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1 Introduction

In the literature, hybrid dynamic models can represent systems for which the behav-
ior consists of continuous evolution interspersed by instantaneous jumps in the velocity.
More precisely, those systems exhibit non-smoothness or discontinuities in the dynamics
and this induces new dynamics phenomena witch are not present in smooth dynamics.
However, the field of hybrid systems is not as mature as that of the smooth ones. The
corresponding fundamental theoretical concepts have not been so developed. The most
known general textbook on hybrid systems is [46] and the book [40] contains qualitative
analysis of some classes of hybrid systems. Recently, it was gradually recognized that
a particular class of those systems exhibits many interesting phenomena because of the
specific complex structure of the state space composed of some different vector fields. In
this case, the dynamics of the system can be defined by an ordinary differential equation
in each region and the associated Poincaré map is continuous across the border but its
derivative is discontinuous. Those systems are called piecewise smooth systems (noted
p.w.s systems), they occur naturally in the description of many physical processes as
grazing, sliding, switching, friction and so on. This type of dynamics was introduced and
studied in many seminal papers [2], [3], [17], [27], [18], [31], [38], [41], [42], [50]. Many
books and monographs have been published on this topic. The analysis in [32] gen-
eralized several fundamental theories in smooth systems theory to this relevant class of
hybrid systems. [12] gave a comprehensive treatment on the theory of p.w.s systems. The
reader can also refer to recent survey paper [13] for numerous references therein. Such
class of p.w.s systems is common in the literature. Authors in [15], [16], [33] dealt with
p.w.s systems from mechanical problems, other applications were performed in control
in engineering [3], [48], [37] electromechanical systems [29] or in gene regulatory networks
and neurons in computational neuroscience and biology [45]. In those applications, it
is often essential to characterize its bifurcations. Those events , known as discontinu-
ity induced bifurcations, occur when an invariant set of the system (as an equilibrium
point or a limit cycle) crosses or hits tangentially the switching manifold in the phase
space. A pioneering work was carried out by Feigin in [23], [24], [25] who introduced
the notion of C-bifurcations and has recently re-evaluated it in [7]. Furthermore, sym-
metric bifurcations are widespread phenomena, one of the oldest known example is the
Lorenz dynamics [47] for the smooth systems and the Chua circuit [21] for the piecewise
smooth ones. This kind of symmetric non-smooth transients occurs for example in a
multicell chopper coupled with nonlinear load and may generate a chaotic behavior [22]
(see [1], [28] for mathematical definitions and characterizations of chaos in dynamical
systems). In fact, all those types of bifurcations can give rise to a chaotic behavior. Most
notably, p.w.s systems can exhibit robust chaotic behavior that has been conjectured
not to exist for smooth systems. This is due to the discontinuous dependence on initial
conditions leading to chaotic behavior. Knowing that there exist three main branches
of chaotic dynamic systems theory, namely the symbolic dynamics, ergotic theory and
bifurcation theory, we focus on the last one in this paper. Those notions can be found
in references [28], [30], [43]. Author in [32] generalized several fundamental theories in
smooth systems theory including Lyapounov exponents and Conley index of p.w.s sys-
tems. Some interesting results in [51] are dedicated to bifurcations and chaos analysis to
p.w.s systems. P. Collins gives in [19] an overview of some chaotic hybrid systems. He
proposed results on dynamics in switched arrival systems and in systems with periodic
forcing.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (2) (2016) 149–164 151

