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1 Introduction

In practical engineering, a large range of physical systems and devices, such as electro-
magnetism, mechanical actuators, electronic relay circuits and chaotic systems possess
nonlinear and uncertain characteristics [8, 18]. On the other hand, the magnitude of
control signal is always limited due to the poorly modelled dynamics of these systems,
i.e., for most practical processes, obtaining an exact model is a difficult task or is not
possible at all [6]. Therefore, modelling errors, unmodelled dynamics and uncertain pa-
rameter variations should be explicitly considered in the control design to enhance robust
control performance. If these uncertainties (referred to as inversion errors) are ignored
in the control design, the closed-loop control performance will be strongly damaged, and
instability may occur. Thus, it is very important to develop powerful robust control
techniques for nonlinear systems subjected to high uncertainty.

In recent years, there has been growing attention paid to the control problems of
uncertain systems [5,8,26]. As is well known, various adaptive state feedback and output
feedback controls have been known as efficient algorithms for designing feedback con-
trollers for a large class of nonlinear systems in the presence of uncertainties [1–3,6,16,20].
These algorithms are expected to exhibit more excellent performance in order to have its
outputs track given reference signals. In the same area, [20] discusses backstepping-based
approaches to adaptive output feedback control of uncertain systems that are linear with
respect to unknown parameters. For systems in which nonlinearities depend only upon
the available measurement, [23] and [16] give a solution to the output feedback stabiliza-
tion problem. In brief, the controller designs and stability analysis of highly uncertain
nonlinear dynamic systems have been an important research topic. Unfortunately, the
majority of the existing references are deterministic since the exact models are not avail-
able and/or their parameters are not precisely known, which prevent the error signals
from tending to zero [6].

Recent years have witnessed advances in approximation of high nonlinearity by in-
corporating neural networks (NNs) and fuzzy logic systems (FLSs) in the control de-
sign to achieve excellent tracking performances. Taking advantage of this fact, these
intelligent techniques have been widely employed for nonlinear control and identifica-
tion since they can approximate any nonlinear functions without a priori knowledge
of system dynamics [6]. With the help of FLSs and NNs, many approximator based
adaptive control approaches were proposed for uncertain nonlinear systems; see, for ex-
ample, [10, 19, 21, 22, 25, 26] and references therein. In [21, 22, 25], adaptive fuzzy or NN
state feedback control schemes for a class of single-input single-output (SISO) nonlinear
systems without or with time delays are developed; in [10,19], adaptive output feedback
controllers for SISO nonlinear systems are developed without unmeasured states, while
the adaptive fuzzy or NN decentralized output feedback stabilization problem for a class
of nonlinear systems is discussed in [26]. [20] proposes a robust adaptive output-feedback
controller based on the small-gain theorem in order to overcome the effect of the un-
modelled dynamics involved in the considered uncertain systems, whereas a RBF NN
augmented backstepping controller for the nonlinear system dynamics is applied in [4]
to gain from the approximation ability of NNs and ensure the stability of the closed
loop system by an augmented Lyapunov function. Thus, authors in [1, 2, 5] augment
adaptive output feedback linearization control using single hidden layer NNs in order to
overcome the effect of uncertain parameter and unmodelled dynamics for highly uncer-
tain nonlinear systems, and excellent tracking performances were achieved. With the aid
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of NN techniques, [27] presents a novel robust adaptive trajectory linearization control
(RATLC) method for a class of uncertain nonlinear systems, in which RBF NNs are
introduced to approximate the uncertainties online from available measurements. In [3],
first, an adaptive neural network (NN) state-feedback controller for a class of nonlinear
systems with mismatched uncertainties is proposed. Then, a bound of unknown nonlin-
ear functions is approximated using RBFNNs so that no information about the upper
bound of mismatched uncertainties is required.

Moreover, in most real cases, the state variables are unavailable for direct online
measurements, and merely input and output of the system are measurable. Therefore,
estimating the state variables by observers plays an important role in the control of
processes to achieve better performances. During the past several decades, many non-
linear observers have been developed to obtain the estimated states. Thus, [24] and [17]
present an output feedback control using a high-gain observer that is applied to estimate
the unmeasurable states of the nonlinear systems. A sliding mode observer is proposed
in [9] for a class of nonlinear systems to achieve finite time convergence for all error
states. Notice that this previous observer makes use of fractional powers to reduce other
non-output errors to zero in finite time. For a special class of single-output nonlinear
systems, [15] has developed a sliding mode high-gain observer for state and unknown
input estimations, so that the disturbance can be estimated from the sliding surface by
ensuring the observability of the unknown input with respect to the output. However,
these conventional nonlinear observers, such as high-gain observers [17, 24], and sliding
mode observers [9, 15] are only applicable to systems with specific model structures.

