1 The Yosida regularisation βǫ is a surjective operator.

Proof. Since dom(β) ⊂ [m,M ], we have ∀ r ∈ R, Jǫ(r) =
(
I + ǫβ

)−1
(r) ∈ [m,M ].

Consequently

lim
r→+∞

βǫ(r) = lim
r→+∞

r − Jǫ(r)

ǫ
= +∞

and

lim
r→−∞

βǫ(r) = lim
r→−∞

r − Jǫ(r)

ǫ
= −∞.

As βǫ is a maximal monotone graph, according to ( [9], Corollaire 2.3), we conclude
that βǫ is surjective.

Now, we consider the following approximating scheme problem

N(βǫ, µǫ)





−div a(x,∇uǫ) + βǫ(uǫ) = µǫ in Ω,

a(x,∇uǫ).η = 0 on ∂Ω.

We have the following results (see [16]).

Proposition 4.1

(i) There exists a unique weak solution uǫ for problem N(βǫ, µǫ) in the sense that uǫ ∈
W 1,p(.)(Ω), βǫ(uǫ) ∈ L∞(Ω) and ∀ϕ ∈ W 1,p(.)(Ω),

∫

Ω

a(x,∇uǫ).∇ϕdx +

∫

Ω

βǫ
(
uǫ
)
ϕdx =

∫

Ω

ϕdµǫ. (10)

(ii) Moreover, for any k > 0,

∫

Ω

|∇Tk(uǫ)|
p(x)dx ≤ kC(µ,Ω) (11)

and ∫

Ω

βǫ(uǫ)Tk(uǫ)dx ≤ kC(µ,Ω), (12)

where C(µ,Ω) is a positive constant.

Proposition 4.2 The sequences
(
βǫ(uǫ)

)

ǫ>0
and

(
βǫ(Tk(uǫ))

)

ǫ>0
are uniformly

bounded in L1(Ω).

Proposition 4.3 Let uǫ be a solution of N(βǫ, µǫ), then

meas{|uǫ| > k} ≤
C(µ,Ω)

min
(
βǫ(k),

∣∣βǫ(−k)
∣∣
) for k > 0 large enough (13)
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and

meas{|∇uǫ| > k} ≤
(k + 1)C

kp−

+
C(µ,Ω)

min
(
βǫ(k),

∣∣βǫ(−k)
∣∣
) for k > 0 large enough, (14)

where C is a positive constant.

Proposition 4.4 For all k > 0, Tk(uǫ) → Tk(u) in L
p−(Ω) and a.e. in Ω, as ǫ→ 0.

Moreover, u : Ω → R is such that u ∈ dom(β) a.e. in Ω and uǫ → u in measure and a.e.
in Ω, as ǫ→ 0.

Proposition 4.5 For any k > 0, as ǫ tends to 0, we have

(i) a(x,∇Tk(uǫ))⇀ a(x,∇Tk(u)) weakly in
(
Lp′(.)(Ω)

)N

.

(ii) ∇Tk(uǫ) −→ ∇Tk(u) a.e. in Ω.
(iii) a(x,∇Tk(uǫ)).∇Tk(uǫ) −→ a(x,∇Tk(u)).∇Tk(u) a.e. in Ω and strongly in L1(Ω).

(iv) ∇Tk(uǫ) −→ ∇Tk(u) strongly in
(
Lp(.)(Ω)

)N
.

Proof. The proof can be carried out in the same way as the proof of Proposition 4.5
in [16]. The following lemmas are useful for the subsequent presentation.

Lemma 4.2 For any h ∈ C1
c (R) and ϕ ∈ W 1,p(.)(Ω) ∩ L∞(Ω),

∇[h(uǫ)ϕ] −→ ∇[h(u)ϕ] strongly in (Lp(.)(Ω))N as ǫ→ 0.

Proof. For any h ∈ C1
c (R) and ϕ ∈ W 1,p(.)(Ω) ∩ L∞(Ω), we have

∇[h(uǫ)ϕ]−∇[h(u)ϕ] = (h(uǫ)− h(u))∇ϕ+ h′(uǫ)ϕ[∇uǫ −∇u]
+(h′(uǫ)− h′(u))ϕ∇u := ψǫ

1 + ψǫ
2 + ψǫ

3.
(15)

For the term ψǫ
1, we consider ρp(.)(ψ

ǫ
1) =

∫

Ω

|(h(uǫ)− h(u))∇ϕ|p(x) dx.