Hereafter, we propose a mathematical analysis of way to chaos for bounded p.w.s
systems of dimension three subjected to symmetric non-smooth bifurcations. We restrict
our attention to bimodal p.w.s systems depending on a parameter ε. Such class of p.w.s
systems is common in the literature due to its importance in many applications [44], [49].
This work is an extension to symmetric case of the results obtained in [4] and [5] and
associated with non-symmetric and non-smooth bifurcations. The suggested procedure is
based on four main features: the first one is the Poincaré maps determination associated
with p.w.s systems subjected to symmetric non-smooth transitions. It is an extension
of the Poincaré Discontinuity Maps (P.D.M.) associated with p.w.s systems subjected to
classic non-smooth transitions given in [8], [9], [10]. The Poincaré maps computed here
are characterized by a composition of the previous Poincaré maps with some particular
maps that take into account the symmetries of the dynamics. The second feature is
the special choice of the Poincaré sections relatively to the switching manifolds. Those
Poincaré sections are perpendicular to the switching manifolds, this permits to reduce the
dimension of the Poincaré maps from two to one, this reduction being available only in
a specific neighborhood of the bifurcation points. The third feature is the application of
period doubling method based on the famous result of [35] called “period three implies
chaos”. It is important to mention here that another choice of Poincaré sections will
oblige us to be in dimension 2 and thus to use results of Marotto published in 1978 who
generalized results of Li and Yorke to discrete systems of dimension greater than one.
This result is summarized by “snap-back repealers imply chaos ” [39] and was revisited
by several authors, see for example [36], [34]. Note that a snap-back repealer is an
expanding fixed point such that for very small variations of the bifurcation parameter,
the trajectory is repelled and for more larger deviations of this parameter, the process
jumps onto the fixed point. As the determination of the snap-back repealer is difficult
in general, our purpose is to avoid the corresponding approaches by considering specific
choice of Poincaré sections. The fourth feature is the use of a simple and simultaneously
powerful mathematical tool that is the implicit function theorem. It guaranties that the
expected points for chaotifying the considered system defined on the Poincaré section
are close to the bifurcation points and vary continuously with respect to the bifurcation
parameter. This is primordial because on the one hand limitedness condition of the
trajectories is respected (knowing that if it is not the case, study of chaos has no sense)
and on the other hand, the process of period doubling occurs until the dimension of
the considered discrete map is reduced to one in the neighborhood of the bifurcation
parameter permitting us to use the result “period three implies chaos”.

The paper is structured as follows. In Section 2 some preliminaries and statements
on the characterization of symmetric non-smooth transitions are provided followed by
the determination of the corresponding Poincaré maps. A route to chaos analysis is
proposed in Section 3. Section 4 is dedicated to some simulation results: the first one
concerns an academic example subjected to symmetric sliding bifurcations and the second
one concerns Chua circuit subjected to symmetric grazing bifurcations [20]. The results
obtained for both examples highlight the efficiency of the proposed approach. Finally,
concluding remarks and some perspectives end the paper.

2 Symmetric Non-smooth Transitions and Poincaré Maps Characterization

We propose, in this section, a characterization of symmetric non-smooth transitions and
then a determination of the associated Poincaré maps.
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2.1 Characterization of p.w.s systems subjected to symmetric non smooth
transitions

Let us consider the following piecewise smooth system:

ẋ =

{

F1(x, ε), if x ∈ D1,

F2(x, ε), if x ∈ D2,
(1)

where x : I −→ D, I ⊂ R+ and D ⊃ D1 ∪D2 is an open bounded domain of R3 with

D1 = {x ∈ D : |H(x)| < E} , D2 = {x ∈ D : |H(x)| > E} ,

where E is a positive fixed real number and ε is a real parameter defined on a neigh-
borhood of 0 denoted by Vε, H : D → R is a continuous function that characterizes
the phase space boundary between two regions of smooth dynamics, H defines the two
symmetric transient sets:

Π1 := {x ∈ D : H(x) = E} , Π2 := {x ∈ D : H(x) = −E} ,

where Π1 and Π2 are termed the switching manifolds and divide respectively the phase
space into the following regions:

Π+
1 = {x ∈ D : H(x) ≥ E} , Π−

1 = {x ∈ D : H(x) < E} ,

Π+
2 = {x ∈ D : H(x) ≥ −E} , Π−

2 = {x ∈ D : H(x) < −E} ,

F1, F2 : C1(I,D)× Vε −→ Cm(I,D), m ≥ 4, where Cm(I,D) is the set of Ck functions
defined on I and having values in R3, Cm(I,D) is provided with the following norm:
‖x‖ = sup

t∈I

‖x(t)‖e + sup
t∈I

‖ẋ(t)‖e + ...+ sup
t∈I

∥

∥x(m)(t)
∥

∥

e
, ∀x ∈ Cm(I,D) .