Recently, observer-based adaptive fuzzy-neural control schemes are proposed for a
large class of uncertain nonlinear dynamical systems. [11] proposes an indirect adaptive
fuzzy neural network controller with state observer and supervisory controller for a class
of uncertain nonlinear dynamic time-delay systems, in which the free parameters of the
indirect adaptive fuzzy controller can be tuned on-line by observer based output feedback
control law and adaptive laws by means of Lyapunov stability criterion. A novel state
and output feedback control law that are developed for the tracking control of a class
of multi-input-multi-output (MIMO) continuous time nonlinear systems with unknown
dynamics and disturbance input can be found in [23], in which a high-gain observer
is utilized to estimate the unmeasurable system states and an output feedback based
controller is designed.

In the present paper, we contribute to design only one robust adaptive output feed-
back controller augmented using a RBF NN to handle uncertainties that exist in two
switched SISO nonlinear systems. In the simple strategy followed in this work, first,
we involve feedback linearization. Then, we design the adaptive control signal coupled
with the robustifying term to compensate adaptively for inversion errors. A vector, that
contains a linear combination of the tracking error generated by the linear observer and
the compensator states, is exploited in the adaptation laws for the NN parameters. Fur-
thermore, input/output data of the considered systems (without time-delay) is employed
as a teaching signal for the NN. Consequently, the obtained robust control scheme not
only guarantees the stability of the closed-loop system, but also has strong robustness
to uncertainties existing in both nonlinear systems. Computer simulations of switched
nonlinear systems, Van der Pol example having fourth-order nonlinear system of rela-
tive degree two and tunnel diode circuit model having full relative degree, are used to
demonstrate the effectiveness of the proposed approach.

The rest of this paper is organized as follows. First, the system description and
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control problem are introduced in the next section. Then, the control structure is well
detailed in Section 3. Section 4 develops a robust adaptive controller, in which NN aug-
mentation is discussed. In Section 5, faithful stability analysis is elaborated to guarantee
the boundedness of the tracking error signals. The efficiency of the proposed control
approach is revealed throughout computer simulation in Section 6.

2 Problem Formulation

Let the dynamics of an observable uncertain SISO system be given as follows

ẋ = f(x, u),

y = h(x),
(1)

where x ∈ R
n is the state of the plant, u ∈ R, and y ∈ R are the control and measure-

ment, respectively.

Assumption 1. The functions f : Rn+1 −→ R
n and h : Rn −→ R are partially

known, and the dynamical system of (1) satisfies the output feedback linearization con-
ditions [14] with relative degree r for all (x, u) ∈ Ω × R where Ω ⊂ R

n. Moreover, n
need not to be known. Therefore, there exists a mapping that transforms the system in
(1) into the so-called normal form [12]:

ξ̇i = ξi+1, i = 1, ..., r − 1,

ξ̇r = h(ξ, u),

ξ1 = y,

(2)

where h(ξ, u) = L
(r)
f h are the Lie derivatives, and ξ = [ξ1 ... ξr]

T .

The key objective is to design a robust neural output feedback tracking control that
utilizes the available measurement y, so that y(t) tracks a reference trajectory yref (t)
with bounded error.

3 Controller Design

3.1 Feedback linearization

Approximate feedback linearization is performed by defining the following control input
signal:

v = ĥ−1(y, u), (3)

where v is a pseudo-control. The function ĥ(y, u) represents the best available approxi-
mation of h(y, u). Then, the system dynamics can be formulated as

y(r) = v + ϑ, (4)

where

ϑ(ξ, v) = h(ξ1, ĥ
−1(ξ1, v)) − ĥ(ξ1, ĥ

−1(ξ1, v)) (5)
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is the inversion error. Note that the pseudo-control mentioned in (4) is chosen to have
the form

v = y
(r)
ref + Lc

d − V s
c +Rt, (6)

where y
(r)
ref is the rth derivative of the input signal yref generated by a stable command

filter, Lc
d is the output of a linear dynamic compensator, V s

c and Rt, namely adaptive
control signal and robustifying term, are designed to overcome ϑ.