Set Θǫ
1(x) = |(h(uǫ) − h(u))∇ϕ|p(x). We have Θǫ

1(x) → 0 a.e. x ∈ Ω as ǫ → 0 and
|Θǫ

1(x)| ≤ C(h, p−, p+)|∇ϕ|
p(x) ∈ L1(Ω). Then, by the Lebesgue dominated convergence

theorem, we get that lim
ǫ→0

ρp(.)(ψ
ǫ
1) = 0. Hence,

‖ψǫ
1‖Lp(.)(Ω) → 0 as ǫ→ 0. (16)

For the term ψǫ
2 we consider ρp(.)(ψ

ǫ
2) =

∫

Ω

|h′(uǫ)ϕ(∇Tl(uǫ) − ∇Tl(u))|
p(x) dx for

some l > 0 such that supp(h) ⊂ [−l, l].
Set Θǫ

2(x) = |h′(uǫ)ϕ(∇Tl(uǫ)−∇Tl(u))|
p(x). We have Θǫ

2(x) → 0 a.e. x ∈ Ω as ǫ→
0 and |Θǫ

2(x)| ≤ C(h, p−, p+, ‖ϕ‖∞)|∇Tl(uǫ) − ∇Tl(u)|
p(x). Since ∇Tl(uǫ) → ∇Tl(u)

strongly in
(
Lp(.)(Ω)

)N
, we get ρp(.)(∇Tl(uǫ)−∇Tl(u)) → 0 as ǫ→ 0, which is equivalent

to, say

lim
ǫ→0

∫

Ω

|∇Tl(uǫ)−∇Tl(u)|
p(x) dx = 0.

Then |∇Tl(uǫ)−∇Tl(u)|
p(.) → 0 strongly in L1(Ω).

By the Lebesgue generalized convergence theorem, one has

lim
ǫ→0

∫

Ω

Θǫ
2(x) dx = lim

ǫ→0
ρp(.)(ψ

ǫ
2) = 0.
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Hence,

‖ψǫ
2‖Lp(.)(Ω) → 0 as ǫ→ 0. (17)

For the term ψǫ
3 we consider ρp(.)(ψ

ǫ
3) =

∫

Ω

|(h′(uǫ)− h′(u))ϕ∇u|p(x) dx.

Set Θǫ
3(x) = |(h′(uǫ)− h′(u))ϕ∇u|p(x). We have Θǫ

3(x) → 0 a.e. x ∈ Ω as ǫ→ 0 and
|Θǫ

3(x)| ≤ C(h, p−, p+, ‖ϕ‖∞)|∇Tl(u)|
p(x) ∈ L1(Ω), with some l > 0 such that supp(h) ⊂

[−l, l]. Then, by the Lebesgue dominated convergence theorem, we get lim
ǫ→0

ρp(.)(ψ
ǫ
3) = 0.

Hence,

‖ψǫ
3‖Lp(.)(Ω) → 0 as ǫ→ 0. (18)

According to (16)-(18), we get
∥∥ψǫ

1 + ψǫ
2 + ψǫ

3

∥∥
Lp(.)(Ω)

→ 0 as ǫ → 0 and the lemma is

proved.

Lemma 4.3 For any h ∈ C1
c (R) and ϕ ∈ W 1,p(.)(Ω) ∩ L∞(Ω),

lim
ǫ→0

∫

Ω

h(uǫ)ϕdµǫ =

∫

Ω

h(u)ϕdµ.

Proof. We have

∫

Ω

h(uǫ)ϕdµǫ =

∫

Ω

E
(
h(uǫ)ϕ

)
dµǫ =

〈
µǫ, E

(
h(uǫ)ϕ

)〉

=

∫

UΩ

fǫE
(
h(uǫ)ϕ

)
dx+

∫

UΩ

F̃ǫ.∇E
(
h(uǫ)ϕ

)
dx

=

∫

UΩ

χΩT 1
ǫ
(f)E

(
h(uǫ)ϕ

)
dx+

∫

UΩ

(χΩFǫ).∇E
(
h(uǫ)ϕ

)
dx

=

∫

Ω

T 1
ǫ
(f)h(uǫ)ϕdx +

∫

UΩ

Fǫ.∇E
(
χΩh(uǫ)ϕ

)
dx. (19)

By the Lebesgue dominated convergence theorem, we have for the first term of the right
hand side of (19),

lim
ǫ→0

∫

Ω

T 1
ǫ
(f)h(uǫ)ϕdx =

∫

Ω

fh(u)ϕdx. (20)

Furthermore, the sequence
(
E
(
χΩh(uǫ)ϕ

))

ǫ>0
is bounded in W

1,p̃(.)
0 (UΩ). Indeed,

(
χΩh(uǫ)ϕ

)
ǫ>0

is bounded in W 1,p(.)(Ω) and we use the inequality

‖E(v)‖
W

1,p̃(.)
0 (UΩ)

≤ C‖v‖W 1,p(.)(Ω), ∀v ∈W 1,p(.)(Ω).