According to [14], (Cm(I,D), ‖.‖) is a Banach space.

The vector fields F1 and F2 are defined on both sides of Πk, k = 1, 2.

Moreover, the system (1) is assumed to depend smoothly on the parameter ε such
that at ε = 0, there exists a periodic orbit x(.) that intersects the switching manifolds
Π1 and Π2 at two points x1 and x2 corresponding to t (where t is the period of time
associated with the system (1)).

The assumptions given by [11], [8], [10], [13] to characterize the sliding and grazing
non-smooth bifurcations are generalized to the symmetric non-smooth cases in the fol-
lowing subsections, notations will be more complicated because all types of grazing and
sliding bifurcations are considered here at the same time with the symmetry phenomena.

2.1.1 First case: symmetric sliding bifurcations

Symmetric sliding bifurcations occur on two transient surfaces Π1and Π2 at two sliding
points xk, k = 1, 2 at time t0 (taken for simplicity to be equal to 0) if the following

For the sake of simplicity, we denote by x the function and also the value of x at time t when the
context is without ambiguity.

x(m)(.) denotes the mth derivative of x(.) and ||.||e is a norm defined on R3.
In this paper, indexes s and g are related respectively to sliding and grazing cases.
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general sliding conditions are satisfied for each function H1 := H −E and H2 := H +E:

C
k,s
1 ) < ∇Hk(x(t)), F2(x(t), 0) − F1(x(t), 0) >∈ R∗

+ for all x(t) ∈ vks , where vks is a
bifurcation neighborhood in Πk.
C

k,s
2 ) Hk(xk) = 0 and ∇Hk(xk) 6= 0.

C
k,s
3 ) for i = 1, 2 and k = 1, 2 : < ∇Hk(xk), F

0
ki >= 0, where F 0

ki := Fi(Φi(xk, 0), 0), i =
1, 2, and Φi is the flow associated with Fi.

Moreover, each type of the four symmetric sliding bifurcations is characterized by
specific assumptions marked as Ak,s

i ), i = 1, 2, 3, 4 and k = 1, 2:

Ak,s
1 )

〈

∇Hk(x̄k),
∂F1(x̄k,0)

∂x
F 0
k1

〉

> 0,

Ak,s
2 )

〈

∇Hk(x̄k),
∂F2(x̄k,0)

∂x
F 0
k2

〉

> 0,

Ak,s
3 )

〈

∇Hk(x̄k),
∂F1(x̄k,0)

∂x
F 0
k1

〉

< 0,

Ak,s
4 )

〈

∇Hk(x̄k), (
∂F1(x̄k,0)

∂x
)2F 0

k1

〉

< 0.

2.1.2 Second case: symmetric grazing bifurcations

Symmetric grazing bifurcations occur on the two transient surfaces Π1and Π2 at two
grazing points (denoted also for simplicity) xk, k = 1, 2 at time t0 = 0 if the following
general grazing conditions are satisfied on a bifurcation neighborhood vks of Πk. for each
function H1 := H − E and H2 := H + E:
C

k,g
1 ) Hk(xk) = 0 and ∇Hk(xk) 6= 0,

C
k,g
2 ) for i = 1, 2 and k = 1, 2 : < ∇Hk(xk), F

0
ki >= 0,

C
k,g
3 ) for i = 1, 2. and k = 1, 2: ∂2Hk(x̄k,0)

∂x2 ∈ R∗

+,

C
k,g
4 ) (< Lk, F

0
k1 >< Lk, F

0
k2 >) ∈ R∗

+ for each k = 1, 2, where Lk is the unit vector
perpendicular to ∇H(xk) at point xk.