With (6), the dynamics in (4) will be expressed as follows

y(r) = y
(r)
ref + Lc

d − V s
c +Rt + ϑ. (7)

From (5), notice that ϑ depends on V s
c and Rt through v, whereas V s

c −Rt has been
designed to approximately cancel ϑ.

3.2 Linear Dynamic Compensator Design and Tracking Error Dynamics

The output tracking error is defined as e = yref − y. Then the dynamics in (7) can be
rewritten as

e(r) = −Lc
d + V s

c −Rt − ϑ. (8)

Note that the adaptive term coupled with the robustifying term V s
c − Rt are not

required when ϑ = 0. Consequently, the error dynamics in (8) reduces to

e(r) = −Lc
d. (9)

The following linear compensator is introduced to stabilize the dynamics in (9):

{
λ̇ = Aqλ+ bqe,

Lc
d = cqλ+ dqe, λ ∈ R

r−1.
(10)

Note that λ needs to be at least of dimension (r − 1) [7]. This follows from the fact
that (9) corresponds to error dynamics that has r poles at the origin. One could elect to
design a compensator of dimension ≥ r as well. In the future, we will assume that the
minimum dimension is chosen.

Returning to (8), notice that the vector er = [e ė ... e(r−1)]T mutually with
the compensator state λ will obey the following dynamics, referred to as tracking error
dynamics: {

Ė = AkE + bk[V
s
c −Rt − ϑ],

z = CkE,
(11)

where z is the vector of available measurements.
Remind that

Ak =

[
A− dqbc −bcq

bqc Aq

]
, bk =

[
b
0

]
, ck =

[
c 0
0 I

]
(12)

and a new vector

Ed =
[
eTr λT

]T
, (13)



120 H. AIT ABBAS, M. BELKHEIRI AND B. ZEGNINI

where

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
. . .

. . .
...

0 0
. . . · · · 1

0 0 0 · · · 0




, b =




0
0
...
1


 , c =




1
0
...
0




T

.

Note that Aq, bq, cq and dq in (10) should be designed such that Ak is Hurwitz.

3.3 Observer Design for the Error Dynamics

Lyapunov-like stability analysis of the error dynamics results in update laws for the
adaptive control parameters in terms of (E) for the full-state feedback application [2,5].
In [12] and [13], adaptive state observers are used to provide the necessary estimates in
the adaptation terms. In the present paper, we propose a simple linear observer for the
tracking error dynamics in (11), and confirm through Lyapunov’s direct method that the
adaptive part of the control signal coupled with the robustifying term (V s

c −Rt) cancels
successfully the inversion error (ϑ), if the output of this observer is introduced as an error
signal for the adaptive laws. Moreover, a minimal-order observer of dimension (r − 1)
may be designed for the dynamics in (11).

In what follows, we consider the case of a full-order observer of dimension (2r−1) [12].
To this end, consider the following simple linear observer for the tracking error dynamics
in (11): { ˙̂

E = AkÊ +K(z − ẑ),

ẑ = CkÊ,
(14)

where K is a gain matrix, and z that is defined in (11) should be chosen such that
(Ak −KCk) is asymptotically stable.

Let

Ã = Ak −KCk, Ẽ = Ê − E, z̃ = ẑ − z. (15)

Then, the observer error dynamics can be written as

{ ˙̃
E = ÃẼ − bk[V

s
c −Rt − ϑ],

z̃ = ckẼ.
(16)

4 RBF NN Augmented Controller

4.1 NN approximation

Following [12], given a compact set D ⊂ Rn+1 and ǫ∗ > 0, the model inversion error
ϑ(ξ, v) can be approximated over D by a radial basis function neural network (RBF NN)

ϑ(ξ, v) = MTφ(̺) + ǫ(d, ̺), |ǫ| < ǫ∗, (17)

using the input vector

̺(t) = [v y]T ∈ D, ‖̺‖ ≤ ̺∗, ̺∗ > 0. (18)
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The adaptive signal is designed as follows

V s
c = M̂Tφ(̺̂), (19)

where M̂ is the estimate of M that is updated according to the following adaptation law:

˙̂
M = −βM [2φ(̺̂)ÊTPbk + αM (M̂ −M0)] (20)

in which M0 is the initial value of M , P is the solution of the Lyapunov equation

AT
k P + PAk = −Q (21)

for some Q > 0, k > 0, βM is the adaptation gain matrix, and ̺̂ is an implementable
input vector to the NN on the compact set Ω̺̂, defined as ̺̂ = [vT (t) ŷT (t)]T ∈ Ω̺̂,

ŷi = Êi + y
(i−1)
ref , i = 1, ..., r − 1.