We also have E
(
χΩh(uǫ)ϕ

)
= χΩh(uǫ)ϕ a.e. in UΩ and χΩh(uǫ)ϕ →

χΩh(u)ϕ a.e. in UΩ as ǫ → 0. Hence E
(
χΩh(uǫ)ϕ

)
→ E

(
χΩh(u)ϕ

)
a.e. in UΩ as ǫ → 0.

Then,

∇E
(
χΩh(uǫ)ϕ

)
⇀ ∇E

(
χΩh(u)ϕ

)
in

(
Lp̃(.)(UΩ)

)N
.

Finally, we get for the second term in the right hand side of (19)

lim
ǫ→0

∫

UΩ

Fǫ.∇E
(
χΩh(uǫ)ϕ

)
dx =

∫

UΩ

F.∇E
(
χΩh(u)ϕ

)
dx. (21)
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Using (20) and (21), we get from (19),

lim
ǫ→0

∫

Ω

h(uǫ)ϕdµǫ =

∫

Ω

fh(u)ϕdx+

∫

UΩ

F.∇E
(
χΩh(u)ϕ

)
dx

=

∫

UΩ

fE
(
χΩh(u)ϕ

)
dx+

∫

UΩ

F.∇E
(
χΩh(u)ϕ

)
dx

=
〈
µ,E

(
χΩh(u)ϕ

)〉
=

∫

UΩ

E
(
χΩh(u)ϕ

)
dµ =

∫

Ω

h(u)ϕdµ.

We continue the proof of Theorem 1.1. So we need to pass to the limit in the second
integral of (10). Since, for any k > 0, (hk(uǫ)βǫ(uǫ))ǫ>0 is bounded in L1(Ω), there exists
zk ∈ Mb(Ω), such that

hk(uǫ)βǫ(uǫ)
∗
⇀ zk in Mb(Ω) as ǫ→ 0.

Moreover, for any ϕ ∈ W 1,p(.)(Ω) ∩ L∞(Ω), we have
∫

Ω

ϕ dzk =

∫

Ω

ϕhk(u) dµ−

∫

Ω

a(x,∇u) · ∇(hk(u)ϕ)dx,

which implies that zk ∈ M
p(.)
b (Ω) and, for any k ≤ l, zk = zl on [|Tk(u)| < k].

Let us consider the Radon measure z defined by





z = zk, on [|Tk(u)| < k] for k ∈ N
∗,

z = 0 on
⋂

k∈N∗

[|Tk(u)| = k].
(22)

For any h ∈ C1
c (R), h(u) ∈ L∞(Ω, d|z|) and
∫

Ω

h(u)ϕ dz = −

∫

Ω

a(x,∇u) · ∇(h(u)ϕ)dx +

∫

Ω

h(u)ϕdµ,

for any ϕ ∈ W 1,p(.)(Ω) ∩ L∞(Ω). Indeed, let k0 > 0 be such that supp(h) ⊆ [−k0, k0],
∫

Ω

h(u)ϕ dz =

∫

Ω

h(u)ϕ dzk0 = − lim
ǫ→0

∫

Ω

a(x,∇uǫ) · ∇(h(uǫ)ϕ)dx + lim
ǫ→0

∫

Ω

h(uǫ)ϕdµǫ

= − lim
ǫ→0

∫

Ω

a(x,∇Tk0(uǫ)) · ∇(h(uǫ)ϕ)dx + lim
ǫ→0

∫

Ω

h(uǫ)ϕdµǫ

= −

∫

Ω

a(x,∇u) · ∇(h(u)ϕ)dx + lim
ǫ→0

∫

Ω

h(uǫ)ϕdµǫ

= −

∫

Ω

a(x,∇u) · ∇(h(u)ϕ)dx +

∫

Ω

h(u)ϕdµ.

(23)
Moreover, we have (see [16])

Lemma 4.4 The Radon-Nikodym decomposition of the measure z given by (22) with
respect to LN ,

z = w LN + ν with ν⊥LN , (24)

satisfies the following properties:
(i) w ∈ β(u) LN − a.e. in Ω, w ∈ L1(Ω),

(ii) ν ∈ M
p(.)
b (Ω), ν+ is concentrated on [u =M ] and ν− is concentrated on [u = m].
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To finish the proof of Theorem 1.1, we consider ϕ ∈ W 1,p(.)(Ω) ∩ L∞(Ω) and
h ∈ C1

c (R). Then, we take h(uǫ)ϕ as test function in (10). We get

∫

Ω

a(x,∇uǫ).∇[h(uǫ)ϕ]dx +

∫

Ω

βǫ(uǫ)h(uǫ)ϕdx =

∫

Ω

h(uǫ)ϕdµǫ. (25)

By Lemma 4.3, we have for the term in the right hand side of (25),

lim
ǫ→0

∫

Ω

h(uǫ)ϕdµǫ =

∫

Ω

h(u)ϕdµ.