2.2 Determination of Poincaré maps associated with symmetric non smooth
transitions

It is assumed that at ε = 0 there exists a periodic orbit x(.) that intersects symmetrically
at two points the two symmetric manifolds Π1 and Π2.It is also requested that this
orbit is hyperbolic and hence isolated. This implies that there is no points of sliding
(respectively grazing) along the orbit other than xk, k = 1, 2. Those conditions are
defined on an open set such that there exist sufficiently small neighborhoods Vε of
ε = 0 and vxk

of xk such that assumptions Ck,s
j , j = 1, 2, 3, associated with symmetric

sliding bifurcations (respectively C
k,g
j , j = 1, 2, 3, associated with symmetric grazing

bifurcations) are satisfied.
At this step, in order to compute the corresponding Poincaré maps, let us begin

with choosing specially two symmetric Poincaré sections denoted Λ1 and Λ2 to be
perpendicular to Π1 and Π2 and consider the following diffeomorphism defined by:

S : R2 × S1 → R2 × S1, (x1, x2, t) → S(x1, x2, t) = (−x1,−x2, t+ 2pπ),

where S1 is the unit circle and pǫZ (the set of relative numbers).

The Poincaré maps denoted P s (for non-symmetric sliding case) and P g (for the
non-symmetric grazing case) are given in details in [8] and [10].
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The procedure for computing the Poincaré map is the same for the symmetric sliding
and the symmetric grazing case, we directly deal with notation P s,g ,where following the
cases, this map corresponds to the sliding or the grazing Poincaré one.

Now, let us consider P s,g
1 being the the part of Poincaré map including sliding (respec-

tively grazing) bifurcation on the transient surface Π1 going from Λ1 to Λ2 and consider
P

s,g
2 being the the other part of Poincaré map including sliding (respectively grazing)

bifurcation on the transient surface Π2 going from Λ2 to Λ1, then the global Poincaré
map of the system subjected to symmetric sliding (respectively symmetric grazing) is
given by:

P s,g : Λ1 → Λ2 such that P s,g = P
s,g
2 ◦ P s,g

1 .

However, due to the symmetry of the trajectory, maps P s,g
1 and P

s,g
2 are related by the

following relation:

S ◦ P s,g
2 = P

s,g
1 ◦ S,

this implies that P s,g = S−1 ◦ P s,g
1 ◦ S ◦ P s,g

1 .
Taking this fact into account, the Poincaré maps have the following form:

P s,g(x, ε) =

{

S−1 ◦ P s,g
1 ◦ S ◦ P s,g

1 (x, ε) if < ∇H1, x >∈ R+ or < ∇H2, x >∈ R−

S−1 ◦ P s,g
2 ◦ S ◦ P s,g

2 (x, ε) if < ∇H1, x >∈ R∗

−
and < ∇H2, x >∈ R∗

+

(2)
In the next section, a rigorous approach of a route to chaos for p.w.s systems subjected

to those symmetric non-smooth bifurcations is proposed.

3 Analysis of Route to Chaos for P.W.S Systems Subjected to Symmetric
Non Smooth Transitions

A mathematical analysis of generated chaos for bounded piecewise smooth systems of
dimension 3, subjected to symmetric sliding or grazing bifurcations is now presented.
This approach is based on the period doubling method applied to the corresponding
Poincaré maps given by (2). Note that these Poincaré maps are discrete maps defined
in dimension 2 and thus at this step, the result of Li and Yorke “Period three implies
chaos” can not be used because period three does not imply necessarily chaos for contin-
uous flows of dimension three (and so for their corresponding Poincaré maps that are
discrete maps of dimension 2). In fact, determinism (non intersection of trajectories) and
continuity requirement set constraints on how points of period doubling are defined on
the corresponding Poincaré maps and move around the associated orbit. On the other
hand, many simulation results show that period doubling can imply chaos for discrete
systems of dimension greater than one. This is possible for specific cases when the multi-
dimensional map is described in one direction by a particular map (as the saw-tooth one
or the logistic one) while the other directions are characterized by strong contractions
or if the process of squeezing and stretching is chosen for particular systems defined in
dimension three. Moreover, the process corresponding to a pure rotation does not imply
a chaotic attractor but that corresponding to braid implies chaos. In this work, a more
general case of dynamic systems is considered and the trick proposed here is to reduce
the dimension of the Poincaré map to one in the neighborhood of the transient points.
This is possible by choosing a convenient Poincaré map section that is transversal to the
switching surface, this neighborhood of x is denoted vs,gx . This main idea is supported by
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applying the implicit function theorem to vs,gx . It is a simple and a powerful mathemati-
cal tool allowing us to generate a “branch” of continuous solutions x with respect to the
bifurcation parameter ε defined in some neighborhood of ε = 0 denoted v

s,g
ε=0 ⊂ Vε . In

this context, the dimension of the discrete map P s,g defined on vs,gx × v
s,g
ε=0 is reduced to

1, without confusion and only for simplicity we denote it also by P s,g. Now, the famous
result of Li and Yorke can be applied to P s,g.