Notice that in (19), there is an algebraic loop, since ̺̂, by definition, depends upon V s
c

through v, see (18). However, with bounded squashing functions, this algebraic loop has
at least one fixed-point solution as long as φ(.) is made up of bounded basis functions.

The robustifying term is designed as follows

Rt = Ψ̂sgn(2ÊTPbk), (22)

where the adaptive gain Ψ̂ is updated according to the following adaptation law

˙̂
Ψ = −βΨ[2Ê

TPbksgn(2Ê
TPbk) + αΨ(Ψ̂−Ψ0)]. (23)

in which Ψ0 is an initial value of Ψ̂, βΨ > 0, αΨ > 0.

Using (17) and (19), we can write the mismatch between the adaptive signal and the
real NN as:

V s
c − ϑ = M̂Tφ(̺̂)−MTφ(̺)− ǫ = M̃T φ̂+MT φ̃− ǫ, (24)

where M̃ = M̂ −M, φ̂ = φ(̺̂), φ̃ = φ(̺̂)− φ(̺).

Using (24), the error dynamics in (11) and the observer error dynamics in (16) can
be reformulated as

Ė = AkE + bk[M̃
T φ̂+MT φ̃− ǫ − Ψ̂sgn(2ÊTPbk)], (25)

˙̃
E = ÃẼ + bk[M̃

T φ̂+MT φ̃− ǫ− Ψ̂sgn(2ÊTPbk)]. (26)

Notice that for radial basis function and many other activation functions that satisfy
|φi| ≤ 1, i = 1, ..., N , there exists an upper bound over the set D

‖φ(̺)‖ ≤ ̟, ̟ = max
̺∈D

‖φ(̺)‖, (27)

where ̟ remains of the order one, even if N is large. With this, we have the following
upper bound:

|MT φ̃| ≤ 2‖M‖̟. (28)
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5 Stability Analysis

We confirm through Lyapunov’s direct method that if the initial errors of the variables
ET , ẼT , Ẽ, M̂T and Ψ̃ belong to a presented compact set, then the composite error

vector ζ =
[
ET ẼT M̂T Ψ̃

]T
is ultimately bounded, where Ψ̃ = Ψ̂ − Ψ and Ψ =

ǫ∗ + 2̟‖M‖. Notice that ζ can be viewed as a function of the state variables y, λ, Ê, Ẑ,
the command vector yref , and a constant vector Z

ζ = F
(
y, λ, Ê, Ẑ, yref , Z

)
, (29)

where Ẑ = [M̂T Ψ̂]T , Z = [MT Ψ]T . The relation in(29) represents a mapping from
the original domains of the arguments to the space of the error variables

F : Ωy × Ωyref
× Ωλ × ΩÊ × ΩẐ × ΩZ −→ Ωζ . (30)

Recall that (18) introduces the compact set D over which the NN approximation is valid.
From (18), it follows that

̺ ∈ D ⇐⇒ y ∈ Ωy, v ∈ Ωv. (31)

Also, notice that, since the observer in(14) is driven by the output tracking error e =
yref − y and compensator state λ, having y ∈ Ωy, yref ∈ Ωyref

, λ ∈ Ωλ, implies that

Ê ∈ ΩÊ , the latter being a compact set. According to (6)

v = Fv

(
λ, Ê, Ẑ, yref

)
, (32)

where Fv : Ωλ × ΩÊ × ΩẐ × Ωyref
−→ Ωv.

Thus, (29), (31) and (32) ensure that Ωζ is a bound set. Introduce the largest ball,
which is included in Ωζ in the error space

LB =
{
|ζ|‖ζ‖ ≤ R

}
, R > 0. (33)

For every ζ ∈ LB, we have ̺ ∈ D, Z ∈ ΩZ , where both D and ΩZ are bounded sets.