The first term of (25) can be written as

∫

Ω

a(x,∇uǫ).∇[h(uǫ)ϕ]dx =

∫

Ω

a(x,∇Tl0+1(uǫ)).∇[h0(uǫ)ϕ]dx,

for some l0 > 0 so that, by Proposition 4.5-(i) and Lemma 4.2, we have

lim
ǫ→0

∫

Ω

a(x,∇uǫ).∇[h(uǫ)ϕ]dx = lim
ǫ→0

∫

Ω

a(x,∇Tl0+1(uǫ)).∇[h0(uǫ)ϕ]dx

=

∫

Ω

a(x,∇Tl0+1(u)).∇[h0(u)ϕ]dx

=

∫

Ω

a(x,∇u).∇[h(u)ϕ]dx.

Due to the convergence of Lemma 4.2 and Proposition 4.5-(i) we have from (25)

lim
ǫ→0

∫

Ω

βǫ(uǫ)h(uǫ)ϕdx =

∫

Ω

h(u)ϕdµ−

∫

Ω

a(x,∇u).∇[h(u)ϕ]dx.

=

∫

Ω

h(u)ϕdz =

∫

Ω

h(u)wϕdx +

∫

Ω

h(u)ϕdν.

Letting ǫ go to 0 in (25), we obtain

∫

Ω

a(x,∇u).∇[h(u)ϕ]dx +

∫

Ω

h(u)wϕdx +

∫

Ω

h(u)ϕdν =

∫

Ω

h(u)ϕdµ. (26)

In (26), we take h ∈ C1
c (R) such that [m,M ] ⊂ supp(h) ⊂ [−l, l] and h(s) = 1 for all

s ∈ [m,M ]. As u ∈ dom(β), then h(u) = 1 and it yields that (u,w, ν) is a solution of the
problem N(β, µ). �

5 Proof of Theorem 1.2

Proof. For u1, we choose ϕ = u1 − u2 as test function in (5) to get

∫

Ω

a(x,∇u1).∇(u1 − u2)dx+

∫

Ω

w1(u1 − u2)dx ≤

∫

Ω

(u1 − u2)dµ.

Similarly we get for u2,

∫

Ω

a(x,∇u2).∇(u2 − u1)dx+

∫

Ω

w2(u2 − u1)dx ≤

∫

Ω

(u2 − u1)dµ.
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Adding these two last inequalities yields

∫

Ω

(
a(x,∇u1)− a(x,∇u2)

)
.∇(u1 − u2)dx+

∫

Ω

(w1 − w2) (u1 − u2)dx. (27)

From (27) it yields

∫

Ω

(
a(x,∇u1)− a(x,∇u2)

)
.∇(u1 − u2)dx = 0 (28)

From (28), it follows that there exists a constant c such that u1 − u2 = c a.e. in Ω.
Now, let us see that w1 = w2 a.e. in Ω and ν1 = ν2. Indeed, for any ϕ ∈ D(Ω), taking ϕ
as a test function in (5) for the solutions (u1, w1, ν1) and (u1, w2, ν2), after substraction,
we get ∫

Ω

(w1 − w2)ϕdx +

∫

Ω

ϕd(ν1 − ν2) = 0.

Hence ∫

Ω

w1ϕdx+

∫

Ω

ϕdν1 =

∫

Ω

w2ϕdx+

∫

Ω

ϕdν2.

Therefore

w1L
N + ν1 = w2L

N + ν2.

Since the Radon-Nikodym decomposition of a measure is unique, we get w1 =
w2 a.e. in Ω and ν1 = ν2.

To complete the proof of Theorem 1.2, it remains to show that (7) and (8) hold. To
this aim, let us recall the following result.

Lemma 5.1 Let η ∈ W 1,p(.)(Ω), Z ∈ M
p(.)
b (Ω) and λ ∈ R be such that





η ≤ λ a.e. in Ω (respectively η ≥ λ),

Z = −div a(x,∇η) in D′(Ω).
(29)

Then ∫

[η=λ]

ξdZ ≥ 0
(
respectively

∫

[η=λ]

ξdZ ≤ 0
)
,

for any ξ ∈ C1
c (Ω), ξ ≥ 0.

Proof of Lemma 5.1 The proof of this lemma follows the same steps of [2].
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