To propose the main result of this paper, we set the following assumptions:
Bs,g

1 )∂P
s,g

∂x
(0, 0)− 1 6= 0,

Bs,g
2 )−∂P s,g

∂x
(0, 0)(∂P

s,g

∂x
(0, 0)− 1)−1 + (∂P

s,g

∂x
(0, 0)− 1)−1 − 1 6= 0,

Bs,g
3 )∂P

s,g

∂x
(∂P

s,g

∂x
(0, 0)− 1)−1(∂P

s,g

∂x
(0, 0)(∂P

s,g

∂x
(0, 0)− 1))−1 −(∂P

s,g

∂x
(0, 0)− 1)−1 + 1)−

(∂P
s,g

∂x
(0, 0)− 1)−1(∂P

s,g

∂x
(0, 0) (∂P

s,g

∂x
(0, 0)− 1))−1 − (∂P

s,g

∂x
(0, 0)− 1)−1 + 1)− 1 6= 0.

Theorem 3.1

1. Symmetric sliding case: Under conditions C
k,s
j ) j = 1, 2, 3, A

k,s
i ), i = 1, 2, 3, 4,

k = 1, 2 and B
s,g
i , i = 1, 2, 3 the bounded p.w.s system (1) admits a chaotic behavior

associated with specific type of symmetric sliding transitions.

2. Symmetric grazing case: Under conditions C
k,g
j ) j = 1, 2, 3, 4, k = 1, 2 and B

s,g
i ,

i = 1, 2, 3 the bounded p.w.s system (1) admits a chaotic behavior associated with
symmetric grazing transitions.

Proof. According to period doubling method, the problem is to determine three
distinct points denoted respectively by x, y and z that satisfy: P s,g(x, ε) = y, P s,g(y, ε) =
z and P s,g(z, ε) = x.

So this procedure will be done in three steeps, each step corresponds to the determi-
nation of one of the 3 previous searched points.

First step of the period doubling procedure: it is performed by the analysis of
the following equation:

P s,g(x, ε) = y, (3)

y := x+ η, (4)

where η is a real parameter defined in the neighborhood of x.
The equation (3) is equivalent to the following one:

Ψs,g(x, ε, η) := P s,g(x, ε) − x− η = 0. (5)

Under assumption ∂Ψs,g

∂x
(0, 0, 0) 6= 0, (that is equivalent to assumption Bs,g

1 )), and
using the implicit functions theorem, one obtains that ∃ a neighborhood of the parameter
ε denoted ϑ

s,g
ε=0 ⊂ v

s,g
ε=0 in R, a neighborhood of the parameter η denoted υ

s,g
η=0 ⊂ R, a

neighborhood of x noted υ
s,g
x=0 ⊂ vs,gx ⊂ R and a unique application x∗: ϑs,g

ε=0 × υs,g
η=0

−→
υ
s,g
x=0 solution of Ψs,g(x∗(ε, η), ε, η) = 0 such that x∗(0, 0) = 0. Furthermore, x∗ depends

continuously on ε and η.
Second step of the period doubling procedure: it is equivalent to the analysis

of the following equation:

P s,g(P s,g(x, ε), ε) = z, (6)

z := y + µ, (7)

where µ stands for a real parameter defined in the neighborhood of x.
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Taking into account results of the previous step, the equation (6) becomes equivalent
to:

Γs,g(ε, η, µ) := P s,g(x∗(ε, η) + η, ε)− x∗(ε, η)− η − µ = 0 (8)

for (ε, η, µ) ∈ ϑ
s,g
ε=0 × υs,g

η=0
×R.