Assumption 2. Assume

R > γ

√
TM

Tm
≥ γ. (34)

where TM and Tm are the maximum and minimum eigenvalues of the following matrix

T = 1
2




2P 0 0 0
0 2P 0 0
0 0 β−1

M I 0
0 0 0 β−1

Ψ


 (35)

and

γ = max(
√

4(ΘΨ)2+Z
αmin(Q)−2 ,

√
4(ΘΨ)2+Z

αmin(Q̃)−2
,
√

4(ΘΨ)2+Z
ρ , where Z = αM

2 ‖M − M0‖
2 + αΨ

2 |Ψ −

Ψ0|
2,Θ = ‖Pbk‖ + ‖P̃ bk‖, ρ = α− Θ2(̟ + 1)2 > 0, α = 1

2 min(αM , αΨ) and P̃ satisfies

ÃT P̃ + P̃ Ã = −Q̃ for some Q̃ > 0 with minimum eigenvalues αmin(Q̃) > 2.
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Theorem 1. Let the assumption (1) hold, and let αmin(Q) > 2 for Q introduced in
(21). Then, if the initial errors belong to the set Ωα defined in (37), the feedback control
laws given by (3) and (6), along with adaptation laws (20) and (23) ensure that the error

signals E, Ẽ, M̃ and Ψ̃ in the closed-loop system are ultimately bounded.
Proof. Take into account the following Lyapunov function:

V = ETPE + ẼT P̃ Ẽ +
1

2
M̃Tβ−1

M M̃ +
1

2
Ψ̃Tβ−1

Ψ Ψ̃. (36)

The derivative of V along the tracking error dynamics(25), the observer error dynamics
(26), NN weight and adaptive gain adaptation laws (20) and (23) can be formulated as

V̇ = −ETPE − ẼT Q̃Ẽ − 2ẼT (P̃ + P )bk[M̃
T φ̂+MT φ̃− ǫ− Ψ̂sgn(2ÊTPbk)]

− 2ẼTPbk[ǫ−MT φ̃+Ψsgn(2ÊTPbk)]− [αMM̃T (M̂ −M0)]− Ψ̃αΨ(Ψ̂−Ψ0),

where Ẽ = Ê−E, Ψ̂ = Ψ+Ψ̃. Using the following property for vectors [M̃T (M̂−M0)] =
1
2‖M̃‖2 + 1

2‖M̂ −M0‖
2 − 1

2‖M −M0‖
2 , and with (28), the upper bound becomes [13]

V̇ ≤ −[αmin(Q)− 2]‖Ẽ‖2 − [αmin(Q̃)− 2]‖E‖2 − [α−Θ2(̟ + 1)2]‖Z̃‖2 + Z + 4(ΘΨ)2.

Either of the following conditions:

‖Ẽ‖ >
√

4(ΘΨ)2+Z
αmin(Q)−2 , ‖E‖ >

√
4(ΘΨ)2+Z

αmin(Q̃)−2
, ‖Z̃‖ >

√
4(ΘΨ)2+Z

ρ will render V̇ < 0 outside a

compact set: Bγ =
{
ζ ∈ LB, ‖ζ‖ ≤ γ

}
.

Note from (34) that Bγ ⊂ LB. Then, consider the Lyapunov function candidate
in (36) and write it as: V = ζTTζ. Let Υ be the maximum value of the Lyapunov
function V on the edge of Bγ : Υ = max‖ζ‖=γ V = γ2TM . Introduce the level set
Ωγ = {ζV ≤ Υ}. Let αv be the minimum value of the Lyapunov function V on the edge
of LB: αv = min‖ζ‖=R V = R2Tm. Define the level set

Ωα =
{
ζ ∈ LB, V = αv

}
. (37)

Consequently, the condition in (34) guarantees that Ωγ ⊂ Ωα, and thus ultimate bound-
edness of ζ.

6 Application

This paper addresses the design of a robust adaptive controller augmented using a NN to
handle the uncertainty of two switched nonlinear systems: Van der Pol model having a
fourth-order nonlinear system of relative degree two and the tunnel diode circuit example
with full relative degree. This part is devoted to illustrating the performance of the
proposed approach. First, we present the dynamics of the considered uncertain systems:

6.1 Tunnel diode circuit model





ẋ1 =
1

C
x2 −

1

C
h(x1),

ẋ2 = −
R

L
x2 −

1

L
x1 +

u

L
,

(38)
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where x1 the voltage across the capacitor C and x2 is the current through the inductor L.
The initial conditions were set as x1(0) = 0.1, x2(0) = 0.0005, and the element values of
the circuit are R = 1.5kΩ, L = 1nH , and C = 2pF . Notice that the function h : R −→ R

represents the characteristic curve of the tunnel diode, h(x1) = x1 +2x2
1+x3

1 −x4
1− 2x5

1.
We assume that the output y has a full relative degree of n = r = 2.

6.2 Van der Pol model





ẋ1 = x2,

ẋ2 = −0.2(x2
1 − 1)x2 − 0.2x3 +

u√
|u|+ 0.1

,

ẋ3 = x4,

ẋ4 = −0.2x4 − x2 + x1,

(39)

with initial conditions x1(0) = 0.5, x2(0) = 1.5, x3(0) = 0 and x4(0) = 0. The output y
has a relative degree of r = 2.

The command signals yref and y
(2)
ref are generated through a second -order command

filter with natural frequency of 1rad/s and damping of 0.7. The following dynamic
compensator: {

λ̇ = −6.4λ+ 4e,

Lc
d = −18.2λ+ 13.04e,

(40)

places the poles of the closed-loop error dynamics in (9) of both nonlinear systems at
−3.6,−1.4 ± j. The observer dynamics in (16) was designed so that its poles are four
times faster than those of the error dynamics. A radial basis function NN with five
neurons was used in the adaptive control. The functional form for each RBF neuron was
defined by

φi(̺) = e−(̺−κci
)T (̺−κci

)/σ2

, σ = 1, i = 1, 6. (41)

The centers κci , i = 1, 6, were arbitrarily selected over a grid of possible values for
the vector ̺. The adaptation gains were set to βM = 1.2, with sigma modification gain
αM = 0.001. The other parameters are : αΨ = 0.012, βΨ = 0.0015.

In this paper, we contribute to design one robust adaptive control scheme augmented
using a RBF NN in order to make up adaptively for the nonlinearities that exist in
both uncertain systems (Van der Pol and tunnel diode circuit model). Therefore, the
designed controller forces the system response to track a given reference trajectory with
bounded errors. First, set the output y = x1 for each system. Then, we employ feedback
linearization, coupled with an on-line NN to handle the inversion errors, according to
the equation (7). The dynamic compensator, described in (10) and (40), is designed to
stabilize the linearized systems [1,2]. A signal, constituted of a linear combination of the
measured tracking error and the compensator states is used to adapt the control laws,
such as presented in (20), (22) and (23).

Figure 1 compares the system measurement y without NN augmentation (dashed line)
with the reference model output yref (solid line), clearly demonstrating the almost un-
stable oscillatory behavior caused by the nonlinear elements (ϑ) in the Van der Pol model
in the first half time (0 to 50 seconds) and the nonlinearities of the tunnel diode equation
in the last half time (50 to 100 seconds). Meanwhile, with the aid of NN augmentation,
Figure 2 shows that the effect of these nonlinearities is successfully eliminated. This is
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Figure 1: Tracking without RBF NN.
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Figure 2: Tracking with the aid of RBF NN.

due essentially to the excellent identification of the model inversion error (ϑ) (dashed
line) by adaptive control signal and robustifying term (V s

c − Rt) (solid line), which is
illustrated in Figure 3.

Figure 4 compares the control efforts (yref−y) without and with adaptation, in which
the NN based robust adaptive controller exhibits a steady state tracking error.

As expected, the RBF NN improves the tracking performance due to its ability to
”model” nonlinearities. Consequently, simulation results show that the NNs augmented
robust adaptive output feedback controller compensates successfully for the uncertainties
existing in two different nonlinear systems.
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Figure 4: Control effort without and with RBF NN.

7 Conclusion

In this paper, one robust adaptive output feedback control augmented via RBF NN has
been designed to overcome the effect of nonlinearities for both highly uncertain nonlinear
systems: Van der Pol and Tunnel Diode Circuit. The derivatives of the tracking error are
estimated by the simple linear observer. These estimates are used in the adaptation laws
for the NN parameters. Ultimate boundedness of the tracking and observation errors are
proven using Lyapunov’s direct method. The methodology is applicable for observable
and stabilizable systems of unknown but bounded dimension when the relative degree is
known. Through Lyapunov-based theoretical analysis and computer simulation, we were
able to demonstrate that the proposed RBF NN-based robust adaptive output feedback
controller was robust to modeling inaccuracies, and excellent tracking performance was
succeeded.
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