In order to continue the process with the same arguments (i.e. the implicit function
theorem applied to Γs,g), the following hypothesis is necessary:

∂Γs,g

∂η
(0, 0, 0) 6= 0 that is written in details as ∂P s,g

∂x∗
(0, 0)∂x

∗

∂η
(0, 0)− ∂x∗

∂η
(0, 0)− 1 6= 0,

knowing that ∂x∗

∂η
(0, 0) = −(∂P

s,g

∂x∗
(0, 0)−1)−1, this is exactly the stated assumption Bs,g

2 )

and thus, ∃ a neighborhood υ
s,g
ε=0 ⊂ ϑ

s,g
ε=0, a neighborhood νs,gη=0

⊂ υs,g
η=0

, a neighborhood
of µ denoted ν

s,g
µ=0 ⊂ R and a unique application η∗:υs,g

ε=0 ×ν
s,g
µ=0 −→ νs,gη=0

solution of
Γs,g(ε, η∗(ε, µ), µ) = 0 such that η∗(0, 0) = 0. Furthermore, η∗ depends continuously on
ε and µ.

Third step of the period doubling procedure: the last step of the period dou-
bling is reduced to the analysis of the following equation:

P s,g(P s,g(P s,g(x(ε, η), ε), ε), ε) = x. (9)

Taking into account the results obtained in the two previous steps, the analysis of this
equation (9) becomes equivalent to the analysis of the following one:
for (ε, µ)ǫυs,g

ε=0 × ν
s,g
µ=0:

Πs,g(ε, µ) := P s,g(x∗(ε, η∗(ε, µ)) + η∗(ε, µ) + µ, ε)− x∗(ε, η∗(ε, µ)) = 0. (10)

In this case, the following hypothesis is required to apply the implicit function theorem
to Πs,g :

∂Πs,g

∂µ
(0, 0) 6= 0 that is equivalent in details to:

∂P s,g

∂x∗

∂x∗

∂η
∂η
∂µ

(0, 0)− ∂x∗

∂η
∂η
∂µ

(0, 0)− 1 6= 0

and as ∂η
∂µ

(0, 0) = −(∂Γ
s,g

∂η
(0, 0, 0))−1, this is exactly the stated assumption Bs,g

3 ).

This permits us to affirm that: ∃ a neighborhood ω
s,g
ε=0 ⊂ υ

s,g
ε=0, a neighborhood θs,gµ=0

⊂
νs,gµ=0

and a unique application µ∗: ωs,g
ε=0 −→ θ

s,g
µ=0 solution of Πs,g(ε, µ∗(ε)) = 0 such

that µ∗(0) = 0. Furthermore, µ∗ depends continuously on ε .

Thus the period doubling procedure applied to the Poincaré map (2), associated
with p.w.s system (1) (reduced to a discrete map of dimension 1 on the neighborhood
vs,gx × v

s,g
ε=0) is constructed step by step and this system becomes chaotic according to

the well-known result ”period 3 implies chaos” applied to the discrete map P s,g. ✷

4 Simulations Results

4.1 Symmetric sliding case

Let us consider an academic model subjected to symmetric sliding bifurcations given by:

ẋ =

{

F1(x, ε) for x ∈ D1,

F2(x, ε) for x ∈ D2,
(11)
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where D1 :=
{

x ∈ R3 : x3 −
44
3 x3

1 −
41
2 x2

1 − 5.3x1 > 0
}

,

D2 :=
{

x ∈ R3 : x3 −
44
3 x3

1 −
41
2 x2

1 − 5.3x1 ≤ 0
}

F1(x, ε) =





100
−x3

−0.7x1 + x2 + 0.24x3 − (εx3)
3



 ,

F2(x, ε) =





−100
−x3

−0.7x1 + x2 + 0.24x3 − (εx3)
3



 ,

where ε is the bifurcation parameter defined near 0.

Applying the procedure presented in Section 2 in order to compute the Poincaré map
associated with (11) and the method of chaotification given in Section 3, we obtain the
following results:

• For ε = 0.4, there is a limit cycle between the two sides Π1 and Π2, see Fig. 1.
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Figure 1: Symmetric sliding case: limit cycle for ε = 0.4.

• For ε = 0.2, a symmetric sliding period doubling appears, see Fig. 2.

• For ε = −0.05, a symmetric sliding multi period doubling appears, see Fig. 3.

• For ε = −0.23, a chaotic behavior appears, see Fig. 4.

4.2 Symmetric grazing case (Chua circuit)

Let us consider the Chua model subjected to symmetric grazing bifurcations given by:
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Figure 2: Symmetric sliding case: period doubling for ε = 0.2
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Figure 3: Symmetric sliding case: multi period doubling for ε = −0.05.







ẋ1 = −1
C1R

(x1 − x2) +
f(x1,ε)

C1

,

ẋ2 = 1
C2R

(x1 − x2) +
x3

C2

,

ẋ3 = −x2

L
,

(12)

with f(x1, ε) = Gbx1+0.5(Ga(1+ε)−Gb)(|x1+E|−|x1−E|, R = 2.115KΩ, E = 5.75V ,
C1 = 10nF , C2 = 100nF , Ga(ε) =

1+ε
0.999R , Gb =

1
2R and the following initial conditions

(E + 0.3V, 0,−E
R
).

The system (12) can be rewritten according to the general form of systems considered
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Figure 4: Symmetric sliding case: a chaotic behavior for ε = −0.23.

in this paper as:

ẋ =

{

F1(x, ε) for x ∈ D1,

F2(x, ε) for x ∈ D2,

with D1 =
{

x ∈ R3 : −E ≤ x1 ≤ E
}

, D2 =
{

x ∈ R3 : x1 > E or x1 < −E
}

,

F1(x, ε) =





[α1 +
1
C1

Ga(1 + ε)]x1 − α1x2

α2x1 − α2x2 +
x3

C2

α3x2,



 ,

F2(x, ε) =

{

F2,E(x, ε) for x1 > E ,

F2,−E(x, ε) for x1 < −E,

where

F2,E(x, ε) =





[α1 +
1
C1

Gb]x1 − α1x2 +
1
C1

[Ga(1 + ε)Gb]E

α2x1 − α2x2 +
x3

C2

α3x2





and by symmetry

F2,−E(x, ε) =





[α1 +
1
C1

Gb]x1 − α1x2 +
1
C1

[Ga(1 + ε)Gb](−E)

α2x1 − α2x2 +
x3

C2

α3x2



 ,

where α1 = −1
C1R

, α2 = 1
C2R

and α3 = −1
L
, ε is the parameter bifurcation.

So applying the method presented in Section 2 as for the first example, one determines
the Poincaré map associated with this system when a symmetric grazing occurs. The
procedure of chaotification given in Section 3 and applied to this Poincaré map gives us
the following results:
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Figure 5: Symmetric grazing case (Chua circuit): limit Cycle for ε = 0.1.

• For ε = 0.1 (this corresponds to the initial value of Ga), there is a limit cycle between
the two sides Π1 and Π2, see Fig. 5.

• For ε = 0.2, a period doubling appears, see Fig. 6.
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Figure 6: Symmetric grazing case (Chua circuit): period doubling for ε = 0.2.

• For ε = 0.3, a Rössler behavior appears, see Fig. 7.

• For ε = 0.4, a double scroll behavior appears, see Fig. 8.
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Figure 7: Symmetric grazing case (Chua circuit): Rössler attractor for ε = 0.3.
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Figure 8: Symmetric grazing case (Chua circuit): double scroll attractor for ε = 0.4.

5 Conclusion

In this paper, we have proposed a mathematical approach of route to chaos for bounded
p.w.s systems of dimension three subjected to symmetric grazing or sliding bifurcations.
This approach highlights the fact that it is possible to extend the procedure given in [4,5]
to the interesting case of symmetric non-smooth bifurcations. Moreover, simulation
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results show that it is less complicated to deal with symmetric non-smooth transitions
than non-symmetric non-smooth ones. Simulation results were proposed for academic
example subjected to symmetric sliding bifurcations and an application of this approach
is also done for the well-known Chua circuit where two grazing bifurcations associated
with two symmetric transient surfaces appear simultaneously and symmetrically. Many
possible perspectives can be investigated such as to generalize the results to other forms
of non-smooth transitions, for example corner ones, or to deal with multimodal p.w.s
systems.
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